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Abstract In this paper, we consider the problem of estimating a high dimensional precision matrix of Gaussian

graphical model. Taking advantage of the connection between multivariate linear regression and entries of

the precision matrix, we propose Bayesian Lasso together with neighborhood regression estimate for Gaussian

graphical model. This method can obtain parameter estimation and model selection simultaneously. Moreover,

the proposed method can provide symmetric confidence intervals of all entries of the precision matrix.
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1 Introduction

Gaussian graphical models can provide effective tools for discovering conditional independence
relationships among variables (Lauritzen[12]; Whittaker[21]). Consider the p-dimensional mul-
tivariate Gaussian distribution random variable X = (X1, · · · , Xp)T ∼ N(μ, Σ). Assume that
matrix Σ is non-singular, the conditional independence structure of the distribution can be rep-
resented by a graphical model G = (V, E), where V = {1, · · · , p} is the set of nodes and E the
set of edges in (V × V ). According to the connection of precision matrix Ω = Σ−1 := (ωij)p×p

and partial correlation coefficient matrix, an edge (i, j) is not contained in the edge set E if
and only if Xi is conditionally independent of Xj given the remaining variables. Whether edge
(i, j) is not contained in the set E can be represented by whether the corresponding entry of
the precision matrix Ω is zero.

The Lasso of Tibshirani[18] is usually used to estimate the regression coefficient β = (β1, · · ·,
βp)T in the linear model

Y = Xβ + ε, (1.1)

where Y is the n × 1 vector of response, X = (X1, · · · ,Xp) is the n × p matrix of predictors.
The Lasso solution ̂β minimizes the residual sum of squares with restraining the �1-norm of the
coefficient vector β,

̂βL = argmin
β

||Y − Xβ||22 + λ||β||1, λ ≥ 0,

where || · ||2 denotes the vector �2-norm, and || · ||1 denotes the vector �1-norm.
Recently, the graphical Lasso is not only used for graphical model selection (Meinshausen

and Buhlmann[13]), but also widely used for simultaneous graphical model determination and
parameter estimation (Yuan and Lin[24]; Banerjee et al.[4]; Fridman et al.[9]). In Gaussian
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random field, the graphical Lasso is a form to maximize the penalized log-likelihood

log det(Ω) − tr(n−1SΩ) − λ||Ω||1, for λ ≥ 0,

where 1
nS is the empirical covariance matrix, ||Ω||1 denotes the sum of the absolute values

of the elements of the positive definite matrix Ω, λ is tuning parameter. Friedman et al.[9]

developed a simple algorithm for the Lasso using a coordinate descent procedure. Particularly
Meinshausen and Buhlmann[13] proposed neighborhood selection (NS) method to estimate the
conditional independence restrictions separately for each node in the graph, NS can equivalently
construct graphs for Gaussian models. However, the shortage of the method is that NS can
not estimate the precision matrix. Yuan[25] replaced the Lasso selection by a Dantzig type
modification, where first the ratios between the off-diagonal elements ωij and the corresponding
diagonal element ωii were estimated, and then the diagonal element ωii were obtained given the
estimated ratios ωij/ωii. At last the off-diagonal elements ωij were obtained since the ratios
ωij/ωii and ωii were estimated. However, the estimations were obtained in two-step procedure.
Motivated by these view points, we propose a Bayesian method for graphical model which aims
to estimate precision matrix and construct the graph simultaneously.

The Lasso has a Bayesian interpretation. Tibshirani[18] suggested that Lasso estimates can
be interpreted as posterior mode estimate when the regression parameters have independent and
identical Laplace priors. Motivated by this connection, Figueiredo[8], Bae and Mallick[3], and
Yuan and Lin[24] proposed Laplace-like priors in Bayesian Lasso method for linear regression.
Park and Casella[14] proposed explicit treatment of Bayesian Lasso regression, and provided a
full Bayesian analysis using a conditional Laplace prior specification of the form

π(β|σ2) =
p

∏

j=1

λ

2
√

σ2
exp{−λ|βj|/

√
σ2}, (1.2)

and used the noninformative scale-invariant marginal prior π(σ2) = 1/σ2 on σ2. They ex-
tended the Bayesian Lasso regression model to hierarchical model with prior β|σ2, τ2

1 , · · · , τ2
p ∼

Np(0p, Dτ ), where Dτ=diag (τ2
1 , · · · , τ2

p ), and obtained point estimates of the regression co-
efficients by placing prior distributions on the hyper-parameters τ2

1 , · · · , τ2
p and σ2. Hans[6]

introduced new aspects of broad Bayesian treatment of Lasso regression, the author provided
a direct characterization of the coefficients posterior distribution and new Gibbs sampler for
Bayesian Lasso regression.

Bayesian approaches to statistical inference often apply the conjugate prior distribution for
parameters. Jones et al.[10], Scott and Carvalho[17], Wang and West[19] relied on the conju-
gate hyper-inverse Wishart (HIW) prior for covariance matrix Σ. Equivalently, Roverato[15],
Atay-Kayis and Massam [2] applied the G-Wishart prior for the precision matrix. Wang and
Carvalho[23] pointed out that sampling from (HIW) for non-decomposable graphs is not trivial
and depends on computationally extensive Monte Carlo methods. Wong et al.[20] placed point
mass priors at elements of the partial correlation matrix and non-informative priors for the
non-zero elements.

The graphical Lasso also has a Bayesian interpretation. With the following prior P (Ω|λ) ∝
∏

i<j

exp{−λ|ωij}
p
∏

=1
exp

{− λ
2 |ωii

}

I(Ω ∈ M+), where M+ denotes the set of all definite positive

symmetric matrices, for any fixed values λ ≥ 0, the posterior mode of Ω is the graphical
Lasso estimate with tuning parameter ρ = λ/n. Wang[22] presented a Bayesian graphical
Lasso procedure for simultaneous parameter estimation and structural learning. The author
proposed hierarchical models and priors, under which the posterior distribution of the elements
ωij , (i ≤ j) of precision matrix Ω are introduced. Full conditional distributions of ωij can be
approximated by a Gaussian density respectively.
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In this paper, we view a Gaussian graphical model as a linear regression model, and propose
Bayesian Lasso method for neighborhood selection. At the same time, we use a Bayesian method
to estimate the variances of the errors, so we can estimate parameters of precision matrix and
construct the graph simultaneously.

The rest of the paper is as follows. In Section 2, we propose Bayesian Lasso together
with neighborhood regression estimate denoted by BLNRE for Gaussian graphical model, and
introduce how to choose the penalty parameter λ. We also provide the method to shrink the
estimation of the entries of the precision matrix for model selection. In Section 3, We present
simulation results and comparison with the results that come from neighborhood selection (NS)
(Meinshausen and Buhlmann[13]) and from Graphical Lasso (GLasso) (Fridman et al.,[9]). At
last, the flow cytometry data set from Sachs et al.[16] is analyzed in Section 4.

2 Methodology

2.1 Regression and Precision Matrix of Gaussian Graphical Model

Let X = (X1, · · · , Xp)T be a p-dimensional random variable following multivariate normal
distribution with mean μ and covariance matrix Σ. We shall denote Σ\i,\j the submatrix of Σ
with its i-th row and its j-th column removed. Σi,\j or Σ\i,j denotes the i-th row of Σ with
the j-th column removed or the j-th column of Σ with the i-th row removed. It is well known
that if we partition X, μ, Σ as follows (Anderson[1]):

X =
(

X(1)

X(2)

)

, μ =
(

μ(1)

μ(2)

)

, Σ =
(

Σ11 Σ12

Σ21 Σ22

)

,

then the conditional distribution of X(1) given X(2) = x(2) is

X(1)|x(2) ∼ N(μ(1) + Σ12Σ−1
22 (x(2) − μ(2)), Σ11 − Σ12Σ−1

22 Σ21).

Specially, let X(1) = Xi, X(2) = X\i, then the conditional distribution of Xi given the
remaining variables X\i follows from normal distribution,

Xi|X\i = x\i ∼ N(μi + Σi,\iΣ−1
\i,\i(x\i − μ\i), σii − Σi,\iΣ−1

\i,\iΣ\i,i).

Equivalently, we have the following regression equation

Xi = αi + XT
\iβ(i) + εi, (2.1)

where αi = μi − Σi,\iΣ
−1
\i,\iμ\i, β(i) = Σ−1

\i,\iΣ\i,i is a p − 1 dimensional vector and εi ∼
N(0, σii − Σi,\iΣ−1

\i,\iΣ\i,i) is independent of X\i, μi is the i-th element of the mean μ, σii is
the (i, i)-th element of the covariance matrix Σ.

Because Ω = Σ−1 , then the i-th column of Ω can be written as

ωii = (σii − Σi,\iΣ
−1
\i,\iΣ\i,i)−1,

Ω\i,i = −(σii − Σi,\iΣ
−1
\i,\iΣ\i,i)−1Σ−1

\i,\iΣ\i,i,

combining with (2.1), we have

ωii = (V ar(εi))−1, (2.2)
Ω\i,i = −(V ar(εi))−1β(i). (2.3)

Therefore, an estimate of Ω can be potentially obtained by regressing Xi over X\i. Furthermore,
(2.3) can be written as β(i) = −Ω\i,i/ωii. This denotes that a zero entry on the i-th column of
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the precision matrix Ω implies a zero entry in the corresponding regression coefficient β(i) and
vice versa.

2.2 Neighborhood Selection and Parameters Estimation with Bayesian Lasso

Meinshausen and Buhlmann[13] proposed Lasso estimate for β(i) in (2.1) which is given by

̂β(i),λ = arg min
β

(||Xi − X\iβ||22 + λ||β||1
)

, (2.4)

where X is n× p matrix containing n independent observations of X , Xi is the i-th column of
X, X\i is the sub-matrix of X with i-th column removed, β is a (p − 1)-dimensional vector.

Using the Bayesian interpretation of the Lasso, ̂β(i),λ in (2.4) can be viewed as the mode
of the posterior distribution of β, ̂βB

(i) = argmaxβ p(β|X\i, σ
2, τ), when independent, double-

exponential prior distributions are placed on the (p−1)-dimensional regression coefficients β(i).
In this paper, we suggest the following hierarchical representation of the full model similar

as Park and Casella[14] (we omit the sub-label i of τ1,i, · · · , τp−1,i for convenience):

Xi|X\i, β(i), σ
2
i ∼ N (XT

\iβ(i), σ
2
i ),

β(i)|σ2
i , τ2

1 , · · · , τ2
p−1 ∼ N (0p−1, σ

2
i Dτ ),

Dτ = diag (τ2
1 , · · · , τ2

p−1),

σ2
i , τ2

1 , · · · , τ2
p−1|λ2 ∼ π(σ2

i )dσ2
i

p−1
∏

j=1

λ2

2
exp(−λ2τ2

j /2)dτ2
j ,

where σ2
i , τ2

1 , · · · , τ2
p−1 > 0.

Then the full conditional distributions of β(i), σ2
i , τ2

1 , · · · , τ2
p−1 are as follows:

β(i)|X, σ2
i , τ2

1 , · · · , τ2
p−1 ∼ Np−1(A−1X\iXi, σ

2
i A−1),

σ2
i |X, β(i), τ

2
1 , · · · , τ2

p−1 ∼ IG(
n + p − 1

2
, (Xi − X\iβ(i))T(Xi − X\iβ(i)))/2 + βT

i D−1
τ β(i)/2),

τ−2
j |X, β(i), σ

2
i ∼ IN(μ′, λ′), j = 1, · · · , p − 1,

where IG(a, b) denotes inverse-gamma with shape parameter a and scale parameter b, and
IN(μ′, λ′) denotes inverse-Gaussian distribution with parameters μ′, λ′, A = XT X + D−1

τ ,
and here μ′ =

√

λ2σ2/β2
j , λ′ = λ2. These full conditional distribution form the basis for

an efficient Gibbs sampler. For i = 1, · · · , p, we obtain estimation of ̂β(i) and σ̂2
i by Gibbs

sampling. Combining (2.2) and (2.3), we have ω̂ii = σ̂−2
i , ̂Ω\i,i = −(σ̂2

i )−1
̂β(i). Then we obtain

the estimation of Ω denoted by ̂Ω = (ω̂ij).

2.3 The Choice of the Penalty Parameter λ

The graphical Lasso requires the selection of the penalty parameter λ. Typically one can
estimate this parameter by cross-validation (Fridman et al.[9]), or by BIC criterion ( Yan[25]).
For the Bayesian framework, each iteration of the algorithm involves running the Gibbs sampler
using a λ. The full Bayesian method for choosing λ is applied in the context of Bayesian
Lasso regression models (Park and Casella[14]; Kyung et al.[11]). Alternatively, one can use
the empirical Bayesian estimate to provide a point estimate of λ (Park and Casella[14]). In
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this paper we consider the conjugate gamma prior on λ2 according to the prior of λ2 given in
Yuan[25]. λ2 ∼ Ga(r, s), and the full conditional distribution for λ2 is

λ2|τ2
1 , · · · , τ2

p−1 ∼ Ga
(

r + p − 1, s +
p−1
∑

j=1

τ2
j /2

)

,

where r, s are the hyper-parameters. With the full conditional distribution, we can obtain λ
via Gibbs sampler in each iteration.

2.4 Construction of Graphical Model and Symmetrization

Graphical model selection is an important problem for a sparse graphical model. The classical
graphical Lasso procedure is able to produce possible βk

(i) = 0 in the problem (2.1). However,
we place continuous prior distribution on β(i), hence has zero posterior probability on the
event βk

(i) = 0. So we can not obtain exact zeros for true-zero entries of precision matrix Ω
through Gibbs sampling. In order to get graphical model selection, we shall apply a threshold
to obtain a sparse precision matrix. Carvalho et al.[5] proposed a method for classification under
absolutely continuous priors. If we choose to study sparsity in the case where θ is a vector of
normal means:(Y |θ) ∼ N(θ, σ2I), then authors proposed discrete mixture models accounting
for the presence of sparsity

θi ∼ (1 − p)δ0 + pg(θi)),

where p is including probability (Pr(θi �= 0)) and g(θi) is prior distribution for θi when θi �= 0.
Under a discrete mixture model, the posterior mean of θi is

E(θi|Y ) = ωi · Eg(θi|Y, θi �= 0),

where wi is posterior including probability (i.e. Pr(θi �= 0|Y )). Then a possible threshold is
to call θi �= 0 if the prior distribution g(θi) yields wi > 0.5, and to call θ = 0 otherwise. In
our situation (2.1), under discrete and continuous mixture prior, the Bayesian posterior mean
estimator of βk

(i) is

̂βk
(i) = ωk · Eg(βk

(i)|X, βk
(i) �= 0), k = 1, 2, · · · , i − 1, i + 1, · · · , p,

where g is the continuous prior distribution for non-zero βk
(i). Consider the graphical Bayesian

Lasso prior (1.2) which can also shrink βk
(i) towards to zero, its posterior mean estimator ˜βk

(i)

of βk
(i) can be written as

˜βk
(i) = ω̃k · Eg(βk

(i)|X, βk
(i) �= 0), k = 1, 2, · · · , i − 1, i + 1, · · · , p,

where w̃k is the amount of shrinkage applied by the Bayesian graphical Lasso prior on Eg(βk
(i)|X).

Then similar as Carvalho et al.[5], we claim the event βk
(i) �= 0 if and only if ω̃k > 0.5, and βk

(i) = 0
otherwise.

As for the choice of prior distribution g(·) of β(i), we consider conjugate multivariate normal
distribution, β(i) ∼ N(0, τ2I), where τ is unknown. Then Eg(β(i)|X) = H−1K, where H =
I/τ2 + XT

\iX\i/σ2
i , K = XT

\iXi. In our simulation, we replace σ2
i by residual covariance σ̂2

i

of regression model (2.1), and let τ = 1. This just is the ridge regression coefficients of β(i) in
(2.1).

After constructing the graphical model, we can obtain the sparse estimate of the precision
matrix Ω based on the estimate ̂Ω in Section 2.2, and the sparse estimation denoted by ̂Ω1.
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However, we do not impose the symmetry condition on Ω in Section 2.2 and as a result the
estimate ̂Ω1 is not symmetric. The symmetric estimate of Ω denoted by ˜Ω can be obtained by
symmetrizing ̂Ω1 = (ω̂1

ij) as follow,

˜Ω = (ω̃ij), ω̃ij = ω̃ji = ω̂1
ijI{|ω̂1

ij | ≤ |ω̂1
ji|} + ω̂1

jiI{|ω̂1
ij | > |ω̂1

ji|}. (2.5)

In the other words, we take the smaller magnitude of ω̂ij and ω̂ji for ω̃ij and ω̃ji. In our
simulation, we also consider the performance of the initial Bayesian Lasso estimator obtained
by symmetrized ̂Ω.

3 Simulation

Example 1. The simulation experiments are concerned with performances of Bayesian Lasso
together with neighborhood regression estimate (BLNRE), Neighborhood selection (NS) and
Graphical Lasso (GLasso) in structure learning and in terms of estimation of precision matrix.
We consider three different models in this example.

• Model 1. An AR(2) model with ωii = 1, ωi−1,i = ωi,i−1 = 0.5 and ωi−2,i = ωi,i−2 = 0.25
and ωij = 0 otherwise.

• Model 2. A star model with every node connected to the first node, with ωii = 1, ω1i =
ωi1 = 0.3 and ωij = 0 otherwise.

• Model 3. A circle model with ω1,1 = ω10,10 = 1, ωi,i = 1.36, for i = 2, 3, · · · , 9, ωi,i−1 =
ωi−1,i = −0.6 and ω1,10 = ω10,1 = 0.6 and ωij = 0 otherwise.

Fig.1 gives the image plots of the true graph of the three models. In the images plots, the
lightest colour corresponds to elements of the matrix that have minimal absolute value and the
darkest colour correspond to elements of matrix that have maximal absolute value. Shades of
grey corresponded to interpolated values between the minimum and the maximum.

Fig. 1. Image Plots of the True Graphs of Model 1-3 Respectively

For each model, we generate 500 groups data with each group having n = 100 observations,
and consider the case p = 10. In order to assess the effect of the two hyper-parameters r and
s to the simulation, we let s = 0.1, 0.3, · · · , 3.9 and r = 1, 1.5, 2, 2.5, the simulation results are
reported in Fig.2. Fig.2 shows that among the range of r and s, their values don’t affect the
simulation results.
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Fig. 2. Frobenius loss with different values of r and s

Then for each generated sample, we fit Bayesian regression Lasso with hyper-parameters
r = 2, s = 1.5 for the prior distribution of λ2. The Bayesian regression Lasso estimations
are obtained via iterations of the Gibbs sampler. To assess the performance of the structure
learning, we calculate the percentages of true non-zeros estimated as non-zeros (TP) and the
percentages of true zeros estimated as zeros (TN) based on the estimated ω̂ij , and compare
these results with the results obtained by NS (Meinshausen and Buhlmann[13]) and GLasso
(Fridman et al.[9]). We use AIC criterion for GLasso to select the tuning parameter λ . The
mean and the standard error of TN and TP are reported in Table 1. In this paper, the result
of NS is obtained as follows:

Step 1. Using the lasso estimate of β(i) which is given by (2.4), we obtain the neighborhood
set n̂ei of the i-th node via lars algorithm (Efron[7]). In the procedure ,we use AIC criterion
for the selection of tuning parameter λ.

Step 2. For i = 1, 2, · · · , p, we obtain a initial graph of the model which is not symmetric.
Using “or” rule (Meinshausen and Buhlmann[13]) i.e. letting there is not an edge between i and
j if i /∈ n̂ej or j /∈ n̂ei, we obtain a symmetric estimate of the graph denoted by NS.

In addition, our method also uses the “or” rule for symmetric model selection , because the
symmetrization strategy (2.5) (in Section 2.4) implies the “or” rule.

As shown in Table 1, the TP is 1 for all models and for all methods, BLNRE method get
large TN for all models compared to GLasso, but less than NS. This is tolerable, after all the
goal of NS is to identify the underlying graphical model.

Table 1. Summary of Performance of Structure Learning Measured by TN and TP

Model BLNRE NS GLasso

Model 1 TN 0.652(0.043) 0.803(0.041) 0.571(0.076)

TP 1.000(0.000) 1.000(0.000) 1.000 (0.000)

Model 2 TN 0.774(0.040) 0.825(0.035) 0.734(0.058)

TP 1.00(0.000) 1.00(0.000) 1.000(0.000)

Model 3 TN 0.703(0.053) 0.780(0.048) 0.682(0.071)

TP 1.000(0.000) 1.000(0.00) 1.000(0.00)

In order to compare the performances of the estimates of these three models, we consider
Frobenius loss: Loss=tr ((̂Ω − Ω)(̂Ω − Ω)), and the mean and the standard error of the loss
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are reported in Table 2. The goal of the neighborhood selection is to identify the underlying
graphical model, so we use a simple two-step procedure to obtain the estimate of the preci-
sion matrix. Firstly, we obtain the graph NS via neighborhood selection. Secondly, we use
the Iterative Proportional Scaling algorithm (IPS) (Lauritzen[12]) for the maximum likelihood
estimate based on the selected model. The results denoted by NS+IPS are shown in Table 2.
We present the results of BLNRE in two cases, the loss tr((̂Ω − Ω)(̂Ω − Ω)) for the without
threshold estimate (BLNRE(initial)) and the loss tr((˜Ω−Ω)(˜Ω−Ω)) for the threshold estimate
(BLNRE) in Table 2, respectively. Table 2 shows that without threshold, the loss of BLNRE is
substantially large than NS+IPS, while the loss of BLNRE is less than NS+IPS with threshold.
But the loss of the two cases of BLNRE is less than GLasso.

Table 2. Summary of Performance of Estimation Measured by the Frobenius Loss

Model BLNRE(initial) BLNRE NS+IPS GLasso

Model 1 1.243(0.354) 0.934(0.598) 1.209(0.636) 2.291(0.201)

Model 2 1.406(0.287) 0.851(0.603) 0.968(0.529) 1.533(0.176)

Model 3 2.179(0.524) 1.407(0.556) 1.675(0.808) 3.407(0.468)

Fig.3 gives the box plots of all entries of the precision matrix of Models 1–3. Fig.4 gives
the 95% credible intervals of all entries of the precision matrix of Models 1–3. These figures are
plotted based on the estimate ̂Ω stated in Section 2.2. Figs. 3, 4 show that ωij and ωji have
almost the same box plots and confidence intervals. Moreover, the confidence intervals of the
true zero entries all contain zero point.

Fig. 3. The box plots of all entries of the estimated precision matrices of Models 1–3.

Fig. 4. The 95 percent confidence intervals of all entries of the estimated precision matrices of Models 1–3
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Then let p=10,20,30, we plot the image plots of the precision matrices of Model 1 with fixed
sample size (n=100). The image plots are presented in Fig. 5.

Fig. 5. Image plots of the estimated precision matrices of Model 1 for p=10, 20, 30 respectively.

Example 2. This simulation experiments are concerned with performances of BLNRE esti-
mator for several different p. In this simulation we considered two model: Model 3 and the
following model.

• Model 4. An AR(3) model with ωij = 0.5|i−j|, |i− j| ≤ 3, i �= j and ωii = 1, and ωij = 0
otherwise.

For each model, we let p = 10, 20, · · · , 50, 60 and the sample size n satisfies p/n ≈ 0.1.
The BLNRE estimates are based on 200 repeating simulation. We calculated the normalized
Frobenius loss 1

p tr((̂Ω − Ω)(̂Ω − Ω)) and 1
p tr((˜Ω − Ω)(˜Ω − Ω)) for every model, i.e., without

threshold and with threshold, respectively. the results are reported in Fig.6. As shown in Fig.6,
our method has stability when p and n increase simultaneously.

Fig 6. Normalized Frobenius loss of Models 3–4 for different p, the left one is for Model 3,

and the right one is for Model 4.

4 Real Data Analysis

In this example, we analyze the flow cytometry dataset from Sachs et al.[16]. The data consists
of flow cytometry measurements of p = 11 phosphorylated proteins and phospholipids, and
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n = 7466 cells. The 11 proteins are Raf, Erk, P38, Jnk, AKT, Mek, PKA, PKC, Plc, PIP2,
PIP3 respectively. Sachs et al.[16] constructed Bayesian network with the data, they fitted a
directed acyclic graph (DAG) shown in Fig.7. Friedman et al.[9] proposed the graphical lasso
method (GL) to analyze the data set, they fitted a set of undirected graphs for different values
of the penalty parameter ρ. Their results show that given a range of penalty parameters,
the graphical lasso has agreement with the DAG of about 50% for both edges and non-edges.
Wang[22] applied the BGL to these data, and reported the 95% confidence intervals for the zero
off-diagonal elements estimated at two different values of penalty parameter λ. We propose
BLNRE method to the data set to the estimation of precision matrix and structure learning of
the 11 proteins. We let the hyper-parameters r=1 and s=0.5 for the prior distribution of λ. The
image of the estimated precision matrix is shown in Fig.8, and the corresponding constructed
graph is shown in Fig.9. As shown in Fig.9, the graph has about 68% of the edges and 85% of
the non-edges agreement with the undirected graph implied by the DAG.

Fig. 7. Directed acylic graph from the flow cytometry data.

Fig. 8. Image plot of the estimated precision matrix.
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Fig. 9. Fitted undirected graph.

5 Discussion

High dimensional graphical model selection and estimation is becoming more and more com-
mon in various scientific and technological fields. In this paper, based on the connection of
multivariate linear regression and entries of precision matrix, we propose Bayesian method to
estimate the entries of precision matrix and recover the model structure simultaneously. Numer-
ical studies show that BLNRE method has better performance for precision matrix estimation
under Frobenius norm loss criterion. And we find that BLNRE estimation is stable for different
p according to the normalized Frobenius norm loss.
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