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Abstract For any positive integers k and m, the k-step m-competition graph Ck
m(D) of a digraph D has

the same set of vertices as D and there is an edge between vertices x and y if and only if there are distinct m

vertices v1, v2, · · · , vm in D such that there are directed walks of length k from x to vi and from y to vi for

all 1 ≤ i ≤ m. The m-competition index of a primitive digraph D is the smallest positive integer k such that

Ck
m(D) is a complete graph. In this paper, we obtained some sharp upper bounds for the m-competition indices

of various classes of primitive digraphs.
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1 Introduction

For terminology and notation used here we follow[4,5,9,21]. Let D = (V, E) denote a digraph
(directed graph) with vertex set V = V (D) and arc set E = E(D) on n vertices. Loops are
permitted but multiple arcs are not. A u → v walk in D is a sequence of vertices u, u1, · · · , ut, v ∈
V (D) and a sequence of arcs (u, u1), (u1, u2), · · · , (ut, v) ∈ E(D), where the vertices and arcs
are not necessarily distinct. A closed walk is a u → v walk where u = v. A cycle is a closed
u → v walk with distinct vertices except for u = v. The length of a walk W , denoted by |W |,
is the number of arcs in W . The notation u

k−→ v is used to indicate that there is a u → v
walk of length k. The distance, d(u, v), from a vertex u to a vertex v in D is the length of the
shortest walk from u to v. An l-cycle, denoted by Cl, is a cycle of length l. The length of the
shortest cycle in D is called the girth of D.

A diagraph D is primitive if there exists some positive integer k such that u
k−→ v for every

pair u, v ∈ V (D). The smallest such k is called the exponent of D, denoted by exp(D). It is
well known that D is primitive if and only if D is strongly connected and the greatest common
divisor of lengths of its cycles is 1. The competition graph of D was introduced by [9] when he
studied a problem in ecology.

Definition 1.1[9]. The competition graph of a digraph D, denoted by C(D), has the same set
of vertices as D and there is an edge between vertices x and y if and only if there is a vertex z
such that (x, z) and (y, z) are arcs of D.

Since the notion of competition graphs was introduced, there has been numerous literature
on competition graphs. We refer to [19] for a surveys on competition graphs. In addition
to ecology, their various applications include applications to channel assignments, coding, and

Manuscript received December 7, 2011. Revised July 13, 2016.
Supported by the National Natural Science Foundation of China (No. 11571123, 11671156) and the Guangdong
Provincial Natural Science Foundation (Grant No. 2015A030313377).



476 L.H. YOU, F. CHEN, J. SHEN, B. ZHOU

modeling of complex economic and energy systems. Cho et al.[6] generalized competition graph
to k-step competition graph.

Definition 1.2[6]. Let D be a digraph and k be a positive integer. A vertex z of D is a k-step
common prey for x and y if x

k−→ z and y
k−→ z.

Definition 1.3[6]. The k-step competition graph of D, denoted by Ck(D), has the same vertex
set as D and there is an edge between distinct vertices x and y if and only if x and y have a
k-step common prey in D.

Definition 1.4[6]. The k-step digraph of D, denoted by Dk, has the same vertex set as D and
there is an arc (x, y) in Dk if and only if x

k−→ y in D.
Clearly, the k-step competition graph of D is the competition graph of Dk, i.e. Ck(D) =

C(Dk) (see [11]).

Definition 1.5[12]. For a positive integer m, the m-competition graph of a digraph D, denoted
by Cm(D), has the same vertex set as D and there is an edge between x and y if and only if
there are at least m distinct vertices v1, v2, · · · , vm and arcs (x, vi) and (y, vi) for 1 ≤ i ≤ m.
That is, there is an edge between x and y in Cm(D) if and only if x and y have at least m
common preys in D.

Definition 1.6[12]. The k-step m-competition graph Ck
m(D) has the same vertex set as D and

there is an edge between x and y if and only if there are at least m distinct vertices v1, v2, · · · , vm

such that each vi (1 ≤ i ≤ m) is a k-step common prey for vertices x and y; i.e., x
k−→ vi and

y
k−→ vi for all i (1 ≤ i ≤ m).

Proposition 1.1[12]. For any digraph D and positive integers m and k, we have Ck
m(D) =

Cm(Dk).

Proposition 1.2[12]. For any primitive digraph D on n vertices and for each positive integer
m with 1 ≤ m ≤ n, there is a positive integer k such that Ck

m(D) = Kn, where Kn denotes the
complete graph on n vertices. Also Ck+1

m (D) = Kn whenever Ck
m(D) = Kn.

Definition 1.7[12]. Let D be a primitive digraph on n vertices and m be a positive integer
with 1 ≤ m ≤ n. The m-competition index of D is the smallest positive integer k such that for
every pair of vertices x and y, there exist distinct vertices v1, v2, · · · , vm such that x

k−→ vi and
y

k−→ vi for 1 ≤ i ≤ m in D, denoted by km(D).
Clearly, the m-competition index of D on n vertices is the smallest positive integer k such

that every pair of vertices x and y has at least m common preys in Dk. From Proposition 1.2,
km(D) is the smallest positive integer k such that Ck

m(D) = Ck+i
m (D) = Kn for every positive

integer i. An analogous definition can be given for nonnegative matrices.

Definition 1.8[12]. The m-competition index of a primitive matrix A, denoted by km(A), is
the smallest positive integer k such that any two rows of Ak have positive elements in at least
m identical columns.

Remark 1.1. In [1,2], Akelbek and Kirkland introduced the scrambling index of a primitive
digraph D, denoted by k(D), and in [7,11], Cho and Kim introduced the competition index
of a digraph. In fact, the definitions of scrambling index and competition index are the same
for primitive digraphs, they are also called common consequent index in [31,32]. Furthermore,
these definitions are the same as the definition of the m-competition index of a primitive digraph
when m = 1, and the exponent of a primitive digraph is the same as the definition of the m-
competition index when m = n. So the m-competition index of a primitive digraph is a
generalization of the competition index and the exponent of a primitive digraph. For this reason,
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we call km(D) the generalized competition index. It is easy to see that k(D) = k1(D) ≤ k2(D) ≤
· · · ≤ kn(D) = exp(D). We refer to [1,2,3,8,10,17,22,25,26,30] for research on (generalized)
scrambling index and (generalized) competition index, respectively.

Remark 1.2. In [23], Moon and Moser showed almost all (0, 1)-matrices are primitive. In
other words, let Bn denote the set of all (0, 1) square matrices of order n, Pn denote the set
of all primitive matrices in Bn, then lim

n→∞
|Pn|
|Bn| = 1. Based on the one-to-one correspondence

relation between the simple digraphs on n vertices and all (0, 1)-matrices of order n, we know
that almost all simple digraphs on n vertices are primitive. Let D be a primitive digraph.
Then km(D) is the minimum number of steps that information at any two vertices of D can
be sent to at least m vertices in D. When m = 1 and m = n, these reduce to the classical
cases: k(D) = k1(D) is the minimum number of steps that information at any two vertices of
D can be sent to some vertex in D, and kn(D) = exp(D) is the minimum number of steps that
information at any two vertices of D can be sent to all vertices in D.

In this paper, we investigate the m-competition index of primitive digraphs. We obtain
some sharp upper bounds for the m-competition indices of various classes of primitive digraphs
including primitive digraphs with d loops, primitive symmetric digraphs, r-indecomposable
digraphs, primitive Cayley digraphs and primitive digraphs with girth s.

2 m-Competition Index of Primitive Digraphs

In this section, we assume that n and m are integers with 1 ≤ m ≤ n. Let Pn denote the set of
all primitive digraphs on n vertices. The m-competition indices of various classes of primitive
digraphs on n vertices are investigated.

Let RD
t (X) denote the set of all those vertices which can be reached by a walk of length t

in D starting from some vertex in X ⊆ V (D). Clearly, RD
0 (X) = X .

Lemma 2.1[21]. Let D be a strongly connected digraph on n vertices, s be an integer and
W = {i1, · · · , is} be the set of loop vertices in D. Then for each integer t,

|RD
t (W )| ≥ min{s + t, n}.

2.1 Primitive Digraphs with d Loops

Let d be an integer with 1 ≤ d ≤ n, and Pn(d) denote the set of primitive digraphs with n
vertices and d loops.

Let Ln,d ∈ Pn(d) be the digraph with vertex set V = {1, 2, · · · , n} and arc set E = {(i, i +
1)|1 ≤ i ≤ n−1}∪{(n, 1)}∪{(i, i)|n−d+1 ≤ i ≤ n}. It is well known that exp(Ln,d) = 2n−d−1
(see [21]).

Theorem 2.1. Let D ∈ Pn(d) and 1 ≤ m ≤ n. Then km(D) ≤ n − d + �m+n−1
2 	.

Proof. Let W be the set of loop vertices in D and x, y be any two different vertices in D.
There exist vertices u1 and u2 of W such that x

n−d−→ u1 and y
n−d−→ u2.

Case 1. u1 = u2.
Then, by Lemma 2.1,

∣
∣
∣RD

�m+n−1
2 �({u1})

∣
∣
∣ ≥ min

{⌊m + n − 1
2

⌋

+ 1, n
}

=
⌊m + n − 1

2

⌋

+ 1 ≥ m

and thus km(D) ≤ n − d + �m+n−1
2 	.
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Case 2. u1 
= u2.
Let t = �m+n−1

2 	. Then, by Lemma 2.1, |RD
t ({ui})| ≥ t + 1 for i = 1, 2. Hence

∣
∣
∣

2⋂

i=1

RD
t ({ui})

∣
∣
∣ ≥ 2(t + 1) − n ≥ 2

(m + n − 1 − 1
2

+ 1
)

− n = m

and thus km(D) ≤ n − d + �m+n−1
2 	.

Combining the above two cases, we have km(D) ≤ n − d + �m+n−1
2 	. �

By Theorem 2.1, and taking m = n, we can obtain the following result.

Corollary 2.1[21]. Let D ∈ Pn(d). Then exp(D) = kn(D) ≤ 2n − d − 1, and equality holds
when D ∼= Ln,d.

Lemma 2.2[20]. Let D ∈ Pn and ∅ 
= X ⊆ V (D). Then for any nonnegative integers i, j, t, k
with i ≥ j, we have

RD
i (X) = RD

i−j(R
D
j (X)),

∣
∣
∣

k⋃

t=0

RD
t (X)

∣
∣
∣ ≥ min{|X |+ k, n}.

For convenience, we let |a|n denote the least positive integer t with t ≡ a (mod n), and let
a set {a1, · · · , as} (mod n) denote the set {|a1|n, · · · , |as|n}.
Theorem 2.2. Let D ∈ Pn(d) and 1 ≤ m ≤ d ≤ n. Then km(D) ≤ n − �d−m+1

2 �, and
equality holds when D ∼= Ln,d.

Proof. For any two vertices u1, u2 ∈ V (D), by Lemma 2.2, for i = 1, 2, we have

∣
∣
∣

n−� d−m+1
2 �

⋃

t=0

RD
t ({ui})

∣
∣
∣ ≥ min

{

1 +
(

n − �d − m + 1
2

�
)

, n
}

= n −
⌈d − m + 1

2

⌉

+ 1.

Hence
∣
∣
∣

2⋂

i=1

[ n−� d−m+1
2 �

⋃

t=0

RD
t ({ui})

]∣
∣
∣ ≥ 2

(

n − d − m + 2
2

+ 1
)

− n ≥ n − d + m.

Note that D ∈ Pn(d) contains exactly d loops, thus there exist at least m loop vertices

w1, w2, · · · , wm ∈
2⋂

i=1

[ n−� d−m+1
2 �

⋃

t=0

RD
t ({ui})

]

,

such that ui
n−� d−m+1

2 �−→ w1, w2, · · · , wm. Therefore, km(D) ≤ n − �d−m+1
2 �.

Now we show that the bound can be attained by Ln,d. Let l = n − �d−m+1
2 � − 1. Clearly,

km(Ln,d) ≤ l + 1 by Ln,d ∈ Pn(d). We note that

R
Ln,d

l ({1}) =
{

n − d + 1, n− d + 2, · · · , n −
⌈d − m + 1

2

⌉}

,

R
Ln,d

l

({

n −
⌈d

2

⌉

+ 1
})

=
{

n −
⌈d

2

⌉

+ 1, n−
⌈d

2

⌉

+ 2, · · · , 2n−
⌈d − m + 1

2

⌉

−
⌈d

2

⌉}

(mod n),
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therefore vertex 1 and vertex n − �d
2� + 1 only have s common preys in Ll

n,d, where

s =
(

n −
⌈d − m + 1

2

⌉)

−
(

n −
⌈d

2

⌉

+ 1
)

+ 1 =
⌈d

2

⌉

−
⌈d − m + 1

2

⌉

< m

if
∣
∣
∣2n −

⌈d − m + 1
2

⌉

−
⌈d

2

⌉∣
∣
∣
n

< n − d + 1

and

s =
[(

n − �d − m + 1
2

⌉)

−
(

n −
⌈d

2

⌉

+ 1
)

+ 1
]

+
[∣
∣
∣2n −

⌈d − m + 1
2

⌉

−
⌈d

2

⌉∣
∣
∣
n
− (n − d + 1) + 1

]

=d − 2
⌈d − m + 1

2

⌉

≤ m − 1 < m

if
∣
∣
∣2n −

⌈d − m + 1
2

⌉

−
⌈d

2

⌉∣
∣
∣
n
≥ n − d + 1.

Hence, km(Ln,d) > l, which implies that

km(Ln,d) = l + 1 = n −
⌈d − m + 1

2

⌉

.

�

By Theorem 2.2, and taking m = 1, we can obtain the following result.

Corollary 2.2[22]. Let D ∈ Pn(d). Then k(D) = k1(D) ≤ n − �d
2�, and the equality holds

when D ∼= Ln,d.

2.2 Primitive Symmetric Digraphs

A symmetric digraph D is a digraph such that for any vertices u and v, (u, v) is an arc if and
only if (v, u) is an arc. Let Sn denote the set of primitive symmetric digraphs on n vertices[24].
Clearly, if D ∈ Sn, there must be an odd cycle in D since D is primitive and symmetric.

Lemma 2.3. Let D ∈ Sn and Cr be an odd cycle in D with length r. Then for any vertex
j ∈ V (C(r)) and 1 ≤ t ≤ r, we have |RD

t ({j})| ≥ t + 1.

Proof. Let V (Cr) = {1, 2, · · · , r} and E(Cr) = {(i, i + 1)|1 ≤ i ≤ r − 1} ∪ {(r, 1)}. Then we
complete the proof by the following two cases.

Case 1. t < r.
Then

V (Cr)∩RD
t ({j}) ⊇

{ {j, j + 2, · · · , j + t, j − 2, j − 4, · · · , j − t} (mod r), if t is even;
{j + 1, j + 3, · · · , j + t, j − 1, j − 3, · · · , j − t} (mod r), if t is odd.

Thus we always have |RD
t ({j})| ≥ |V (Cr) ∩ RD

t ({j})| ≥ t + 1.

Case 2. t = r.
Then V (Cr) ⊆ RD

r−1({j}) by the same argument in Case 1. Since Cr is an odd cycle, it is
easy to see that j can reach all vertices of Cr by a walk with length r, say, V (Cr) ⊆ RD

r ({j}).
On the other hand, since D ∈ Sn ⊆ Pn is strongly connected, there must be a vertex x ∈

V (Cr) such that d+(x) ≥ 3, where d+(x) denotes the outdegree of x, i.e., there exists a vertex
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w 
∈ V (Cr) but (x, w) ∈ E(D). Since x ∈ V (Cr) ⊆ RD
r−1({j}), we have {w}∪V (Cr) ⊆ RD

r ({j})
and thus |RD

r ({j})| ≥ r + 1 = t + 1. �

Let Gn be the digraph with the vertex set V = {1, 2, · · · , n} and the arc set E = {(i, i +
1), (i + 1, i)|1 ≤ i ≤ n − 1} ∪ {(1, 1)}. Then Gn ∈ Sn.

Lemma 2.4. Let Gn be defined as above and 1 ≤ m ≤ n. Then km(Gn) ≥ m + n − 2.

Proof. Let t = m + n − 3. We only need to show km(Gn) > t.

Case 1. n is odd.

Subcase 1.1. m is odd. Then RGn
t ({n}) = {1, 2, · · · , m − 1, m + 1, m + 3 · · · , n − 3, n − 1}

and RGn
t ({n− 1}) = {1, 2, · · · , m− 1, m, m+2, · · · , n− 2, n}. So vertex n− 1 and vertex n have

only m − 1 common preys in Gt
n.

Subcase 1.2. m is even. Then RGn
t ({n}) = {1, 2, · · · , m − 1, m + 1, m + 3, · · · , n − 2, n}

and RGn
t ({n− 1}) = {1, 2, · · · , m− 1, m, m + 2, · · · , n− 3, n− 1}. So vertex n− 1 and vertex n

also have only m − 1 common preys in Gt
n.

Combining the above two subcases, we have km(Gn) > t if n is odd.

Case 2. n is even.
By an argument similar to that in Case 1, we can also obtain km(Gn) > t. �

Theorem 2.3. Let D ∈ Sn, Cr be an odd cycle in D with length r. Then
(1)

km(D) ≤
{

n − r + �m + r − 1
2

	, if 1 ≤ m ≤ r;

n − r + m − 1, if r + 1 ≤ m ≤ n.

(2) If r = 1, we have km(D) ≤ m + n − 2, and the equality holds when D ∼= Gn.

Proof. For any two vertices x, y ∈ V (D), there exist two vertices u1, u2 ∈ Cr, such that
x

n−r−→ u1, and y
n−r−→ u2. Let

t =

{ ⌊m + r − 1
2

⌋

, if 1 ≤ m ≤ r;

m − 1, if r + 1 ≤ m ≤ n.

Now we show there exist at least m distinct vertices v1, v2, · · · , vm such that ui
t−→ vj in D for

i = 1, 2 and 1 ≤ j ≤ m.

Case 1. 1 ≤ m ≤ r.
Then t ≤ r − 1. By Lemma 2.3, |RD

t ({ui})| ≥ |RD
t ({ui})∩ V (Cr)| ≥ t + 1 with i = 1, 2 and

then
∣
∣
∣

2⋂

i=1

RD
t ({ui})

∣
∣
∣ ≥

∣
∣
∣

[ 2⋂

i=1

RD
t ({ui})

]⋂

V (Cr)
∣
∣
∣ ≥ 2(t + 1) − r ≥ m.

Thus km(D) ≤ n − r + �m+r−1
2 	 when 1 ≤ m ≤ r.

Case 2. r + 1 ≤ m ≤ n.
Firstly, we know V (Cr) ⊆ RD

s ({ui}) for i = 1, 2 and s ≥ r − 1. So

∣
∣
∣

[ 2⋂

i=1

RD
s ({ui})

]⋂

V (Cr)
∣
∣
∣ = r.

We only need show there exist at least m− r distinct vertices v1, v2, · · · , vm−r ∈ V (D) \ V (Cr)
such that ui

m−1−→ vj in D for i = 1, 2 and 1 ≤ j ≤ m − r.
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Since D ∈ Sn ⊆ Pn is strongly connected, there must be a vertex x ∈ V (Cr) such that
d+(x) ≥ 3, say, there exists a vertex w 
∈ V (Cr) but (x, w) ∈ E(D). Let D(V1) denote the
induced graph of V1 ⊆ V (D) in D. Let l be the length of the longest path of D\E(D(V (Cr)))).

Subcase 2.1. l ≥ m − r.
Then there exists some vertex in V (Cr), say, u ∈ V (Cr), and at least m− r distinct vertices

v1, v2, · · · , vm−r ∈ V (D) \ V (Cr) such that u
m−r−→ vj or u

m−r−1−→ vj in D for 1 ≤ j ≤ m− r. Let
v ∈ N(u) ∩ V (Cr) where N(u) be the neighbors of u in D. Thus there exists a walk of length
m − 1 = (r − 1) + (m − r) from ui to vj by ui

r−1−→ u
m−r−→ vj or ui

r−1−→ v
1−→ u

m−r−1−→ vj for
i = 1, 2 and j ∈ {1, 2, · · · , m − r}.
Subcase 2.2. l < m − r.

We can show V (D) \ V (Cr) ⊆ RD
m−1({ui})) by the similar proof of Subcase 2.1, so we omit

it.
Combining the above arguments, we know km(D) ≤ n − r + m − 1 when r + 1 ≤ m ≤ n.
When r = 1, we have km(D) ≤ m + n − 2 by (1) and the equality holds when D ∼= Gn by

Lemma 2.4. �

By Theorem 2.3, we have

Corollary 2.3[8,22,24]. Let D ∈ Sn and Cr be an odd cycle in D with length r. Then k(D) =
k1(D) ≤ n − r+1

2 and exp(D) = kn(D) ≤ 2n − 2.

2.3 r-Indecomposable Digraphs

Let r, n be integers with 1 ≤ r < n. An n × n Boolean matrix A is called r-indecomposable
(shortly, r-inde) if it contains no k× l zero submatrix with k+ l = n−r+1. If A is r-inde, D(A)
is said to be r-inde. Let Bn,r be the set of all r-inde digraphs on n vertices. It is known that
Bn,r+1 ⊆ Bn,r (1 ≤ r ≤ n − 1), and every r-inde digraph (r ≥ 1) is primitive[29]. Bn,1 = Fn

is also called the set of fully indecomposable digraphs on n vertices. A nearly decomposable
digraph D is a digraph such that D ∈ Fn, and D − e 
∈ Fn for any e ∈ E(D). Let NFn be the
set of all nearly decomposable digraphs on n vertices.

Lemma 2.5[27]. Let r be an integer with 1 ≤ r < n. Then D ∈ Bn,r if and only if |RD
1 (X)| ≥

|X | + r for any X ⊆ V (D) with 1 ≤ |X | ≤ n − 1.
Let Hn be the digraph with vertex set V = {1, 2, · · · , n} and the arc set E = {(i, i + 1), (i +

1, i)|1 ≤ i ≤ n − 1} ∪ {(1, 1), (n, n)}. Clearly, Hn ∈ NFn ⊆ Fn.

Theorem 2.4. Let 1 ≤ m ≤ n, r ≥ 1 and D ∈ Bn,r. Then km(D) ≤ � 1
r �m+n−1

2 	�.
Proof. Let t = � 1

r �m+n−1
2 	�. By Lemma 2.5, for any two vertices u1, u2 ∈ V (D),

|RD
t ({ui})| ≥ |RD

t−1({ui})| + r ≥ · · · ≥ |{ui}| + tr ≥ 1 +
⌊m + n − 1

2

⌋

with i = 1, 2.

Hence,
∣
∣
∣

2⋂

i=1

RD
t ({ui})| ≥ 2

(

1 +
⌊m + n − 1

2

⌋)

− n ≥ m.

So there exist w1, w2, · · · , wm ∈ V (D) such that ui
t−→ w1, w2, · · · , wm. Therefore, km(D) ≤

� 1
r �m+n−1

2 	�. �

Corollary 2.4[24,29]. Let r ≥ 1 and D ∈ Bn,r. Then

k(D) = k1(D) ≤
⌈1
r

⌊n

2

⌋⌉

, exp(D) = kn(D) ≤
⌈n − 1

r

⌉

.
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It is not difficult to verify that km(Hn) = �m+n−1
2 	. Then by Theorem 2.4, we have

Theorem 2.5. Let D ∈ Fn or D ∈ NFn and 1 ≤ m ≤ n. Then km(D) ≤ �m+n−1
2 	, and

equality holds when D ∼= Hn.

2.4 Primitive Cayley Digraphs

Let G be a multiplicative group of order n with identity element e, and let A = {a1, a2, · · ·ap}
be a subset of G. The (right) Cayley digraph[29] is the digraph Cay (G, A) = (V, E), where
V = G and E = {(x, y)|x−1y ∈ A}.
Lemma 2.6[29]. Let A = {a1, a2, · · · , ap} (1 ≤ p ≤ n) be a subset of an Abelian group G. If
Cay (G, A) is primitive, then Cay (G, A) is � p

2�-inde.
By Theorem 2.4 and Lemma 2.6, we have

Corollary 2.5. Let A = {a1, a2, · · ·ap} (1 ≤ p ≤ n) be a subset of an Abelian group G and
1 ≤ m ≤ n. If Cay (G, A) is primitive, then

km(Cay (G, A)) ≤
⌈

1
�p

2�
⌊m + n − 1

2

⌋⌉

≤
⌊m + n − 1

2

⌋

.

Corollary 2.6[22,29]. Let A = {a1, a2, · · · , ap} (1 ≤ p ≤ n) be a subset of an Abelian group
G. If Cay (G, A) is primitive, then

k(Cay(G, A)) = k1(Cay(G, A)) ≤
⌈�n

2 	
�p

2�
⌉

,

exp(Cay(G, A)) = kn(Cay(G, A)) ≤
⌈

n − 1
�p

2�
⌉

.

Let P = (pij) ∈ Bn be the permutation matrix with pi,i+1 = pn,1 = 1 for i = 1, · · · , n−1. A
primitive circulant matrix C = C〈a1, a2, · · · , ap; n〉 is a matrix of the form C = P a1 + · · ·+P ap ,
where 0 ≤ a1 < · · · < ap < n and p ≥ 2. It is known that D(C) is Cay (Zn, {a1, a2, · · · , ap})
(see [29]). Let CPn denote the set of all primitive circulant digraphs on n vertices. It is easy
to see that Ln,n ∈ CPn and km(Ln,n) = n − �n−m+1

2 � = �m+n−1
2 	 by Theorem 2.2. Then by

Corollary 2.5 and the above arhuments, we have

Corollary 2.7. Let D ∈ CPn and 1 ≤ m ≤ n. Then km(D) ≤ �m+n−1
2 	, and equality holds

when D ∼= Ln,n.

Corollary 2.8[22]. Let D ∈ CPn. Then exp(CPn) = kn(CPn) ≤ n − 1.

3 Appendix: Primitive Digraphs with Girth s

In [12], Kim studied the generalized competition index of the primitive digraphs with girth
s and showed the following Theorem 2.6. Now we will obtain a weaker result by a different
method.

Theorem 2.6. Let D ∈ Pn with girth s and 1 ≤ m ≤ n. Then

km(D) ≤

⎧

⎪⎨

⎪⎩

n +
(m + n − 4

2

)

s, if n + m is even;

n − 1 +
(m + n − 3

2

)

s, if n + m is odd.
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Theorem 2.7. Let D ∈ Pn with girth s and 1 ≤ m ≤ n. Then km(D) ≤ n − s + s�m+n−1
2 	.

Proof. Let Cs be a directed cycle of length s in D and x, y be any two different vertices in
V (D). Then there exist vertices u1 and u2 of Cs such that x

n−s−→ u1 and y
n−s−→ u2. Since D

is primitive, the digraph Ds is primitive as well. Also u1 and u2 are loop vertices in Ds. By
Lemma 2.1,

∣
∣
∣RDs

�m+n−1
2 �({ui})

∣
∣
∣ ≥ min

{⌊m + n − 1
2

⌋

+ 1, n
}

=
⌊m + n − 1

2

⌋

+ 1

for i = 1, 2. Thus

∣
∣
∣

2⋂

i=1

RDs

�m+n−1
2 �({ui})

∣
∣
∣ ≥ 2

(⌊m + n − 1
2

⌋

+ 1
)

− n ≥ m.

This implies that there exist m different vertices v1, v2, · · · , vm ∈ V (Ds) such that

ui
�m+n−1

2 �−→ v1, v2, · · · , vm in Ds.

Hence, x, y
n−s−→ ui

s�m+n−1
2 �−→ v1, v2, · · · , vm in D and thus km(D) ≤ n − s + s

⌊
m+n−1

2

⌋

. �

Remark 2.1. Comparing Kim’s result and Theorem 2.7, we can see the two results are the
same when n + m is even, and Kim’s result is better than Theorem 2.7 when n + m is odd by
the fact n − s + s�m+n−1

2 	 − [n − 1 + (m+n−3
2 )s] = 1. But the two proofs of the above two

results are unique and very concise.
By Theorem 2.7 and the facts exp(D) = kn(D) and the girth s ≤ n − 1 since D ∈ Pn, we

have the following corollary immediately.

Corollary 2.9[4]. Let D ∈ Pn, we have
(1) Let s be the girth of D. Then exp(D) = kn(D) ≤ n + (n − 2)s.
(2) exp(D) ≤ n2 − 2n + 2.
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