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Abstract In this paper, we consider the issue of variable selection in partial linear single-index models under

the assumption that the vector of regression coefficients is sparse. We apply penalized spline to estimate the

nonparametric function and SCAD penalty to achieve sparse estimates of regression parameters in both the linear

and single-index parts of the model. Under some mild conditions, it is shown that the penalized estimators have

oracle property, in the sense that it is asymptotically normal with the same mean and covariance that they

would have if zero coefficients are known in advance. Our model owns a least square representation, therefore

standard least square programming algorithms can be implemented without extra programming efforts. In the

meantime, parametric estimation, variable selection and nonparametric estimation can be realized in one step,

which incredibly increases computational stability. The finite sample performance of the penalized estimators

is evaluated through Monte Carlo studies and illustrated with a real data set.

Keywords nonparametric link function; SCAD penalty; semiparametric model; spline estimation; variable

selection
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1 Introduction

We consider a partial linear single-index model

E(Y |X, Z) = X�β0 + η(Z�γ0), (1)

where β0 and γ0 are regression coefficients associated with covariates X and Z, respectively.
We assume that the first element of γ0 is positive and ‖γ0‖ = 1 to ensure identifiability.
In Model (1), X is linearly related to the mean response, while Z�γ0 is nonlinearly related
to the mean response with an unknown link function η(·). This model is quite flexible to
include many known models. When the dimension of Z is one, it includes partial linear model,
E(Y |X, Z) = X�β+η(Z) (see [4,12,27] and the comprehensive book by [8] for details. As we all
know, fully nonparametric model suffers from curse of dimensionality and cannot accommodate
high dimensional covariate Z. By combining the multivariate predictors into a univariate index
Z�γ0, Model (1) avoids this problem, and still captures important features of high-dimensional
data. When there is no linear term X�β, Model (1) also includes the single-index model,
E(Y |X, Z) = η(Z�γ0), as its special case (see [2,16,20,23] for details).

Statistical inferences on the partial linear single-index model have been studied by some
authors. [3] considered a generalized partial linear single-index model where they proposed a
method to iteratively estimate the nonparametric function η(.) and parameters (β0, γ0) based
on local linear quasi-likelihood functions. [28] found that above approach was computationally
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unstable and proposed a penalized spline-based estimation of η(.). [25] proposed a two-stage
estimation procedure to estimate the link function and the parameters in the partial linear
single-index model. [30] proposed a estimation and variable selection procedure based on min-
imum average variance estimation with measurement errors in the response and covariates. [6]
considered semiparametric estimation in a partial linear single-index panel data model with fixed
effects. [15] developed an efficient estimating equations procedure for performing variable se-
lection and semiparametric efficient estimates for the heteroscedastic partial linear single-index
model. [18] proposed a class of consistent estimators by using a proper weighting strategy with
an unspecified error variance function.

In biomedical, environmental or econometric studies, there are many variables involved in
the model, but generally the number of important variables is relatively small which means
that the true model should be sparse. In these situations, variable selection, or more generally
model selection, is often the most important objective, because the final model would be easy
to interpret and accurate in prediction. Traditional variable selection methods include best
subset, stepwise regression and so on. Stepwise regression methods are often trapped into a
local minimum solution rather than global optimal solution as indicated out by [31]. Moreover,
as pointed out by [7] and [31], these procedures also ignore the stochastic errors or uncertainty
in the variable selection stage.

Penalty-based variable selection methods, such as [7,24,31], have gained a lot of attention
for well-studied theoretical properties and computational advantages. So far, there are many
works on the issue of variable selection under the framework of linear models, but similar works
on Model (1) are not too much. [13] did some pioneer works. Their method was a discrete
variable selection method which suffered from high computational burden and inherent high
variability as mentioned above. [17] studied the SCAD penalty-based regression for Model
(1), where kernel smoother-based profile local linear regression was employed for estimating
nonparametric link function, and penalized least square estimator was employed for variable
selection and parameter estimation. [29] studied the estimation and variable selection for a
partial linear single-index model when some linear covariates are not observed but their ancillary
variables are available. [14] extended studies on variable selection for partial linear single-index
model to binary and count responses using kernel smoothers.

Besides the kernel smoother, spline smoother is another important nonparametric smoothing
method. It is necessary and meaningful to understand the theoretic and practical properties of
the spline smoother-based estimates for the partial linear single-index model. As indicated by
[10,11], splines provide good approximations of a smoothing function with a small number of basis
functions, and algorithms designed for parametric models can be used for spline estimators.
[26] showed that penalized splines can outperform kernel methods in nonparametric models
with clustered data. In this paper, we study issues of the variable selection and parameter
estimation in Model (1) by combining the penalized spline-based nonparametric estimation and
shrinkage variable selection methods. As we shown in the following context, our model owns
a least square representation, and so standard least square programming algorithms can be
directly implemented without extra programming effort. In the meantime, the estimator for
the nonparametric link function, active variables as well as the estimators of their coefficients
can be obtained in one step which increases computational stability. However, these good
futures were not presented in kernel smoother-based methods[17]. Liang’s kernel smoother-
based profile local linear regression bears great computational burden, in each evaluation of
Liang’s objective function, the whole dataset has to be used O(n) times, while the dataset only
has to be used O(1) times in each evaluation of our objective function. When the dataset is
large, Liang’s estimator could be infeasible.

We organize the rest of the paper as follows. In Section 2, we propose our estimation
and variable selection procedure. The issues of computational details and some other practical
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problems are also discussed in this section. Large sample properties, e.g. the oracle property of
proposed estimators, are investigated in Section 3. Simulation studies are conducted in Section
4 to illustrate the finite sample performance of the proposed estimation and variable selection
procedure. In Section 5, we apply our proposed method to analyze the Boston housing data.
Finally, a conclusion and future work are summarized in Section 6.

2 Model and Method

2.1 Estimating and Variable Selection Procedure

Without loss of generality, we consider a sample of n observations. For the ith observation,
denote yi as the response variable, by xi the covariate vector of the linear effect and by zi the
covariate vector of the single-index. We consider the following model

yi = x�
i β0 + η(z�i γ0) + εi, 1 ≤ i ≤ n, (2)

where β0 is p × 1 regression coefficients associated with covariate x, and γ0 is d × 1 regression
coefficients associated with covariate z. The data {(yi, xi, zi), i = 1, · · · , n} are independent
and identically distributed. The noise εi is independent of (xi, zi) with mean 0 and variance
σ2, and η0(·) is an unknown link function. Following [2] and [28], the unknown link function
η(·) can be approximated by a m-degree spline function with K fixed knots Ψ = {ξ1, · · · , ξK},
that is η(t) ≈ α�B(t), where

B(t) = (1, t, · · · , tm, (t − ξ1)m
+ , · · · , (t − ξK)m

+ )� (3)

is a truncated power basis with knots ξ1, · · · , ξK , and α is the spline coefficients. To simplify
notations, denote θγ = (β�, γ�, α�)�, and vi = (x�

i , z�i )�. Define the mean function

μ(vi, θγ) = α�B(γ�zi) + β�xi, 1 ≤ i ≤ n. (4)

To selection important variables, [7] proposed the smoothly clipped absolute deviation(SCAD)
penalty function:

p′λ(θ; λ, a) = λI{θ≤λ} +
(aλ − θ)+
(a − 1)

I{θ>λ}, for θ > 0, a > 2, (5)

where λ and a are tunning parameters. This penalty function can produce sparse estimation
which automatically set small estimated coefficients to zero, while large coefficients are unbiased.
In this article, we use the SCAD penalty to effectively select important variables. We set a = 3.7
as in [7].

The penalized least squares objective function for estimating β, γ and α is

Q(θγ) =
1
2n

n∑

i=1

(yi − μ(vi, θγ))2 + τα�Dα +
p∑

j=1

pλj (|βj |) +
p+d∑

j=p+1

pλj (|γj |), (6)

where D is an positive semidefinite symmetric matrix. Following [22] and [28], we set D to
be a diagonal matrix with its last K diagonal elements equal to 1 and the rest elements equal
to 0. The first penalty is added to avoid the overfitting problem caused by using penalized
splines to approximate the nonparametric function and we call it the smoothing penalty. The
second and third penalty terms are shrinkage penalties on the linear parameters and single-
index parameters, respectively. The smoothing parameter τ controls the smoothness of the
nonparametric function fitting while tunning parameters λj , j = 1, · · · , p+d control the amount
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of shrinkage in the variable selection. Here we allow different penalties for the parameters in
linear and single-index parts. For each evaluation of Q(θγ), we need to calculate the pseudo
design points B(z�i γ), i = 1, · · · , n, in which we use the data m+K times, the dataset is used
O(1) times in total. To evaluate [17]’s objective function, the profile estimator η(.) must be
evaluated at all the n index values z1γ

�, · · · , znγ�, one evaluation of η(ziγ
�) correspond to

use the dataset once, the dataset is used O(n) times accordingly. Liang’s algorithm could be
infeasible when the dataset is very large.

2.2 Computation Algorithm

Recall that γ satisfies ‖γ‖ = 1 and γ1 > 0, let ω be a d−1 dimension vector, we reparameterize
γ as

γ(ω) =
(1 ω�)�√
1 + ω�ω

. (7)

[28] also adopted this reparametrization. With this definition, γ(ω) is a bijection between unit
vector γ with positive first element and d − 1-dimensional vector ω without any restriction.
After reparameterizing γ with ω, the objective function is now a function of ω and can be
written as follows:

Q(β, ω, α) =
1
2n

∥∥∥∥∥∥∥

⎛

⎜⎝

Y
0
0
0

⎞

⎟⎠ −

⎛

⎜⎜⎝

α�B(Zγ(ω)) + Xβ√
2npλ(|β|)√
2npλ(|ω|)√
2nτDα

⎞

⎟⎟⎠

∥∥∥∥∥∥∥

2

, (8)

where Y = (y1, · · · , yn)�, α�B(Zγ(ω)) + Xβ = (α�B(z�1 γ(ω)) + x�
1 β, · · · , α�B(z�n γ(ω)) +

x�
n β, )�,

√
2npλ(|β|) = (

√
2npλ1(|β1|), · · · ,

√
2npλp(|βp|))� and

√
npλ(|ω|) = (

√
npλp+1(|ω1|),

· · · , √npλp+d−1(|ωd−1|))�. Minimization of Q(β, ω, α) is a nonlinear least square problem, it
can be solved by Gauss-Newton or Levenberg-Marquardt algorithms. In our experience, these
algorithms may cause convergent problem in practice. We recommend using standard nonlinear
least square functions such as lsqnonlin(.) or lsqcurvefit(.) in MATLAB to get better estimates.

2.3 Practical Issue

In practice, the effective estimation of the penalized partial linear single-index model relies on
careful selection of the number and location of the knots, the smoothing parameter τ as well
as tunning parameters λj . A detailed study of the choice of the number of knots K has been
given by [21]. According to Ruppert’s suggestion and our simulation investigation, for most
cases, especially for monotonic or unimodal link functions, 5–10 knots are adequate. When the
number of knots K is determined, we recommend that the knots should be placed at equally
spaced sample quantiles of the single-index z′iγ. During the estimation process, the knots change
with the updating of γ.

The smoothing parameter τ controls the smoothness of nonparametric fitting, the tunning
parameter λj control the amount of shrinkage in variable selection. There are many criteria
can be used to select the tunning parameters, such as minimizing cross validation(CV) score,
generalized cross validation(GCV) score, BIC and AIC. To choose τ and λj , a high dimension
grid search can be applied, but it is rather time prohibitive. [19] proposed a double penalized
variable selection procedure in partial linear model using smoothing spline to estimate the
nonparametric effects. To select the smoothing parameter and tunning parameter, they first
derived a linear mixed model representation under normal error assumptions and estimated
the smoothing parameter as a variance component; by fixing the smoothing parameter, they
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proposed a BIC criteria to select the tunning parameter. We propose a two-step selection
procedure as follows: first, we consider the penalized spline partial linear single-index model
without shrinkage penalties, a good choice of the smoothing parameter τ is the minimizer of
the following GCV score proposed by [28],

GCV(τ) =
1
n

∑
(yi − α̃�B(z�i γ(ω̃)) − x�

i β̃)2

(1 − 1
n trA(τ))2

, (9)

where α̃, ω̃, β̃ are the estimators with given τ and there is no shrinkage penalty in the objective
function.The hat matrix A(τ) is

A(τ) = As(τ) + I − As(τ)BB�(I − As(τ))B
−1

B�I − As(τ), (10)

where As(τ) is
As(τ) = B(B�B + nτD)−1B�. (11)

Second, with the fixed τ̂ , we propose BIC score to choose λj . To reduce the dimension of
tunning parameters, we set λj = λSE(β̃j), j = 1, · · · , p; λj = λSE(ω̃j), j = p + 1, · · · , p + d − 1
as in [7], SE(β̃j), SE(ω̃j) are the standard errors of estimators without shrinkage penalties.
Define BIC score as

BIC(λ) = log{Qλ/n} + df log(n)/n, (12)

where
Qλ = (Y − Xβ̂ − B(Zγ(ω̂))α̂)�(Y − Xβ̂ − B(Zγ(ω̂))α̂). (13)

and df is the number of nonzero coefficients in β̂, ω̂. The GCV and BIC score can select
satisfactory smoothing parameter and tunning parameter in practice.

3 Asymptotic Theory and Oracle Properties

In this section, we will establish the asymptotic theory and oracle properties of the proposed
estimator. Before presenting the results, we have to handle the constraints ‖γ‖ = 1 and γ10 > 0
on the single-index parameter γ. As in [2] and [28], define φ = (φ1, · · · , φd−1)� be a d-1
dimensional vector and

γφ =

⎛

⎜⎜⎜⎝

√
1 − φ�φ

φ1
...

φd−1

⎞

⎟⎟⎟⎠ . (14)

Note that γφ is equivalent to γ(ω) in the sense that there exists a one to one map between γφ and
γ(ω), but γφ is more convenient in theoretical justification. The true parameter must satisfy
the constraint ‖φ0‖ < 1, with this reparameterization, γφ0 satisfies all the constraints and is
infinitely differentiable in a neighborhood of φ0. Let θφ = (β�, φ�, α�)�, and π = (β�, φ�)�.
The dimension of π is s = p + d − 1, The mean function is

μ(vi; θφ) = α�B(γ�
φ zi) + β�xi. (15)

The first derivative of the mean function with respect to θφ is

∂μ(V ; θφ)
∂θφ

=

⎛

⎝
X

α�B′(γ�
φ Z)[−(1 − φ�φ)−

1
2 φ : Id−1]Z

B(γ�
φ Z)

⎞

⎠ .
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The Jacobian matrix from θγ to θφ is

J(φ) =

⎛

⎜⎜⎝

Ip 0 0
0 −(1 − φ�φ)−

1
2 φ� 0

0 Id−1 0
0 0 I

⎞

⎟⎟⎠ .

The penalized least squares objective function is

Q(θφ) =
1
2n

n∑

i=1

(yi − μ(vi, θφ))2 + τα�Dα +
s∑

j=1

pλj (|πj |). (16)

Let

L(θφ) =
1
2n

n∑

i=1

(yi − μ(vi, θφ))2 + τα�Dα.

In the following, we denote θφ by θ. All of the assumptions are imposed on θφ and its
corresponding parameter space Θ.

We require the following assumptions to derive asymptotic properties of the proposed esti-
mator:

Assumption 1. The parameter space Θ is compact, and the true parameter θ0 is an interior
point of Θ.

Assumption 2. 1
n

∑n
i=1(μ(vi; θ1)−μ(vi; θ2))2 converges to some limit function uniformly in

θ1, θ2 ∈ Θ, and

R(θ) = lim
n→∞

n∑

i=1

(μ(vi; θ) − μ(vi; θ0))2

has a unique minimum at θ = θ0.

Assumption 3. The mean function is twice continuously differentiable in a neighborhood of
θ0, and

Ω(θ0) = lim
n→∞

1
n

∑ ∂μ(vi; θ0)
∂θ

∂μ(vi; θ0)�

∂θ

exists and is nonsingular. Furthermore,

1
n

∑ ∂μ(vi; θ)
∂θ

∂μ(vi; θ)�

∂θ
and

1
n

∑ ∂2μ(vi; θ)
∂θj∂θk

converge uniformly in θ in a neighborhood of θ0.
Under above assumptions, [28] proved consistency and asymptotic normality of partial linear

single-index model fitted by penalized splines. We cite their results as the following lemma:

Lemma 1. Under assumptions A1–A3 and
√

nτ → 0, we have

√
n

∂L(θ)
∂θ

∣∣∣
θ0

−→d N(0, σ2Ω(θ0))),

∂2L(θ)
∂θ∂θ�

∣∣∣
θ0

−→p Ω(θ0),

where →d denotes ‘convergence in distribution’, →p denotes ’convergence in probability’.
Divide π0 = (β�

0 , φ�
0 )� into two parts, π0 = (π�

10, π�
20)

�, without loss of generality, assume
that dimension of π10 is s1, dimension of π20 is s2, s1 + s2 = s and π20 = 0. Parameter θ
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can be divided into 3 parts, θ = (π�
1 , α�, π�

2 )� = (θ�1 , θ�2 )�, θ1 = (π�
1 , α�)�, θ2 = π2,

and θ0 = (θ�10, 0)�. Let Ω11 be submatrix of Ω(θ) correspond to θ1. Lemma 1 implies that
L′(θ0) = Op(n− 1

2 ), L′′(θ0) = Ω(θ0)+op(1). Using these results, we can prove root-n consistency
of θ̂.

Theorem 1. If
√

nτ → 0 and λj → 0, then there exists a local minimizer θ̂ of Q(θ) such that
‖θ̂ − θ0‖ = Op(n− 1

2 + an), where an = max{p′λj
(|θj0|), θj0 �= 0}.

Proof. Denote ςn = n− 1
2 + an, we only have to show that for any given ε > 0, there exists a

large constant C such that

P
{

sup
‖u‖=C

Q(θ0 + ςnu) > Q(θ0)
}
≥ 1 − ε.

This implies that with probability at least 1−ε that exists a local minimum in the ball {θ0+ςnu :
‖u‖ ≤ C}.

Using pλj (0) = 0, we have

Dn(u) =Q(θ0 + ςnu) − Q(θ0)

≥L(θ0 + ςnu) − L(θ0) +
s1∑

j=1

{pλj (|π10j + ςnuj|) − pλj (|π10j |)}.

By Taylor expansion we have

Dn(u) ≥− ςnL′(θ0)�u +
1
2
u�Ω(θ0)uς2

n{1 + op(1)}

+
s1∑

j=1

{ςnp′λj
(|π10j |)uj + ς2

np′′λj
(|π10j |)u2

j(1 + o(1))}.

Note that L′(θ0) = Op(n−1/2), the first term on the right hand side is of order Op(n−1/2ςn), by
choosing a sufficiently large C, the second term dominates the first term uniformly in ‖u‖ = C.

The third term is bounded by
√

s1ςnan‖u‖ + ς2
nmax{p′′λj

(|π10j |) : π10j �= 0}‖u‖2,

because λj → 0, max{p′′λj
(|π10j |) : π10j �= 0} → 0. Hence the third term is also dominated by

the second term, this completes the proof. �

For SCAD penalty, an = 0 for large enough n, Theorem 1 implies that if we choose proper
τ and λj , the penalized estimator θ̂ is root-n consistent. Theorem 2 shows that θ̂ can perform
as well as the oracle estimator.

Theorem 2. If
√

nτ → 0, λj → 0 and
√

nλj → ∞, then with probability tending to 1, the
root-n consistent local minimizers θ̂ = (θ̂�1 , θ̂�2 )� must satisfy

θ̂2 = 0,
√

n(θ̂1 − θ10) →d N(0, σ2Ω11).

Proof. To prove part (a), we only have to show that for any θ1 satisfying θ1−θ10 = Op(n−1/2)
and some small εn = Cn−1/2 for π20j which is a zero component of π20,

∂Q(θ)
∂π2j

> 0, 0 < π2j < εn,

∂Q(θ)
∂π2j

< 0, −εn < π2j < 0.
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By Taylor’s expansion, we have

∂Q(θ)
∂π2j

=
∂L(θ)
∂π2j

+ p′λj
(|π2j |)sgn(π2j)

=
∂L(θ0)
∂π2j

+
∑

l

∂2L(θ̄)
∂π2j∂θl

(θl − θl0) + p′λj
(|π2j |)sgn(π2j)

=I1 + I2 + I3,

where θ̄ lies between θ and θ0. By Lemma 1, we have I1 = Op(n−1/2) and ∂2L(θ̄)
∂π2j∂θl

= Op(1). So

we have I2 = Op(n−1/2). Therefore

∂Q(θ)
∂π2j

= λj

{p′λj
(|π2j |)
λj

sgn(π2j) + Op(n−1/2/λj)
}
.

Since for SCAD penalty, lim inf
n→∞ lim inf

θ→0+
p′λj

(θ) > 0, and
√

nλj → ∞, the sign of the derivative

is completely determined by π2j . This completes the proof of part (a).
Now we prove part (b) of Theorem 2. From Theorem 1 and the sparsity property of the

proposed estimator, there exists a θ̂1 that is a root-n consistent local minimizer of Q{(θ�1 , 0�)�}
that satisfies

∂Q(θ̂)
∂θj

= 0, for j = 1, · · · , s1 + m + K + 1,

where θ̂ = (θ̂�1 , 0�)�. Note that θ̂1 is a consistent estimator, by Taylor expansion,

∂Q(θ̂)
∂θj

=
∂L(θ̂)
∂θj

− p′λj
(|θ̂j |)sgn(θ̂j)

=
∂L(θ0)

∂θj
+

s∑

l=1

{∂2L(θ0)
∂θj∂θl

+ op(1)
}
(θ̂l − θl0)

− p′λj
(|θj0|)sgn(θj0) + {p′′λj

(|θj0|) + op(1)}(θ̂j − θj0).

For SCAD penalty, when n is large enough, p′λj
(|θj0|) and p′′λj

(|θj0|) equals 0 exactly. By Lemma
1 and Slutsky’s theorem, we have

√
n(θ̂1 − θ10) →d N(0, σ2Ω11).

This completes the proof. �

Theorem 1 shows that under mild conditions the proposed estimator is root-n consistent
if we choosing proper τ and λj . Furthermore, theorem 2 shows that the root-n consistent
estimator must satisfy θ̂2 = 0 in probability tending to 1 and θ̂1 is asymptotic normal with
covariance matrix Ω11. This means that the proposed estimator performs as well as if θ2 = 0
is known in advance, this is called the oracle property in [7].

4 Monte Carlo Study

In this section, Monte Carlo studies are presented to illustrate the finite sample performance of
the proposed estimation and variable selection procedure. We use cubic penalized spline with
10 knots to approximate the nonparametric link function, smoothing parameter and tunning
parameter are selected by the GCV and BIC score proposed in Section 2.
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Table 1. Simulation Results for Scenario 1

γ β

MRME C I MRME C I

n = 100 OP 0.21 4.00 0.00 0.46 6.00 0.00

σ = 0.1 OL 0.26 4.00 0.00 0.28 6.00 0.00

PP 0.28 3.47 0.00 0.61 5.33 0.10

PL 0.37 3.60 0.08 0.91 5.32 0.29

n = 100 OP 0.11 4.00 0.00 0.38 6.00 0.00

σ = 0.25 OL 0.20 4.00 0.00 0.27 6.00 0.00

PP 0.63 3.34 0.00 0.86 5.14 0.76

PL 0.73 3.29 0.30 0.86 4.91 1.02

n = 100 OP 0.29 4.00 0.00 0.64 6.00 0.00

σ = 0.5 OL 0.15 4.00 0.00 0.28 6.00 0.00

PP 0.77 1.54 0.37 0.86 3.26 1.11

PL 0.90 1.90 0.40 0.94 3.69 1.45

n = 100 OP 0.28 4.00 0.00 0.44 6.00 0.00

σ = 1 OL 0.20 4.00 0.00 0.27 6.00 0.00

PP 0.95 2.03 0.68 0.92 4.36 2.03

PL 0.97 1.02 0.61 0.93 3.43 1.59

n = 200 OP 0.14 4.00 0.00 0.34 6.00 0.00

σ = 0.1 OL 0.27 4.00 0.00 0.34 6.00 0.00

PP 0.34 3.79 0.00 0.54 5.61 0.02

PL 0.33 3.89 0.02 0.85 5.55 0.02

n = 200 OP 0.10 4.00 0.00 0.32 6.00 0.00

σ = 0.25 OL 0.31 4.00 0.00 0.39 6.00 0.00

PP 0.29 3.67 0.00 0.54 5.58 0.83

PL 0.36 3.86 0.03 0.94 5.50 0.57

n = 200 OP 0.48 4.00 0.00 0.50 6.00 0.00

σ = 0.5 OL 0.26 4.00 0.00 0.34 6.00 0.00

PP 0.72 1.94 0.20 0.96 3.56 0.78

PL 0.89 2.83 0.23 0.96 4.23 1.06

n = 200 OP 0.31 4.00 0.00 0.65 6.00 0.00

σ = 1 OL 0.08 4.00 0.00 0.30 6.00 0.00

PP 0.85 2.06 0.58 0.97 4.57 1.92

PL 0.99 1.21 0.42 0.88 3.79 1.64
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Table 2. Simulation Results for Scenario 2

γ β

MRME C I MRME C I

n = 100 OP 0.29 4.00 0.00 0.47 6.00 0.00

σ = 0.1 OL 0.29 4.00 0.00 0.35 6.00 0.00

PP 0.30 3.77 0.00 0.54 5.44 0.00

PL 0.36 3.75 0.05 0.88 5.44 0.19

n = 100 OP 0.25 4.00 0.00 0.46 6.00 0.00

σ = 0.25 OL 0.24 4.00 0.00 0.24 6.00 0.00

PP 0.37 3.44 0.00 0.86 4.97 0.03

PL 0.66 3.47 0.27 0.94 5.11 1.07

n = 100 OP 0.37 4.00 0.00 0.28 6.00 0.00

σ = 0.5 OL 0.15 4.00 0.00 0.33 6.00 0.00

PP 0.75 0.94 0.18 0.62 4.25 1.32

PL 0.99 1.85 0.42 0.95 3.92 1.40

n = 100 OP 0.39 4.00 0.00 0.30 6.00 0.00

σ = 1 OL 0.14 4.00 0.00 0.35 6.00 0.00

PP 0.97 1.78 0.42 0.62 4.92 2.26

PL 0.95 0.89 0.46 0.93 3.56 1.60

n = 200 OP 0.18 4.00 0.00 0.44 6.00 0.00

σ = 0.1 OL 0.31 4.00 0.00 0.36 6.00 0.00

PP 0.19 3.87 0.00 0.50 5.72 0.00

PL 0.36 3.91 0.01 0.79 5.64 0.01

n = 200 OP 0.21 4.00 0.00 0.49 6.00 0.00

σ = 0.25 OL 0.32 4.00 0.00 0.30 6.00 0.00

PP 0.27 3.59 0.00 0.74 5.21 0.00

PL 0.40 3.87 0.03 0.85 5.53 0.50

n = 200 OP 0.36 4.00 0.00 0.27 6.00 0.00

σ = 0.5 OL 0.26 4.00 0.00 0.37 6.00 0.00

PP 0.56 0.61 0.14 0.83 4.30 0.52

PL 0.90 2.80 0.21 0.95 4.26 1.05

n = 200 OP 0.36 4.00 0.00 0.33 6.00 0.00

σ = 1 OL 0.10 4.00 0.00 0.38 6.00 0.00

PP 0.80 1.41 0.28 0.60 5.12 1.71

PL 0.93 1.26 0.33 0.90 4.02 1.58

We repeat 500 times from the following model:

yi = sin
{π(zT

i γ − A)
B − A

}
+ x�

i β + σε, i = 1, · · · , n, (17)

where εi is standard normally distributed, constants A = 0.3912, B = 1.3409. The mean func-
tion has the coefficients β = (3, 2, 0, 0, 0, 1.5, 0, 0.2, 0.3, 0.15, 0, 0)�, γ = (1, 3, 1.5, 0.5, 0, 0, 0, 0)�

/
√

12.5. The sample size n is set to be 100 and 200 respectively with σ = 0.1, 0.25, 0.5 and 1.
As in [17], we generate the linear and single-index covariates from the following 3 scenarios to
assess the robustness of the estimates: (1) The covariate X and Z are independent and uniformly
distributed on [0,1]; (2) The first five and last five elements of X are independent and standard
normally distributed, the 6th and 7th elements are independently Bernoulli distributed with
success probability 0.5; (3) The covariates Z are independent and uniformly distributed on [0,1],
covariates X = W + {1.5 exp1.5z1, 5z1, 5

√
z2, 3z1 + z2

2 , 0, 0, 0, 0, 0, 0, 0, 0}, where covariates W
are generated from a 12-dimensional normal distribution with mean 0 and variance 0.25, the
correlation between wi and wj is 0.4|i−j|.
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To assess the performance of the estimators, we consider the median of relative model error
in [7] and [17], and define relative model error as RME=ME/MEfull, MEβ = E[Xβ − Xβ̂]2,
MEγ = E[Zγ−Zγ̂]2. A full model estimator is calculated by fitting the data with all variables in
the model, while an oracle estimator is calculated by fitting the model without all the irrelevant
variables. MRME values smaller than one indicates that the estimate performs better than
the unpenalized estimator. Let C be the average number of true zero coefficients that were
correctly set to zero, I be the average number of true nonzero coefficients incorrectly set to
zero. In Tables 1–3, OP stands for the oracle estimator of proposed method, OL stands for
the oracle estimator of Liang’s method, PP stands for the penalized estimator of the proposed
method, PL stands for the penalized estimator of Liang’s method.

Table 3. Simulation Results for Scenario 3

γ β

MRME C I MRME C I

n = 100 OP 0.33 4.00 0.00 0.28 6.00 0.00

σ = 0.1 OL 0.28 4.00 0.00 0.15 6.00 0.00

PP 0.43 3.60 0.01 0.43 5.08 0.00

PL 0.48 3.67 0.03 0.82 5.24 0.05

n = 100 OP 0.51 4.00 0.00 0.28 6.00 0.00

σ = 0.25 OL 0.19 4.00 0.00 0.18 6.00 0.00

PP 0.65 3.70 0.01 0.80 5.06 0.60

PL 0.50 3.35 0.21 0.85 4.99 0.56

n = 100 OP 0.35 4.00 0.00 0.11 6.00 0.00

σ = 0.5 OL 0.11 4.00 0.00 0.31 6.00 0.00

PP 0.82 1.50 0.42 0.95 3.62 1.22

PL 0.86 1.61 0.34 0.92 3.82 1.02

n = 100 OP 0.42 4.00 0.00 0.21 6.00 0.00

σ = 1 OL 0.16 4.00 0.00 0.37 6.00 0.00

PP 0.99 1.94 0.69 0.87 4.31 2.04

PL 0.99 0.86 0.47 0.84 3.85 1.66

n = 200 OP 0.18 4.00 0.00 0.34 6.00 0.00

σ = 0.1 OL 0.32 4.00 0.00 0.18 6.00 0.00

PP 0.33 3.97 0.00 0.38 5.52 0.00

PL 0.39 3.89 0.00 0.73 5.52 0.01

n = 200 OP 0.29 4.00 0.00 0.38 6.00 0.00

σ = 0.25 OL 0.29 4.00 0.00 0.17 6.00 0.00

PP 0.47 3.90 0.00 0.69 5.44 0.17

PL 0.39 3.80 0.04 0.83 5.29 0.12

n = 200 OP 0.42 4.00 0.00 0.11 6.00 0.00

σ = 0.5 OL 0.27 4.00 0.00 0.41 6.00 0.00

PP 0.70 1.66 0.42 0.93 3.76 0.76

PL 0.92 2.66 0.14 0.90 4.43 0.56

n = 200 OP 0.47 4.00 0.00 0.15 6.00 0.00

σ = 1 OL 0.12 4.00 0.00 0.40 6.00 0.00

PP 0.86 2.08 0.67 0.89 4.50 1.90

PL 0.98 1.16 0.32 0.93 4.09 1.42

In summary, we can see from Tables 1–3 that the MRME values of all of the proposed esti-
mators are less than one, which indicates that the proposed penalized estimators perform better
than the unpenalized estimators, regardless of the sample size or noise level. Comparing to [17],
the proposed estimator has better performance in reducing model errors in almost all the three
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scenarios. As for the estimation of the single- index parameter γ, our estimator outperforms
Liang’s estimator in terms of reducing the number ’I’, which means our estimator has less true
nonzero coefficients that is incorrectly set to zero. Note that set a nonzero coefficients into
zero is more problematic than include a irrelevant variable in a regression model, it introduces
biases into the estimators and the estimators may not be consistent. The number ‘I’ act as the
counterpart of power in hypothesis testing. When the standard error of noise σ increases, it
generally becomes harder to estimate the single index coefficients. The correctly selected zero
coefficients are less than 2 obtained by both our method and Liang’s method in most cases.
The incorrectly selected nonzero coefficients of β increase as σ increases, the small coefficients
of β are harder to identify. In scenario 1, the proposed method performed better than Liang’s
method in terms of reducing model error; In scenario 2, the proposed method performs better
in terms of reducing the number ‘I’. For example, when n is 100 and σ2 is 0.25, the number ‘I’
of β is 1.07 and the number ‘I’ of γ is 0.27 for Liang’s estimator. While for our estimator, the
number ‘I’ of β is 0.03 and the number ‘I’ of γ is 0. When σ increases to 0.5, our estimator
perform better than Liang’s estimator in estimating β, our estimator has higher ’C’ and lower
‘I’. When σ increases to 1, our estimator has better performance in estimating α,while the
incorrectly selected nonzero elements of β also increase and larger than Liang’s. In scenario 3,
our method performs better in specifying true zero coefficients and true nonzero coefficients of
γ. In all the three scenarios, the proposed estimator improves as the sample size increases and
the error variance σ2 decreases as the our theory predicted.

Fig 1. Computational Time in Different Sample Sizes. PP Stands For The Proposed Method,

PL Stands For Liang’S Method

We compare the computational cost in penalized spline estimator of our proposed method
and kernel estimator of [17]’s method in scenario 1 with σ = 0.5 of one simulation run, since
the computational cost is very similar in other cases, we will not show them here. We run
both procedures in Matlab version 8.1.0.604 on a Linux platform with AMD CPU Opteron
6212(2.7GHz), the median CPU times in 200 simulation runs are recorded in Fig 1. When
the sample sizes are small, Liang’s procedure actually has faster speed, but the computational
cost of Liang’s procedure increases rapidly as sample size increases, when the sample size are
3000, Liang’s procedure takes 154 seconds in one simulation run while our procedure takes 60
seconds.
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5 Data Example

In this section we apply the penalized partial linear single-index estimator to the Boston Housing
data analyzed in [9]. The dependent variable is the logarithm of the median value of owner
occupied homes in each of the 506 census tracts in Boston Standard Metropolitan Statistical
Areas, 13 independent variables are: RM, average number of rooms in owner units; AGE,
proportion of owner units built prior to 1940; B, black proportion of the population; LSTAT,
proportion of population that is in the lower status; CRIM, crime rate by town; ZN, proportion
of town’ residential land zoned for lots greater than 25,000 square feet; INDUS, proportion of
nonretail business acres per town; TAX, full property tax rate; PTRATIO, pupil-teacher ratio
by town school district; CHAS, Charles River dummy: =1 if tract bound the Charles River, =0
if otherwise; DIS, weighted distances to five employment centers in the Boston region; RAD,
index of accessibility to radial highways; NOX, nitrogen oxide concentration in pphm.

[9] measured the willingness to pay for clear air, the final model was

log(MV) =a1 + a2RM2 + a3AGE + a4 log(DIS) + a5 log(RAD) + a6TAX
+ a7PTRATIO + a8(B − 0.63)2 + a9 log(LSTAT) + a10CRIM
+ a11ZN + a12INDUS + a13CHAS + a14NOXp + e.

[5] analyzed Boston Housing data set, where sliced inverse regression and forward stepwise
regression were used, they found that the main contributors to the housing values were CRIM,
LSTAT, RM. [25] found that some of the variables were discrete and the assumptions of sliced
inverse regression may not met. They constructed a partial linear single-index model with only
the CHAS variable as linear covariates and all other variables as single-index, they found that
the nonparametric function η(.) was a nonincreasing function but with a upward trend on the
right tail.

As in [9], we also make a logarithm transformation to the dependent variable. The final
model of [9] includes 7 linear effects: AGE, TAX, PTRATIO, CRIM, ZN, INDUS, CHAS; and 6
nonlinear effects: RM, DIS, RAD, B, LSTAT, NOX. We construct a partial linear single-index
model where we put all linear effects of [9] in the linear part, and put all nonlinear effects of
[9] in the single-index part. We use cubic penalized spline with 10 knots to approximate the
nonparametric link function η(.), use GCV score to select the smoothing parameter, and use
BIC score to select the tunning parameters. The selected value for the smoothing parameter
is 2.5 × 10−4, the tunning parameter is 0.41. We also estimate with [17]’s kernel method, the
bandwidth is selected to be 0.3.

Fig.2 depicts the estimated nonparametric function η(.), and shows that η(.) is a nonincreas-
ing function, Our estimate confirms [25]’s claim that the upward curvature of the function at
high values of the single-index value may not be true. While Liang’s estimate has this upward
trend. Since η(.) is monotone, all the single-index have the simple explanation as effects[16],
means that covariates with positive parameters have negative effect on housing values, while
covariates with negative parameters have positive effect on housing values. The estimation and
variable selection result are recorded in Table 4. Comparing to Liang’s result, we select one
more variable CHAS, which is a indicator variable records whether the tract bounds the river.
Its coefficient is estimated positive which means that it has a positive effect on housing prices.
This result is consistent with [9] which pointed out that including of this variable captures the
amenities of a riverside location. Three variables are ruled out, which are AGE, ZN and INDUS.
The air pollution covariate NOX has a negative effect on housing values, which confirms the
important result of [9] that we are paying prices for clear air.
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Fig 2. The Estimation for the Nonparametric Link Function η(.)

Table 4. Parameter Estimation for Boston Housing Data, s.e. Stands for Standard Error

Liang New

var no penalty s.e. penalized no penalty s.e. penalized

NOX 0.118 0.031 0.103 0.174 0.031 0.174

RM −0.227 0.053 −0.213 −0.181 0.029 −0.203

DIS 0.163 0.039 0.162 0.290 0.028 0.285

RAD −0.525 0.072 −0.504 −0.357 0.047 −0.333

B −0.152 0.031 −0.117 −0.115 0.060 −0.080

LSTAT 0.780 0.115 0.806 0.844 0.180 0.854

AGE −0.001 0.012 - −0.003 0.132 -

TAX −0.137 0.015 −0.130 −0.086 0.016 −0.045

PTRATIO −0.059 0.008 −0.062 −0.055 0.009 −0.016

CRIM −0.088 0.014 −0.090 −0.089 0.009 −0.049

ZN 0.011 0.007 - 0.021 0.016 -

INDUS 0.008 0.010 - 0.001 0.009 -

CHAS 0.060 0.026 - 0.081 0.010 0.030

Remark. [9] studied the Boston housing data and found that several variables were essen-
tially nonlinearly related to the housing price especially the air pollutant proxy NOX. To add
more evidence that a linear model is not enough to model the Boston housing data, we simply
use a test statistic to test a linear parametric model against a nonparametric alternative. The
test statistic was proposed by [1]. It was designed to test parameter constancy in linear models,
but it also had nontrivial local power in detecting nonlinearity in regression functions. Let
X = (x1, . . . , xn) be the design matrix and Xk = (x1, . . . , xk) be the first k rows of the design
matrix. First we fit a linear regression model y = Xβ + ε, let β̂ be an estimator of β and
ε̂t = yt − x′

tβ̂. Define the process T ∗
n by

T ∗
n(k/n, z) = (X ′X)−1/2

( k∑

t=1

xtI(ε̂t ≤ z) − (X ′
kXk)(X ′X)−1

n∑

t=1

I(ε̂t ≤ z)
)

and the test statistic by
M∗

n = max
k

sup
z

||T ∗
n(k/n, z)||∞,
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where ‖ · ‖∞ denotes the maximum norm. The test statistic M∗
n has nonstandard asymptotic

distributions, [1] provided a table of critical values. For the Boston housing data, the test
statistic M∗

n = 2.242 and the critical value is 1.091 at the significance level 0.01. Thus the null
hypothesis of linear model is rejected at the significance level 0.01, we’d better use a nonlinear
model for the data.

6 Conclusion

We propose a simultaneous estimation and variable selection procedure for partial linear single-
index model by combing penalized spline nonparametric estimation and shrinkage variable
selection methods. Under certain conditions, we show consistency and oracle property of the
estimators. The penalized spline approach owns a least squares representation, therefore stan-
dard software can be implemented and estimation procedure is computationally expedient and
stable in practice. The simulation study and data example presented illustrate the effectiveness
of our method.

The proposed procedure assume that the errors are independent, it can be generalized to a
longitudinal data model, in which observations are correlated within each subjects,

g(μij) = x�
ij + η(z�ijγ),

in which g is a known link function, and η(.) is a unknown nonparametric function. [3] studied
generalized partial linear single-index model but the observations are uncorrelated. Variable
selection in generalized longitudinal data model deserves further study.
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