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Abstract In this paper, we consider the existence of positive solutions of second-order periodic boundary
value problem

u′′ +
(1

2
+ ε

)2
u = λg(t)f(u), t ∈ [0, 2π], u(0) = u(2π), u′(0) = u′(2π),

where 0 < ε < 1
2
, g : [0, 2π] → R is continuous, f : [0,∞) → R is continuous and λ > 0 is a parameter.
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1 Introduction

In recent years, nonlinear periodic boundary value problems have been widely studied by many
authors, see, for instance, [1,3–8] and the references therein. However, in most of these papers,
the existence of positive solution was mainly dependent on the positivity of Green’s function
(see, for instance [3–8]). In particular, by using Krasnosel’skii’s fixed point theorem, Jiang[4],
Zhang and Wang[8] discussed the existence and multiplicity of positive solutions to the periodic
boundary value problem

{
u′′ + ρ2u = f(t, u), 0 < t < 2π, 0 < ρ < 1

2 ,

u(0) = u(2π), u′(0) = u′(2π).

One can see 0 < ρ < 1
2 is the optimal condition to guarantee the Green’s function K(t, s) > 0,

since when ρ = 1
2 , the minimum of K(t, s) is zero, where

K(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

sin ρ(t − s) + sin ρ(2π − t + s)
2ρ(1 − cos 2ρπ)

, 0 ≤ s ≤ t ≤ 2π,

sin ρ(s − t) + sin ρ(2π − s + t)
2ρ(1 − cos 2ρπ)

, 0 ≤ t ≤ s ≤ 2π,

(1.1)

for ρ �= 1, 2, · · ·. Thus, under the condition 0 < ρ < 1
2 , Krasnosel’skii’s fixed point theorem can

be used to prove the existence and multiplicity of positive solutions.
In 2009, under the assumption that the Green’s function has zero points, Graef, Kong and

Wang[1] studied the existence of positive solutions to the periodic boundary value problems
{

u′′ + a(t)u = g̃(t)f(u), 0 < t < 2π,

u(0) = u(2π), u′(0) = u′(2π),
(1.2)
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where a : [0, 2π] → [0,∞) is continuous, g̃ : [0, 2π] → [0,∞) is continuous and η = min
t∈[0,2π]

g̃(t) >

0.
In [2], for suitable λ > 0, D. D. Hai considered the existence of positive solutions to the

following problems {
Δu + λa(t)f(u) = 0, t ∈ Ω,

u = 0, t ∈ ∂Ω,
(1.3)

where a is continuous, changes its sign on Ω and also satisfies
∫

Ω

a+(s)g(t, s)ds > k

∫

Ω

a−(s)g(t, s) ds

for some constant k > 1, and g(t, s) is the Green’s function of (1.3). It is worth noting that the
Green’s function g(t, s) of (1.3) is positive on Ω.

Motivated by the above papers, we want to discuss the existence of positive solutions to
second-order periodic boundary value problems

⎧
⎨

⎩
u′′ +

(1
2

+ ε
)2

u = λg(t)f(u), 0 < t < 2π,

u(0) = u(2π), u′(0) = u′(2π),
(1.4)

where 0 < ε < 1
2 is a constant and λ > 0 is a parameter, g : [0, 2π] → R is continuous and

changes its sign.
The Green’s function of

⎧
⎨

⎩
u′′ +

(1
2

+ ε
)2

u = 0, 0 < t < 2π,

u(0) = u(2π), u′(0) = u′(2π)
(1.5)

can be expressed by

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin(1
2 + ε)(t − s) + sin(1

2 + ε)(2π − t + s)
2 × (1

2 + ε)(1 − cos 2(1
2 + ε)π)

, 0 ≤ s ≤ t ≤ 2π,

sin(1
2 + ε)(s − t) + sin(1

2 + ε)(2π − s + t)
2 × (1

2 + ε)(1 − cos 2(1
2 + ε)π)

, 0 ≤ t ≤ s ≤ 2π,

(1.6)

see [1]. By direct computing, one can see the Green’s function G(t, s) defined in (1.6) changes
its sign on [0, 2π] × [0, 2π], and this will be done in Section 2.

To get the existence of positive solutions of (1.4), we make the following assumptions:
(H1) f : [0,∞) → R is continuous and f(0) > 0.
(H2) g : [0, 2π] → R is continuous, g �≡ 0, and there exists a number k > 1 such that

∫ 2π

0

(G(t, s)g(s))+ds ≥ k

∫ 2π

0

(G(t, s)g(s))−ds, t ∈ [0, 2π],

where

(G(t, s)g(s))+ =
{

G(t, s)g(s), G(t, s)g(s) ≥ 0,

0, G(t, s)g(s) < 0,
for t ∈ [0, 2π],

(G(t, s)g(s))− =
{ −G(t, s)g(s), G(t, s)g(s) ≤ 0,

0, G(t, s)g(s) > 0,
for t ∈ [0, 2π].

The main result of this paper is:
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Theorem 1.1. Suppose that (H1), (H2) hold. Then there exists a positive number λ∗ such
that (1.4) has a positive solution for λ < λ∗.

The rest of this paper is organized as follows. In Section 2, we will discuss the properties of
G(t, s) in (1.6) and give some notations and preliminary results. Finally, in Section 3, we will
prove Theorem 1.1.

2 Preliminaries

Let C[0, 2π] := {u|u is continuous on [0, 2π]}, and the norm of C[0, 2π] is the maximum norm
‖u‖0 = max

t∈[0,2π]
|u(t)|. Throughout the paper, we assume that f(u) = f(0) for u ≤ 0.

Lemma 2.1. The Green’s function G(t, s) defined in (1.6) satisfied the following properties:
(i) G(t, s) changes its sign on [0, 2π]×[0, 2π], specifically, it can be expressed by the following

graph.

Fig.1.

In the above graph, ‘+’ denotes G(t, s) > 0 on this interior, ‘−’ denotes G(t, s) < 0 on this
interior.

(ii)
∫ 2π

0
G(t, s) ds > 0.

Proof. For convenience, let Δ = 2× (
1
2 + ε

)(
1− cos 2

(
1
2 + ε

)
π
)
. Then Δ > 0, since 0 < ε < 1

2 .
Now, this proof will be divided into two cases.

Case 1. s ≤ t, then

−
(1

2
+ ε

)
π ≤

(1
2

+ ε
)
(π − t + s) ≤

(1
2

+ ε
)
π

and

G(t, s) =
1
Δ

(
sin

(1
2

+ ε
)
(t − s) + sin

(1
2

+ ε
)
(2π − t + s)

)

=
2
Δ

sin
(1

2
+ ε

)
π × cos

((1
2

+ ε
)
(π − t + s)

)
.

It is not difficult to see that sin
(

1
2 + ε

)
π > 0 for 0 < ε < 1/2. Now, the proof can be

completed in the following three cases.

Case 1.1. G(t, s) = 0 if and only if cos
(
(1
2 + ε)(π − t + s)

)
= 0, i.e., t, s satisfy

(1
2

+ ε
)
(π − t + s) = −π

2
, or

(1
2

+ ε
)
(π − t + s) =

π

2
,
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which implies t, s satisfy

t − s =
(2 + 2ε)π

1 + 2ε
, or t − s =

2επ

1 + 2ε
.

Case 1.2. G(t, s) < 0 if and only if cos
((

1
2 + ε

)
(π − t + s)

)
< 0. Furthermore,

−
(1

2
+ ε

)
π <

(1
2

+ ε
)
(π − t + s) < −π

2
, or

π

2
<

(1
2

+ ε
)
(π − t + s) <

(1
2

+ ε
)
π.

Thus, G(t, s) < 0 if and only if

2 + 2ε

1 + 2ε
π < t − s < 2π, or 0 < t − s <

2επ

1 + 2ε
,

which implies (t, s) ∈ D1 or (t, s) ∈ D3.

Case 1.3. G(t, s) > 0 if and only if cos
(
(1
2 + ε)(π − t + s)

)
> 0. Furthermore,

−π

2
<

(1
2

+ ε
)
(π − t + s) <

π

2
.

Thus, G(t, s) > 0 if and only if

2επ

1 + 2ε
< t − s <

2 + 2ε

1 + 2ε
π,

which implies (t, s) ∈ D2.

Case 2. t ≤ s.
By using the similar methods, we can get that

Case 2.1. If t, s satisfy s − t = (2+2ε)π
1+2ε or s − t = 2επ

1+2ε , then G(t, s) = 0.

Case 2.2. If (t, s) ∈ D3 or (t, s) ∈ D5, then G(t, s) < 0;

Case 2.3. If (t, s) ∈ D4, then G(t, s) > 0.
(ii)

∫ 2π

0

G(t, s) ds =
1
Δ

∫ t

0

sin
(1

2
+ ε

)
(t − s) ds +

1
Δ

∫ t

0

sin
(1

2
+ ε

)
(2π − t + s) ds

+
1
Δ

∫ 2π

t

sin
(1

2
+ ε

)
(s − t) ds +

1
Δ

∫ 2π

t

sin
(1

2
+ ε

)
(2π − s + t) ds

=
8

(1 + 2ε)Δ
sin2

(1
2

+ ε
)
π > 0.

�

For u ∈ C[0, 2π], define the operator T by Tu(t) = λ
∫ 2π

0 (G(t, s)g(s))+f(u(s)) ds. It’s not
difficult to see that T : C[0, 2π] → C[0, 2π] is completely continuous.

Lemma 2.2. Let 0 < δ < 1. Then there exists a positive number λ such that, for 0 < λ < λ,
the equation u(t) = Tu(t) has a positive solution ũλ with ‖ũλ‖0 → 0 as λ → 0, and ũλ(t) ≥
λδf(0)p(t), t ∈ [0, 2π], where p(t) =

∫ 2π

0 (G(t, s)g(s))+ds.

Proof. We shall apply the Leray-Schauder fixed point theorem to prove that T has a fixed
point for λ small. Let η > 0 be such that f(u) ≥ δf(0), for 0 ≤ u ≤ η. Suppose that
λ < η/2‖p‖0f̃(η), where f̃(t) = max0≤s≤t f(s). Then there exists Aλ ∈ (0, η) such that

f̃(Aλ)
Aλ

=
1

2λ‖p‖0
.
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Let u ∈ C[0, 2π] and θ ∈ (0, 1) such that u = θTu. Then we have

‖u‖0 ≤ λ‖p‖0f̃(‖u‖0) or
f̃(‖u‖0)
‖u‖0

≥ 1
λ‖p‖0

,

which implies that ‖u‖0 �= Aλ. Note that Aλ → 0 as λ → 0. By the Leray-Schauder fixed
point theorem, T has a fixed point ũλ with ‖ũλ‖0 ≤ Aλ < η. Consequently, ũλ(t) ≥ λδf(0)p(t),
t ∈ [0, 2π], and the proof is completed. �

3 Proof of the Main Result

Proof of Theorem 1.1. Let q(t) =
∫ 2π

0
(G(t, s)g(s))−ds. By (H2), there exist two positive

numbers α, γ ∈ (0, 1) such that
q(t)|f(s)| ≤ γp(t)f(0) (3.1)

for s ∈ [0, α], t ∈ [0, 2π]. Fix δ ∈ (γ, 1) and let λ∗ > 0 such that

‖ũλ‖0 + λδf(0)‖p‖0 ≤ α (3.2)

for λ < λ∗, where ũλ is given by Lemma 2.2, and

|f(x) − f(y)| ≤ f(0)
(δ − γ

2

)
(3.3)

for x, y ∈ [−α, α] with |x − y| ≤ λ∗δf(0)‖p‖0.
Let λ < λ∗. We look for a solution uλ of (1.4) of the form ũλ + vλ. Thus, vλ satisfies

vλ(t) = λ

∫ 2π

0

G(t, s)g(s)f(ũλ + vλ) − λ

∫ 2π

0

(G(t, s)g(s))+f(ũλ) ds, t ∈ [0, 2π].

For each w ∈ C[0, 2π], let v = Hw be the solution of

vλ = λ

∫ 2π

0

G(t, s)g(s)f(ũλ + w) ds − λ

∫ 2π

0

(G(t, s)g(s))+f(ũλ) ds.

Then H : C[0, 2π] → C[0, 2π] is completely continuous. Let v ∈ C[0, 2π] and θ ∈ (0, 1) such
that v = θHv. Then we have

v = θλ

∫ 2π

0

G(t, s)g(s)f(ũλ + v) ds − θλ

∫ 2π

0

(G(t, s)g(s))+f(ũλ) ds.

We claim that ‖v‖0 �= λδf(0)‖p‖0. Suppose on the contrary that ‖v‖0 = λδf(0)‖p‖0. Then,
by (3.2) and (3.3), we obtain ‖ũλ + v‖0 ≤ ‖ũλ‖0 +‖v‖0 ≤ α and |f(ũλ + v)− f(ũλ)| ≤ f(0) δ−γ

2 ,
which together with (3.1) implies that

|v(t)| ≤ λ
δ − γ

2
f(0)p(t) + λγf(0)p(t) = λ

δ + γ

2
f(0)p(t), t ∈ [0, 2π]. (3.4)

In particular ‖v‖0 ≤ λ δ+γ
2 f(0)‖p‖0 < λδf(0)‖p‖0, a contradiction, and the claim is proved.

By the Leray-Schauder fixed point theorem, H has a fixed point vλ with ‖vλ‖0 ≤ λδf(0)‖p‖0.
Hence vλ satisfies (3.4) and, using Lemma 2.2, we obtain uλ(t) ≥ ũλ(t)−|vλ(t)| ≥ λδf(0)p(t)−
λ δ+γ

2 f(0)p(t) = λ δ−γ
2 f(0)p(t), i.e., uλ is a positive solution of (1.4). This completes the proof

of Theorem 1.1. �
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4 Examples

Example 4.1. For application, we consider the following second-order periodic boundary
value problem {

u′′ + (1
2 + ε)2u = λ(u + 1), t ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π).
(4.1)

It is not difficult to see that f satisfies (H1). On the other hand, by Lemma 2.1, we get∫ 2π

0
G(t, s)ds > 0. So, by theorem 1.1, there exists a positive number λ∗ such that (4.1) has a

positive solution for λ < λ∗.
It is worth to note that we can choose λ∗ = (1/2 + ε)2 in this case. In fact, by using the

method of the variation of constant, we get
(i) if λ = (1/2 + ε)2, then (4.1) doesn’t have a periodic solution.
(ii) if λ ∈ (0, (1/2 + ε)2), then (4.1) has only one positive solution u = λ/((1/2 + ε)2 − λ)

on [0, 2π].
(iii) if λ > (1/2 + ε)2, then (4.1) has only one negative solution u = λ/((1/2 + ε)2 − λ) on

[0, 2π].

Example 4.2. Consider the following second order periodic boundary value problem
⎧
⎨

⎩
u′′ +

(1
2

+ ε
)2

u = λ(u2 + 1), t ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π).
(4.2)

It is not difficult to see that f satisfies (H1). On the other hand, by Lemma 2.1, we get∫ 2π

0
G(t, s) ds > 0. So, by Theorem 1.1, there exists a positive number λ∗ such that (4.2) has a

positive solution for λ < λ∗.
Under this case, we can take λ∗ = 1/2× (

1
2 + ε

)2. This can be obtained by the Proposition
3.1, Lemma 3.1, Lemma 3.2 of [3].
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