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Abstract We derive the Γ-limit of scaled elastic energies h−4Eh(uh) associated with deformations uh of a

family of thin shells Sh = {z = x + t�n(x); x ∈ S, −gh
1 (x) < t < gh

2 (x)}. The obtained von Kármán theory is

valid for a general sequence of boundaries gh
1 , gh

2 converging to 0 in an appropriate manner as h vanishes. Our

analysis relies on the techniques and extends the results in [10] and [11].

Keywords nonlinear elasticity; Γ convergence; calculus of variations

2000 MR Subject Classification 74K20; 74K25

1 Introduction

In the context of Mathematical Theory of Elasticity, the derivation of thin shell models is a
fundamental question with a long history[1,13]. Despite a large body of engineering literature,
relatively little is known about the mathematical rigorous justification of various plate and shell
theories. Of even more concern is that some of the existing theories seem to be incompatible
with each other. Recently, substantial analytical progress has been made possible due to the
seminal work of Frieseke, James and Müller[5,6], followed by other observations and results. The
novel approach is based on refined methods in Calculus of Variations (notably the so-called Γ-
convergence).

Given a 2-dimensional surface S in R
3, define a family of thin shells

Sh =
{
z = x + t�n(x); x ∈ S, −gh

1 (x) < t < gh
2 (x)

}
,

where �n(x) is the unit normal to S at the point x, and gh
1 , gh

2 are two sequences of positive func-
tions representing the shell’s boundary. The total energy of a deformation uh ∈ W 1,2(Sh, R3)
is given by

Jh(uh) =
1
h

∫

Sh

W (∇uh) − 1
h

∫

Sh

fh · uh, (1.1)

where W : R
3×3 → R+ is the elastic energy density function, satisfying physically relevant

conditions, and fh ∈ L2(Sh, R3) represents an external force acting on the shell.
Given (1.1), now one wants to study the asymptotic behavior of Jh as h → 0. Since the

condition for W generally imply that the first term in Jh(uh) is non-convex in its argument
uh, while the second term in Jh(uh) is linear, the main variational analysis concerns the elastic
energy

Eh(uh) =
1
h

∫

Sh

W (∇uh).
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and it attempts computing the Γ-limit Iβ of the sequence of scaled energies h−βEh, where the
exponent β is determined by the scaling α of the external force fh. Namely, one can prove
that if fh ∼ hα, the elastic energy Eh(uh) at minimizers of Jh scales like hβ , where beta = α if
0 ≤ α ≤ 2, and β = 2α − 2 if α ≥ 2. The limiting energy Iβ to be determined plays hence the
role of the 2d counterpart of the 3d energy functionals Eh, which is ensured by the fundamental
property of Γ-convergence.

Recall[3,4], that a sequence of functionals Fn : X → [−∞, +∞] defined on a metric space X
Γ-converges to the limit functional F : X → [−∞, +∞] whenever

(i) (Lower bound) For any converging sequence xn → x in X , one has:

F (x) ≤ lim inf
n→∞ Fn(xn).

(ii) (Recovery sequence) For any x ∈ X , there exists a sequence xn converging to x, such
that lim

n→∞Fn(xn)=F (x)
.

The fundamental property of Γ-convergence is the following. If xn is a sequence of approximate
minimizers of Fn in X

lim
n→∞

{
Fn(xn) − inf

X
Fn

}
= 0, (1.2)

and if xn → x, then x is a minimizer of F . In turn, any recovery sequence associated to a
minimizer of F is an approximate minimizing sequence for Fn. In the context of shells (plates),
the sequence of minimizing deformations for Jh can be hence recovered from minimizers of the
Γ-limit of h−βJh whose crucial term is provided by Iβ .

When Sh is a plate with uniform thickness (S ⊂ R
2 and gh

1 = gh
2 = h/2), such Γ-convergence

was first established by LeDret and Raoult[8] for β = 0, then by Friesecke, James and Müller[5,6]

for all β ≥ 2. In the case of 0 < β < 5/3, the related result was obtained by Conti and Maggi[2].
The regime 5/3 ≤ β < 2 remains open and is proposed to be relevant to crumpling of elastic
sheets.

If Sh is a shell with uniform thickness (S is an arbitrary surface and gh
1 = gh

2 = h/2), the
Γ-convergence was first obtained in [9] for β = 0. The model is that of a membrane shell and
the limit I0 depends only on the stretching and shearing produced by the deformation on the
surface S. Another study is due to Friesecke, James, Mora and Müller in [7], who analyzed
the case β = 2. This scaling corresponds to a flexural shell model, where the only admissible
deformations are those preserving the metric on S. The energy I2 depends then on the change
of curvature produced by the deformation. Further, Lewicka, Mora and Pakzad studied the
situation β ≥ 4 in [10]. For β = 4, the Γ-limit obtained therein is a generalization of the von
Kármán theory for plates, which for β > 4 reduces to the linearized flexural shell model.

Either for plates or shells with more general thickness given by gh
1 , gh

2 , all appropriate
limiting theories still need to be derived. In [11], Lewicka, Mora and Pakzad studied varying
thickness shells with

gh
1 = hg1, gh

2 = hg2,

where g1 and g2 are two positive Lipschitz functions. The contribution of this paper is a study
of the case β = 4 with given sequences gh

1 , gh
2 of positive C∞ functions satisfying properties

(2.2). The method utilized also provides a way to study other plate and shell theories in the
varying thickness setting.

The main result of this paper is the Γ-convergence of the scaled energies h−4Eh(uh) to
the generalized von Kármán functional introduced in [11], which will be presented in section
2. In section 3, we prove compactness of uh and the lower bound of h−4Eh(uh), where a
crucial geometric rigidity estimate is established. The upper bound of the scaled energy and
the construction of the recovery sequence is discussed in section 4. The novel character of the
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present proofs is that we rescale the deformations to a common domain of constant thickness,
which also yields simpler proofs in the setting of [11].

2 Overview of the Main Results

Consider a 2-dimensional surface S embedded in R
3, which is compact, connected, oriented,

and of class C1,1, and whose boundary ∂S is the union of finitely many (possibly none) Lipschitz
continuous curves. For any x ∈ S, let �n be the unit normal vector at x, TxS the tangent space
of S at x, and Π(x) = ∇�n(x) the shape operator on S.

Let Sh be a family of thin shells around S, having the following form

Sh =
{
z = x + t�n(x); x ∈ S,−gh

1 (x) < t < gh
2 (x)

}
, (2.1)

where gh
1 , gh

2 : S → R+ are two sequences of positive C1 functions for whom there exist positive
functions g1, g2 : S −→ R+ such that

lim
h→0

gh
1 /h = g1 and lim

h→0
gh
2 /h = g2 in C1(S). (2.2)

In particular, we see that for some constants C1, C2 > 0 independent of h, there hold

C1h < gh
1 (x) < C2h, C1h < gh

2 (x) < C2h, ∀x ∈ S. (2.3)

It is also convenient to define the universal domain

S∗ =
{
z = x + t�n(x); x ∈ S, −h0/2 < t < h0/2

}
, (2.4)

where h0 is a positive number such that

1/2 < det(Id + tΠ(x)) < 3/2, 1/2 < |Id + tΠ(x)| < 3/2 ∀x ∈ S, ∀ t ∈ (−h0/2, h0/2).
(2.5)

Such defined S∗ plays the role of the common domain of the rescaled deformations. We also
define the projection π : S∗ → S along �n(x) as π(z) = x for z = x + t�n(x) ∈ S∗.

Consider a deformation of a thin shell uh ∈ W 1,2(Sh, R3). The elastic energy (scaled per
unit thickness) of uh is given by the nonlinear functional

Eh(uh) =
1
h

∫

Sh

W (∇uh), (2.6)

where the stored-energy density W : R
3×3 → [0,∞] is C2 in a neighborhood of the special

orthogonal group SO(3), and satisfies below frame invariance, normalization and growth con-
ditions

[(i)] W (RF ) = W (F ), ∀F ∈ R
3×3, ∀R ∈ SO(3),

[(ii)] W (Id) = 0,

[(iii)] W (F ) ≥ c dist2(F, SO(3)), with some constant c > 0 independent of F.

(2.7)

This paper studies the asymptotic behavior of the sequence h−4Eh(uh) as h → 0. To this end,
corresponding to each uh ∈ W 1,2(Sh, R3), we shall introduce the rescaled deformations

yh(x + t�n(x)) = uh
(
x + sh(t, x)�n(x)

)
, ∀x ∈ S, ∀ t ∈ (−h0/2, h0/2), (2.8)

where
∫

sh(t, x) = t/h0(gh
1 (x) + gh

2 (x)) + 1/2(gh
2 (x) − gh

1 (x)) maps the interval (−gh
1 , gh

2 ) home-
omorphically onto the interval (−h0/2, h0/2), for each x ∈ S. Direct calculation shows that
yh ∈ W 1,2(S∗, R3). For each yh, define the scaled average displacement

V h[yh](x) =
1
h
�
∫ h0/2

−h0/2

(
yh(x + t�n(x)) − (

x + sh(t, x)�n(x)
))

dt, ∀x ∈ S. (2.9)
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To introduce the main theorems, especially the generalized von Kármán functional, we will
use the following notation: Given a matrix field M ∈ L2(S, R3×3), by symM , we mean a bilinear
form on TxS given by ((symM(x)τ)η) = 1/2[(M(x)τ)η + (M(x)η)τ ], for all τ, η ∈ TxS. By
Mtan(x), we denote the tangential minor of M at x ∈ S, that is [(M(x)τ)η] for all τ, η ∈ TxS.
Then, the generalized von Kármán functional on S (see [11]) takes the form

I(V, Btan) =
1
2

∫

S

(g1 + g2)Q2

(
x, Btan − 1

2
(A2)tan − 1

2
sym

(
A∇((g2 − g1)�n)

))

+
1
24

∫

S

(g1 + g2)3 Q2

(
x, (∇(A�n) − AΠ)tan

)
, (2.10)

for V ∈ V and Btan ∈ B. The space V is the space of W 2,2 first order infinitesimal isometries.
A W 2,2 vector field V ∈ V , provided that there exists a matrix field A ∈ W 1,2(S, R3×3) such
that

∂τV (x) = A(x)τ, A(x)T = −A(x), ∀ a.e. x ∈ S, ∀ τ ∈ TxS.

The finite strain space B (see [10]), consists of the following symmetric matrix fields

B =
{
L2 − lim

h→0
sym∇wh; wh ∈ W 1,2(S, R3)

}
.

Notice that, B contains all weak L2 limits of symmetric gradients of W 1,2 vector fields on S.
In the expression of I(V, Btan), the quadratic forms Q2(x, ·) are defined as follows

Q2(x, Ftan) = min{Q3(F̃ ); (F̃ − F )tan = 0}, Q3(F ) = D2W (Id)(F, F ).

Both Q2 and Q3 are quadratic forms; Q3 defined for all F ∈ R
3×3, while for a given x ∈ S,

Q2(x, ·) is defined on tangential minors Ftan of such matrices. Actually, Q� depends only
on the symmetric part of its argument, and hence Q∈ depends on its first argument and the
symmetric part of its second argument. Moreover, both forms are positive definite on the space
of symmetric matrices.

We now state the first theorem, which shows compactness of the deformations and the lower
bound of the scaled energies.

Theorem 2.1. For any sequence of deformations uh ∈ W 1,2(Sh, R3) satisfying

Eh(uh) ≤ Ch4, (2.11)

there exist sequences Qh ∈ SO(3) and ch ∈ R
3 such that the normalized scaled deformations

ỹh(x + t�n(x)) = (Qh)T yh(x + t�n(x)) − ch defined on S∗ satisfy
(i) ỹh converges in W 1,2(S∗) to the projection π.
(ii) The related scaled average displacements V h[ỹh] converge (up to a subsequence) in

W 1,2(S) to some V ∈ V.
(iii) h−1sym∇V h[ỹh] converges (up to a subsequence) weakly in L2(S) to some Btan ∈ B.
(iv) lim infh→0 h−4Eh(uh) ≥ I(V, Btan).

We further prove that this lower bound in (iv) above is optimal.

Theorem 2.2. For every V ∈ V and every Btan ∈ B, there exists a sequence of deformations
uh ∈ W 1,2(Sh, R3) such that after the rescaling (2.8), we will have

(i) yh converges in W 1,2(S∗) to the projection π.
(ii) The related scaled average displacement V h[yh] converges in W 1,2(S) to V .
(iii) h−1sym∇V h[yh] converges in L2(S) to Btan.
(iv) lim

h→0
h−4Eh(uh) = I(V, Btan).

Recall the definition of Γ-convergence[3]:
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Definition 2.1. Let Fh : X → R̄ be a sequence of functionals defined on a metric space X.
We say that Fh Γ-converge, as h → 0, to some F : X → R provided that

(i) For any converging sequence {xh} in X one has:

F
(

lim
h→0

xh
)
≤ lim inf

h→0
Fh(xh).

(ii) For every x ∈ X, there exists a sequence {xh} converging to x, such that:

F(x) = lim
h→0

Fh(xh).

With this, we restate the main results in the following Corollary.

Corollary 2.3. Define a sequence of functionals

Fh : W 1,2(S∗, R3) × W 1,2(S, R3) × L2(S, R2×2) −→ R,

Fh(yh, V h, Bh
tan) =

{ 1
h4

Eh(yh), if V h = V h[yh] and Bh
tan =

1
h
sym∇V h

+∞, otherwise .

Then Fh Γ-converge, as h → 0, to

F(y, V, Btan) =
{ I(V, Btan), if y = π, V ∈ V and Btan ∈ B

+∞, otherwise.

For the detailed proof of Corollary 2.3, please refer to Appendix B in [10].
In all the estimates in the proof, by C we cumulatively denote a positive constant which

does not depend on h.

3 Compactness and the Lower Bound of the Energy - A Proof of

Theorem 2.1

To prove Theorem 2.1, we shall introduce an important rigidity estimate based on the following
one obtained by Friesecke, James and Müller[5]:

Theorem 3.1. Let Ω ⊂ R
n be an open, bounded domain with Lipschitz boundary. Then, for

every u ∈ W 1,2(Ω, Rn) one has

min
R∈SO(n)

‖∇u(x) − R‖L2(Ω) ≤ C‖dist(∇u, SO(3))‖L2(Ω),

where the constant C depends only on Ω. In particular, C is invariant under dilations of Ω and
it is uniform for the uniform bilipschitz images of a unit ball in R

n.
The rigidity estimate we are applying says:

Lemma 3.2. Let u ∈ W 1,2(Sh, R3) and assume that h−3E(u, Sh) is sufficiently small. Then
there exist a matrix field R ∈ W 1,2(S, R3×3) with R(x) ∈ SO(3) for each x ∈ S and a matrix
Q ∈ SO(3) satisfying the following properties

(i) ‖∇u − Rπ‖L2(Sh) ≤ C‖dist (∇u, SO(3))‖L2(Sh),
(ii) ‖∇R‖L2(S) ≤ Ch−3/2‖dist(∇u, SO(3))‖L2(Sh),
(iii) ‖QT R − Id‖Lp(S) ≤ Ch−3/2‖dist(∇u, SO(3))‖L2(Sh), for all p ∈ [1, +∞),

where C is independent of u and h (but may depend on p).
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Proof. For each x ∈ S, define ’balls’ in S and the corresponding ‘cylinders’ in Sh

Dx,h = B(x, h) ∩ S, Bx,h = π−1(Dx,h) ∩ Sh.

Then, Theorem 3.1 is applied on each set Bx,h, giving constant matrices Rx,h ∈ SO(3) with
the property

‖∇u(z) − Rx,h‖L2(Bx,h) ≤ C‖dist(∇u, SO(3))‖L2(Bx,h), (3.1)

where the constant C depends only on the region Bx,h.
The crucial observation is that C is actually a universal constant. This follows from gh

i

being Lipschitz bounded above by C2h below by C1h and S being of class C1,1 (with boundary
∂S consisting of finitely many Lipschitz curves). Indeed, under these assumptions, Bx,h is (for
every x ∈ S) bilipschitz equivalent to B(0, h) with controlled Lipschitz constants. Besides, the
constant C is invariant under dilations, thus independent of h. Hence, C in (3.1) is uniform
with respect to x and h.

Finally, we may finish the rest of the proof following exactly that of Lemma 8.1 in [10]. �

With this lemma, the proof of Theorem 2.1 proceeds through several steps as:
1. Thanks to (2.7), (2.11) and Lemma 3.2, there exists a matrix field Rh ∈ W 1,2(S, R3×3)

such that Rh(x) ∈ SO(3), for each x ∈ S and a matrix Qh ∈ SO(3) satisfying

‖∇uh − Rh‖L2(Sh) ≤ Ch5/2, ‖∇Rh‖L2(S) ≤ Ch, ‖(Qh)T Rh − Id‖L2(S) ≤ Ch. (3.2)

We thus have
lim
h→0

(Qh)T Rh = Id, in W 1,2(S). (3.3)

Moreover, as shown in Lemma 3.2 (see [10]), there exists a W 1,2 skew-symmetric matrix field
A on S such that up to a subsequence

lim
h→0

1
h

(
(Qh)T Rh − Id

)
= A weakly in W 1,2(S) and strongly in L2(S);

(3.4)

lim
h→0

1
h2

sym
(
(Qh)T Rh − Id

)
=

1
2
A2 in L2(S). (3.5)

Recall the rescaling (2.8), we further denote

∇hyh(x + t�n) = ∇uh
(
x + sh(t, x)�n(x)

)
. (3.6)

With these notations, by direct calculation, for each x ∈ S, t ∈ (−h0/2, h0/2), we obtain

∂τyh(x + t�n) = ∇hyh(x + t�n)
(
Id + ∇x(sh(t, x)�n(x))

)
(Id + tΠ)−1τ,

∂�nyh(x + t�n) =
1
h0

(gh
1 + gh

2 )∇hyh(x + t�n)�n(x)
(3.7)

and

Eh(uh) =
∫

S

1
h

(gh
1 + gh

2 ) �
∫ h0/2

−h0/2

W
(∇hyh(x + t�n)

)
det

(
Id + sh(t, x)Π

)
dtdx. (3.8)

Thus, in view of (3.2), (3.4), (2.5) and (3.7), there follow

‖∇hyh − Rhπ‖L2(S∗) ≤ Ch2, (3.9)

lim
h→0

1
h

((Qh)T∇hyh − Id) = Aπ in L2(S∗) up to subseqence. (3.10)

2. Define
ỹh = (Qh)T yh − ch, (3.11)
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where ch is chosen, such that �∫
S

V h[ỹh] dx = 0.
3. Through direct calculation, the definitions of V h[yh] in (2.9) and ỹh in (3.11) imply

∇V h[ỹh](x) =
( 1

h
�
∫ h0/2

−h0/2

(Qh)T
(∇hyh(x + t�n) − Rh

)(
Id + ∇x

(
sh(t, x)�n(x)

))
dt

)
tan

+
( 1

h

(
(Qh)T Rh − Id

) �
∫ h0/2

−h0/2

(
Id + ∇x

(
sh(t, x)�n(x)

))
dt

)

tan
. (3.12)

Based on (2.2) and (3.9), we have

∥
∥
∥

1
h
�
∫ h0/2

−h0/2

(Qh)T (∇hyh(x + t�n) − Rh)
(
Id + ∇x(sh(t, x)�n(x))

)
dt

∥
∥
∥

L2(S)
≤ Ch → 0. (3.13)

Concerning the second term of (3.12), (2.2) and (3.4) indicate that up to a subsequence

∥
∥
∥

1
h

(
(Qh)T Rh(x)− Id

) �
∫ h0/2

−h0/2

(
Id +∇x

(
sh(t, x)�n(x)

))
dt−A

∥
∥
∥

L2(S)
→ 0, as h → 0. (3.14)

Thus, ∇V h[ỹh] → Atan in L2(S). Since �∫
S

V h[ỹh] dx = 0, we apply Poincaré inequality on S to
deduce V h[ỹh] is bounded, furthermore V h[ỹh] → V in W 1,2(S) up to a subsequence, that is
(ii).

4. It follows from (3.7) that
∥∥∂�nỹh(x + t�n)

∥∥
L2(S∗)

≤ C
(‖gh

1‖L∞(S) + ‖gh
2‖L∞(S)

)
,

∥
∥∂τ ỹh − (Qh)T Rh

(
Id + ∇x(sh(t, x)�n(x))

)
(Id + tΠ)−1τ

∥
∥

L2(S∗)
≤ Ch2.

Thus by (2.2) and (3.3), lim
h→0

∂τ ỹh = (Id + tΠ)−1τ = ∂τπ, lim
h→0

∂�nỹh = 0 in L2(S∗). Hence

∇ỹh → ∇π in L2(S∗). Applying the weighted Poincaré inequality, as in Lemma 3.5 (see [10],
implies (i)).

5. For each yh, let finite strain

Gh =
1
h2

(
(Rh)T∇hyh − Id

)
. (3.15)

According to (3.9), Gh is bounded in L2(S∗), thus has a subsequence, converging weakly in
L2(S∗) to a matrix field G. Furthermore, the tangential minor of G is affine in the �n direction.
More precisely

∀ τ ∈ TxS, G(x + t�n)τ = G0(x)τ +
t

h0
(g1 + g2)(∇(A�n) − AΠ)τ, (3.16)

where G0(x) = �∫ h0/2

−h0/2 G(x + t�n)dt.

Similar to the proof of Lemma 3.6 (see [10]), the above statement can be proven through
finding the W 1,2 limit of the auxiliary sequence of vector fields

fs,h(x + t�n) =
h0

sh2

[
ỹh

(
x + (t + s)�n

) − ỹh
(
x + t�n

)] − 1
h2

(
gh
1 + gh

2

)
�n,

in view of the identity that ∇(
(g1 + g2)A�n

) − A∇(
(g1 + g2)�n

)
= (g1 + g2)

(∇(A�n) − AΠ
)
.
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6. By the frame invariance and C2 regularity of W , there follows a formal Taylor expansion
in Ωh = {x ∈ S∗; h|Gh(x)| ≤ 1},

1
h4

W (∇hyh) =
1
2
D2W (Id)(Gh, Gh)

+
∫ 1

0

(1 − s)
[
D2W (Id + sh2Gh) − D2W (Id)

]
ds(Gh, Gh)

=
1
2
Q3(Gh) + o(1)|Gh|2. (3.17)

where, o(1) is the Landau symbol denoting any quantity uniformly converging to 0, as h → 0.
We thus obtain

lim inf
h→0

1
h4

Eh(yh) ≥1
2

∫

S

(g1 + g2)Q2

(
x, (symG0)tan

)
dx

+
1
24

∫

S

(g1 + g2)3Q2

(
x,

(∇(A�n) − AΠ
)
tan

)
dx.

7. Based on (3.7) and (3.15), there follows

∇V h[ỹh] =h
[
�
∫ h0/2

−h0/2

((Qh)T Rh)Gh(x + t�n) dt

+ �
∫ h0/2

−h0/2

((Qh)T Rh)Gh(x + t�n)∇(
(gh

1 + gh
2 )t +

1
2
(gh

2 − gh
1 )�n

)
dt

+
1
h2

((Qh)T Rh − Id) +
1
2h

((Qh)T Rh − Id)
(
∇

(gh
2 − gh

1

h
�n
))]

tan
.

Meanwhile, (3.3) and (3.16) imply

(
�
∫ h0/2

−h0/2

((Qh)T Rh)Gh(x + t�n)dt)tan ⇀ G0(x)tan in L2(S).

By (2.2) and (3.4),

�
∫ h0/2

−h0/2

(Qh)T RhGh(x + t�n)∇(
(gh

1 + gh
2 )t +

1
2
(gh

2 − gh
1 )�n

)
dt → 0 in L2(S)

and

1
2h

(
(Qh)T Rh − Id

)(∇((h−1gh
2 − h−1gh

1 )�n)
) → 1

2
A

(∇(g2 − g1)�n
)
, in L2(S). (3.18)

Recalling (3.5), we get lim
h→0

1
h sym∇V h[ỹh] =

(
symG0 + 1

2A2 + 1
2 sym(A∇((g2−g1)�n))

)
tan

weakly

in L2(S). This finishes the proof of the theorem. �

4 The Recovery Sequence—A Proof of Theorem 2.2

1. As in Section 6 (see [10]), we define the linear map c and approximate Btan, V . With
an abuse of notation, one can write Q2(x, Ftan) = min{Q3(Ftan + c⊗�n(x)+�n(x)⊗ c); c ∈ R

3}.
In view of properties of Q3, it has a unique minimizer c(x, Ftan), which realizes Q∈(§,Ftan).
The uniqueness implies that c is linear in its second argument.
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For any Btan ∈ B, there is a sequence of vector fields wh ∈ W 1,2(S, R3) enjoying the prop-
erty that sym∇wh converge in L2(S) to Btan. Without loss of generality, we assume that
wh are smooth, and lim

h→0

√
h‖wh‖W 2,∞(S) = 0. For any V ∈ V , let vh ∈ W 2,∞(S, R3) sat-

isfy lim
h→0

‖vh − V ‖W 2,2(S) = 0, h‖vh‖W 2,∞ ≤ ε0, lim
h→0

1
h2 μ{x ∈ S; vh(x) �= V (x)} = 0. To jus-

tify the existence of such vh, we may use a partition of unity and a truncation argument as a
special case of Lusin-type result for Sobolev functions in [12].

Define the sequence of rescaled deformations

yh(x + t�n(x)) =x +
1
2
(gh

2 − gh
1 )�n(x) + hvh(x) + h2wh(x) +

t

h0
(gh

1 + gh
2 )�n(x)

+
t

h0
h(gh

1 + gh
2 )

(
Πvh

tan −∇(vh�n)
)
(x) − t

h0
h2(gh

1 + gh
2 )(∇wh(x))T �n(x)

+
t

h0
h2(gh

1 + gh
2 )d0,h(x) +

1
2

t2

h0
2 h(gh

1 + gh
2 )2d1,h(x),

where the vector fields d0,h, d1,h ∈ W 1,∞(S, R3) are such that

lim
h→0

√
h
(‖d0,h‖W 1,∞(S) + ‖d1,h‖W 1,∞(S)

)
= 0 (4.1)

and

lim
h→0

d0,h(x) =2c
(
x, Btan − 1

2
(A2)tan − 1

2
sym

(
A∇(

(g2 − g1)�n
)))

+ A2�n − 1
2
(�nT A�n) +

1
2
(
A∇(

(g2 − g1)�n
))T

�n, in L2(S),

lim
h→0

d1,h(x) =2c
(
x, sym

(∇(A�n) − AΠ
)
tan

)
+ (AΠ −∇(A�n))T �n, in L2(S).

(4.2)

2. By (2.2), for such defined yh, (i) holds. Also, we have

V h[yh](x) = vh(x) + hwh(x) +
1
24

(
gh
1 (x) + gh

2 (x)
)2

d1,h(x),

which implies (ii). Furthermore,

1
h

sym(∇V h[yh]) =
1
h

sym(∇vh) + sym (∇wh) +
1

24h
(gh

1 + gh
2 )2sym (∇d1,h).

Exactly as in the proof of Lemma 6.1 in [10], we can show ‖h−1sym(∇vh)‖L2(S) → 0, as h → 0.
Thus (iii) follows.

3. As in section 6 of [10], we will prove that

lim sup
h→0

1
h4

Eh(yh) ≤ I(V, Btan) + η, (4.3)

where η denotes an error quantity, with the property

η → 0, as ε0 → 0. (4.4)

This will give (iv) for the recovery sequence obtained through a diagonal argument, when
ε0 → 0.

The exposition of proof is divided into several sub-steps. First is to study ∇hyh, then the
formal Taylor expansion is introduced, and next the limit of scaled strain 1

2h2 Kh in L2(S∗) is
established. Finally, we estimate the upper bound for h−4Eh(uh) to get (4.3). While calculating
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the limit of 1
2h2 Kh, we shall bear more cautiousness, for provided Φt(x) = x + sh(t, x)�n(x),

TΦt(x)Φt(S) �= TxS, whereas Kh is defined through ∇hyh, for a fixed t, the natural basis is
{TΦt(x)Φt(S), �n(x)}, instead of the preferred {TxS, �n(x)}.

3.1. By (3.7), there follows

∇hyh(x + t�n)�n = h0(gh
1 + gh

2 )−1∂�nyh(x + t�n)

=�n(x) + h
(
Πvh

tan −∇(vh�n)
) − h2(∇wh)T �n + h2d0(x) +

t

h0
h(gh

1 + gh
2 )d1(x). (4.5)

For each τ ∈ TxS,

∇hyh(x + t�n)
(
Id + ∇x(sh(t, x)�n(x))

)
τ = ∇yh(x + t�n)(Id + tΠ)τ

=
(
Id + h∇vh + h2∇wh(x) + ∇x

(
sh(t, x)�n(x)

)

+
t

h0
h∇(

(gh
1 + gh

2 )
(
Πvh

tan −∇(
vh�n

))) − t

h0
h2∇((

gh
1 + gh

2

)
(∇wh)T�n

)

+
t

h0
h2∇(

(gh
1 + gh

2 )d0,h(x)
)

+
1
2

t2

h2
0

h∇(
(gh

1 + gh
2 )2d1,h(x)

))
τ.

3.2. By assumptions on wh, vh, and assumptions given in (4.1), (4.2) on d0,h, d1,h, one
has the bound ‖∇hyh − Id‖L∞(S∗) ≤ Cε0. Then, when ε0 is sufficiently small, the polar
decomposition theorem implies that ∇hyh is a product of a proper rotation and the well defined
square root of (∇hyh)T∇hyh. The frame invariance property of W and Taylor expansion tell
us

W (∇hyh) = W
(√

(∇hyh)T∇hyh
)

= W
(
Id +

1
2
Kh + O(|Kh|2)), (4.6)

where Kh = (∇hyh)T∇hyh − Id. Clearly,

‖Kh‖L∞(S∗) ≤ Cε0. (4.7)

Similar to (3.17), (4.6) yields

1
h4

W (∇hyh) =
1
2
Q3

( 1
2h2

Kh +
1
h2

O(|Kh|2)
)

+
1
h4

ηO(|Kh|2), (4.8)

where η depends only on ε0 and satisfies (4.4).
By Error and error we will cumulatively denote terms with properties

lim
h→0

1
h2

‖error‖L2(S∗) = 0 (4.9)

and
lim
h→0

‖error‖L∞(S∗) = 0 (4.10)

respectively.
3.3. Recalling the expansion (4.8), in this part we calculate the limit of 1

2h2 Kh. For the
sake of clarity, we again divide the exposition into several sub-steps.

3.3.1. Decomposition of Kh with respect to changing basis: {TΦt(x)Φt(S), �n(x)}.
3.3.1.1. The tangential minor of Kh. For any τ1, τ2 ∈ TxS,

(Id + ∇x(sh(t, x)�n(x)))τ1 , (Id + ∇x(sh(t, x)�n(x)))τ2 ∈ TΦt(x)Φt(S).
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Based on Lemma 3.7:
((

Id + ∇x(sh(t, x)�n(x))
)
τ1

)T
Kh

(
(Id + ∇x(sh(t, x)�n(x)))τ2

)

=2h2τT
1

(
sym(∇wh) +

t

h0
sym

(∇((h−1gh
1 + h−1gh

2 )(Πvh
tan −∇(vh�n)))

)

+
1
2
h(∇vh)T (∇vh) +

1
h

sym
(
(∇x(sh(t, x)�n(x)))T∇vh

))
τ2 + Error.

Thus, (2.2) and the assumptions on wh and vh imply

lim
h→0

1
2h2

(
(Id + ∇x(sh(t, x)�n(x)))τ1

)T
Kh

(
(Id + ∇x(sh(t, x)�n(x)))τ2

)

=τT
1

(
Btan − 1

2
A2 − 1

2
sym(A∇((g2 − g1)�n))

+
t

h0
(g1 + g2)sym(∇(A�n) − AΠ)

)
τ2, in L2(S∗). (4.11)

3.3.1.2. The normal minor of Kh.

�nT Kh�n =h2
(
Πvh

tan −∇(vh�n)
)T (

Πvh
tan −∇(vh�n)

) − 2h2�nT sym(∇wh)�n

+ 2h2�nT d0,h(x) + 2h2 t

h0
(h−1gh

1 + h−1gh
2 )�nT d1,h(x) + Error.

By (2.2), the assumptions on wh, vh and the assumption (4.1), (4.2) on d0,h, d1,h, there follows

lim
h→0

1
2h2

�nT Kh�n =2�nT
(
c
(
x, Btan − 1

2
(
A2

)
tan

− 1
2
sym

(
A∇(

(g2 − g1)�n
)))

+
t

h0
c
(
x, (g1 + g2)sym

(∇(A�n) − AΠ
)
tan

))
, in L2(S∗).

(4.12)

3.3.1.3. The mixed terms of Kh. For each τ ∈ TxS,

�nT Kh
(
Id + ∇x

(
sh(t, x)�n(x)

))
τ

=
( t

h0
h2�n∇(

(h−1gh
1 + h−1gh

2 )
(
Πvh

tan −∇(vh�n)
))

+ h2
(
Πvh

tan −∇(vh�n)
)T∇vh + h2

(
Πvh

tan −∇(vh�n)
)T∇x

( 1
h

sh(t, x)�n(x)
)

− h2(d0,h)T +
t

h0
h2(h−1gh

1 + h−1gh
2 )(d1,h(x))T

)
τ + Error. (4.13)

Again, (2.2), the assumptions on wh, vh, d0,h, d1,h give us

lim
h→0

1
2h2

�nT Kh
(
Id + ∇x

(
sh(t, x)�n(x)

))
τ

=
(
c
(
x, Btan − 1

2
(A2)tan − 1

2
sym

(
A∇(

(g2 − g1)�n
)))

+
t

h0
c
(
x, (g1 + g2)sym(∇(A�n) − AΠ)tan

))T

τ, in L2(S∗). (4.14)

Most estimates in Error are straightforward and you may refer to [10] for some difficult terms.
3.3.2. Decomposition of Kh with respect to fixed basis {TxS, �n(x)}.
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Let τ1, τ2 ∈ TxS be such that {τ1, τ2, �n} forms an orthonormal basis of R
3. Consequently,

from the convergence Assumption (2.2) of gh
1 , gh

2 , vectors in
{
(Id + ∇x(sh(t, x)�n(x)))τ1, (Id + ∇x(sh(t, x)�n(x)))τ2 , �n

}
(4.15)

form a basis of R
3 as well (when h is sufficiently small). Though the basis (4.15) may not be

orthonormal, the transition matrix Bh belongs to a small neighborhood of SO(3), and thus
is bounded in L∞(S∗). Note that the matrix field Kh, with respect to the basis (4.15) is a
symmetric matrix Mh = (mh

ij)3×3, where

mh
ij = mh

ji =
((

Id + ∇x(sh(t, x)�n(x))
)
τi

)T
Kh

(
(Id + ∇x(sh(t, x)�n(x)))τj

)
, for i, j = 1, 2;

mh
i3 = mh

3i =
(
(Id + ∇x(sh(t, x)�n(x))τi

)T
Kh�n, for i = 1, 2;

mh
33 = �nT Kh�n.

Hence, according to (4.11), (4.12) and (4.14), 1
2h2 Mh converges in L2(S∗). Meanwhile, the

transition matrix Bh is bounded in L∞(S∗), thus the matrix of Kh with respect to the basis
{τ1, τ2, �n}, denoted as M̃h, has the property that 1

2h2 M̃h is bounded in L2(S∗). Therefore
1

2h2 Kh is bounded in L2(S∗).
Let us calculate Kh with respect to the normal vector �n and the tangent vectors of the

surface S. Assume τ1, τ2 ∈ TxS be any tangent vectors of S at the point x, then we have

τT
1 Khτ2 =

(
(Id + ∇x(sh(t, x)�n(x)))τ1

)T (
(Id + ∇x(sh(t, x)�n(x)))−1

)T
Kh

· (Id + ∇x(sh(t, x)�n(x))
)−1(Id + ∇x(sh(t, x)�n(x))

)
τ2

=
(
(Id + ∇x(sh(t, x)�n(x)))τ1

)T (Id + error)Kh(Id + error)
(
Id + ∇x(sh(t, x)�n(x))

)
τ2

=
(
(Id + ∇x(sh(t, x)�n(x)))τ1

)T
Kh

(
Id + ∇x(sh(t, x)�n(x))

)
τ2 + Error,

where we used the fact that 1
2h2 Kh is bounded in L2(S∗), Taylor expansion and (2.2). Moreover,

we have the following convergence

lim
h→0

1
2h2

τT
1 Khτ2 = τT

1

(
Btan − 1

2
A2 − 1

2
sym

(
A∇((g2 − g1)�n)

)

+
t

h0
(g1 + g2)sym

(∇(A�n) − AΠ
))

τ2, in L2(S∗).
(4.16)

For the mixed terms

�nT Khτ =�nT Kh
(
Id + ∇x(sh(t, x)�n(x))

)−1(Id + ∇x(sh(t, x)�n(x))
)
τ

=�nT Kh(Id + error)
(
Id + ∇x(sh(t, x)�n(x))

)
τ = �nT Kh

(
Id + ∇x(sh(t, x)�n(x))

)
τ + Error.

Hence

lim
h→0

1
2h2

�nT Khτ =
(
c
(
x, Btan − 1

2
(A2)tan − 1

2
sym

(
A∇((g2 − g1)�n)

))

+
t

h0
c
(
x, (g1 + g2)sym(∇(A�n) − AΠ)tan

))T

, τ in L2(S∗).
(4.17)

3.3.3. Limit of 1
2h2 Kh in L2(S∗).

By the above calculation and (4.12), we obtain (with a slight abuse of notation)

lim
h→0

1
2h2

Kh = K1(x)tan +
t

h0
K2(x)tan + (ζ ⊗ �n + �n ⊗ ζ), in L2(S∗), (4.18)
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where the symmetric matrix fields K1(x)tan, K2(x)tan ∈ L2(S, R2×2) and the vector field ζ ∈
L2(S∗, R3) are given by:

K1(x)tan =Btan − 1
2
(A2)tan − 1

2
sym

(
A∇((g2 − g1)�n)

)

K2(x)tan =(g1 + g2)sym
(∇(A�n) − AΠ

)
tan

ζ(x + t�n) =c
(
x, Btan − 1

2
(A2)tan − 1

2
sym

(
A∇((g2 − g1)�n)

))

+
t

h0
c
(
x, (g1 + g2)sym(∇(A�n) − AΠ)tan

)
.

(4.19)

3.4. Bearing the convergence (2.2) in mind, with similar calculation as in Section 6 (see
[10]), we finally obtain (4.3), and finish the proof of (iv), thus the proof of Theorem 2.2. �

5 Appendix: Remarks about the required convergence of gh
1 and gh

2

In this section, we propose a weaker assumption for gh
1 and gh

2 . Theorem 2.1 holds under this
assumption. Hopefully, it is also enough for Theorem 2.2. In remark 5.1 the weaker assumption
will be stated and a brief analysis will be given. In remark 5.2, an example will be presented
to show that the proposed assumption is indeed weaker than the original one.

Remark 5.1. Instead of gh
1 , gh

2 satisfying (2.2), in order to have Theorem 2.1 hold, we only
need the following:

There exists g1, g2 ∈ C1(S) bounded, such that

lim
h→0

h−1gh
i = gi, in L∞, for i = 1, 2,

lim
h→0

h−1∇gh
i = ∇gi, weakly in L2(S), for i = 1, 2,

and there exists a uniform constant C, such that

‖h−1∇gh
i ‖L∞(S) ≤ C, for i = 1, 2.

This change mainly influences the convergence (3.18), however it is enough for it to be weak.
Indeed, under the changed assumption it is weak in L2(S).

Remark 5.2. One example showing the assumption in Remark 5.1 is indeed weaker than
(2.2).

Let S = (0, 2π)× (0, 2π), hn = 1/n, define ghn
1 (x, y) = ghn

2 (x, y) = −cosnx/n2 +1/n. Note
that

lim
hn→0

ghn

i = lim
n→+∞

−1/n2 cosnx + 1/n

1/n
= lim

n→+∞− 1
n

cosnx+1 = 1, in L∞(S) for i = 1, 2,

and ∇ghn

i =
[
1/n sinnx, 0

]T
. Thus, h−1

n ∇ghn

i = [sin nx, 0]T ⇀ [0, 0]T in L2(S) as hn → 0.
Furthermore ‖hn

−1∇gh
i ‖L∞(S) ≤ 1. Therefore let g1(x, y) = g2(x, y) = 1 for every (x, y) ∈ S.

Then ghn
1 and ghn

2 satisfy the assumption in Remark 5.1. However, it is obvious that the
sequence h−1

n ghn

i does not converge to the function gi in C1(S) (for i = 1, 2).
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