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Abstract In a connected graph G, the distance d(u, v) denotes the distance between two vertices u and v of

G. Let W = {w1, w2, · · · , wk} be an ordered set of vertices of G and let v be a vertex of G. The representation

r(v|W ) of v with respect to W is the k-tuple (d(v, w1), d(v, w2), · · · , d(v, wk)). The set W is called a resolving set

or a locating set if every vertex of G is uniquely identified by its distances from the vertices of W , or equivalently,

if distinct vertices of G have distinct representations with respect to W . A resolving set of minimum cardinality

is called a metric basis for G and this cardinality is the metric dimension of G, denoted by β(G). Metric

dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists).

In this paper, we study the metric dimension of barycentric subdivision of Cayley graphs Cay (Zn ⊕ Z2). We

prove that these subdivisions of Cayley graphs have constant metric dimension and only three vertices chosen

appropriately suffice to resolve all the vertices of barycentric subdivision of Cayley graphs Cay (Zn ⊕ Z2).
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1 Introduction and Preliminary Results

Metric dimension is a parameter that has appeared in various applications of graph theory,
as diverse as, pharmaceutical chemistry[4], robot navigation[16], combinatorial optimization[18]

and sonar and coast guard Loran[19], to name a few. Metric dimension is a generalization of
affine dimension to arbitrary metric spaces (provided a resolving set exists).

In a connected graph G, the distance d(u, v) between two vertices u, v ∈ V (G) is the size
of a shortest path between them. Let W = {w1, w2, · · · , wk} be an ordered set of vertices
of G and let v be a vertex of G. The representation r(v|W ) of v with respect to W is the
k-tuple (d(v, w1), d(v, w2), d(v, w3), · · · , d(v, wk)). The set W is called a resolving set[4] or
locating set[19] if every vertex of G is uniquely identified by its distances from the vertices of
W , or equivalently, if distinct vertices of G have distinct representations with respect to W . A
resolving set of minimum cardinality is called a basis for G and this cardinality is the metric
dimension or location number of G, denoted by β(G) (see [2]).

For a given ordered set of vertices W = {w1, w2, · · · , wk} of a graph G, the ith component
of r(v|W ) is 0 if and only if v = wi. Thus, to show that W is a resolving set it suffices to verify
that r(x|W ) �= r(y|W ) for each pair of distinct vertices x, y ∈ V (G)\W .

A useful property in finding β(G) is the following lemma:

Lemma 1[20]. Let W be a resolving set for a connected graph G and u, v ∈ V (G). If d(u, w) =
d(v, w) for all vertices w ∈ V (G) \ {u, v}, then {u, v} ∩ W �= ∅.

Let F be a family of connected graphs Gn : F = (Gn)n≥1 depending on n as follows:
the order |V (G)| = ϕ(n) and lim

n→∞ϕ(n) = ∞. If there exists a constant C > 0 such that
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β(Gn) ≤ C for every n ≥ 1, then we shall say that F has bounded metric dimension; otherwise
F has unbounded metric dimension.

If all graphs in F have the same metric dimension (which does not depend on n), F is called
a family with constant metric dimension[13]. Some classes of regular graphs with constant metric
dimension have been studied in [1,8,13] recently while metric dimension of some classes of convex
polytopes has been determined in [9] and [11].

Other families of graphs have unbounded metric dimension: if Wn denotes a wheel with n
spokes and J2n the graph deduced from the wheel W2n by alternately deleting n spokes, then
β(Wn) = 	 2n+2

5 
 for every n ≥ 7 (see [2] and β(J2n) = 	 2n
3 
 (see [21]) for every n ≥ 4. The

generalized Petersen graphs P (n, 3) have bounded metric dimension[10].
The graphs having metric dimension 1 are characterized in the following theorem.

Theorem 1[4]. The metric dimension of a graph G is 1 if and only if G ∼= Pn, where Pn
denotes a path of length n − 1 or G is one-way infinite path.

The next theorem gives a property of the graphs with metric dimension 2.

Theorem 2[15]. Let G be a graph with metric dimension 2 and let {v1, v2} ⊆ V (G) be a
metric basis in G, then the degree of both v1 and v2 is at most 3.

Geometrically, subdividing an edge is an operation that inserts a new vertex into the edge
that results in splitting that edge into two edges. Subdividing a graph G means performing a
sequence of edge-subdivision operations. The resulting graph is called a subdivision of the graph
G. The operation of subdivision can be used to convert a general graph into a simple graph.
The barycentric subdivision of a graph G is the subdivision in which one new vertex is inserted
in the interior of each edge.

The following propositions give some results related to barycentric subdivision of a graph[6].
• The barycentric subdivision of any graph is a bipartite graph.
• The barycentric subdivision of any graph yields a loopless graph.
• The barycentric subdivision of any loopless graph yields a simple graph.
A graph G is planar if it can be drawn in the plane without edge crossings. Subdivision of

graphs play a very important role in characterization of planar graphs. A graph G is planar if
and only if every subdivision of G is planar. Two graphs are said to be homeomorphic if they
are subdivisions of same graph G. The next theorem, known as Kuratoski’s theorem, gives a
characterization of planar graphs.

Theorem 3 ([Kuratowski’s Theorem [6]). A graph is planar if and only if it does not
contain a subdivision of K5 or K3,3.

Note that the problem of determining whether β(G) < k is an NP-complete problem[5].
In this paper, we study the metric dimension of barycentric subdivision of Cayley graphs

Cay (Zn ⊕ Z2). We prove that these subdivisions of Cayley graphs have constant metric di-
mension and only three vertices chosen appropriately suffice to resolve all the vertices of these
subdivision of Cayley graphs Cay (Zn ⊕ Z2).

2 The Metric Dimension of Barycentric Subdivision of Cayley

Graphs Cay (Zn ⊕ Z2)

Let G be a semigroup, and let S be a nonempty subset of G. The Cayley graph Cay (G, S)
of G relative to S is defined as the graph with vertex set G and edge set E(S) consisting of
those ordered pairs (x, y) such that sx = y for some s ∈ S. The Cayley graphs of groups are
significant both in group theory and in constructions of graphs with interesting properties. The
Cayley graph Cay (G, S) of a group G is symmetric or undirected if and only if S = S−1.

The Cayley graph Cay (Zn ⊕ Z2), n ≥ 3 is a cubic graph which can be obtained as the
cartesian product P2�Cn of a path on two vertices with a cycle on n vertices. The Cayley graph
Cay (Zn⊕Z2), n ≥ 3 consists of an outer n-cycle y1y2 · · · yn, an inner n-cycle x1x2 · · ·xn, and a
set of n spokes xiyi, i = 1, 2, · · · , n. We have |V (Cay (Zn ⊕Z2)| = 2n, |E(Cay (Zn ⊕Z2)| = 3n
and |F (Cay (Zn⊕Z2)| = n+2, where |V (Cay(Zn⊕Z2)|, |E(Cay(Zn⊕Z2)| and |F (Cay(Zn⊕Z2)|
denote the number of vertices, edges and faces of the Cayley graph Cay (Zn ⊕Z2), respectively.
The metric dimension of Cayley graph Cay (Zn ⊕ Z2) has been determined in [3] while the
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metric dimension of Cayley graphs Cay (Zn : S) for all n ≥ 7 and S = {±1,±3} has been
determined in [14].

Fig. 1 The Barycentric Subdivision of Cayley Graph Cay(Zn ⊕ Z2)

The barycentric subdivision graph S(Cay (Zn⊕Z2)) can be obtained by adding a new vertex
ui between xi and xi+1, adding a new vertex vi between xi and yi and adding a new vertex wi

between yi and yi+1, modulo n. Clearly, S(Cay (Zn ⊕ Z2)) has 5n vertices and 6n edges.

The metric dimension of Pm�Cn has been determined in [3]. In the next theorem, we prove
that the metric dimension of the barycentric subdivision S(Cay (Zn ⊕Z2)) is constant and only
three vertices appropriately chosen suffice to resolve all the vertices of the S(Cay (Zn ⊕ Z2)).

For our purpose, we call the cycle induced by {xi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n}, the inner
cycle, the cycle induced by {yi : 1 ≤ i ≤ n} ∪ {wi : 1 ≤ i ≤ n}, the outer cycle and set of
vertices {vi : 1 ≤ i ≤ n}, the set of interior vertices. Note that the choice of appropriate basis
vertices (also refereed to as landmarks in [15] is the core of the problem).

Theorem 4. Let S(Cay (Zn ⊕Z2)) be the barycentric subdivision of Cayley graphs Cay (Zn ⊕
Z2); then β(S(Cay (Zn ⊕ Z2))) = 3 for every n ≥ 4.

Proof. We will prove the above equality by double inequalities.

Case 1. When n is even.

We can write n = 2k, k ≥ 2, k ∈ Z+. Let W = {x1, x2, xk+1} ⊂ V (S(Cay (Zn ⊕Z2))), we
show that W is a resolving set for S(Cay (Zn⊕Z2)) in this case. For this we give representations
of any vertex of V (S(Cay (Zn ⊕ Z2))) \ W with respect to W .

Representations for the vertices of the inner cycle of S(Cay (Zn ⊕ Z2)) are

r(xi|W ) =
{

(2i − 2, 2i − 4, 2k − 2i + 2), 3 ≤ i ≤ k;
(4k − 2i + 2, 4k − 2i + 4, 2i − 2k − 2), k + 2 ≤ i ≤ 2k

r(ui|W ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 1, 2k − 1), i = 1;
(2i − 1, 2i − 3, 2k − 2i + 1), 2 ≤ i ≤ k;
(2k − 1, 2k − 1, 1), i = k + 1;
(4k − 2i + 1, 4k − 2i + 3, 2i − 2k − 1), k + 2 ≤ i ≤ 2k.

Representations for the set of interior vertices of S(Cay (Zn ⊕ Z2)) are

r(vi|W ) =

⎧⎪⎨
⎪⎩

(1, 3, 2k + 1), i = 1;
(2i − 1, 2i − 3, 2k − 2i + 3), 2 ≤ i ≤ k + 1;
(4k − 2i + 3, 4k − 2i + 5, 2i − 2k − 1), k + 2 ≤ i ≤ 2k.
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Representations for the vertices on the outer cycle of S(Cay (Zn ⊕ Z2)) are

r(yi|W ) =

⎧⎪⎨
⎪⎩

(2, 4, 2k + 2), i = 1;
(2i, 2i − 2, 2k − 2i + 4), 2 ≤ i ≤ k + 1;
(4k − 2i + 4, 4k − 2i + 6, 2i − 2k), k + 2 ≤ i ≤ 2k

r(wi|W ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3, 3, 2k + 1), i = 1;
(2i + 1, 2i − 1, 2k − 2i + 3), 2 ≤ i ≤ k;
(2k + 1, 2k + 1, 3), i = k + 1;
(4k − 2i + 3, 4k − 2i + 5, 2i − 2k + 1), k + 2 ≤ i ≤ 2k.

We note that there are no two vertices having the same representations implying that β(S(Cay (Zn

⊕Z2))) ≤ 3.
On the other hand, we show that β(S(Cay (Zn ⊕ Z2))) ≥ 3. Suppose on contrary that

β(S(Cay (Zn ⊕ Z2))) = 2, then there are the following possibilities to be discussed.
(1) Both vertices are in the inner cycle. Here are the following subcases.
• Both vertices belong to the set {xi : 1 ≤ i ≤ n}. Without loss of generality, we can suppose

that one resolving vertex is x1. Suppose that the second resolving vertex is xt (2 ≤ t ≤ k + 1).
Then for 2 ≤ t ≤ k, we have r(un|x1, xt) = r(v1|x1, xt) = (1, 2t− 1), and for t = k + 1, we have
r(u1|x1, xk+1) = r(un|x1, xk+1) = (1, 2k − 1), a contradiction.

• Both vertices belong to the set {ui : 1 ≤ i ≤ n}. Without loss of generality, we can suppose
that one resolving vertex is u1. Suppose that the second resolving vertex is ut (2 ≤ t ≤ k + 1).
Then for 2 ≤ t ≤ k, we have r(un|u1, ut) = r(v1|u1, ut) = (2, 2t), and for t = k + 1, we have
r(x1|u1, uk+1) = r(x2|u1, uk+1) = (1, 2k − 1), a contradiction.

• One vertex is in the set {xi : 1 ≤ i ≤ n} and the other one is in the set {ui : 1 ≤ i ≤ n}.
Without loss of generality, we can suppose that one resolving vertex is x1. Suppose that the
second resolving vertex is ut (1 ≤ t ≤ k + 1). Then for 1 ≤ t ≤ k, we have r(un|x1, ut) =
r(v1|x1, ut) = (1, 2t), and for t = k + 1, we have r(u1|x1, uk+1) = r(v1|x1, uk+1) = (1, 2k), a
contradiction.

(2) Both vertices are the interior vertices. Without loss of generality, we can suppose that
one resolving vertex is v1. Suppose that the second resolving vertex is vt (2 ≤ t ≤ k+1). Then
for 2 ≤ t ≤ k + 1, we have r(x1|v1, vt) = r(y1|v1, vt) = (1, 2t− 1), a contradiction.

(3) Both vertices are in the outer cycle. Due to the symmetry of the graph, this case is
analogous to case (1).

(4) One vertex is in the inner cycle and the other one is in the set of interior vertices. Here
are the two subcases.

• One vertex is in the set {xi : 1 ≤ i ≤ n} and the other one is in the set of interior
vertices. Without loss of generality, we can suppose that one resolving vertex is x1. Suppose
that the second resolving vertex is vt (1 ≤ t ≤ k + 1). Then for t = 1, we have r(u1|x1, v1) =
r(un|x1, v1) = (1, 2). For 2 ≤ t ≤ k, r(un|x1, vt) = r(v1|x1, vt) = (1, 2t) and for t = k + 1, we
have r(u1|x1, vk+1) = r(un|x1, vk+1) = (1, 2k), a contradiction.

• One vertex is in the set {ui : 1 ≤ i ≤ n} and the other one is in the set of interior
vertices. Without loss of generality, we can suppose that one resolving vertex is u1. Suppose
that the second resolving vertex is vt (1 ≤ t ≤ k + 1). Then for t = 1, we have r(w1|u1, v1) =
r(wn|u1, v1) = (2, 4). For 2 ≤ t ≤ k, r(un|u1, vt) = r(v1|u1, vt) = (2, 2t) and for t = k + 1, we
have r(un|u1, vk+1) = r(v2|u1, vk+1) = (2, 2k), a contradiction.

(5) One vertex is in the outer cycle and the other one is in the set of interior vertices. Due
to the symmetry of the graph, this case is analogous to case (4).

(6) One vertex is in the inner cycle and the other one is in the outer cycle. We have the
following subcases.

• One vertex is in the set {xi : 1 ≤ i ≤ n} and the other one is in the set {yi : 1 ≤ i ≤ n}.
Without loss of generality, we can suppose that one resolving vertex is x1. Suppose that
the second resolving vertex is yt (1 ≤ t ≤ k + 1). Then for t = 1, we have r(u1|x1, y1) =
r(un|x1, y1) = (1, 3). For 2 ≤ t ≤ k + 1, we have r(u1|x1, yt) = r(v1|x1, yt) = (1, 2t − 1), a
contradiction.
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• One vertex is in the set {xi : 1 ≤ i ≤ n} and the other one is in the set {wi : 1 ≤ i ≤ n}.
Without loss of generality, we can suppose that one resolving vertex is x1. Suppose that the
second resolving vertex is wt (1 ≤ t ≤ k + 1). Then for t = 1, we have r(u1|x1, w1) =
r(un|x1, w1) = (1, 4). For 2 ≤ t ≤ k + 1, we have r(u1|x1, wt) = r(v1|x1, wt) = (1, 2t), a
contradiction.• One vertex is in the set {ui : 1 ≤ i ≤ n} and the other is in the set {yi : 1 ≤ i ≤ n}. Due
to the symmetry of the graph, this subcase is analogous to above subcase.

• One vertex is in the set {ui : 1 ≤ i ≤ n} and the other one is in the set {wi : 1 ≤ i ≤ n}.
Without loss of generality, we can suppose that one resolving vertex is u1. Suppose that the
second resolving vertex is wt (1 ≤ t ≤ k + 1). Then for t = 1, we have r(x1|u1, w1) =
r(x2|u1, w1) = (1, 3). For t = 2, r(v3|u1, w2) = r(w1|u1, w2) = (4, 2) and when 3 ≤ t ≤ k + 1,
we have r(v3|u1, wt) = r(w2|u1, wt) = (4, 2t− 4), a contradiction.

Hence from above it follows that there is no resolving set with two vertices for V (S(Cay (Zn⊕
Z2))) implying that β(S(Cay (Zn ⊕ Z2))) = 3.

Case 2. When n is odd.
We can write n = 2k+1, k ≥ 2, k ∈ Z+. Let W = {x1, x2, uk+1} ⊂ V (S(Cay (Zn⊕Z2)))\

W , we show that W is a resolving set for S(Cay (Zn ⊕ Z2)). For this we give representations
of any vertex of V (S(Cay (Zn ⊕ Z2))) \ W with respect to W .

Representations for the vertices on the inner cycle of S(Cay (Zn ⊕ Z2)) are

r(xi|W ) =

⎧⎪⎨
⎪⎩

(2i − 2, 2i − 4, 2k − 2i + 3), 3 ≤ i ≤ k + 1;
(2k, 2k, 1), i = k + 2;
(4k − 2i + 4, 4k − 2i + 6, 2i − 2k − 3), k + 3 ≤ i ≤ 2k + 1

r(ui|W ) =

⎧⎪⎨
⎪⎩

(1, 1, 2k), i = 1;
(2i − 1, 2i − 3, 2k − 2i + 2), 2 ≤ i ≤ k;
(4k − 2i + 3, 4k − 2i + 5, 2i − 2k − 2), k + 2 ≤ i ≤ 2k + 1.

Representations for the set of interior vertices of S(Cay (Zn ⊕ Z2)) are

r(vi|W ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 3, 2k − 2), i = 1;
(2i − 1, 2i − 3, 2k − 2i + 4), 2 ≤ i ≤ k + 1;
(2k − 3, 2k − 1, 2), i = k + 2;
(4k − 2i + 1, 4k − 2i + 3, 2i − 2k − 2), k + 3 ≤ i ≤ 2k + 1.

Representations for the vertices on the outer cycle of S(Cay (Zn ⊕ Z2)) are

r(yi|W ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2, 4, 2k − 1), i = 1;
(2i, 2i − 2, 2k − 2i + 5), 2 ≤ i ≤ k + 1;
(2k − 2, 2k, 3), i = k + 2;
(4k − 2i + 2, 4k − 2i + 4, 2i − 2k − 1), k + 3 ≤ i ≤ 2k + 1

r(wi|W ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3, 3, 2k), i = 1;
(2i + 1, 2i − 1, 2k − 2i + 4), 2 ≤ i ≤ k;
(2k − 1, 2k + 1, 3), i = k + 1;
(4k − 2i + 1, 4k − 2i + 3, 2i − 2k), k + 2 ≤ i ≤ 2k + 1.

Again we see that there are no two vertices having the same representations which implies that
β(S(Cay (Zn ⊕ Z2))) ≤ 3. On the other hand, suppose that β(S(Cay (Zn ⊕ Z2))) = 2, then
there are the same possibilities as in Case (1) and contradictions can be deduced analogously.
This implies that β(S(Cay (Zn ⊕ Z2))) = 3, which completes the proof. �
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3 Conclusion

The problem of determining whether β(G) < k is an NP-complete problem. In this paper, we
have studied the metric dimension of barycentric subdivision of Cayley graphs Cay (Zn ⊕ Z2).
We proved that these subdivisions of Cayley graphs have constant metric dimension and only
three vertices chosen appropriately suffice to resolve all the vertices of subdivisions of Cayley
graphs Cay (Zn ⊕ Z2). It is natural to ask for characterization of graph classes with constant
metric dimension. We close this section by raising a question that naturally arises from the
text.
Open Problem. Let G be a non trivial connected graph and S(G) denotes its barycentric
subdivision. Characterize all those graphs G for which β(G) = β(S(G)).
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