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Abstract Longitudinal data often arise when subjects are followed over a period of time, and in many

situations, there may exist informative observation times and a dependent terminal event such as death that

stops the follow-up. In this article, we propose joint modeling and analysis of longitudinal data with possibly

informative observation times and a dependent terminal event in which a common subject-specific latent variable

is used to characterize the correlations. A borrow-strength estimation procedure is developed for parameter

estimation, and both large-sample and finite-sample properties of the proposed estimators are established. In

addition, some goodness-of-fit methods for assessing the adequacy of the model are provided. An application to

a bladder cancer study is illustrated.
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1 Introduction

Longitudinal data occur frequently in many medical follow-up studies and observational inves-
tigations, and longitudinal responses are often correlated with observation times. For example,
subjects often selectively miss their visits or return at non-scheduled points in time. As a result,
the measurement times are irregular, and may be correlated with the longitudinal outcomes.
In recent years, studies of longitudinal data with informative observation times have attracted
considerable attention[4,9,14,15]. For example, [9] presented a class of inverse intensity-of-visit
process-weighted estimators in a typical marginal regression model. [15] considered a joint
model for the longitudinal and observation processes via a shared latent variable. [4] proposed
a joint model for analysis of the longitudinal outcomes through two latent variables.

In practice, however, there exists a terminal event such as death that stops the follow-up.
Further, it is often the case that the terminal event is strongly correlated with the longitudinal
and observation processes. For example, patients in a severe disease stage often die in a shorter
period, and longitudinal medical costs may be less than that of patients in a mild disease
stage[10]. [11] showed that ignoring the dependent terminal event could lead to biased estimates
in the intensity model of hospital visits. Also, [12] showed that disregarding the dependent
terminal event would lead to biased estimates in modeling the longitudinal medical costs. Hence
there is clearly a need for an analytical method that can directly model longitudinal data, which
accounts for both informative observation times and a dependent terminal event simultaneously.

However, there exists some limited research on the analysis of longitudinal data in the pres-
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ence of informative observation times and a dependent terminal event. Recently, [10] presented
a joint random effects model for longitudinal data with informative observation times and a
dependent terminal event, where the distributions of the random effects are specified. [2] pro-
posed some shared frailty models to analyze panel count data with correlated observation and
follow-up times, where one random effect is required to be normally distributed. In applica-
tions, it is difficult to determine an appropriate frailty distribution for a specific data set, and
miss-specifying the frailty distribution may lead to bias in the aforementioned two approaches.
In addition, [17] presented a joint model to analyze longitudinal data via two latent variables
for subjects who are currently alive.

In this article, we propose a new class of joint models to analyze longitudinal data with
informative observation times and a dependent terminal event for all subjects. The associa-
tion among the longitudinal response, observation times and terminal event is modeled via a
latent variable. To be specific, a class of semiparametric random effect models is used for the
longitudinal response, and a subject specific nonhomogeneous Poisson process is used for the
observation time process, and a proportional frailty model is used for the terminal event time.
The proposed joint models are flexible in that no parametric assumptions on the distributions
of the latent variable and censoring times are made, and informative censoring is allowed for
the longitudinal response, observation times and terminal event. A borrow-strength estimation
procedure is proposed by first estimating the value of the latent variable from recurrent event
data, then using the estimated value in the proportional frailty model and the semiparametric
random effect models.

The rest of the paper is organized as follows. Section 2 introduces notation and model
specification. Section 3 presents the borrow-strength estimation procedure about regression
parameters of interest with the focus on the effect of covariates on the longitudinal response.
The asymptotic properties of the resulting estimates are established. In Section 4, goodness-
of-fit methods for assessing the adequacy of the models are presented. In Section 5, simulation
studies are conducted to assess the performance of the proposed methods. Section 6 applies
the methods to the bladder cancer study, and concluding remarks are given in Section 7.

2 Notation and Joint Models

Consider a longitudinal study, and let Y (t) denote the longitudinal response variable of interest.
Also let X be the p × 1 vector of covariates. In addition, let D be the time of the terminal
event and C be the follow-up or censoring time. Write T = C ∧D and δ = I (D ≤ C), where
a∧ b = min(a, b), and I(·) is the indicator function. Then the observed counting process for the
terminal event is represented by ND(t) = I(T ≤ t, δ = 1). Similarly, let N(t) be the counting
process denoting the number of the observation times before or at time t. The longitudinal
process Y (t) is observed only at the time points where N(t) jumps for t ≤ T.

Let V be a nonnegative valued latent variable with E(V |X) = 1. We will assume that given
X and V , Y (t) follows the marginal model

E{Y (t)|X,V } = μ0(t) + β′
0X + V, (1)

where μ0(t) is an unspecified smooth function of t, and β0 is a vector of unknown regression
parameters[4,15]. Model (1) characterizes the marginal mean of the process Y (t) while leaving
its dependence structure and distributional form completely unspecified. More precisely, Model
(1) can be written as

Y (t) = μ0(t) + β′
0X + V + ε(t),

which is a semiparametric random effect model, where ε(t) is a mean-zero measurement error
process[1,4]. The above Model (1) without V has been considered by many authors such as [1]
and [8].
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For the observation process, we assume that, conditioning on X and V , N(t) is a nonho-
mogeneous Poisson process with intensity function

λ(t|X,V ) = V λ0(t) exp(γ′0X), (2)

where γ0 is a vector of unknown regression parameters, and λ0(t) is an unknown continuous
baseline intensity function. Model (2) has been used by [3,18] for the analysis of recurrent-event
data. Note that by Model (2), conditioning on X , the rate function of N(t) is λ0(t) exp(γ′0X).

For the terminal event time, we specify the proportional frailty model for D as

h(t|X,V ) = V h0(t) exp(α′
0X), (3)

where α0 is a vector of unknown regression parameters, and h0(t) is an unspecified baseline
hazard function. Clearly, a large value of V inflates the marginal mean of the longitudinal
process and the intensity of recurrent events as well as the hazard of the terminal event.

For the joint models, the role of the latent variable V is to correlate the longitudinal process
Y (t), the observation process N(t) and the terminal event time D. In particular, they specify a
positive correlation of the three processes. We can similarly develop models and a corresponding
inference procedure for the case in which the three processes are negatively correlated. We
comment on this further in Section 7. Since the distribution of the latent variable is left
unspecified, the proposed models are not able to measure the degree of association between
the longitudinal outcome and the observation time process, and the association between the
longitudinal outcome and the terminal event. [15] studied Models (1) and (2) in the presence
of informative censoring time, where the censoring time was treated as a nuisance, and the
modeling of the censoring time was not considered. However, it does not seem to exist research
on Models (1), (2) and (3) together in the presence of a dependent terminal event, in which the
association among the three processes is modeled explicitly.

Note that we do not make any assumption on the distributions of V and C. Here our main
interest is to assess covariate effects on the longitudinal process, i.e., to estimate parameter β0.
Note that Model (1) implies that

E{Y (t)|X} = {μ0(t) + 1} + β′
0X.

Hence, the parameters β0 can serve as marginal effects of covariates on the longitudinal process
of interest. In the following, we assume that the censoring time C may depend on X and V in
an arbitrary way, but Y (·), N(·), D and C are mutually independent conditional on (X,V ).

Remark 1. For notational convenience, Models (1), (2) and (3) assume the same set of
covariates X . The proposed estimation procedure can be extended in a straightforward manner
to deal with different sets of covariates for these three models.

3 Borrow-Strength Estimation Procedure

For a random sample of n subjects, the observed data consist of {Yi(t)dNi(t), Ni(t), Ti, δi, Xi,
0 ≤ t ≤ Ti, i = 1, · · · , n}. Also let mi denote the total number of observations and ti1, · · · , ti,mi

the observation times on subject i. If Vi is known, we can use Lin and Ying’s method[8] and the
inverse probability weighting technique to estimate β0. In reality, we are not able to observe
the value of Vi, and thus cannot directly use the above approach. For this, consider Model (2),
and conditioning on {mi, Ti, Vi, Xi}, the event times (ti1, · · · , ti,mi) are the order statistics of
a set of i.i.d. random variables with the density function λ0(t)I(0 ≤ t ≤ Ti)/Λ0(Ti) (see [18]).
Let Δi(t) = I(Ti ≥ t) and Λi(t) = Λ0(t) exp(γ′0Xi), where Λ0(t) =

∫ t

0 λ0(u)du is the cumulative
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baseline intensity function. Then

E{Δi(t)dNi(t)|Vi, Ti, Xi,mi} = Δi(t)mi
dΛi(t)
Λi(Ti)

.

Also note that for any constant ρ,

E{miρ
mi |Vi, Ti, Xi} = ρViΛi(Ti) exp{ViΛi(Ti)(ρ− 1)},

and
E{mi(mi − 1)ρmi |Vi, Ti, Xi} = ρ2V 2

i Λi(Ti)2 exp{ViΛi(Ti)(ρ− 1)}.
Let H0(t) =

∫ t

0 h0(u)du be the cumulative baseline hazard function. For notational convenience,
define A0(t) =

∫ t

0 μ0(u)dΛ0(u), Si(t) = exp{−miH0(t) exp(α′
0Xi)/Λi(Ti)},

Ωi(t) =
mi − 1
Λi(Ti)

exp
{
− H0(t) exp(α′

0Xi)
Λi(Ti)

}
,

and

Mi(t) =
∫ t

0

[{
Yi(u) − β′

0Xi − Ωi(u)
}Δi(u)
Si(u)

dNi(u) − miΔi(u)
Λ0(Ti)Si(u)

dA0(u)
]
.

Note that under Models (1), (2) and (3),Mi(t) (i = 1, · · · , n) are zero-mean stochastic processes.
Thus, for given (β0, γ0, α0,Λ0, H0), a reasonable estimator for A0(t) is the solution to

n∑

i=1

∫ t

0

[{
Yi(u) − β′

0Xi − Ωi(u)
}Δi(u)
Si(u)

dNi(u) − miΔi(u)
Λ0(Ti)Si(u)

dA(u)
]

= 0.

Denote this estimator by Â(t;β0, γ0, α0,Λ0, H0), which can be expressed as

Â(t;β0, γ0, α0,Λ0, H0) =
n∑

i=1

∫ t

0

{
Yi(u) − β′

0Xi − Ωi(u)
}
Δi(u)Si(u)−1dNi(u)

n∑

j=1

Δj(u)Sj(u)−1mjΛ0(Tj)−1

.

Note that for given A0(t) and (γ0, α0,Λ0, H0), applying the generalized estimating equation
approach[5], we can estimate β0 using the following unbiased estimating equation

n−1
n∑

i=1

∫ τ

0

Q(t)Xi

[{
Yi(t) − β′Xi − Ωi(t)

}Δi(t)
Si(t)

dNi(t) − miΔi(t)
Λ0(Ti)Si(t)

dA0(t)
]

= 0,

where τ is a pre-specified constant, and Q(t) is a possibly data-dependent weight function.
Then for given (γ0, α0,Λ0, H0), replacing A0(t) with the estimator Â(t;β, γ0, α0,Λ0, H0) in the
above estimating function, we can estimate β0 using the following estimating equation

n−1
n∑

i=1

∫ τ

0

Q(t){Xi −X
∗
(t)}{Yi(t) − β′Xi − Ωi(t)

}Δi(t)
Si(t)

dNi(t) = 0, (4)

where

X
∗
(t) =

n∑

i=1

XiΔi(t)Si(t)−1miΛ0(Ti)−1

n∑

i=1

Δi(t)Si(t)−1miΛ0(Ti)−1

.



Regression Analysis of Longitudinal Data 1039

To guarantee the limit of the denominator of X
∗
(t) to be bounded away from zero, and also

to avoid lengthy technical discussion of the tail behavior of the limiting distributions of Ŝi(t),
here τ is chosen such that P (Ti ≥ τ) > 0. This means that the supports of the terminating
event time and the censoring time is greater than τ . Thus, τ should not be greater than all the
observed Ti’s.

Since (γ0, α0,Λ0, H0) are unknown in practice, we can estimate them by the fit of Models
(2) and (3). Specifically, consider Model (2) and define F (t) = Λ0(t)/Λ0(τ) for 0 ≤ t ≤ τ , which
is the corresponding cumulative distribution function of Λ0(t). Then F (t) can be estimated by
the nonparametric maximum likelihood estimator F̂ (t), where

F̂ (t) =
∏

t<s≤τ

(
1 −

n∑

i=1

dNi(s)

n∑

i=1

Δi(s)Ni(s)

)

(see [18]) and 0/0 is defined to be 0. Let Zi = (1, X ′
i)

′, θ1 = log Λ0(τ) and θ = (θ1, γ′)′. Then
under Model (2), [18] proposed the following estimating equation for θ:

n−1
n∑

i=1

WiZi

{
miF̂

−1(Ti) − exp(θ′Zi)
}

= 0, (5)

where Wi is a weight function that could depend on (Xi, θ, F̂ ). Let θ̂ = (θ̂1, γ̂′)′ denote the
solution to the above estimating equation. Note that Λ0(t) = F (t) exp(θ1). Thus, Λ0(t) can be
consistently estimated by Λ̂0(t) = F̂ (t) exp(θ̂1). Let

V̂i =
mi

Λ̂0(Ti) exp(γ̂′Xi)
.

Using the method proposed by [3] for Model (3), α0 can be consistently estimated from the
following estimating equation:

n−1
n∑

i=1

∫ τ

0

{
Xi −X

D
(t;α)

}
dND

i (t) = 0, (6)

where ND
i (t) = I(Ti ≤ t, δi = 1), and

X
D

(t;α) =

n∑

i=1

XiV̂iΔi(t) exp(α′Xi)

n∑

i=1

V̂iΔi(t) exp(α′Xi)
.

Let α̂ denote the solution to the above estimating equation, and Ĥ0(t) be the Breslow-type
estimator of H0(t), where

Ĥ0(t) =
∫ t

0

n∑

i=1

dND
i (u)

n∑

j=1

Δj(u)V̂j exp(α̂′Xj)
.

Define

Ŝi(t) = exp {−V̂iĤ0(t) exp(α̂′Xi)},

Ω̂i(t) =
mi − 1

Λ̂0(Ti) exp(γ̂′Xi)
exp

{
− Ĥ0(t) exp(α̂′Xi)

Λ̂0(Ti) exp(γ̂′Xi)

}
,
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and

X(t) =

n∑

i=1

XiΔi(t)Ŝi(t)−1miΛ̂0(Ti)−1

n∑

i=1

Δi(t)Ŝi(t)−1miΛ̂0(Ti)−1

.

By replacing Ωi(t) and Si(t) with Ω̂i(t) and Ŝi(t) in (4), we propose to estimate β0 using
the solution to U(β) = 0, where

U(β) = n−1
n∑

i=1

∫ τ

0

Q(t){Xi −X(t)}[Yi(t) − β′Xi − Ω̂i(t)
]Δi(t)

Ŝi(t)
dNi(t) = 0. (7)

Let β̂ denote the solution to U(β) = 0. By using the law of large numbers and the consistency
of γ̂, α̂, Λ̂0(t) and Ĥ0(t) (see [3, 18]), one can show that β̂ is consistent. To establish the
asymptotic normality of β̂, set

Φ̂(t) = n−1
n∑

i=1

mi∑

j=1

I(tij ≤ t),

R̂(t) = n−1
n∑

i=1

mi∑

j=1

I(tij ≤ t ≤ Ti),

b̂i(t) =
mi∑

j=1

{∫ τ

t

I(tij ≤ u ≤ Ti)dΦ̂(u)

R̂2(u)
− I(t < tij ≤ τ)

R̂(tij)

}
,

êi(θ) = −
∫
wzmb̂i(c)dP1n(w, z, c,m)

F̂ (c)
+WiZi

{ mi

F̂ (Ci)
− exp(θ′Xi)

}
,

where P1n(w, z, c,m) is the empirical measure of {(Wi, Zi, Ti,mi), i = 1, · · · , n}. Let η̂i(θ) to
be the vector function

[
E{−∂êi(θ)/∂θ}

]−1
êi(θ) without its first element, ς̂i(θ) the first element

of (E{−∂êi(θ)/∂θ})−1êi(θ) and φ̂i(t) = b̂i(t) + ς̂i(θ̂). Define

B̂ =n−1
n∑

i=1

∫ τ

0

{
n∑

j=1

Δj(t)V̂j exp(α̂′Xj)X⊗2
j

n∑

j=1

Δj(t)V̂j exp(α̂′Xj)
−X

D
(t; α̂)⊗2

}

dND
i (t),

σ̂i =B̂−1

∫ τ

0

{Xi −X
D

(t; α̂)}[dND
i (t) − Δi(t)V̂i exp(α̂′Xi)dĤ0(t)

]

+
∫ τ

0

[ ∫
{x−X

D
(t; α̂)} I(c ≥ t)m exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

{
φ̂i(c) + x′η̂i

}
P̂2n(x, c,m)

]
dĤ0(t),

ψ̂i(t) =
∫ t

0

dND
i (u) − Δi(u)V̂i exp(α̂′Xi)dĤ0(u)

n−1
n∑

j=1

Δj(u)V̂j exp(α̂′Xj)}
−

∫ t

0

X
D

(u; α̂)′dĤ0(u)σ̂i

−
∫ t

0

[ ∫
I(c ≥ u)m exp(α̂′x)

Λ̂0(c) exp(γ̂′x)
{φ̂i(c) + x′η̂i}P2n(x, c,m)

] dĤ0(u)

n−1
n∑

j=1

Δj(u)V̂j exp(α̂′Xj)}
,

M̂i(t) =
∫ t

0

[{
Yi(u) − β̂′Xi − Ω̂i(u)

}Δi(u)

Ŝi(u)
dNi(u) − Δi(u)

Ŝi(u)
V̂i exp(γ̂′Xi)dÂ(u)

]
,
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Â(t) =
n∑

i=1

∫ t

0

{
Yi(u) − β̂′Xi − Ω̂i(u)

}
Δi(u)Ŝi(u)−1dNi(u)

n∑

i=1

Δi(t)Ŝi(u)−1V̂i exp(γ̂′Xi)
.

where a⊗2 = aa′ for a vector a, and P2n(x, c,m) is the empirical measure of {(Xi, Ti,mi),
i = 1, · · · , n}.

We show in the Appendix I that under some regularity conditions, n1/2(β̂ − β0) is asymp-
totically normal with mean zero and a covariance matrix that can be consistently estimated by

Â−1Σ̂Â−1, where Σ̂ = n−1
n∑

i=1

ξ̂⊗2
i ,

ξ̂i =
∫ τ

0

Q(t){Xi −X(t)}dM̂i(t) +
∫ m∑

j=1

Q(tj){x−X(tj)}{Y (tj) − β̂′x}

× exp
{mĤ0(tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}mI(c ≥ tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

× [
ψ̂i(tj) − φ̂i(c)Ĥ0(tj) + x′(σ̂i − η̂i)Ĥ0(tj)

]
dP3n(x, c,m, y, t1, · · · , tm)

−
∫ m∑

j=1

Q(tj){x−X(tj)} exp
{(m− 1)Ĥ0(tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}(m− 1)I(c ≥ tj)

Λ̂0(c) exp(γ̂′x)

×
[ (m− 1) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

{
ψ̂i(tj) − φ̂i(c)Ĥ0(tj) + x′(σ̂i − η̂i)Ĥ0(tj)

} − {
φ̂i(c) + x′η̂i

}]

× dP4n(x, c,m, t1, · · · , tm)

−
∫ τ

0

Q(t)
[ ∫

{x−X(t)} exp
{mĤ0(t) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}mI(c ≥ t)

Λ̂0(c)

( m exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

× {
ψ̂i(t) − φ̂i(c)Ĥ0(t) + x′(σ̂i − η̂i)Ĥ0(t)

} − φ̂i(c)
)
dP2n(x, c,m)

]
dÂ(t)

and

Â = n−1
n∑

i=1

∫ τ

0

Q(t){Xi −X(t)}⊗2 Δi(t)

Ŝi(t)
dNi(t).

In the above, P3n(x, c,m, y, t1, · · · , tm) and P4n(x, c,m, t1, · · · , tm) denote the empirical mea-
sures of {(Xi, Ti,mi, Yi, ti1, · · · , ti,mi), i = 1, · · · , n} and {(Xi, Ti,mi, ti1, · · · , ti,mi), i = 1, · · · , n},
respectively.

Remark 2. The weight functions Q(t) and Wi play a role in finding the estimator which has
a relatively small variance. Ideally, we would choose Q(t) and Wi to minimize the variances of
β̂ and θ̂. However, it does not appear possible to derive an optimal weight without specification
of dependence structures on the longitudinal response process and the observation precess, and
the selection of weight functions is usually a complicated problem[6]. Thus, our choice of Q(t)
is somewhat ad hoc, such as Q(t) = 1 and Wi = 1 in the simulation studies of Section 5.

Other examples are Q(t) = n−1
n∑

i=1

Δi(t), Q(t) = n−1
n∑

i=1

Ni(t), Q(t) = n−1
n∑

i=1

I(Ti ≤ t) and

Wi = Q(τ).

4 Goodness-of-fit Methods

In this section, we propose some simple graphical and numerical procedures for assessing the
adequacy of the proposed models. First, by replacing Vi with V̂i, the standardized score
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process[7,13] can be used to check the adequacy of Model (3). To check Model (2), we can
use some discussion and simple approaches of [3] and [19] for recurrent event data with a ter-
minal event. Here we propose some simple graphical and numerical procedures for assessing
the adequacy of Model (1). Following [7] and [15], we consider the following cumulative sums
of residuals:

Γ(t, z) = n−1/2
n∑

i=1

∫ t

0

I{Xi ≤ z}dM̂i(u), (8)

where I{Xi ≤ z} means that each component of Xi is no larger than the corresponding com-
ponent of z.

It can be shown that the null distribution of Γ(t, z) can be approximated by the zero-mean
Gaussian process

Γ̃(t, z) =n−1/2
n∑

i=1

∫ t

0

{
I(Xi ≤ z) −Xγ(u, z)}dM̂i(u) + n−1/2

n∑

i=1

∫ m∑

j=1

{I(x ≤ z) −Xγ(tj , z)
}

× {y(tj) − β̂′x} exp
{mĤ0(tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}mI(c ∧ t ≥ tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

× [
ψ̂i(tj) − φ̂i(c)Ĥ0(tj) + x′(σ̂i − η̂i)Ĥ0(tj)

]
dP3n(x, c,m, y, t1, · · · , tm)

− n−1/2
n∑

i=1

∫ m∑

j=1

{I(x ≤ z) −Xγ(tj , z)} exp
{(m− 1)Ĥ0(tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}

× (m− 1)I(c ∧ t ≥ tj)

Λ̂0(c) exp(γ̂′x)

[ (m− 1) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

{
ψ̂i(tj) − φ̂i(c)Ĥ0(tj)

+ x′(σ̂i − η̂i)H0(tj)
} − {

φ̂i(c) + x′η̂i

}]
dP4n(x, c,m, t1, · · · , tm)

− n−1/2
n∑

i=1

∫ t

0

[ ∫
{I(x ≤ z) −Xγ(u, z)}mI(c ∧ t ≥ u)

Λ̂0(c)
exp

{mĤ0(u) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}

×
( m exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

{
ψ̂i(u) − φ̂i(c)Ĥ0(u) + x′(σ̂i − η̂i)Ĥ0(u)

}

− φ̂i(c)
)
dP2n(x, c,m)

]
dÂ(u) − B̂(t)′Â−1n−1/2

n∑

i=1

ξ̂i + op(1), (9)

where

Xγ(u, z) =

n∑

i=1

I{Xi(u) ≤ z}Δi(u)Ŝi(u)−1miΛ̂0(Ti)−1

n∑

i=1

Δi(u)Ŝi(u)−1miΛ̂0(Ti)−1

,

B̂(t) = n−1
n∑

i=1

∫ t

0

[
I{Xi(u) ≤ z} −Xγ(u, z)

]
Xi

Δi(u)

Ŝi(u)
dNi(u),

and all other variables are defined in the last and second-last paragraphs of Section 3.
It is difficult to estimate the asymptotic covariance function of Γ(t, z) analytically because

the limiting process of Γ(t, z) does not have an independent increments structure. To handle
this problem, we can appeal to the resampling approach[7] and show that the null distribution
of Γ(t, z) can be approximated by the conditional distribution of Γ̂(t, z), where

Γ̂(t, z) =n−1/2
n∑

i=1

∫ t

0

{I(Xi ≤ z) −Xγ(u, z)}dM̂i(u)Zi + n−1/2
n∑

i=1

∫ m∑

j=1

{I(x ≤ z) −Xγ(tj , z)}
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× {y(tj) − β̂′x} exp
{mĤ0(tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}mI(c ∧ t ≥ tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

× [
ψ̂i(tj) − φ̂i(c)Ĥ0(tj) + x′(σ̂i − η̂i)Ĥ0(tj)

]
dP3n(x, c,m, y, t1, · · · , tm)Zi

− n−1/2
n∑

i=1

∫ m∑

j=1

{I(x ≤ z) −Xγ(tj , z)} exp
{(m− 1)Ĥ0(tj) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}

× (m− 1)I(c ∧ t ≥ tj)

Λ̂0(c) exp(γ̂′x)

[ (m− 1) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

{
ψ̂i(tj) − φ̂i(c)Ĥ0(tj)

+ x′(σ̂i − η̂i)H0(tj)
} − {

φ̂i(c) + x′η̂i

}]
dP4n(x, c,m, t1, · · · , tm)Zi

− n−1/2
n∑

i=1

∫ t

0

[ ∫
{I(x ≤ z) −Xγ(u, z)}mI(c ∧ t ≥ u)

Λ̂0(c)
exp

{mĤ0(u) exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

}

×
( m exp(α̂′x)

Λ̂0(c) exp(γ̂′x)

{
ψ̂i(u) − φ̂i(c)Ĥ0(u) + x′(σ̂i − η̂i)Ĥ0(u)

}

− φ̂i(c)
)
dP2n(x, c,m)

]
dÂ(u)Zi − B̂(t)′Â−1n−1/2

n∑

i=1

ξ̂iZi,

where (Z1, · · · ,Zn) are independent standard normal variables which are independent of the
observed data, and all other variables are the same as in (9). Thus, one can obtain a large num-
ber of realizations from Γ̂(t, z) by repeatedly generating the standard normal random sample
(Z1, · · · ,Zn) while fixing the observed data, and may plot Γ(t, z) along with a few realizations
of Γ̂(t, z). Since the validity of approximating Γ(t, z) by Γ̂(t, z) depends on the correct specifi-
cation of Model (1), an unusual pattern of Γ(t, z) compared to the realizations of Γ̂(t, z) would
suggest a lack-of-fit of Model (1). Because Γ(t, z) is expected to fluctuate randomly around
0 under Model (1), a formal goodness-of-fit test may be constructed based on the supremum
statistic sup

0≤t≤τ,z
|Γ(t, z)|, with which the p-value can be obtained by comparing the observed

value of sup
0≤t≤τ,z

|Γ(t, z)| to a large number of realizations from sup
0≤t≤τ,z

|Γ̂(t, z)|.

5 Numerical Results

In this section, we conducted simulation studies to assess the performance of the proposed
estimators with the focus on estimating β0. In the study, for subject i, we considered two
situations for the Xi’s:

(i) Xi was generated from a normal distribution N(0.5, 0.5);
(ii) Xi was generated from a Bernoulli distribution with success probability 0.5. For given

Xi from the normal distribution N(0.5, 0.5), following [15], we generated the latent variable Vi

by setting Vi = exp {− ln(2.75)I(Xi ≥ 0.5)}V ∗
i with V ∗

i generated from the density function

f(v∗|Xi) = I(Xi ≤ 0.5)I(0.5 ≤ v∗ ≤ 1.5) + I(Xi ≥ 0.5)I(1.5 ≤ v∗ ≤ 4)/2.5.

For given Xi from the Bernoulli distribution, following [18], we used Vi = exp{− ln(2.75)Xi}V ∗
i

with V ∗
i generated from the density function

f(v∗|Xi) = (1 −Xi)I(0.5 ≤ v∗ ≤ 1.5) +XiI(1.5 ≤ v∗ ≤ 4)/2.5.

It can be verified that E(Vi|Xi) = 1. The censoring times Ci’s were generated from a uniform
distribution U(2, 5).
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For givenXi and Vi, the observation times Tij ’s were generated from Model (2) with γ0 = 0.5
and λ0(t) = 2 (homogeneous Poisson process) or λ0(t) = 2t + (t − 3)2/360 (nonhomogeneous
Poisson process). The terminal event times were generated from Model (3) with h0(t) = 1 and
α0 = 0.5 or −0.5. WhenXi was generated from the normal distributionN(0.5, 0.5) and α0 = 0.5
or −0.5, the censoring rates for the terminal event were about 27% and 42%, respectively. When
Xi was generated from the Bernoulli distribution and α0 = 0.5 or −0.5, the censoring rates
were about 25% and 40%, respectively. Here the censoring rates are observed in the simulation.

For the longitudinal response, we assumed that Yi(t) was given by

Yi(t) = Vi + μ0(t) + β0Xi + εi,

where the εi’s were normal with mean 0 and standard deviation 0.25 for all t, i = 1, · · · , n. For
μ0(t), we considered two situations. One is μ0(t) = (t+1)/5 and the other is μ0(t) = 2t−1/2 +1.
The regression parameter β0 was chosen to be −0.5, 0 and 0.5. For each simulation study, we
took Wi = 1, Q(t) = 1 and τ = 3. Here we chose τ = 3 to guarantee P (Ti ≥ τ) > 0. The results
presented below are based on 1000 replications and the sample size n = 200.

Table 1. Simulation Results for Estimation of β0 when the Observation Times

Follow a Homogeneous Poisson Process

X∼Normal X∼Bernoulli

μ0(t) α0 β0 Bias SEE SE CP Bias SEE SE CP

(t + 1)/5 −0.5 −0.5 −0.0014 0.0957 0.0881 0.932 −0.0069 0.0946 0.0896 0.931

0 0.0004 0.0936 0.0880 0.928 −0.0007 0.0912 0.0899 0.949

0.5 −0.0071 0.0942 0.0887 0.931 −0.0027 0.0938 0.0903 0.931

0.5 −0.5 −0.0009 0.1058 0.0985 0.943 0.0028 0.1051 0.1004 0.939

0 −0.0019 0.1098 0.0998 0.924 0.0003 0.1027 0.1001 0.939

0.5 0.0031 0.1042 0.0984 0.929 -0.0013 0.1080 0.1004 0.942

2t−1/2 + 1 −0.5 −0.5 −0.0057 0.2183 0.2172 0.951 −0.0073 0.2177 0.2140 0.944

0 −0.0039 0.2420 0.2308 0.938 −0.0127 0.2559 0.2586 0.959

0.5 −0.0087 0.2038 0.2026 0.946 −0.0047 0.2226 0.2113 0.939

0.5 −0.5 0.0147 0.1946 0.1946 0.954 0.0098 0.2024 0.2048 0.952

0 0.0023 0.2386 0.2425 0.946 0.0068 0.2690 0.2689 0.942

0.5 −0.0040 0.2204 0.2146 0.936 −0.0171 0.3358 0.3288 0.944

Table 2. Simulation Results for Estimation of β0 when the Observation Times

Follow a Nonhomogeneous Poisson Process

X∼Normal X∼Bernoulli

μ0(t) α0 β0 Bias SEE SE CP Bias SEE SE CP

(t + 1)/5 −0.5 −0.5 0.0007 0.1317 0.1328 0.935 0.0026 0.1257 0.1146 0.939

0 −0.0032 0.1315 0.1311 0.936 0.0014 0.1202 0.1143 0.951

0.5 −0.0016 0.1214 0.1136 0.945 0.0047 0.1159 0.1129 0.942

0.5 −0.5 0.0046 0.1555 0.1406 0.929 0.0056 0.1470 0.1344 0.933

0 0.0028 0.2247 0.2153 0.944 0.0044 0.1427 0.1324 0.934

0.5 −0.0092 0.2102 0.2208 0.939 −0.0053 0.1481 0.1344 0.933

2t−1/2 + 1 −0.5 −0.5 −0.0011 0.1280 0.1173 0.922 0.0007 0.1258 0.1141 0.937

0 −0.0032 0.1191 0.1143 0.947 −0.0029 0.1249 0.1165 0.936

0.5 0.0073 0.2061 0.2227 0.946 −0.0022 0.1296 0.1170 0.935

0.5 −0.5 0.0037 0.1543 0.1454 0.945 −0.0001 0.1479 0.1357 0.931

0 0.0005 0.1678 0.1674 0.931 0.0027 0.1513 0.1376 0.932

0.5 0.0042 0.1474 0.1360 0.930 0.0019 0.1498 0.1366 0.945
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Table 1 presents the simulation results for estimation of β0 when the observation times
follow a homogeneous Poisson process. Table 2 gives the simulation results for the same setup
as in Table 1, except that the observation times follow a nonhomogeneous Poisson process. In
these tables, Bias is the sample mean of the estimate minus the true value, SSE is the sampling
standard error of the estimate, SE is the sampling mean of the standard error estimate and CP
is the 95% empirical coverage probability for β0 based on a normal approximation. Tables 1 and
2 show that the proposed estimators are virtually unbiased, the estimated standard errors are
practically close to the empirical standard errors, and the empirical 95% confidence intervals
have reasonable coverage rates.

For comparison, we also considered the method of [10] (denoted by LHO), using the same
setup as in Tables 1 and 2 with μ0(t) = (t+1)/5 and n = 200. Note that in these situations, the
random effects were misspecified for the LHO’s method. Thus, we considered another model
that was correctly specified for the LHO’s method, in which

h(t|Xi, μi) = 0.5t exp(Xi + μi), Yi(t) = 0.2t+ β0Xi + γ1μi + νi + εi

and
λ(t|Xi, μi, νi) = λ0(t) exp(0.5Xi + γ2μi + γ3νi),

where εi was the standard normal random variable, μi and νi were independent and identically
distributed N(0, σ2) with σ2 = 0.5 or 0.25, and (γ1, γ2, γ3)′ were taken as (exp(σ), 1, 0)′. The
other setups were the same as in Tables 1 and 2 with β0 = 1 and Xi from the Bernoulli distri-
bution, except that λ0(t) = 1 (homogeneous Poisson process) or λ0(t) = 2t (nonhomogeneous
Poisson process). Note that the LHO’s models were misspecified for our proposed method.
Table 3 gives the comparison results on estimation of β0 with all weight functions taken to
be 1 and n = 200. It can be seen from the table that the LHO’s method works well when
the model is correctly specified. However, it fails when the model is misspecified. Under the
LHO’s models, the proposed estimators are still unbiased when the observation process is a
homogeneous Poisson process, but when the observation process is a nonhomogeneous Poisson
process, the proposed estimators are biased. Thus, these two methods are not comparable. We
also considered other setups and the results were similar to those given above.

Table 3. Simulation Results for Comparing our Method with the LHO’s Method when n = 200

λ0(t) = 1 λ0(t) = 2t

Ours LHO Ours LHO

α0 β0 Bias SEE Bias SEE Bias SEE Bias SEE

−0.5 −0.5 0.0023 0.1783 0.2316 0.0649 0.0126 0.2088 0.2262 0.0683

0 0.0067 0.1816 0.2310 0.0616 −0.0108 0.2188 0.2244 0.0662

0.5 −0.0105 0.1858 0.2320 0.0627 0.0039 0.2094 0.2260 0.0666

0.5 −0.5 −0.0188 0.1317 0.2216 0.0662 0.0006 0.1719 0.1766 0.0589

0 −0.0086 0.1319 0.2245 0.0656 −0.0157 0.1749 0.1806 0.0574

0.5 −0.0127 0.1381 0.2221 0.0661 −0.0079 0.1771 0.1772 0.0550

M1 −0.0138 0.3933 0.0055 0.1615 −0.1943 0.4869 0.0063 0.1385

M2 −0.0111 0.4409 0.0059 0.2052 −0.1585 0.6677 −0.0035 0.1990

Note: M1 and M2 stand for the specific models of Liu, Huang and O’Quigley (2008) with σ2 = 0.5 and

0.25, respectively.

To examine the performance of the model checking method, we conducted additional sim-
ulation studies to assess the size and power of the test based on sup

0≤t≤τ,z
|Γ̂(t, z)| with n = 100.

We first generated the covariate Xi taking values 0, 1, 2, 3 and 4 with equal probabilities. The
censoring time, the terminal event and the observation times were generated in the same way
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as in Tables 1 and 2 with γ0 = −0.2, α0 = 0.3, h0(t) = t/5, and λ0(t) = 2 or λ0(t) = 2 + t/5.
We assumed that the longitudinal response Yi(t) was given by

Yi(t) = μ0(t) + β0Xi + 0.1k2X2
i + Vi + εi

with k = 0, 1, 2, 3 and 4, where εi was the standard normal random variable, μ0(t) = t, and
β0 = −0.5, 0 or 0.5. We considered the null hypothesis H0 as k = 0. Table 4 shows the empirical
sizes and powers of the proposed test at the significance level of 0.05. The results indicate that
the empirical sizes are close to the nominal size, and the test has a reasonable power to detect
deviations from the null hypothesis. As anticipated, the power increases as k increases.

Table 4. The Empirical Sizes and Powers of the Model Checking Method with n = 100

λ0(t) β0 k = 0 k = 1 k = 2 k = 3 k = 4

2 −0.5 0.042 0.098 0.707 0.947 0.960

0 0.047 0.098 0.661 0.948 0.963

0.5 0.054 0.091 0.674 0.949 0.957

2 + t/5 −0.5 0.060 0.106 0.736 0.963 0.965

0 0.054 0.124 0.743 0.947 0.971

0.5 0.060 0.091 0.741 0.950 0.969

6 An Application

For illustration purpose, we applied the proposed method to a longitudinal bladder cancer
data[4,14,15]. In the study, the patients were randomly assigned to placebo and thiotepa treat-
ment groups. The data include 85 bladder cancer patients, 47 in the placebo group and 38 in
the thiotepa treatment group. For each patient, the observed information includes the clinical
visit times (in month) and the number of bladder tumors that occurred between clinical vis-
its. The frequency of visits ranges from 1 to 38, and the total follow-up is 53 months. About
25.88% of patients died during follow-up, others were censored. Two baseline covariates were
measured and they are the number of initial tumors before entering the study and the size of
the largest initial tumor. Since patients with different visiting times and frequencies seem to
have different tumor recurrence rates, we focus on the effects of thiotepa treatment and the
number of initial tumors on the recurrence rate of bladder tumor with informative observation
times and a dependent terminal event (death).

Table 5. Analysis of the Bladder Cancer Data

Est SE p-value Est SE p-value

Our method Survival time

α1 0.3377 2.5054 0.8928

α2 0.1629 0.0771 0.0348

Visiting process

γ1 0.4587 0.1215 0.0002

γ2 −0.0364 0.0348 0.2956

Tumor recurrence Q1(t) Q2(t)

β1 −0.4888 0.1236 0.0001 −0.5722 0.1239 0.0000

β2 0.0215 0.0349 0.5388 0.0224 0.0321 0.4852

SSL’s method Tumor recurrence Q1(t) Q2(t)

β1 −0.4656 0.1137 0.0000 −0.5242 0.1134 0.0000

β2 0.0145 0.0331 0.6613 0.0093 0.0322 0.7727
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Note: Est is the estimate of the parameter, SE is the standard error estimate, and SSL’s method stands for

the method of [15].

For the analysis, we defined Yi(t) as the natural logarithm of the number of observed
tumors at time t plus 1 to avoid 0, i = 1, · · · , 85. For covariates, let Xi1 = 1 if the patient
was in the thiotepa group and 0 if the patient was in the placebo group, and Xi2 as the
number of initial tumors. We took the weight functions Wi = 1, Q(t) = Q1(t) = 1 or

Q(t) = Q2(t) = n−1
n∑

i=1

Δi(t). The results are summarized in Table 5. It can be seen that

the thiotepa treatment significantly reduces the occurrence rate of the bladder tumors, but the
number of initial tumors seems to have no significant effect on the tumor occurrence process.
Also, the thiotepa treatment has a significant positive effect on the visiting process, whereas the
initial number of tumors shows no effect on the visiting process. In addition, both the initial
number of tumor and the thiotepa treatment seem to have no significant effect on the death
rate, although there is slight evidence that the initial number of tumor might be predictive of
survival. This is because in the bladder cancer study, most of the deaths are caused by other
reasons rather than the bladder cancer. For comparison, Table 5 also gives the results of [15].
It can be seen that our results are consistent with those obtained by [15].

Figure 1. Plot of the standardized score process versus follow-up time for Xi1 in Model (3).

Bold line: observed process; dash-dotted lines: 50 simulated processes

For model checking, we first used the standardized score process[7] to check the adequacy
of Model (3). Figure 1 presents the observed score process for Xi1 along with 50 simulated
processes. The plot for Xi2 is similar and thus ignored. These plots shows that the observed
score processes appear to be within the normal ranges. Thus, there is no evidence against
Model (3). To check Model (2), note that conditioning on X , the rate function of N(t) is
λ0(t) exp(γ′0X). Following [19], we examined the total summation of the residuals for each
subject

∫ Ti

0
[dNi(t) − exp(γ̂′Xi)dΛ̂(t)], which has an approximate mean zero and should be

independent of Xi under Model (2). Thus, a simple graphical procedure for assessing the
adequacy of the assumed model is to plot the residuals against the covariate Xi’s. As an
example, Figure 2 displays the residuals for each subject versus Xi2 with the placebo group.
Other residual plots are similar and thus ignored. These results show that the residuals fluctuate
around zero and seem to be random, indicating little evidence against Model (2). Finally, we
apply the goodness-of-fit method to assess the adequacy of Model (1) for the bladder cancer
data. We calculated the statistic Γ(t, z), and obtained sup

0≤t≤τ,z
|Γ(t, z)| = 5.1535 and 3.9674 with

p-values of 0.8137 and 0.8912, under Q1(t) and Q2(t), respectively, based on 10000 realizations
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of the corresponding statistic sup
0≤t≤τ,z

|Γ̂(t, z)|. These results suggest that Model (1) fits the data

well.

Figure 2. The residual plot of the visiting process versus the number of initial tumors

for the subjects with the placebo group

7 Concluding Remarks

In this article, we proposed a joint model for analyzing longitudinal data via a latent variable
when there exist informative observation times and a dependent terminal event. A borrow-
strength estimation procedure was developed for parameter estimation, which yields consistent
and asymptotically normal estimators. The simulation results suggested that the proposed
method works well for the situations considered. An application to a bladder cancer study was
illustrated.

Note that Models (1), (2) and (3) only allow a positive correlation between the longitudinal
process Y (t), the observation process N(t) and the terminal event time D. However, the
negative correlation may exist in some applications. A more general approach is to generalize
Model (1) to

E{Y (t)|X,V } = μ0(t) + β′
0X + σV,

where σ is an unknown parameter. Note that for identifiability reasons we assume E(V |X) = 1.
Thus, the additional parameter σ is estimated, and is not confounded with the latent variable V.
The proposed estimation procedure can be extended in a straightforward manner to deal with
this model. The resulting inference procedure, however, would be much more complicated[16].

Furthermore, it would be more general to assume different but correlated frailty variables
for each outcome. For example, let (V1, V2, V3) be three latent variables with V2 > 0 and V3 > 0.
Then Models (1), (2) and (3) can be generalized to

E{Y (t)|X,V1, V2, V3} = μ0(t) + β′
0X + V1,

λ(t|X,V1, V2, V3) = V2λ0(t) exp(γ′0X)

and
h(t|X,V1, V2, V3) = V3h0(t) exp(α′

0X).

When there are linear relationships among V1, V2 and V3 (see [4]), under some identifiability
conditions, our proposed estimation procedure can be extended in a straightforward manner to
deal with these models using a borrow-strength estimation procedure. When the dependence
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structure of the three latent variables is not linear or is left unspecified, the proposed estimation
procedure cannot be extended in a straightforward manner to deal with this situation. This is
a challenging problem and requires further research efforts.

Here, we have used the proportional frailty model for the terminal event. Other competing
models, such as the additive hazards model and the accelerated failure time model with frailty
may be used as well. In addition, Model (3) can be generalized to

h(t|X,V ) = V ρh0(t) exp(α′
0X),

where ρ is an unknown parameter. It seems not to be straightforward to generalize the proposed
approach to this situation. Further research is needed to address this issue.

8 Appendix: Asymptotic Normality of β̂

In order to study the asymptotic distribution of β̂, we need the following regularity conditions:
(C1) P (T ≥ τ, V > 0) > 0, and E(V 2) <∞.
(C2) X is bounded, and G(t) = E{V exp(γ′0X)I(T ≥ t)} is a continuous function for

t ∈ [0, τ ].
(C3) The weight function Q(t) has bounded variation and converges to a deterministic

function q(t) in probability uniformly in t ∈ [0, τ ].
(C4) A is nonsingular, where

A = E
{∫ τ

0

q(t){Xi − x(t)}⊗2 Δi(t)
Si(t)

dNi(t)
}

and x(t) is the limit of X(t) defined in (7).
Define R(t) = G(t)Λ0(t), Φ(t) =

∫ t

0
G(u)dΛ0(u),

bi(t) =
mi∑

j=1

{∫ τ

t

I(tij ≤ u ≤ Ti)dΦ(u)
R2(u)

− I(t < tij ≤ τ)
R(tij)

}

and

ei(θ) = −
∫
wzmbi(c)dP1(w, z, c,m)

F (c)
+WiZi

{ mi

F (Ti)
− exp(θ′Zi)

}
,

where P1(w, z, c,m) is the joint probability measure of (Wi, Zi, Ti,mi). Note that R̂(t) and
Φ̂(t) are unbiased estimators for R(t) and Φ(t) (see [18]), where R̂(t) and Φ̂(t) are defined in
the second last paragraph of Section 3. Denote ηi(θ) the vector function (−∂ei(θ)/∂θ)−1ei(θ)
without the first entry, ςi(θ) the first entry of (−∂ei(θ)/∂θ)−1 ei(θ), and φi(t; θ) = bi(t)+ ςi(θ).
Under Conditions (C1) and (C2), it follows from [18] that

n1/2(γ̂ − γ0) = n−1/2
n∑

i=1

ηi + op(1), (8.1)

and

n1/2{Λ̂0(t) − Λ0(t)} = n−1/2Λ0(t)
n∑

i=1

φi(t) + op(1), (8.2)

where ηi ≡ ηi(θ0), φi(t) ≡ φi(t; θ0), and θ0 is the true value of θ. Let B be the limit of B̂ and
xD(t) be the limit of X

D
(t;α0), where X

D
(t;α0) and B̂ are defined in (6) and the second last
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paragraph of Section 3, respectively. Then by [3],

n1/2(α̂ − α0) = n−1/2
n∑

i=1

σi + op(1), (8.3)

and

n1/2{Ĥ0(t) −H0(t)} = n−1/2
n∑

i=1

ψi(t) + op(1), (8.4)

where

σi =B−1

∫ τ

0

{Xi − xD(t)}
[
dND

i (t) − mi exp(α′
0Xi)

Λ0(Ti) exp(γ′0Xi)
Δi(t)dH0(t)

]

+
∫ τ

0

[ ∫
{x− xD(t)}I(c ≥ t)m exp(α′

0x)
Λ0(c) exp(γ′0x)

{
φi(c) + x′ηi

}
P2(x, c,m)

]
dH0(t),

ψi(t) =
∫ t

0

1
E{Vi exp(α′

0Xi)Δi(u)}
[
dND

i (u) − Δi(u)mi exp(α′
0Xi)

Λ0(Ti) exp(γ′0Xi)
dH0(u)

]

−
∫ t

0

[ ∫
I(c ≥ u)m exp(α′

0x)
Λ0(c) exp(γ′0x)

{φi(c) + x′ηi}P2(x, c,m)
] dH0(u)
E{Vi exp(α′

0Xi)Δi(u)}

−
∫ t

0

xD(u)′dH0(u)σi,

P2(x, c,m) is the joint probability measure of (Xi, Ti,mi), and ηi and φi(c) are defined in (A.1)
and (A.2), respectively. By the functional delta method,

1

Ŝi(t)
− 1
Si(t)

= exp
{miH0(t) exp(α′

0Xi)
Λ0(Ti) exp(γ′0Xi)

} mi exp(α′
0Xi)

Λ0(Ti) exp(γ′0Xi)

[
{Ĥ0(t) −H0(t)} − H0(t)

Λ0(Ti)

× {Λ̂0(Ti) − Λ0(Ti)} +X ′
i{(α̂− α0) − (γ̂ − γ0)}H0(t)

]
+ op(n−1/2).

(8.5)

Thus, it follows from (A.1)–(A.5) that

n−1/2
n∑

i=1

∫ τ

0

q(t){Xi − x(t)}{Yi(t) − β′
0Xi

}[ 1

Ŝi(t)
− 1
Si(t)

]
Δi(t)dNi(t)

=n−1/2
n∑

i=1

∫ m∑

j=1

q(tj){x− x(tj)}{y(tj) − β′
0x}

× exp
{mH0(tj) exp(α′

0x)
Λ0(c) exp(γ′0x)

}mI(c ≥ tj) exp(α′
0x)

Λ0(c) exp(γ′0x)

×
[
ψi(tj) − φi(c)H0(tj) + x′(σi − ηi)H0(tj)

]
dP3(x, c,m, y, t1, · · · , tm) + op(1),

(8.6)

where P3(x, c,m, y, t1, · · · , tm) is the joint probability measure of (Xi, Ti,mi, Yi, ti1, · · · , ti,mi).
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In a similar manner, together with (8.1)–(8.5), we obtain

n−1/2
n∑

i=1

∫ τ

0

q(t){Xi − x(t)}
[ Ω̂i(t)

Ŝi(t)
− Ωi(t)
Si(t)

]
Δi(t)dNi(t)

=n−1/2
n∑

i=1

∫ m∑

j=1

q(tj){x− x(tj)} exp
{(m− 1)H0(tj) exp(α′

0x)
Λ0(c) exp(γ′0x)

}

× (m− 1)I(c ≥ tj)
Λ0(c) exp(γ′0x)

[ (m− 1) exp(α′
0x)

Λ0(c) exp(γ′0x)
{
ψi(tj) − φi(c)H0(tj)

+ x′(σi − ηi)H0(tj)
} − {

φi(c) + x′ηi

}]
dP4(x, c,m, t1, · · · , tm) + op(1) (8.7)

and

n−1/2
n∑

i=1

∫ τ

0

q(t){Xi − x(t)}
[ 1

Λ̂0(Ti)Ŝi(t)
− 1

Λ0(Ti)Si(t)

]
Δi(t)midA0(t)

=n−1/2
n∑

i=1

∫ τ

0

q(t)
[ ∫

{x− x(t)} exp
{mH0(t) exp(α′

0x)
Λ0(c) exp(γ′0x)

}mI(c ≥ t)
Λ0(c)

( m exp(α′
0x)

Λ0(c) exp(γ′0x)

× {
ψi(t) − φi(c)H0(t) + x′(σi − ηi)H0(t)

} − φi(c)
)
dP2(x, c,m)

]
dA0(t) + op(1),

(8.8)

where A0(t) is defined in the first paragraph of Section 3. Thus, it follows from (8.6)–(8.8) that

n1/2U(β0) = n−1/2
n∑

i=1

ξi + op(1), (8.9)

where

ξi =
∫ τ

0

q(t){Xi − x(t)}dMi(t) +
∫ m∑

j=1

q(tj){x− x(tj)}{y(tj) − β′
0x} exp

{mH0(tj) exp(α′
0x)

Λ0(c) exp(γ′0x)

}

× mI(c ≥ tj) exp(α′
0x)

Λ0(c) exp(γ′0x)

[
ψi(tj) − φi(c)H0(tj) + x′(σi − ηi)H0(tj)

]
dP3(x, c,m, y, t1, · · · , tm)

−
∫ m∑

j=1

q(tj){x− x(tj)} exp
{(m− 1)H0(tj) exp(α′

0x)
Λ0(c) exp(γ′0x)

} (m− 1)I(c ≥ tj)
Λ0(c) exp(γ′0x)

[ (m− 1) exp(α′
0x)

Λ0(c) exp(γ′0x)

× {
ψi(tj) − φi(c)H0(tj) + x′(σi − ηi)H0(tj)

} − {
φi(c) + x′ηi

}]
dP4(x, c,m, t1, · · · , tm)

−
∫ τ

0

q(t)
[ ∫

{x− x(t)} exp
{mH0(t) exp(α′

0x)
Λ0(c) exp(γ′0x)

}mI(c ≥ t)
Λ0(c)

( m exp(α′
0x)

Λ0(c) exp(γ′0x)

× {
ψi(t) − φi(c)H0(t) + x′(σi − ηi)H0(t)

} − φi(c)
)
dP2(x, c,m)

]
dA0(t).

Note that −∂U(β0)/∂β′ converges in probability to A, which is defined in Condition (C4). The
Taylor series expansion of U(β̂) at β0 yields

n1/2(β̂ − β0) = A−1n1/2U(β0) + op(1). (8.10)

It then follows from (8.9) and (8.10) that n1/2(β̂ − β0) is asymptotically zero-mean normal
with covariance matrix A−1ΣA−1, which can be consistently estimated by Â−1Σ̂Â−1, where
Σ = E{ξ⊗2

i } and Â−1Σ̂Â−1 is defined in the last paragraph of Section 3.
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