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Abstract In this paper, we consider two variational models for speckle reduction of ultrasound images. By

employing the Γ-convergence argument we show that the solution of the SO model coincides with the minimizer

of the JY model. Furthermore, we incorporate the split Bregman technique to propose a fast alterative algorithm

to solve the JY model. Some numerical experiments are presented to illustrate the efficiency of the proposed

algorithm.
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1 Introduction and Main Results

Multiplicative noises (also known as speckle noises) are commonly found in coherent imaging
systems, such as synthetic aperture radar (SAR), sonar, ultrasonic and laser imaging. This
paper focus on the speckle noise removal problems in ultrasound images. Let f be an observed
image with multiplicative noises defined on Ω, where Ω ⊂ R

2 is connected and bounded with
Lipschitz boundary. The multiplicative noise model is given by

f = un, (1.1)

where u denotes the image to be recovered and n is the noise. Without loss of generality, we
can assume that f , u and n are positive in the noise model. Unlike additive noises, these noises
are much more difficult to be removed from the corrupted images, mainly because of not only
their multiplicative nature, but also their distributions which are generally not Gaussian.

As far as we know, the variational approach devoted to multiplicative noise is firstly proposed
by Rudin, Lions and Osher[16]. In [16], under the assumption that the mean of the multiplicative
noise is equal to 1 and the variance is known, the authors introduced the following denoising
model:

min
u

{
J(u) + λ

∫

Ω

f

u
+ μ

∫

Ω

(f
u
− 1

)2}
, (1.2)

where J(u) :=
∫
Ω |Du| is the TV regularization term, the last two terms are the data fitting

terms, λ and μ are the weighted parameters. Numerical experiment results show that this model
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is effective for the Gaussian multiplicative noise. Recently multiplicative noise removal problems
have attracted much attention. In [1], based on maximum a posteriori (MAP) regularization
approach, Aubert and Aujol derived the denoising model (called AA model) as follows:

min
u

{
J(u) + λ

∫

Ω

(log u+
f

u
)
}
, (1.3)

where the last term is the fitting term, λ is the weighted parameter. AA Model (1.3) is
specifically devoted to the denoising of images corrupted by Gamma multiplicative noise. The
authors of [1] proved the existence of a minimizer to the variational Problem (1.3), and derived
existence and uniqueness results of the solution to the associated evolution problem. One of
the drawbacks of the objective functional in (1.3) is that it is not globally convex for all u, it
may lead to that the computed solution by some optimization methods is not a global optimal
solution for (1.3). In order to overcome this drawback, the authors of [18] proposed a convex
variational model. Indeed, they considered a more general data fitting term, which includes the
RLO Model (1.2) and the following Model (1.4). Additionaly, some theoretical analysis and
numerical algorithm study about these models can be found in [2,11,19].

In ultrasound images the speckle noise commonly follows a Rayleigh distribution and satisfies
the multiplicative noise Model (1.1) (see [21]). The density function of the Rayleigh distribution
is given by

p(x) =
x

σ2
exp

(
− x2

2σ2

)
1{x≥0},

where σ > 0 is a parameter. A TV denoising model based on the Rayleigh distribution was
proposed by using Markov Random Fields (MRFs) in [3] as follows:

min
u

{
J(u) + λ

∫

Ω

(
2 logu+

f2

u2

)}
.

This model also has the drawback that the data fitting term is not globally convex for all u.
Subsequently, by setting w = log u in the above model Shi and Osher[18] introduced a convex
variational model as follows:

ŵ = argminw
{
J(w) + λ1

∫

Ω

(2w + f2e−2w)
}
,

u = eŵ,

(1.4)

where λ1 is the weighted parameter. They further applied a corresponding relaxed inverse
scale space flow to solve this model. In fact, this model can be deduced by using the MAP
regularization approach (see the Appendix). Here we call the Model (1.4) as SO model.

In speckle reduction of ultrasound images, one problem should be addressed is that the
displayed images from the ultrasound device have been processed by a logarithmic compression
algorithm to enhance the weak backscatters[13]. Hence, the speckle noise in the displayed images
no longer follows the Rayleigh distribution. Experimental measurements in [15] indicate that
the displayed ultrasonic images can be modeled as corrupted with signal-dependent noise of the
form:

f = u+
√
un, (1.5)

where n is a zero-mean Gaussian variable. Based on the above fact and the TV regularization,
the authors proposed in [12] the following model for removing the speckle noise:

min
u>0

{
J(u) + λ2

∫

Ω

(f − u)2

u

}
. (1.6)
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They further proved the existence uniqueness of a minimizer to the variational Problem (1.6),
and derived existence and uniqueness results of the solution to the associated evolution problem.
Here we call the Model (1.6) as JY model.

In this paper, motivated by the fact that the SO Model (1.4) and the JY model can be
effectively used for speckle reduction of ultrasonic images, we study the relation between these
two models. We show that the solution of the SO model coincides with the minimizer of the JY
model in the sense of Γ-convergence. Moreover, since the traditional gradient descent algorithm
used to solve the JY model in [12] is relatively slow. Here we develop a fast iterative algorithm
to solve the JY model by applying the split Bregman technique[10].

This paper is organized as follows. In Section 2 we give some notations of this paper and
present some classical theory for the space of BV (Ω) and Γ-convergence. In Section 3, firstly,
the existence and uniqueness of the minimizers to the variational Models (1.4) and (1.6) are
proved respectively. Then we employ Γ-convergence argument to get the relation of the solutions
to these two models. In Section 4, by incorporating the split Bregman method we propose a
fast iterative algorithm to solve the JY model. Some numerical experiments are presented to
illustrate the efficiency of the proposed algorithm for speckle noise removal. Finally, we give a
conclusion in Section 5.

2 Preliminaries

Let Ω be an open, bounded domain of R
2 with Lipschitz boundary and f ∈ L∞(Ω). Write

fmin := ess infx f(x) and fmax := ess supx f(x). Throughout this paper we restrict our atten-
tion to function f ∈ L∞(Ω) with fmin > 0.

Consider the integrands ϕ, ψ : Ω× R→ [0,+∞] defined by

ϕ(x, s) := 2s+ f(x)2e−2s − 2 log f(x)− 1, (2.1)

ψ(x, s) :=

⎧
⎨
⎩

(f(x)− s)2
s

, for s > 0,

+∞, otherwise.
(2.2)

It is obvious that for fixed x ∈ Ω, the functions ϕ and ψ have their minimum at s = log f and
s = f , respectively. For these two functions, properties like continuity, lower semi-continuity
(l.s.c.), convexity and subdifferentiability are understood with respect to the second variable s.
The functionals Sϕ, Sψ are defined by

Sϕ(w) :=
∫

Ω

ϕ(x,w(x))dx,

Sψ(u) :=
∫

Ω

ψ(x, u(x))dx.

It is clear that Sϕ and Sψ are proper and strictly convex, since ϕ(x, ·) and ψ(x, ·) are normal
and strictly convex. Furthermore, by the definition of subdifferential in [7] we get that

∂Sϕ(w) =
{

2(1− f2e−2w), for 1− f2e−2w ∈ L∞,
∅, otherwise,

∂Sψ(u) =

⎧
⎨
⎩

1− f2

u2
, for u > 0 a.e. and 1− f2

u2
∈ L∞,

∅, otherwise.

Thus, one has that ∂Sϕ(w) = 2∂Sψ(ew). From now on we always write Tϕ, Tψ : BV (Ω) →
[0,+∞] by

Tϕ(w) := J(w) + λ1Sϕ(w), Tψ(u) := J(u) + λ2Sψ(u), (2.3)
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whereλ1, λ2 > 0 and J(u) :=
∫
Ω
|Du|.

In the following we recall some basic notations and facts on the space of BV (Ω) (see [8,9,14]).

Definition 2.1. Define BV (Ω) as a space of functions u ∈ L1(Ω) such that the following
quantity ∫

Ω

|Du| := sup
{∫

Ω

udiv (ϕ)dx|ϕ ∈ C1
0 (Ω; Rn), |ϕ| ≤ 1

}

is finite. BV (Ω) is a Banach space with the norm ‖u‖BV (Ω) =
∫
Ω
|Du|+ ‖u‖L1(Ω).

About the lower semicontinuity and compactness, we state the following theorems[8].

Theorem 2.1. suppose uk ∈ BV (Ω) (k = 1, · · ·) and uk → u in L1
loc(Ω). Then

∫

Ω

|Du| ≤ lim inf
k→∞

∫

Ω

|Duk|.

Theorem 2.2. Assume {uk}∞k=1 is a sequence in BV (Ω) satisfying sup
k
‖uk‖BV (Ω) <∞. Then

there exists a subsequence {ukj}∞j=1 and a function u ∈ BV (Ω) such that

ukj −→ u in L1(Ω)

as j →∞.
Let us give the definition and some main properties of Γ-convergence[6]. Assume that X is

a separable Banach space, endowed with a τ -topology.

Definition 2.2 (Γ-convergence). Let Fh : X → R be a sequence of functionals. We say that
Fh Γ-converge to F for the topology τ if:

(i) For every x in X and for every sequence xh τ-converging to x in X,

F (x) ≤ lim
h→+∞

Fh(xh).

(ii) For every x in X there exists a sequence xh τ-converging to x in X such that

F (x) ≥ lim
h→+∞

Fh(xh).

The functional F is called the Γ-limit of Fh and we write F = Γ− limFh.

Theorem 2.3 (Γ-convergence and Pointwise Convergence).
(i) If Fh converges to F uniformly, then Fh Γ-converges to F .
(ii) If Fh is a decreasing sequence converging to F pointwise, then Fh Γ-converges to RF ,

the lower semicontinuous envelope of F .

Theorem 2.4. Assume that Fh is equicoercive and Γ-converges to F . Suppose that F has a
unique minimum x0 in X. If xh is a sequence in X such that xh is a minimum for Fh, then
xh converges to x0 in X and Fh(xh) converges to F (x0).

In the following we list some important results that will be used in the latter section.

Proposition 2.5[19]. (i) Let f : R → R be a non-decreasing and Lipschitz continuous func-
tion. Let u ∈ BV (Ω). Then f(u) ∈ BV and ∂J(u) ⊂ ∂J(f(u)).

(ii) Let φ : Ω × R → (−∞,+∞] be a measurable function. Assume that there exists a
nonnegative function α ∈ L1(Ω), a constant C > 0 and 1 ≤ p <∞ such that

|φ(x, s)| ≤ C|s|p + α(x) (2.4)



An Analysis of Two Variational Models for Speckle Reduction of Ultrasound Images 973

for a.e. x ∈ Ω and all s ∈ R. Then the functional Sφ is Lp continuous if and only if φ(x, ·) is
continuous for a.e x ∈ Ω.

Proposition 2.6. There exist C1, C2 > 0 and D1, D2 > 0 such that

ϕ(x, s) ≥ C1|s| −D1, ψ(x, s) ≥ C2|s| −D2 (2.5)

for almost all x ∈ Ω, where ϕ and ψ are defined as in (2.1), (2.2), the constants C1, C2, D1

and D2 are only dependent on f .

Proof. Here we only consider the first inequality in (2.5), since the proof of the second in-
equality is similar to the proof of the first one. In the following we will prove the result from
three cases:

1. As s < a < a1 := min{0, log fmin}, we get that for a.e. x ∈ Ω, there exists ξ ∈ (s, a)
such that

ϕ(x, s) =ϕ(x, a) + ϕ′(x, a)(s − a) +
ϕ′′(ξ)

2
(s− a)2

≥ϕ′(x, a)s+ ϕ(x, a)− ϕ′(x, a)a
=− ϕ′(x, a)|s|+ ϕ(x, a) − ϕ′(x, a)a. (2.6)

Furthermore, we easily obtain that for a.e. x ∈ Ω, ϕ′(x, a) = 2(1− f2(x)e−2a), thus

ϕ′(x, a) ≤ 2(1− fmin
2e−2a) < 2(1− fmin

2e−2a1) ≤ 0.

On the other hand, since ϕ(x, a) − ϕ′(x, a)a ∈ L∞(Ω), we get that there exists a constant
D1 > 0 such that for almost all x ∈ Ω,

ϕ(x, a) − ϕ′(x, a)a ≥ −D1.

Hence, by using (2.6) and taking C1 = −2(1 − fmin
2e−2a) > 0, we can get that the first

inequality holds.
2. As s > b > b1 := max{0, log fmax}, we get that for a.e. x ∈ Ω, there exists ζ ∈ (b, s)

such that

ϕ(x, s) =ϕ(x, b) + ϕ′(x, b)(s − b) +
ϕ′′(ζ)

2
(s− b)2

≥ϕ′(x, b)s+ ϕ(x, b)− ϕ′(x, b)b
=ϕ′(x, b)|s|+ ϕ(x, b)− ϕ′(x, b)b. (2.7)

Notice that for a.e. x ∈ Ω,

ϕ′(x, b) = 2(1− f2e−2b) ≥ 2(1− fmax
2e−2b) > 2(1− fmax

2e−2b1) ≥ 0.

On the other hand, since ϕ(x, b)−ϕ′(x, b)b ∈ L∞(Ω), we get that there exists a constant D1 > 0
such that for almost all x ∈ Ω,

ϕ(x, b) − ϕ′(x, b)b ≥ −D1.

Hence, by using (2.7) and taking C1 = 2(1− fmax
2e−2b) > 0, we also get the first inequality.

3. As s ∈ [a, b], we also get that for a.e. x ∈ Ω,

ϕ(x, s) =ϕ(x, 0) + ϕ′(x, 0)s+
ϕ′′(η)

2
s2

≥ϕ′(x, 0)s+ ϕ(x, 0)
=2s− 2f2s+ ϕ(x, 0),
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where η is between 0 and s.
If s > 0, by taking C1 = 2 and choosing D1 > 0 such that −2f2s + ϕ(x, 0) ≥ −D1 for

almost all x ∈ Ω and s ∈ [a, b], we can get the first inequality.
If s < 0, from (2.8) we obtain that

ϕ(x, s) ≥2f2|s|+ 2s+ ϕ(x, 0)
≥2fmin

2|s|+ 2s+ ϕ(x, 0).

Therefore, by by taking C1 = 2fmin
2 and choosing D1 > 0 such that 2s + ϕ(x, 0) ≥ −D1 for

almost all x ∈ Ω and s ∈ [a, b], we also get the first inequality. �

3 The Variational Problems

In this section we study the following variational problems:

inf
w∈BV (Ω)

{Tϕ(w)}, (3.1)

inf
u∈BV (Ω)

{Tψ(u)}, (3.2)

where Tϕ, Tψ are defined as in (2.3).
In fact, in [12] we had already given a proof of the existence and uniqueness of the minimizer

to the variational Problem (3.2). For the completion of this paper, we give a new proof of the
existence and uniqueness of the minimizers for the variational Problems (3.1) and (3.2). First,
we give the following lemma.

Lemma 3.1. Let f ∈ L∞(Ω) with fmin > 0. Then the functionals Tϕ and Tψ are BV -
coercive.

Proof. We only prove the case for Tϕ, since the following arguments are same for Tϕ and Tψ.
The Pnoincaré inequality yields that there exists a constant C > 0 such that

‖w − w‖L1 ≤ CJ(w),

where w := 1
|Ω|

∫
Ω w(x)dx and |Ω| denotes the Lebesgue of Ω. Furthermore, we get

‖w‖L1 ≤ ‖w − w‖L1 + |w||Ω|.

Thus we have
‖w‖BV ≤ (C + 1)J(u) + |w||Ω| ≤ CTϕ(w) + |w||Ω|. (3.3)

On the other hand, by using (2.5) we obtain

Sϕ(w) ≥ C1

∫

Ω

|w(x)|dx −D1|Ω| ≥ |Ω|(C1|w| −D1)

and thus
|w| ≤ 1

C1|Ω|Sϕ(w) +
D1

C1
≤ 1
C1|Ω|Tϕ(w) +

D1

C1
. (3.4)

Combining (3.3) and (3.4), we get

‖w‖BV ≤ C3Tϕ(w) + C4.

Therefore, Tϕ is BV -coercive. �
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Theorem 3.2. Assume that f ∈ L∞(Ω) with fmin > 0. Then there exists a unique minimizer
to the variational Problems (3.1) and (3.2), respectively.

Proof. Since Sϕ and Sψ are proper and strictly convex, by using Theorem 2.1, we can easily
check that the functionals Tϕ and Tψ are proper strictly convex and lower semi-continuity. On
the other hand, by Lemma (3.1) we know that Tϕ and Tψ are BV -coercive. Hence, by the
direct method of the calculus of variations[7] there exists a minimizer to the both variational
problems which is unique due to the strict convexity of Tϕ and Tψ. �

In the rest of this section, we give the following theorem to clarify the relation between
the minimizer of (3.1) and the minimizer of (3.2). Motivated by the work in [19], we apply
Γ-convergence arguments to get the proof of the following theorem.

Theorem 3.3. Let f ∈ L∞(Ω) with fmin > 0 and λ2 = 2λ1. Then ŵ is the minimizer of
(3.1) if and only if û = eŵ is the minimizer of (3.2).

Proof. It is only to show that ŵ = argminTϕ(w) implies eŵ = argminTψ(u), since the reverse
direction follows that the minimizers are unique. In order to get this result, we proceed as
follows:

(i) Choose a sequence of increasing intervals [ak, bk] ⊂ [ak+1, bk+1] such that
⋃
k

[ak, bk] = R

and ak < min{0, log(fmin)}, bk > max {0, log(fmax)} for all k ∈ N. Define

μk(x) := 1− f2(x)e−2ak , νk(x) := 1− f2(x)e−2bk

and μk := ess infxμk(x), νk := ess supxμk(x). It is easy to check that μk(x), νk(x) > 0 for a.e.
x ∈ Ω. Now we define the truncated continuous integrands for a.e. x ∈ Ω by

ϕk(x, s) :=

⎧
⎪⎨
⎪⎩

ϕ(x, ak) + μk(x)(s − ak), if s < ak,

ϕ(x, s), if s ∈ [ak, bk],
ϕ(x, bk) + νk(x)(s− bk), if s > bk,

(3.5)

ψk(x, s) :=

⎧
⎪⎨
⎪⎩

ψ(x, eak) + μk(x)(s − eak), if s < eak ,

ψ(x, s), if s ∈ [eak , ebk ],
ψ(x, ebk) + νk(x)(s − ebk), if s > ebk .

(3.6)

We also get that ∂ ϕk(x,w) = 2∂ ψk(x, ew) holds for a.e. x ∈ Ω and any k ∈ N. Furthermore,
define the functionals

Tϕ,k(w) := J(w) + λ1Sϕk
(w), Tψ,k(u) := J(u) + λ2Sψk

(u).

For any k ∈ N, these functionals are proper, convex and lower semicontinuous. In addition, by
the same argument as in the proof Lemma 3.1, we obtain that for all k ∈ N,

Tϕ,k(w) ≥ C1‖w‖BV −D1, Tψ,k(u) ≥ C1‖u‖BV −D1 (3.7)

for some C1, C2, D1, D2 > 0. From (3.7) we see that the functionals are equi-coercive on BV .
Hence, there exist minimizer ŵk and ûk to Tϕ,k and Tψ,k, respectively.

Define

hk(s) :=

⎧⎪⎨
⎪⎩

eak + eak(s− ak), if s < ak,

es, if s ∈ [ak, bk],
ebk + ebk(s− bk), if s > bk,

Notice that this truncated exponential function is a non-decreasing Lipschitz continuous func-
tion. Therefore, according to Proposition 2.6 (i) we get that

∂J(w) ⊂ ∂J(hk(w)) (3.8)
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for all w ∈ BV (Ω). Furthermore, by straightforward computation we can deduce that ∂ϕk(x,w)
= 2∂ ψk(x, hk(w)) so that

∂Sϕk
(w) = 2∂Sψk

(hk(w)). (3.9)

On the other hand, since f ∈ L∞ with fmin > 0, for any given k ∈ N the function ϕk fulfills
condition (2.4) with Ck := max {|μk|, |νk|}, p = 1 and αk := ϕ(·, 0) ∈ L1(Ω), by Proposition
2.6 (ii) we get that Sϕk

is continuous on L1 (and on BV ). Thus, according to Proposition 5.6
in [5], we have that

∂Tϕ,k(w) = λ1∂Sϕk
(w) + ∂J(w). (3.10)

Hence, combining (3.8)–(3.10), we obtain as λ2 = 2λ1 that

∂Tϕ,k(w) ⊂ λ2∂Sψk
(hk(w)) + ∂J(hk(w)) ⊂ ∂Tψ,k(hk(w)).

Note that ŵk is a minimizer to Tϕ,k iff 0 ∈ ∂Tϕ,k(ŵk). Therefore, we see that if ŵk is a minimizer
to Tϕ,k, then ûk = hk(ŵk) is a minimizer to Tψ,k.

(ii) From (3.5) and (3.6) we see that the sequences {ϕk(x,w)}k and {ψk(x, u)}k are in-
creasing sequences of nonnegative functions and for a.e. x ∈ Ω,

lim
k→∞

ϕk(x,w(x)) = ϕ(x,w(x)),

lim
k→∞

ψk(x, u(x)) = ψ(x, u(x)).

Therefore, we get that {Tϕ,k}k and {Tψ,k}k are increasing sequences of nonnegative functions,
and by the by the Monotone Convergence Theorem we have

lim
k→∞

Sϕk
= Sϕ, lim

k→∞
Sψk

= Sψ.

Hence, by Theorem 2.3 (ii) we obtain that

Γ− lim
k→∞

Tϕ,k = lim
k→∞

Tϕ,k = Tϕ,

Γ− lim
k→∞

Tψ,k = lim
k→∞

Tψ,k = Tψ.
(3.11)

Note that the functionals Tϕ,k and Tψ,k are equi-coercive. By the Γ-convergence and The-
orem 2.4 we get that Tϕ,k(ŵk) → Tϕ(ŵ) and Tψ,k(hk(ŵk)) → Tψ(û), and that ŵk → ŵ,
hk(ŵk) → û in BV (Ω). Thus ŵk and hk(ŵk) converge in L1(Ω) to ŵ and û respectively. Fur-
ther, there exists a subsequence {ŵn} which converges a.e. to ŵ. Then by the construction of
hn, we deduce that hn(ŵn) converges a.e. to eŵ. On the other hand, we know that hn(ŵn)
converges in L1 to û. Thus we get that û = eŵ a.e. in Ω. �

4 Numerical Methods and Experimental Results

In [12] some numerical tests on the JY model is demonstrated for multiplicative noise removal
by using the gradient descent method. As is well known, this method is relatively slow. In
this section we design a fast algorithm to solve the JY model by applying the split Bregman
technique[10].

The split Bregman method solves a minimization problem by operator splitting and then
applying Bregman iteration to the split problem. For the JY model, the split problem is given
by

min
�d,z,u

{∫

Ω

|�d(x)|dx + λ2

∫

Ω

(f − z)2
z

dx
}
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subject to the constraints �d = ∇u and z = u. In the following, we will use the Bregman
iteration to solve this split problem by considering the following problem:

min
�d,z,u

{∫

Ω

|�d(x)|dx + λ2

∫

Ω

(f − z)2
z

dx+
γ1

2
‖�d−∇u − b1‖22 +

γ2

2
‖z − u− b2‖22

}
, (4.1)

where the additional terms are quadratic penalties enforcing the constraints, b1 and b2 are
variables related to the Bregman iteration algorithm. Further, the solution of (4.1) is obtained
by solving the following three variable subproblem:

(1) The �d subproblem, with z and u fixed, is

�dn+1 = argminu
{∫

Ω

|�dn|dx+
γ1

2
‖�dn −∇un − bn1‖22

}
.

Its solution can be computed by

�dn+1 =
∇un + bn1
|∇un + bn1 |

max
{
|∇un + bn1 | −

1
γ
, 0

}
,

with
bn+1
1 = bn1 +∇un − �dn.

(2) The z subproblem, with �d and u fixed, is

zn+1 = argminz
{
λ2

∫

Ω

(f − zn)2
zn

dx+
γ2

2
‖zn − un − bn2‖22

}
.

Since the above objective function is strictly convex for z as z > 0, the solution can be solved
very efficiently by using the Newton method. Here bn2 is computed by

bn+1
2 = bn2 + un − zn.

(3) The u subproblem, with �d and z fixed, is

un+1 = argminu
{γ1

2
‖�dn −∇un − bn1‖22 +

γ2

2
‖zn − un − bn2‖22

}
.

The solution un+1 satisfies
γ2

γ1
un+1 −�un+1 =

γ2

γ1
(zn − bn2 )− div (�dn − bn1 ),

which is a sparse, symmetric positive definite linear system. The solution can be efficiently
approximated by Gauss-Sidel iteration.

Finally, by incorporating the split Bregman technique we solve the JY model with the
following algorithm:
• Initialize u0 = z0 = b2

0 = 0, �d0 = b1
0 = 0;

• un, zn, �dn, b1n, b2n are computed;
• un+1 is given by solving the u subproblem, �dn+1 and b1n+ 1 are given by solving the �d

subproblem, zn+1 and bn+1
2 are given by solving the z subproblem;

• Check the stopping criteria, if satisfied, stop; else, n← n+ 1 and repeat.
The parameters are chosen as follows: γ1 = 5, γ2 = 8, and the larger the noise is, the

smaller the fidelity coefficient λ2 is. For the reference, the values of λ2 are set to be in [1,2] and
shown in Table 2. We remark that such simple scheme may not provide optimal parameters
with respect to SNR and ReErr. Below we can demonstrate that it is effective enough to
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generate high-quality denoised images compared with the gradient descent method[12] where its
corresponding optimal parameters are chosen.

In order to show the the efficiency of our algorithm, in the following numerical experiments
we also compute the solution of the JY model by using the gradient descent method as presented
in [12]. This method is given by using the following explicit iterative scheme:

un+1 = un + dt
[
div

( ∇un√|∇un|2 + δ

)
+ λn2

( f2

(un)2
− 1

)]
,

where δ is set to be 10−4, dt is set to be a small positive number to ensure the convergence of
the iterative scheme, λn can be automatically updated as explained in [12]. In our experiments,
the stopping criterion of both the proposed method and the gradient descent method is chosen
as

‖un+1 − un‖2
‖un‖2 < 10−4.

The following experiments are implemented with MATLAB7.8 on a core2 personal com-
puter, 2.40GHz, 2GB RAM. The synthetic ultrasound speckle images are constructed based on
the form (1.5). For the emulated experiments, a signal to noise ratio (SNR) and a relative error
(ReErr) of a restored image are used to measure the quality of the restoration. For a given
clean image u and its noisy observation u0, denote by n = u0−u. With this we define the SNR
and the ReErr as follows:

SNR = 10 log10

(∫
Ω(u0 − u0)2dxdy∫
Ω
(n− n)2dxdy

)
,

ReErr =
‖n‖22
‖u‖22

,

where
u0 =

1
|Ω|

∫

Ω

u0dxdy, n =
1
|Ω|

∫

Ω

ndxdy.

For these two criterions, the higher value of SNR and the lower value of ReErr are, the higher
quality of the restored image is.

Figure 1. (a) the synthetic image “SynImag1”; (b) the multiplicative noise is added following (1.5)

with the standard deviation σ = 4, SNR=1.26, ReErr=0.46.
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Figure 2. (a) the original “Cameraman” image; (b) the multiplicative noise is added following (1.5)

with the standard deviation σ = 3, SNR=6.37, ReErr=0.25.

Figure 3. The real ultrasound image is restored by gradient descent algorithm and the proposed algorithm.

In Figures 1–2, a synthetic images and a real image are corrupted by the multiplicative
noises following the formulation (1.5). We see from these figures that the proposed method gets
a very good visual effect and recover image edges well. In Figure 3, we test speckle reduction
capability of our method for a real ultrasound image. We also see that the proposed method
can effectively remove the speckle noise in the ultrasound image.

We see from Table 1 that the SNRs of the images restored by the proposed method are
higher than those by the gradient descent method, and the ReErrs of the images restored by
the proposed method are lower than those by the gradient descent method.
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In addition to the quality of the restored images, we also find that the proposed algorithm is
quite efficient. Table 2 shows the number of iterations required for convergence and the compu-
tational times required by the proposed method and the gradient descent method. According
to this table, we see that the proposed algorithm is much faster than the gradient descent
algorithm.

Table 1. The SNRs and ReErrs of the restored images by gradient descent algorithm

and the proposed algorithm

Image Gradient descent method Proposed method

“SynImag1” in Figure 1 SNR=11.69, SNR= 14.84,

ReErr=0.105 ReErr=0.103

“Cameraman” in Figure 2 SNR=13.39, SNR=14.01,

ReErr=0.096 ReErr=0.093

Table 2 The number of iterations and computational times of two methods

Image Gradient descent method Proposed method Parameter

Figure 1 719 iterations 55 iterations λ2 = 1

113.62 seconds 6.28 seconds

Figure 2 355 iterations 59 iterations λ2 = 2

46.60 seconds 5.49 seconds

Figure 3 98 iterations 30 iterations λ2 = 2

30.80 seconds 9.64 seconds

5 Conclusion

In this paper, we have studied the relation of two variational models for speckle reduction of
ultrasound images. We have shown that the solutions of these two models are equivalent as
the weighted coefficients satisfy some conditions. Furthermore, we employ the split Bregman
technique to propose a fast algorithm to solve one of the two models. Our experimental results
have shown that the quality of images restored by the proposed method is quite good and the
proposed algorithm is also quite efficient.

6 Appendix

By taking the log of both sides of (1.1), we have

log f = log u+ logn.

Denote by g = log f , w = log u and v = logn, then the new noise v satisfies the following
additive noise model:

g = w + v.

In the following, let us denote by pX the density function of random variable X . Assume that
W and V = logN are independent randan variables and denote by

G = W + V. (6.1)

Here we considered the discretized images, and denote by S the set of pixels of the image. More-
over, we assume that the samples of the noise on each pixels s ∈ S are mutually independent
and identically distributed (i.i.d).
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Suppose that the multiplicative noise n follows the Rayleigh law with σ = 1√
2
, and with

density function:
pN (n) = 2n exp (−n2). (6.2)

It is straightforward to deduce that the density function of the random variable V = logN is

pV (v) = pN (ev)ev = 2e2v exp(−e2v). (6.3)

In fact, the new noise v follows a Fisher-Tippett (F-T) distribution. More details about the
derivation of this distribution can be found in [4,20]. Using (6.1) and (6.3), we can easily get

pG|W (g|w) = pV (g − v) = 2e2(g−w) exp (−e2(g−w)). (6.4)

We also assume that U follows a Gibbs prior:

pU (u) =
1
A

exp (−γφ(u)), (6.5)

where A and γ are constants, φ is a non-negative given function. Now given the variable G,
our aim is to maximize P (U |G). Applying Beyes’s rule, we get P (U |G) = P (G|U)P (U)

P (G) . Thus,
maximizing P (U |G) amounts to minimizing the log-likelihood:

− logP (W |G) = − logP (G|W )− logP (W ) + logP (G). (6.6)

Notice that the samples of the noise on each pixel s ∈ S are mutually independent and
identically distributed with density pV . Therefore, we have P (G|W ) =

∏
s∈S P (G(s)|W (s)).

Moreover, since logP (G) is a constant, we just need to minimize

− logP (G|W ) − logP (W ) = −
∑
s∈S

(
logP (G(s)|W (s)) + logP (W (s))

)
. (6.7)

By using (6.4)–(6.7), we finally see that minimizing − logP (W |G) amounts to minimizing
∑
s∈S

(
2W (s) + e2(G(s)−W (s)) + γϕ(W (s))

)
.

Here we adopt the standard TV regularizer[17], that is we choose ϕ(w) = |∇w|. Therefore, the
previous computations lead to the following variational model:

ŵ = argminw
{∫

Ω

|Dw|+ λ1

∫

Ω

(2w + e2(g−w))
}
, (6.8)

where λ = 1
γ > 0. By substituting e2g by f2 in (6.8) and then using u = ew, we get the SO

Model (1.4).
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