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Abstract For American option pricing, the Black-Scholes-Merton model can be discretized as a linear comple-

mentarity problem (LCP) by using some finite difference schemes. It is well known that the Projected Successive

Over Relaxation (PSOR) has been widely applied to solve the resulted LCP. In this paper, we propose a fixed

point iterative method to solve this type of LCPs, where the splitting technique of the matrix is used. We show

that the proposed method is globally convergent under mild assumptions. The preliminary numerical results

are reported, which demonstrate that the proposed method is more accurate than the PSOR for the problems

we tested.
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problem
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1 Introduction

Option is one of the most important financial tools in finance market today. It gives the holder of
the option the right to do something in the future, but the holder does not have to exercise this
right. For European options, the analytic solution is relatively easier to be obtained by Black-
Scholes formula. But, there is no exact analytical solution for American option, because the
American option may be early exercised before the expiry date. Thus, the numerical method for
pricing American options has important practical significance and is currently regarded as one
of the important topics in Finance. The classical model for option pricing is the Black-Scholes
model proposed in 1973 by Black and Scholes who assumed that the price of the underlying
asset following a geometric Brownian motion with constant interest rate and volatility[2].

One of the main and simple numerical methods for American option pricing is the binomial
tree method introduced by Cox, Ross, and Rubinstein[7]. On the other hand, Brennan and
Schwartz[3,4] and Schwartz[17] applied finite difference methods in solving American options. Up
to now, there are various kinds of schemes extended from the original finite difference scheme
such as Crank-Nicolson method, upwind finite difference method[9], compact finite difference[24]

method, and so on. After the discretion of the model by finite difference or finite element
methods, American option pricing can be solved as a linear complementarity problem (LCP)[9]

or a variational inequality[14].
In order to solve the discretized LCP arising in American option pricing, many methods

have been proposed in the literature. One of the popular and effective methods is the projected
successive over relaxation method (PSOR)[18]. Other methods include the improved PSOR
(IPSOR)[15], penalty methods[16,23,25], operator splitting methods[11], componentwise splitting
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methods[12], Newton method[5], the artificial boundary method[8,10,20] and several new active-
set methods[1,19].

In this paper, we propose a new method based on fixed point (FP) iteration for the resulted
LCP. To this end, the Black-Scholes partial differential equation (PDE) is first transformed to
a standard heat equation. As shown by Tavella and Randall[21], this transformation leads to
the flattening of the eigenvalue distribution of the discrete PDE operator. This means that
any numerical scheme applied to the heat equation has better stability range than the case
when it is used to discretize the Black-Scholes equation. We use the Crank-Nicolson scheme
to discretize the standard heat equation; and obtain a symmetric tridiagonal P-matrix with
equal subdiagonal elements and equal diagonal elements. These characteristics are significant
for the convergence of the FP method to solve the LCP. We can accelerate the algorithm by
taking advantage of the sparsity of the matrix and the equality of elements. Furthermore, the
proposed FP method is proved to be globally convergent under mild assumptions.

The numerical results given in this paper show that the FP method for solving the LCP
arising in American option pricing is more effective than PSOR with nearly equal time, higher
accuracy and less iterations. Besides, with the increasing of the length of interval and the
number of grid points, the FP method presents higher accuracy compared with PSOR. To
compare the efficiency of these methods, we take the results of binomial tree with 5,000 steps
as the true values.

The rest of this paper is organized as follows. In Section 2, the Black-Scholes-Merton model
and the process of transforming to a standard heat equation are presented and a finite difference
scheme for the space discretization and the time discretization scheme are described. In Section
3, the specific fixed point method for the LCP and its proof of convergence are given. In the
last section, we present the results of some numerical tests and comparisons between different
methods.

Now, we briefly introduce some essential notations used in this paper. For a vector x ∈ �n

or a matrix A ∈ �n×n, |x| and |A| represent the corresponding vector and matrix whose
components are the absolute value of the corresponding components of x and A. The identity
matrix is denoted by I. For i = 1, 2, . . . , n, the symbol x+ stands for the vector with elements
(x+)i = max{0, xi} and x− stands for the vector with elements (x−)i = max{0,−xi}.

2 Transformation and Discretization

2.1 Transformation of Black-Scholes-Merton Model

In this paper, we focus on the one factor option model. Suppose that the financial market
consists of a risky asset with fluctuant price (St) and fixed volatility (σ > 0) in a risk neutral
economy with constant interest rate (r > 0). Besides, K denotes the strike price, T denotes the
maturity time and μ stands for the expected return on underlying asset per year. Assuming
that the asset pays out the dividend δStdt during a time interval dt, the price of underlying
asset St satisfies the stochastic differential equation: dSt

St
= (μ − δ)dt + σdW , where dW is a

standard Wiener process with mean zero and variance dt. Let G(S, t) and V (S, t) denote the
given payoff function of an American option and the value of this option correspondingly. By a
standard no-arbitrage argument, V (S, t) must satisfy the following complementarity conditions:

∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV ≤ 0,

V (S, t) ≥ G(S, t),
(∂V

∂t
+

σ2

2
S2 ∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV

)
(V (S, t) − G(S, t)) = 0,



A Fixed Point Method for the Linear Complementarity Problem Arising from American Option Pricing 923

where

S > 0, 0 ≤ t ≤ T, (2.1)
V (S, T ) = max{ST − K, 0}, (2.2)

G(S, t) =
{

max {St − K, 0}, for call,
max {K − St, 0}, for put.

For better stability range as shown in [21], we let
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S = Kex, t = T − 2τ

σ2
, h :=

2r

σ2
, hδ =

2(r − δ)
σ2

,

V (S, t) = V
(
Kex, T − 2τ

σ2

)
=: v(x, τ),

G(S, t) = G
(
Kex, T − 2τ

σ2

)
=: g(x, τ),

v(x, τ) =: K exp
{
− 1

2
(hδ − 1)x −

(1
4
(hδ − 1)2 + h

)
τ
}

y(x, τ).

(2.3)

A property of the transformation (2.3) is the parameters r, σ and δ must be constants. From the
transformation of the expiration time t = T is determined in the new time by τ = 0, and t = 0
is transformed to τ = 1

2σ2T . Up to the scaling by 1
2σ2, the time τ represents the remaining life

time of the American option. And the original domain of the half strip (2.1) becomes the strip:
−∞ < x < ∞, 0 ≤ τ ≤ 1

2σ2T , on which we will derive a solution y(x, τ) and then get the value
function V (S, t). Under the transformation, the terminal condition (2.2) becomes an initial
condition for y(x, 0). From the transformation we find V (S, T ) = K exp

{− x
2 (hδ − 1)

}
y(x, 0),

and then y(x, 0) = max
{
e

x
2 (hδ+1) − e

x
2 (hδ−1), 0

}
. For the put option, we derive that

y(x, 0) = max{e x
2 (hδ−1) − e

x
2 (hδ+1), 0}. (2.4)

Then, combining (2.3) with (2.4) and (2.5), the original Black-Scholes-Merton model changes
to the following linear complementarity problem:

(∂y

∂τ
− ∂2y

∂x2

)
(y − g) = 0,

∂y

∂τ
− ∂2y

∂x2
≥ 0, y − g ≥ 0. (2.5)

Here the transformed payoff function g(x, τ) is given by

• for put:

g(x, τ) = exp
{τ

4
((hδ − 1)2 + 4h)

}
max {e x

2 (hδ−1) − e
x
2 (hδ+1), 0};

• for call:

g(x, τ) = exp
{τ

4
((hδ − 1)2 + 4h)

}
max {e x

2 (hδ+1) − e
x
2 (hδ−1), 0}.

The initial and boundary conditions become:

y(x, 0) = g(x, 0), lim
x→±∞ y(x, τ) = lim

x→±∞ g(x, τ).

As outlined in (2.5), the American option pricing can be regarded as an order complementarity
problem (OCP) and the next step is to discretize that OCP.
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2.2 Discretization with Finite Difference Scheme

We apply a finite difference approximation scheme to the partial differential complementarity
system (2.5). We perform a full discretization for both x-axis and τ -axis leading to a two
dimensional grid. Let Δτ and Δx be the mesh sizes of the discretizations of τ and x. The
step in τ is Δτ := τmax/m for τmax := 1

2σ2T and a suitable integer m. We use a finite interval
a ≤ x ≤ b to replace the infinite interval −∞ < x < ∞. Here the end values a and b should
be chosen corresponding Smin = Kea and Smax = Keb and the interval Smin ≤ S ≤ Smax is
the main factor that affects the sufficiency of the approximation. We can discretize the interval
of x into n equal parts with step length Δx := (b − a)/n. The additional notations for the
grid are given as following: τj := j · Δτ for j = 0, 1, · · · , m; xi := a + iΔx for i = 0, 1, . . . , n;
yij := y(xi, τj) and gij := g(xi, τj); we employ uij := u(xi, τj) to approximate yij .

We use a parameter θ to combine the backward difference, the explicit and the Crank-
Nicolson method into one formula:

ui,j+1 − uij

Δj
= θ

ui+1,j+1 − 2ui,j+1 + ui−1,j+1

Δx2
+ (1 − θ)

ui+1,j − 2ui,j + ui−1,j

Δx2
,

with the choice θ = 0 (explicit), θ = 1
2 (Crank-Nicolson) and θ = 1 (backward difference

method). Then, the differential inequality ∂y
∂τ − ∂2y

∂x2 ≥ 0 is boiled down to the discrete formu-
lation:

ui,j+1 − λθ(ui+1,j+1 − 2ui,j+1 + ui−1,j+1)
− ui,j − λ(1 − θ)(ui+1,j − 2ui,j + ui−1,j) ≥ 0, (2.6)

where we use the abbreviation λ := Δτ
Δx2 . Now, we introduce the following notations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(j) := (b1,j , . . . , bn−1,j)T ,

u(j) := (u1,j , . . . , un−1,j)T ,

g(j) := (g1,j , . . . , gn−1,j)T ,

bi,j := ui,j + λ(1 − θ)(ui+1,j − 2ui,j + ui−1,j), i = 2, . . . , n − 2,

b1,j = u1,j + λ(1 − θ)(u2,j − 2u1,j + g0,j) + λθg0,j+1,

bn−1,j = un−1,j + λ(1 − θ)(gn,j − 2un−1,j + un−2,j) + λθgn,j+1;

(2.7)

A :=

⎛
⎜⎜⎜⎜⎝

1 + 2λθ −λθ 0

−λθ
. . . . . .
. . . . . . . . .

0
. . . . . .

⎞
⎟⎟⎟⎟⎠

∈ �(n−1)×(n−1). (2.8)

Therefore, with the notations in (2.7) and (2.8), (2.6) and the inequality y − g ≥ 0 can be
written in vector form as

Au(j+1) ≥ b(j), u(j) ≥ g(j). (2.9)

Meanwhile, the equation ( ∂y
∂τ − ∂2y

∂x2 )(y − g) = 0 becomes

(Au(j+1) − b(j))T (u(j+1) − g(j+1)) = 0 (2.10)

with the initial and boundary conditions:

ui,0 = gi,0, i = 1, · · · , n − 1, u(0) = g(0);
u0,j = g0,j, un,j = gn,j, j ≥ 1.

(2.11)
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At last, we attain the LCP in the form as showing (2.7)–(2.11) together. We conclude the
formulation of the problem as:

(Au − b)(u − g) = 0, Au − b ≥ 0, u − g ≥ 0. (2.12)

3 Algorithm and Convergence

In this section, we will give the equivalence between original problems and fixed point problems,
then prove that the algorithm converges to the unique solution of the original LCP under a
mild condition. We use the transformation x = u − g and q = b − Ag, then Problem (2.12)
becomes:

(Ax − q)x = 0, Ax − q ≥ 0, x ≥ 0. (3.1)

Then we will propose a fixed point algorithm for Problem (3.1) and show the convergence of
the algorithm.

Lemma 3.1. Problem (3.1) has a unique solution. Let α > 0 be given. If x∗ is a solution of

x = x+ − α(Ax+ − q), (3.2)

then x∗
+ is a solution of (3.1), and hence, x∗

+ + g is a solution of Problem (2.12).

Proof. Noticing that the matrix A is symmetric, strictly diagonally dominant and has positive
diagonal entries, we can get A is positive definite. Since A is symmetric and positive definite,
it is well known that A is a P -matrix. Thus, the LCP (3.1) has a unique solution[6].

Since x∗ is a solution of (3.2), then

x∗
− = x∗

+ − x∗ = α(Ax∗
+ − q).

where α > 0. Noticing that

(x∗
−)T x∗

+ = 0, x∗
+ ≥ 0, x∗

− ≥ 0,

we obtain that x∗
+ is a solution of Problem (3.1), and hence, x∗

+ + g is a solution of (2.12). �

In the following, k denotes the number of iterations for every time step, n and m stand for
the numbers of the grid points of space and time correspondingly. For the matrix A, we use
the decomposition A = D − L − U , where D, L and U are diagonal, strictly lower and upper
triangular matrices obtained from A, respectively.

Algorithm 3.1 (Fixed Point Algorithm for Problem (3.2).

Initialization Given x(0) ∈ �n−1, error ε > 0, α > 0, and A = D − L − U . Set k = 0.

repeat until ‖x(k+1) − x(k)‖ < ε

x
(k)
+ = max {x(k), 0}

for i = 1, · · · , n − 1

x
(k+1)
i = (x(k)

+ )i − α[(D − U)x(k)
+ − Lx

(k+1)
+ − q]i (3.3)

end

k = k + 1

end repeat
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In Algorithm 3.1, α is the relaxation parameter as ω in PSOR.
The following lemma can be found in [22].

Lemma 3.2. Suppose that Z = (zi,j) ∈ Rn×n is an arbitrary matrix. Then

ρ(Z) ≤ max
1≤i≤n

n∑
j=1

|zi,j|,

where ρ(Z) denotes the spectral radius of Z.
Now, we show the global convergence of Algorithm 3.1.

Theorem 3.1. Let A ∈ �(n−1)×(n−1) be defined as (2.8) and q ∈ �n−1. If 0 < α < 2
1+4λθ

holds, then the sequence {x(k)} generated by Algorithm 3.1 converges to the unique solution x∗

for Problem (3.2) (and hence, x∗
+ is the unique solution for Problem (3.1)).

Proof. By iterative formula (3.3), we have

xk+1 = xk
+ − α[(D − U)xk

+ − Lxk+1
+ − q],

and hence,

xk+1 − xk =(xk
+ − xk−1

+ ) − α[(D − U)(xk
+ − xk−1

+ ) − L(xk+1
+ − xk

+)]

=[I − α(D − U)](xk
+ − xk−1

+ ) + αL(xk+1
+ − xk

+).

Note that
(x + y)+ ≤ x+ + y+, |x| = x+ + x− = x+ + (−x)+,

we further obtain that

|xk+1 − xk| =(xk+1 − xk)+ + (xk − xk+1)+
={[I − α(D − U)](xk

+ − xk−1
+ ) + αL(xk+1

+ − xk
+)}+

+ {[I − α(D − U)](xk−1
+ − xk

+) + αL(xk
+ − xk+1

+ )}+

≤{[I − α(D − U)](xk
+ − xk−1

+ )}+ + {αL(xk+1
+ − xk

+)}+

+ {[I − α(D − U)](xk−1
+ − xk

+)}+ + {αL(xk
+ − xk+1

+ )}+

=|[I − α(D − U)](xk
+ − xk−1

+ )| + |αL(xk+1
+ − xk

+)|
≤|I − α(D − U)||xk

+ − xk−1
+ | + α|L||xk+1

+ − xk
+|

≤|I − α(D − U)||xk − xk−1| + α|L||xk+1 − xk|.
Thus,

|xk+1 − xk| ≤ P−1Q|xk − xk−1|
and

‖xk+1 − xk‖2 ≤ ‖P−1Q|xk − xk−1|‖2 ≤ ‖P−1Q‖2‖xk − xk−1‖2

hold, where P = I − α|L| and Q = |I − α(D − U)|.
If the spectral radius satisfies the condition: ρ(P−1Q) = ‖P−1Q‖2 < 1, then the sequence

{x(k)} converges.
Since

P−1 = (I − α|L|)−1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
αλθ 1 0 0 0 · · ·

(αλθ)2 αλθ 1 0 0 · · ·
(αλθ)3 (αλθ)2 αλθ 1 0 · · ·

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠
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and

Q =|I − α(D − U)|

=

⎛
⎜⎜⎜⎜⎝

|1 − α(1 + 2λθ)| αλθ 0 · · ·
0 |1 − α(1 + 2λθ)| αλθ · · ·
0 0 |1 − α(1 + 2λθ)| . . .
...

...
. . . . . .

⎞
⎟⎟⎟⎟⎠

,

we have

P−1Q = (I − α|L|)−1|I − α(D − U)| =

⎛
⎜⎜⎜⎜⎝

a1 b1 0 0 · · ·
a2 b2 b1 0 · · ·
a3 b3 b2 b1 · · ·
a4 b4 b3 b2 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠

whose entries are given by

a1 = |1 − α(1 + 2λθ)|;
ai = (αλθ)i−1|1 − α(1 + 2λθ)|, i = 2, 3, · · · , n − 1;
b1 = αλθ;
bj = (αλθ)j + (αλθ)j−2 |1 − α(1 + 2λθ)|, j = 2, 3, · · · , n − 1.

Thus,

n−1∑
i=1

|ai| =|1 − α(1 + 2λθ)|(1 + (αλθ) + (αλθ)2 + · · · + (αλθ)n−2)

=|1 − α(1 + 2λθ)|1 − (αλθ)n−1

1 − αλθ
,

n−1∑
j=1

|bj | =αλθ + [(αλθ)2 + |1 − α(1 + 2λθ)|] + · · ·

+ [(αλθ)n−1 + (αλθ)n−3|1 − α(1 + 2λθ)|]
=[αλθ + (αλθ)2 + · · · + (αλθ)n−1]

+ |1 − α(1 + 2λθ)|[1 + αλθ + · · · + (αλθ)n−3]

=
αλθ − (αλθ)n−1

1 − αλθ
+ |1 − α(1 + 2λθ)| 1 − (αλθ)n−2

1 − αλθ
.

From the condition 0 < α < 2
1+4λθ , we have αλθ < 2λθ

1+4λθ < 1. This implies
n−1∑
i=1

|ai| ≤
n−1∑
i=1

|bi|
and hence the second column is the maximum of the column sums of the moduli of the entries
of the matrix P−1Q.

When 0 < α ≤ 1
1+2λθ , we have

αλθ

1 − αλθ
+ |1 − α(1 + 2λθ)| 1

1 − αλθ

=
αλθ

1 − αλθ
+

1 − α(1 + 2λθ)
1 − αλθ

= 1 − α

1 − αλθ
< 1;

and when
1

1 + 2λθ
< α <

2
1 + 4λθ

,
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we have

αλθ

1 − αλθ
+ |1 − α(1 + 2λθ)| 1

1 − αλθ

=
αλθ

1 − αλθ
− 1 − α(1 + 2λθ)

1 − αλθ

=1 − 2 − α(1 + 4λθ)
1 − αλθ

< 1.

Hence, when 0 < α < 2
1+4λθ , inequality

αλθ

1 − αλθ
+ |1 − α(1 + 2λθ)| 1

1 − αλθ
< 1

holds.
Furthermore, by applying Lemma 3.2, we have

ρ(P−1Q) ≤
n−1∑
j=1

|bj| <
αλθ

1 − αλθ
+ |1 − α(1 + 2λθ)| 1

1 − αλθ
< 1.

Therefore, the sequence {xk} is convergent. This, together with (3.3) and Lemma 3.1, implies
that the desired result holds. �

4 Numerical Experiments

In this section, we report the results of numerical experiments comparing the PSOR and the
algorithm proposed in this paper (Algorithm 3.1) on the standard Black-Scholes-Merton model.
The comparisons are based on the accuracy of approximating option values and the total com-
putation cost (the CPU time). Since the analytical solution of option values are unknown, we
use the binomial method with large steps (5000) as the exact option values for each instance,
of which the results are considered very accurate with large steps. All experiments are done at
a PC with CPU of 2.80GHz and RAM of 4.0GB, and all codes are executed in MATLAB 7.8.0.

Throughout our numerical experiments, we value (find the fair value) an American put
option based on a single underlying asset S, with exercise price K, interest rate r, volatility σ,
dividend yield δ, expiry time T and the interval [a, b] of x. A variety of grids, consisting of a
number of x-nodes (n) combined with a number of time steps (m), have been applied in the
discretization process. All algorithms are terminated when two consecutive iterations satisfy
‖x(k+1) − x(k)‖ < 10−6 . In Algorithm 3.1, we set the vector x(0) = 0 as the initial point at
the each time step in LCP. For the PSOR method, the result in [13] shows that the relaxation
parameter

ω =
2

1 +
√

1 − ρ2

here ρ ≈ max 1
Ai,i

∑
j �=i |Ai,j |, is the most effective one. However, for FP method, we choose

the parameter α as

α =
1.2 + 0.1λθ

1 + 2λθ
,

where λ = Δτ
Δx2 with Δτ =

1
2σ2T

m and Δx = b−a
n respectively being the mesh sizes of the

discretizations of τ and x, and θ is the parameter of difference scheme with the choice θ = 0
(explicit), θ = 1

2 (Crank-Nicolson) and θ = 1 (backward difference method).
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Tables 1–6 present the results for the three methods under the CN (θ = 0.5) scheme with
different intervals of x, different values of T and different volatilities σ. The specific problem
settings are given in each table, respectively. For each method, we report the grid steps of both
x-direction and τ -direction (Grid (n, m)), the fair value of American option (V ), the errors
between the true values and the values returned by FP or PSOR (Error), the total number of
iterations (Iter) and the total computing time (CPU). In each table, binomial denotes the exact
value computed by binomial method with 5000 iterations.

According to the results in Tables 1–6, we can draw some desirable conclusions. First, we
can see the FP method is more accurate than the PSOR method with nearly same time costs
and iterations. Second, while the computing time and the number of iterations of the new
method increasing considerably for increasing grid points, the accuracy of FP is increasing,
however, the accuracy of PSOR decreases. Thirdly, by comparing Table 1 and Table 2, we
aware that with longer expiry time T , the FP method have higher accuracy with less iterations.
At last, comparison between Table 4 and Table 5 shows that the volatility σ has the same effect
on accuracy of FP as T .

Table 1. T = 0.5, S0 = K = 100, σ = 0.2, δ = 0, r = 0.05, a = −1.5, b = 1.5

Method Grid (n, m) V Error Iter CPU (s)

Binomial 4.655561 0

(400,200) 4.653438 2.12e-3 1795 0.61

(600,400) 4.654667 8.93e-4 3597 1.30

FP (800,600) 4.655110 4.50e-4 5397 2.48

(800,800) 4.655116 4.44e-4 6399 3.16

(1000,1000) 4.655318 2.42e-4 8996 5.18

(400,200) 4.653160 2.40e-3 1698 0.59

(600,400) 4.653713 1.84e-3 3539 1.40

PSOR (800,600) 4.653845 1.71e-3 5827 2.54

(800,800) 4.653955 1.60e-3 6970 3.21

(1000,1000) 4.653714 1.84e-3 9626 5.31

Table 2. T = 0.25, S0 = K = 100, σ = 0.2, δ = 0, r = 0.05, a = −1.5, b = 1.5

Method Grid (n, m) V Error Iter CPU (s)

Binomial 3.479755 0

(400,200) 3.476662 3.09e-3 1399 0.38

(600,400) 3.478429 1.32e-3 2799 1.11

FP (800,600) 3.479050 7.04e-4 4199 2.21

(800,800) 3.479053 7.01e-4 5599 3.02

(1000,1000) 3.479340 4.14e-4 6999 4.68

(400,200) 3.476466 3.28e-3 1251 0.38

(600,400) 3.478090 1.66e-3 2689 1.12

PSOR (800,600) 3.478226 1.52e-3 4253 2.27

(800,800) 3.478521 1.23e-3 5244 2.99

(1000,1000) 3.477894 1.86e-3 6893 4.71
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Table 3. T = 0.5, S0 = K = 100, σ = 0.2, δ = 0, r = 0.05, a = −2, b = 2

Method Grid (n, m) V Error Iter CPU (s)

Binomial 4.655561 0

(600,300) 4.653916 1.64e-3 2398 0.90

(800,400) 4.654667 8.93e-4 3597 1.71

FP (1000,500) 4.655030 5.30e-4 4497 2.58

(1500,1500) 4.655397 1.63e-4 11999 11.27

(2000,2000) 4.655483 7.77e-5 16000 20.01

(600,300) 4.653369 2.19e-3 2348 1.02

(800,400) 4.653713 1.84e-3 3539 1.73

PSOR (1000,500) 4.653671 1.88e-3 4893 2.62

(1500,1500) 4.652573 2.98e-3 13267 11.31

(2000,2000) 4.652570 2.99e-3 20556 21.75

Table 4. T = 0.25, S0 = K = 100, σ = 0.3, δ = 0, r = 0.05, a = −3, b = 3

Method Grid (n, m) V Error Iter CPU (s)

Binomial 5.442150 0

(800,400) 5.440199 1.95e-3 3198 1.54

(1600,800) 5.441780 3.69e-4 7197 6.16

FP (2000,1000) 5.441972 1.77e-4 8998 9.60

(2400,1500) 5.442081 6.81e-5 13498 17.29

(3000,2500) 5.442161 1.13e-5 20000 35.60

(800,400) 5.439731 2.41e-3 2738 1.51

(1600,800) 5.440519 1.63e-3 7433 6.19

PSOR (2000,1000) 5.440161 1.98e-3 10249 9.81

(2400,1500) 5.439489 2.66e-3 15177 17.69

(3000,2500) 5.437334 4.81e-3 24480 36.58

Table 5. T = 0.25, S0 = K = 100, σ = 0.2, δ = 0, r = 0.05, a = −3, b = 3

Method Grid (n, m) V Error Iter CPU (s)

Binomial 3.479755 0

(800,400) 3.476744 3.01e-3 2400 1.49

(1600,800) 3.479053 7.01e-4 5599 5.97

FP (2000,1000) 3.479340 4.14e-4 6999 9.31

(2400,1500) 3.479498 2.56e-4 10499 17.11

(3000,2500) 3.479629 1.25e-5 15000 34.93

(800,400) 3.476485 3.26e-3 1968 1.50

(1600,800) 3.478521 1.23e-3 5344 6.17

PSOR (2000,1000) 3.477894 1.86e-3 6893 9.52

(2400,1500) 3.477718 2.03e-3 10324 17.14

(3000,2500) 3.477480 2.27e-3 17142 35.41
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Table 6. T = 0.5, S0 = K = 100, σ = 0.2, δ = 0, r = 0.05, a = −4, b = 4

Method Grid (n, m) V Error Iter CPU (s)

Binomial 4.655561 0

(800,400) 4.651795 3.76e-3 2799 1.64

(1600,800) 4.654695 8.65e-4 5599 6.48

FP (3000,2000) 4.655399 1.61e-4 14000 29.55

(4000,2000) 4.655483 7.77e-5 16000 41.34

(4000,3000) 4.655532 3.77e-5 21001 59.84

(800,400) 4.651576 3.98e-3 2118 1.64

(1600,800) 4.653859 1.70e-3 5489 6.33

PSOR (3000,2000) 4.652425 3.13e-3 15758 30.10

(4000,2000) 4.652570 2.99e-3 20556 43.61

(4000,3000) 4.652389 3.17e-3 26166 62.81
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