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Abstract The main purpose of this paper is using capture-recapture data to estimate the population size

when some covariate values are missing, possibly non-ignorable. Conditional likelihood method is adopted,

with a sub-model describing various missing mechanisms. The derived estimate is proved to be asymptotically

normal, and simulation studies via a version of EM algorithm show that it is approximately unbiased. The

proposed method is applied to a real example, and the result is compared with previous ones.
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1 Introduction

As a branch of statistics, capture-recapture has been widely used in biological and ecological
sciences. Its primary interest is to estimate the population size of certain species of wildlife,
but it is also widely used in the investigation of sensitive groups of human being, as well as in
software reliability, epidemiology and other fields (see [1,9,10]).

It is well-known that heterogeneity between individuals in the population usually exists,
and ignoring it can result biased estimation. Heterogeneity can partly be explained by the
some observed individual covariate, such as sex, weight, etc, partly by other reasons[13]. But in
practice, some covariate values are often found to be missing, due to the difficulty in recording
the covariete, or an inappropriate experiment design.

Missing mechanism is categorized into 3 kinds[8]: missing completely at random (MCAR),
missing at random (MAR), and missing non-ignorable (MNI), the last kind means that whether
the covariate value is missing depends on itself. Simply discarding those individuals with
missing covariate is not only a loss of information, but also making the estimator biased. In
recent years there are lots of works concerning MCAR and MAR in statistical studies, and
also some advances in capture-recapture[11,12], but very few is done towards MNI case, and
existing data augmentation and imputing methods are suitable to MCAR and MAR only. The
main reason is that, in the MNI case, the problem is often non-identifiable. But in capture-
recapture studies, we find that it is identifiable, because for recaptured individuals, “repeated
measurement” occurs, as if in longitudinal studies.

The main purpose of this work is to establish a sub-model which can deal with various
missing mechanisms, and to embed it into existing capture-recapture model, so that all param-
eter estimates can be derived. The sub-model is wished to be natural and easily interpreted.
Conditional likelihood method[5] is adopted to avoid the presence of un-observed individuals in
the likelihood function. A version of EM Algorithm is given to handle the practical computa-
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tion concerning missing covariate values and to get conditional maximum likelihood estimates
(CMLE).

In the next section the model is introduced, estimates for model parameters, as well as for
population size, based on conditional likelihood approach are derived, and asymptotic normality
of the estimates are established. In Section 3 some simulation experiments are conducted to
test the performance of the proposed method and to compare it with existing method. The
method is applied to a real example of the Hong Kong Mai Po data in Section 4, and the paper
is concluded with a short discussion in Section 5.

2 Inference Procedure

In this work we study the situation where only a bivariate covariate (sex) is involved for sim-
plicity, although more complicated situations, such as multi-covariate cases, are possible.

2.1 Notations, Model Assumptions and Likelihoods

Consider a continuous time capture-recapture experiment conducted in a time interval [0, τ ],
captured animals are marked and released back to the population immediately. Suppose the
population is closed, in which ν individuals behave independently. Denote by δi = 1 if individual
i is caught at least once, and 0 otherwise. Let Zi indicate, by 1 versus 0, if individual i is male
or female, and ωi be its observational indicator, so ωi = 1 means Zi is recorded, and ωi = 0
means Zi is missing. Assume Zi follows a binomial distribution B(1, p), where p is a parameter
representing the proportion of males in the population. If there are n animals with δi = 1, among
which m individuals have complete covariate values and the others do not, for convenience we
relabel the first m individuals as the captured ones with Zi recorded, the following n − m
captured but with Zi missing, and the remaining ν − n individuals not observed. Finally, we
use the counting process Ni(·) to describe the capture history of individual i, where Ni(t) is
the number of times that individual i be caught up to time t.

The well-known Cox regression model[2] is used to characterize the counting process Ni(t).
Assume that there is no trap-response, then the hazard function of it is given by

λ(Zi) = exp(β0 + β1Zi),

where exp(β0) is the baseline hazard, and β1 is the regression parameter for Zi.
Because the missing mechanism might be non-ignorable, the missing probabilities for males

and females could be different. Let qm and qf be the probabilities that the covariate val-
ues of male animals and female animals are missing, respectively, then ωi follows a binomial
distribution B(1, 1 − Ziqm − (1 − Zi)qf ).

Let θ represents all the parameters above, θ = (β0, β1, p, qm, qf )T . For an observed indi-
vidual i, if i ≤ m, i.e., its covariate value is not missing, its contribution to the likelihood
is

Li =P (Ni(·)|Zi, ωi, θ) · P (Zi, ωi|θ)
=

[ ∏
0≤t≤τ

λ(Zi)ΔNi(t) exp
(
−

∫ τ

0

λ(Zi)dt
)
· pZi(1 − p)1−Zi(1 − qm)Zi(1 − qf )1−Zi

]ωi

=
{

exp(β0 + β1Zi)Ni(τ) exp[−τ exp(β0 + β1Zi)] · pZi(1 − p)1−Zi(1 − qm)Zi(1 − qf )1−Zi
}ωi

,

but if m < i ≤ n, Zi has to be integrated out, so its contribution is
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Li =
1∑

Zi=0

P (Ni(·)|Zi, ωi, θ) · P (Zi, ωi|θ)

=
[ 1∑

Zi=0

∏
0≤t≤τ

λ(Zi)ΔNi(t) exp
(
−

∫ τ

0

λ(Zi)dt
)
· pZi(1 − p)1−ZiqZi

m q1−Zi

f

]1−ωi

=
{
pqm · exp(β0 + β1)Ni(τ) exp

[ − τ exp(β0 + β1)
]

+ (1 − p)qf · exp(β0)Ni(τ) exp
[ − τ exp(β0)

]}1−ωi
,

and for an unobserved individual i, its contribution is simply Li = P (δi = 0). Therefore the
full likelihood function is given by

L(θ|data) =
n∏

i=1

Lδi

i

ν∏
i=n+1

L1−δi

i .

This likelihood function contains too many unobserved individuals, so we adopt the conditional
likelihood approach[5], which is based on observed individuals only, and is given by

LC(θ|data) =
n∏

i=1

(Li

π0

)δi

, (1)

where π0 = p
{
1−exp[−τ exp(β0+β1)]

}
+(1−p)

{
1−exp[−τ exp(β0)]

}
is the average probability

of a generic individual being caught at least once.

2.2 Estimation of Model Parameters

CMLE can be obtained by maximizing (1), however, it is too complicated, so EM algorithm
will be used to solve the problem. For doing this, the augmented likelihood function containing
both observed data and missing covariates is given by

LA =
n∏

i=1

exp(β0 + β1Zi)Ni(τ) exp[−τ exp(β0 + β1Zi)]
π0

· pZi(1 − p)1−ZiqZi(1−ωi)
m q

(1−Zi)(1−ωi)
f (1 − qm)Ziωi(1 − qf )(1−Zi)ωi .

Starting from θ(0), EM algorithm will be conducted until θ(k) converges.
In the E-step, Q(θ|θ(k)) = E(log LA|θ(k)) is calculated as follows.

log LA =
n∑

i=1

[Ni(τ)β0 + Ni(τ)β1Zi − τ exp(β0 + β1Zi) + Zi log p

+ (1 − Zi) log(1 − p) + Zi(1 − ωi) log qm + (1 − Zi)(1 − ωi) log qf

+ ωiZi log(1 − qm) + ωi(1 − Zi) log(1 − qf ) − log π0].

Define B
(k)
i0 = exp[β(k)

0 Ni(τ)−τ exp β
(k)
0 ] and B

(k)
i1 = exp

[
Ni(τ)(β(k)

0 +β
(k)
1 )−τ exp(β(k)

0 +β
(k)
1 )

]
,

Wi1(θ(k)) =P (Zi = 1|ωi = 0, Ni(τ), θ(k)) =
P (Zi = 1, ωi = 0, Ni(τ), θ(k))

P (ωi = 0, Ni(τ), θ(k))

=
p(k)qm

(k)B
(k)
i1

p(k)qm
(k)B

(k)
i1 + (1 − p(k))qf

(k)B
(k)
i0
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and Wi0(θ(k)) = P (Zi = 0|ωi = 0, Ni(τ), θ(k)) = 1 − Wi1(θ(k)), then

Q(θ|θ(k)) =
m∑

i=1

[Ni(τ)β0 + Ni(τ)β1Zi − τ exp(β0 + β1Zi) + Zi log p

+ (1 − Zi) log(1 − p) + Zi log(1 − qm) + (1 − Zi) log(1 − qf ) − log π0]

+
n∑

i=m+1

[Ni(τ)β0 + Ni(τ)β1Wi1 − τ exp(β0 + β1)Wi1 − τ exp(β0)Wi0

+ Wi1 log p + Wi0 log(1 − p) + Wi1 log qm + Wi0 log qf − log π0].

In the M-step, we need to maximize Q(θ|θ(k)) with respect θ to obtain θ(k+1). Direct
derivation tells us that

∂Q(θ|θ(k))
∂qm

=
m∑

i=1

(
− Zi

1 − qm

)
+

n∑
i=m+1

Wi1

qm
,

∂Q(θ|θ(k))
∂qf

=
m∑

i=1

(
− 1 − Zi

1 − qf

)
+

n∑
i=m+1

Wi0

qf
.

Notice that the two equations above only contain qm, qf , equating them to 0, we get

q(k+1)
m =

n∑
i=m+1

Wi1(θ(k))

m∑
i=1

Zi +
n∑

i=m+1

Wi1(θ(k))

and

q
(k+1)
f =

n∑
i=m+1

Wi0(θ(k))

n −
m∑

i=1

Zi −
n∑

i=m+1

Wi1(θ(k))
.

To update the other parameters β0, β1, and p, Newton-Raphson method is used to solve

the equations
∂Q

∂β0
= 0,

∂Q

∂β1
= 0, and

∂Q

∂p
= 0. For calculating the first and second order

derivatives of Q, we first calculate

∂π0

∂β0
= pτ exp(β0 + β1) exp[−τ exp(β0 + β1)] + (1 − p)τ exp(β0) exp[−τ exp(β0)],

∂π0

∂β1
= pτ exp(β0 + β1) exp[−τ exp(β0 + β1)],

∂π0

∂p
= exp[−τ exp(β0)] − exp[−τ exp(β0 + β1)],

∂2π0

∂β2
0

= pτ [exp(β0 + β1) − τ exp(2β0 + 2β1)] exp[−τ exp(β0 + β1)]

+ (1 − p)τ [exp(β0) − τ exp(2β0)] exp[−τ exp(β0)],
∂2π0

∂β0∂β1
= pτ [exp(β0 + β1) − τ exp(2β0 + 2β1)] exp[−τ exp(β0 + β1)],

∂2π0

∂β0∂p
= τ exp(β0 + β1) exp[−τ exp(β0 + β1)] − τ exp(β0) exp[−τ exp(β0)],
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∂2π0

∂β2
1

=
∂2π0

∂β0∂β1
,

∂2π0

∂β1∂p
= τ exp(β0 + β1) exp[−τ exp(β0 + β1)],

∂2π0

∂p2
= 0.

Therefore

∂Q(θ|θ(k))
∂β0

=
m∑

i=1

[Ni(τ) − τ exp(β0 + β1Zi)]

+
n∑

i=m+1

[Ni(τ) − τWi1 exp(β0 + β1) − τWi0 exp(β0)] − n

π0

∂π0

∂β0
,

∂Q(θ|θ(k))
∂β1

=
m∑

i=1

[Ni(τ)Zi − τZi exp(β0 + β1Zi)]

+
n∑

i=m+1

[Ni(τ)Wi1 − τWi1 exp(β0 + β1)] − n

π0

∂π0

∂β1
,

∂Q(θ|θ(k))
∂p

=
m∑

i=1

(Zi

p
− 1 − Zi

1 − p

)
+

n∑
i=m+1

(Wi1

p
− Wi0

1 − p

)
− n

π0

∂π0

∂p
,

∂2Q(θ|θ(k))
∂β2

0

=
m∑

i=1

[−τ exp(β0 + β1Zi)] +
n∑

i=m+1

[−τWi1 exp(β0 + β1) − τWi0 exp(β0)]

+
n

π2
0

(∂π0

∂β0

)2

− n

π0

∂2π0

∂β2
0

,

∂2Q(θ|θ(k))
∂β0∂β1

=
m∑

i=1

[−τZi exp(β0 + β1Zi)] +
n∑

i=m+1

[−τWi1 exp(β0 + β1)]

+
n

π2
0

∂π0

∂β0

∂π0

∂β1
− n

π0

∂2π0

∂β0∂β1
,

∂2Q(θ|θ(k))
∂β0∂p

=
n

π2
0

∂π0

∂β0

∂π0

∂p
− n

π0

∂2π0

∂β0∂p
,

∂2Q(θ|θ(k))
∂β2

1

=
m∑

i=1

[−τZ2
i exp(β0 + β1Zi)] +

n∑
i=m+1

[−τWi1 exp(β0 + β1)]

+
n

π2
0

(∂π0

∂β1

)2

− n

π0

∂2π0

∂β2
1

,

∂2Q(θ|θ(k))
∂β1∂p

=
n

π2
0

∂π0

∂β1

∂π0

∂p
− n

π0

∂2π0

∂β1∂p
,

∂2Q(θ|θ(k))
∂p2

=
m∑

i=1

[
− Zi

p2
− 1 − Zi

(1 − p)2
]

+
n∑

i=m+1

[
− Wi1

p2
− Wi0

(1 − p)2
]

+
n

π2
0

(∂π0

∂p

)2

− n

π0

∂2π0

∂p2
.

Now β
(k+1)
0 , β

(k+1)
1 , p(k+1) is obtained by simply repeating the procedure

⎛
⎜⎝

β
(new)
0

β
(new)
1

p(new)

⎞
⎟⎠ =

⎛
⎜⎝

β
(old)
0

β
(old)
1

p(old)

⎞
⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2Q

∂β2
0

∂2Q

∂β0∂β1

∂2Q

∂β0∂p
∂2Q

∂β0∂β1

∂2Q

∂β2
1

∂2Q

∂β1∂p
∂2Q

∂β0∂p

∂2Q

∂β1∂p

∂2Q

∂p2

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

θ(k)

∗

⎛
⎜⎜⎜⎜⎜⎝

∂Q

∂β0
∂Q

∂β1
∂Q

∂p

⎞
⎟⎟⎟⎟⎟⎠

θ(k).
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until β
(new)
0 , β

(new)
1 , p(new) converges.

Repeat E-step and M-step until ||θ(k+1) − θ(k)|| is sufficiently small, then θ(k) converges to
the CMLE θ̂.

2.3 Estimation of Population Size

The famous Horvitz-Thompson method[4] is used to estimate the population size ν. If θ is
known, then it is given by

ν̂(θ) =
ν∑

i=1

δi

π0(θ)
=

n∑
i=1

1
π0(θ)

=
n

π0(θ)
,

which is unbiased. Based on the result of previous subsection, the estimator actually used is
given by plug-in the parameter estimate θ̂, i.e., ν̂ = ν̂(θ̂).

It is not difficult to show that E ∂ log(LC)
∂θ = 0, and based on the central limit theorem,

1√
ν

∂ log(LC)
∂θ converges in distribution to a normal distribution N(0, Σ), where Σ is a 5 × 5

positive definite matrix. Its elements are calculated and are available from the authors.
Using the Law of Large Numbers, lim

ν→∞
1
ν

∂2 log(LC)
∂θ2 = Σ̃ almost surely. It can be shown that

Σ̃ = −Σ. By applying Taylor’s series expansion, we have

∂ log(LC)
∂θ

∣∣∣
θ
− ∂ log(LC)

∂θ

∣∣∣
θ̂

≈ −∂2 log(LC)
∂θ2

∣∣∣
θ
(θ̂ − θ),

so √
ν(θ̂ − θ) ≈ −ν

(∂2 log(LC)
∂θ2

)−1 1√
ν

∂ log(LC)
∂θ

d−→ N(0, Σ−1).

Because

ν̂(θ̂) − ν̂(θ) ≈
[∂ν̂(θ)

∂θ

]T

(θ̂ − θ) = −
[n∂π0(θ)/∂θ

π2
0(θ)

]T

(θ̂ − θ),

ν̂(θ̂) − ν√
ν

=
ν̂(θ̂) − ν̂(θ)√

ν
+

ν̂(θ) − ν√
ν

≈− n

ν

[∂π0(θ)/∂θ

π2
0(θ)

]T√
ν(θ̂ − θ) +

1√
ν

ν∑
i=1

[ δi

π0(θ)
− 1

]

≈−
[∂π0(θ)/∂θ

π0(θ)

]T√
ν(θ̂ − θ) +

1√
ν

ν∑
i=1

[ δi

π0(θ)
− 1

]

≈
[∂π0(θ)/∂θ

π0(θ)

]T

ν
(∂2 log(LC)

∂θ2

)−1 1√
ν

∂ log(LC)
∂θ

+
1√
ν

ν∑
i=1

[ δi

π0(θ)
− 1

]
.

Now

Cov
(∂ log(LC)

∂β0
,

δi

π0(θ)
− 1

)

=
1

π0(θ)
Eδi

∂ log(LC)
∂β0

− E
∂ log(LC)

∂β0

=
1

π0(θ)

[∑
j �=i

1
ν

E
∂ log(LC)

∂β0
· Eδi +

1
ν

E
∂ log(LC)

∂β0

]
= 0,
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so

Cov
( 1√

ν

∂ log(LC)
∂β0

,
1√
ν

ν∑
i=1

[ δi

π0(θ)
− 1

])
=

1
ν

ν∑
i=1

Cov
(∂ log(LC)

∂β0
,

δi

π0(θ)
− 1

)
= 0.

It is straight forward that 1√
ν

ν∑
i=1

[
δi

π0(θ) − 1
]

converges in distribution to N
(
0, 1−π0(θ)

π0(θ)

)
,

therefore ν̂(θ̂)−ν√
ν

converges in distribution to a normal distribution N(0, V ), where

V =
[∂π0(θ)/∂θ

π0(θ)

]T

Σ−1
[∂π0(θ)/∂θ

π0(θ)

]
+

1 − π0(θ)
π0(θ)

.

The estimate of V is given by

V̂ =
[∂π0(θ̂)/∂θ

π0(θ̂)

]T

Σ̂−1
[∂π0(θ̂)/∂θ

π0(θ̂)

]
+

1 − π0(θ̂)

π0(θ̂)
,

where Σ̂−1 = Σ−1(θ̂) is the estimate for the asymptotic variance of
√

ν(θ̂ − θ). So the 95%

confidence interval of ν is
[
ν̂(θ̂) − 1.96

√
V̂ · ν̂(θ̂), ν̂(θ̂) + 1.96

√
V̂ · ν̂(θ̂)

]
.

3 Simulation

To test the performance of the proposed method, a series of simulation experiments are con-
ducted. Each experiment is repeated 5000 times, with parameter values being β0 = −0.4,
β1 = 0.6, p = 0.5, qm = 0.4 and qf = 0.2. When τ = 1, the average capture probabilities for
males and females are 0.7052 and 0.4885, respectively, and the overall capture probability is
0.5968; when τ = 2, capture probabilities for males and females are 0.9131 and 0.7383, respec-
tively, and the overall capture probability is 0.8257. The population size ν is taken to be 200,
400 and 800, respectively.

The averaged biases of the estimates (with standard errors in parenthesis), the means of
the estimated standard deviations and the coverage rates of the 95% confidence intervals are
summarized in Table 1 and Table 2. From the simulation results, it can be seen that, the
averaged biases are small, which means that the proposed method provides asymptotically
unbiased estimates for all model parameters. As the population size getting larger, and/or
the time length of the experiment getting longer, the estimates θ̂ getting closer to the true
value θ, and the standard error getting smaller. The averaged standard deviation estimates are
generally close to the standard errors of the 5000 replications, and the coverage rates of the
95% confidence intervals are close to their nominal values. When the model parameters take
other values, similar results are obtained and are not presented for brevity.

Table 1. Simulation Results with τ = 1

ν β̂0 β̂1 p̂ q̂m q̂f

200 bias –0.092 (0.307) 0.093 (0.329) -0.013 (0.107) -0.020 (0.133) -0.038 (0.179)

mean of std 0.302 0.331 0.153 0.215 0.251

CR of 95% CI 97.02 97.46 95.2 97.06 97.6

400 bias –0.041 (0.200) 0.039 (0.219) -0.004 (0.087) -0.013 (0.112) -0.027 (0.145)

mean of std 0.206 0.227 0.103 0.142 0.169

CR of 95% CI 96.46 96.58 94.94 96.46 96.96

800 bias –0.015 (0.144) 0.012 (0.159) -0.001 (0.066) -0.009 (0.088) -0.014 (0.107)

mean of std 0.144 0.160 0.071 0.097 0.111

CR of 95% CI 95.34 95.08 95.6 96 96.22
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Table 2. Simulation Results with τ = 2

ν β̂0 β̂1 p̂ q̂m q̂f

200 bias –0.017 (0.149) 0.014 (0.166) 0.000 (0.076) -0.011 (0.106) -0.018 (0.117)

mean of std 0.152 0.169 0.083 0.122 0.126

CR of 95% CI 96.08 96.14 96.24 95.66 96.7

400 bias –0.011 (0.107) 0.010 (0.119) 0.000 (0.054) -0.006 (0.078) -0.008 (0.082)

mean of std 0.107 0.119 0.056 0.080 0.081

CR of 95% CI 95.28 95.26 95.34 95 95.2

800 bias –0.004 (0.074) 0.003 (0.083) -0.001 (0.038) -0.004 (0.054) -0.004 (0.056)

mean of std 0.075 0.084 0.038 0.055 0.055

CR of 95% CI 95.36 95.56 94.86 95.16 95.38

We compare our proposed method with existing method[6] where only the individuals with-
out missing data are used, and the results are presented in Table 3, together with the corre-
sponding population size estimates. Some parameter values are still β0 = −0.4, β1 = 0.6 and
p = 0.5, ν is taken to be 400, but parameters qm and qf take different values. Because the
estimates for β0 and β1 are all reasonable, and the estimates for qm and qf are not available in
existing method, only the estimates for p and ν are listed.

Table 3. Comparison with Existing Method

Existing Method Proposed Method

τ (qm, qf ) p̂ ν̂ p̂ ν̂

1 (0,0) bias -0.002 (0.044) 5.322 (31.029) -0.002 (0.044) 5.322 (31.029)

mean of std 0.045 31.056 0.045 31.056

CR of 95% CI 95.46 95.56 95.46 95.56

1 (0.2,0.4) bias 0.067 (0.056) -114.324 (27.398) -0.002 (0.079) 8.218 (34.369)

mean of std 0.055 25.727 0.104 33.960

CR of 95% CI 73.98 6.18 95.6 95.82

1 (0.3,0.3) bias -0.003 (0.054) -114.511 (28.433) -0.008 (0.084) 7.688 (33.925)

mean of std 0.054 26.618 0.115 33.447

CR of 95% CI 94.56 6.48 94.54 95.86

1 (0.4,0.2) bias -0.074 (0.052) -114.619 (29.176) -0.016 (0.081) 7.833 (33.600)

mean of std 0.051 27.540 0.121 33.238

CR of 95% CI 70.280 7.180 94.020 96.180

2 (0,0) bias 0.000 (0.029) 1.080 (12.944) 0.000 (0.029) 1.080 (12.944)

mean of std 0.030 12.841 0.030 12.841

CR of 95% CI 95.26 94.96 95.26 94.96

2 (0.2,0.4) bias 0.070 (0.036) -118.802 (13.773) 0.000 (0.051) 1.735 (13.262)

mean of std 0.036 10.284 0.055 13.443

CR of 95% CI 49.84 0 96.14 95.56

2 (0.3,0.3) bias -0.001 (0.036) -118.718 (14.100) 0.000 (0.054) 1.590 (13.248)

mean of std 0.035 10.796 0.059 13.333

CR of 95% CI 94.52 0 95.9 95.4

2 (0.4,0.2) bias -0.072 (0.035) -118.649 (14.434) -0.003 (0.053) 1.646 (13.166)

mean of std 0.034 11.301 0.064 13.286

CR of 95% CI 45 0 96.28 95.64

It is observed from Table 3 that, whenever the problem of missing covariate value arises, the
population size estimate of existing method has a non-negligible negative bias, and the coverage
rates of the confidence intervals are very low, meanwhile, the proposed method gives satisfactory
results, with small positive biases which is common in capture-recapture studies. This is mainly
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because existing method uses only part of the full data. If the missing mechanism is MAR,
i.e., qm = qf , then for the estimation of p, both methods gives reasonable results, although the
precision of existing method seems better. When the missing mechanism is non-ignorable, i.e.,
qm �= qf , then for the existing method, the bias in the estimation of p is not negligible, and the
coverage rates of the confidence intervals are poor. It is not surprising that if qm < qf , the bias
is positive, and the opposite is true.

4 Mai Po Bird Example

We apply the proposed method to a real example which is also used in other related works,
e.g.,[3]. Detailed information of the data can be found in [7,14]. Of all the 131 captured
birds, 49 birds’ sex were recorded correctly, of which 32 are males and 17 are females. The
estimation results using our proposed method are displayed in Table 4, with standard deviation
in parenthesis.

Table 4. Mai Po Data Results

β0 β1 p qm qf ν

–1.196 (0.377) 1.129 (0.435) 0.159 (0.062) 0.199 (0.271) 0.813 (0.049) 414.758 (102.108)

It is verified again that male birds are more catchable than females, which is the conclusion of
[3,7,14]. The population size estimates coincides approximately with the second estimate of [3],
which uses weight as the only covariate, and with previous results. Our analysis shows strongly
that the missing mechanism for the covariate sex is non-ignorable, therefore the conjecture of
[3] is confirmed. Furthermore, the estimate for p is updated to be even smaller, which should
be more reasonable, because in [3], it is assumed that the covariate is missing at random.

5 Discussion

In this paper we have successfully solved the problem of missing covariate values, possibly
non-ignorable, by establishing a sub-model, which can deal with various missing mechanisms.
Combined with the conditional likelihood approach, it is assured that information in the ob-
served data is completely used in the statistical inference procedure.

We only consider one bivariate covariate case here, so the binomial distribution assumption is
the only natural choice. Theoretically the proposed method can be extended to multi-covariate
situation, where continuous covariate may also exist. However, more parameters should be
included, and even non-parametric structure might be constructed, so strong and disputable
assumptions on covariate distribution and its link to the missing mechanism will be introduced
to the sub-model, which is not the main theme of the present work. The assumption that the
baseline hazard rate λ0(t) takes the form exp(β0) can be also weakened to it is time-dependent,
but be known, up to a constant, and if it is completely unknown, then the estimation of model
parameters is usually via a martingale estimating equation, which uses only recaptured data,
so is less efficient. Finally, it is apparent that a discrete time version of this study is straight
forward.
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