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Abstract In this paper, we study the ill posed Perona-Malik equation of image processing[14] and the regu-

larized P-M model i.e. C-model proposed by Catte et al.[4]. The authors present the convex compound of these

two models in the form of the system of partial differential equations. The weak solution for the equations is

proved in detail. The additive operator splitting (AOS) algorithm for the proposed model is also given. Finally,

we show some numeric experimental results on images.

Keywords Perona-Malik model; C-model; weak solutions; AOS algorithm

2000 MR Subject Classification 35R30; 65M06; 65Q05; 65J22

1 Introduction

It is well known that P. Perona and J. Malik[14] have proposed an anisotropic diffusion model
for image restoration based on the following partial differential equation:

∂u

∂t
= div (g(|∇u|)∇u), u|t=0 = u0. (1)

In this equation, u0 is the observed image, u is the original image to be recovered, g is a smooth
nonincreasing positive function with g(0) = 1, g(s) → 0, at infinity. Its main idea is that the
smoothing process obtained by the equation is conditional: if x (x is the image point) is an
edge point where ∇u(x) is large, then the diffusion will be low and therefore the edge will be
kept. If x is in homogeneous area, then ∇u(x) is low and the diffusion will tend to smooth
around x. Since an edge stopping function g(|∇u|) in the smoothing process is introduced, P-M
model has been considered as an important theory of edge detection[12]. The experimental
results obtained by Perona and Malik[14] were very impressive, edges remained much more
stable across the scales.

However, the Perona-Malik model is ill-posed in mathematics[9]. It has several serious,
practical and theoretical difficulties. Indeed if the image is noisy, then the noise produces
very large oscillation of the gradient ∇u. Thus the conditional smoothing introduced by the
model will not give good results since all these noise edges will be kept. For these difficulties,
there have been many people who attempt to study the Perona-Malik equation. And several
nonlinear diffusion model have been developed and a sound interpretation can be given in
[15,1,13,2,16,5,6,11]. One of the ways to tackle the ill-posed P-M equation is regularizing the
term g(|∇u|) so as to get a well-posed equation. By reducing the amount of regularization
and observing the behavior of the solution of the regularized problem, one can obtain precious
information of the initial image. In 1992, F. Catte et al.[4] substituted in the edge function
g(|∇u|) the gradient of the image ∇u by a smooth version Gσ ∗ ∇u, where Gσ is a Gaussian
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smoothing kernel, and obtained the following equation:
⎧
⎨

⎩

∂u

∂t
= div

(
g(|∇Gσ ∗ u|)∇u(t, x)

)

u|t=0 = u0(x).
(2)

For the convenence, we call this equation as C-equation or C-Model. In [4], Catte et al.
prove the existence, uniqueness and regularity of a solution. For the C-equation, the Gσ ∗u(x, t)
is nothing but the solution at scale σ of the heat equation with u(x, t) as initial data. This
regularized method belongs to spatial regularization. This model has the advantages over the
Perona-Malik model: if the initial image is very noisy, then the Perona-Malik model can’t
distinguish between “true” edges and “false” edges created by the noise. But the regularized
model avoids this drawback, since the equation will diffuse when the gradient is small. In
addition, the model makes the filter insensitive to noise at time tσ, since (∇Gσ ∗ u)(t, x) is
exactly the gradient of the solution at time σ of the solution of the heat equation with initial
data u(t, x).

The second regularized method to overcome ill-posed difficulties is time-delay regularization
model. The idea of the time-delay regularization has been used in the model of Nitzberg and
Shiota[1] at first. This kind of model is very close to the Malik and Perona equation since there
is no spatial smoothing. It is described by the following system:

∂u

∂t
= div

(
g(v)∇u(t, x)

)
, u|t=0 = u0(x)

∂v

∂t
= |∇u|2 − v, v|t=0 = v0(x).

(3)

It is pointed out that time-delay regularization has been used in image processing by diffusion
tensors. In 2001, Chen[7] incorporated time-delay regularization into curvature based diffusion
model as following:

∂u

∂t
= g(v)|∇u|div

( ∇u

|∇u|
)

+ ∇g(v)∇u − λ|∇u|(u − u0)), u|t=0 = u0(x)

∂v

∂t
= −1

τ
(v − |∇Gσ ∗ u|2), v|t=0 = v0(x).

(4)

In which λ is a weighting parameter, Gσ is a Gaussian smoothing kernel with a pre-specified σ. τ
is a time-scale factor, g(s) = 1

1+Ks with K > 0. In [7], Chen showed the existence,uniqueness and
stability of the “viscosity” solution of the model. In [8], T. Goldstein and S. Osher proposed split
Bregman method and solved the class of L1-regularized problems. They applied this scheme to
Rudin-Osher-Fatemi[15] functional for image denoising. In recent, Y. Zhu et al. developed a fast
alternating minimization method for MR images in [19] and analyzed the convergence of the
method in [20]. In addition, Y. Zhu et al. also gave a fast method for MR images reconstruction
in [21] and weighted-average alternating minimization method for MRI reconstruction in [22].

In our work, we develop a new model for image restoration, which is based on the ideas
of the delay-time regularization. We will give detailed discussion in the latter sections. Our
paper is organized as follows: in the Section 2, we propose the convex incorporation form of
P-M equation and C-equation by the view points of the delay-time regularization. In Section
3, we give the proofs of the existence of weak solution for the proposed model. AOS numerical
implementation details are discussed in Section 4. Section 5 concludes this paper.
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2 The Convex Composition of P-M Equation and C-equation

Let Ω ⊂ R2 be the image domain, ∂Ω denotes the boundary. In this paper, the new developed
nonlinear diffusion model is the following system of PDES:

∂u

∂t
= div (g(v)∇u),

∂u

∂n

∣
∣
∣
∂Ω

= 0, u|t=0 = u0(x), (5)

∂v

∂t
= (1 − λ)(|∇u| − v) + λdiv (∇v),

∂v

∂n

∣
∣
∣
∂Ω

= 0, v|t=0 = v0, (6)

where u0 is the observed image to be processed, g(s) = 1
1+( s

K )2 , 0 ≤ λ ≤ 1.

Now we can find that when λ = 0, (6) becomes

∂v

∂t
= |∇u| − v.

If let v|t=0 = |∇u|, then v = |∇u| is the solution for

∂v

∂t
= |∇u| − v, v|t=0 = |∇u|.

Thus (5) becomes ∂u
∂t = div (g(|∇u|)∇u), which is the Perona-Malik equation.

When λ = 1, Equation (6) becomes ∂v
∂t = div(∇v). Let v|t=0 = |∇u|, then Gσ ∗ u(x, t)(σ =√

2t) is nothing but the solution for

∂v

∂t
= div (∇v), v|t=0 = |∇u|.

So (5) becomes
∂u

∂t
= div (g(|∇Gσ ∗ ∇u|)∇u),

and which is the regularization of the Perona-Malik model proposed by F. Catte et al.[4]. That
is the C-equation as mentioned above.

Since (1 − λ)(|∇u| − v|) + λdiv (∇v) (0 ≤ λ ≤ 1) is the convex combination of (|∇u| − v)
and div(∇v), we might as well call the system of PDES:

∂u

∂t
= div (g(v)∇u),

∂v

∂t
= (1 − λ)(|∇u| − v) + λdiv (∇v)

as the convex composite form of P-M equation and C-equation. In the next section, we will
prove the existence of weak solution for the system of PDES (5) and (6).

3 The Existence of Weak Solution for the Proposed PDES Model

Firstly, let us give the proof of the existence of weak solution for the equation (5) i.e.,

∂u

∂t
= div (g(v)∇u),

∂u

∂n

∣
∣
∣
∂Ω=0

, u|t=0 = u0.

In 2-dimension, Equation (5) can be rewritten as

∂u

∂t
=

∂

∂x

(
g(v)

∂u

∂x

)
+

∂

∂y

(
g(v)

∂u

∂y

)
.
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Assume 0 ≤ t ≤ T, T > 0. Let QT = Ω× [0, T ], and it is a cylindrical domain. Discrete the
time variable t by the form t = kh, h = T

m , m is a positive integer. Suppose Ωk is the intersection
of the plane t = kh with QT , while Sk is its boundary. On all of the Ωk, k = 1, 2, · · · , m, we
consider the problem

ut̄(x, kh) = div (gh∇u(x, kh)),
∂u

∂n

∣
∣
∣
∂ΩT =0

= 0, u|t=0 = u0, (7)

in which

ut̄(x, kh) =
1
h

(u(x, kh) − u(x, kh − h)), gh =
1
h

∫ kh

kh−h

g(v(x, t)) dt.

Obviously, Problem (7) is strictly elliptic, and it is uniquely solvable in H1(Ω). Multiply (7) by
2hu(x, kh), sum the obtained equality over k from 1 to some k0 ≤ m and integrate the resulting
over Ω,

2h

∫

Ω

k0∑

k=1

u(x, kh)ut̄(x, kh)dx = 2h

∫

Ω

k0∑

k=1

u(x, kh)div(gh∇u)dx.

Using the integration by parts we can obtain

2h

k0∑

k=1

∫

Ωk

ut̄(x, kh)u(x, kh)dx + 2h

k0∑

k=1

∫

Ωk

gh|∇u(x, kh)|2dx = 0. (8)

The first term of the above equality can be changed by the following elementary identity:

2h

k0∑

k=1

ut̄(x, kh)u(x, kh) = u2(x, k0h) − u2(x, 0) + h2
k0∑

k=1

(
ut̄(x, kh)

)2
. (9)

This identity is easily verified. Indeed, since

2h

k0∑

k=1

ut̄(x, kh)u(x, kh) =2h

k0∑

k=1

1
h

(u(x, kh) − u(x, kh − h))u(x, kh)

=2
k0∑

k=1

(u2(x, kh) − u(x, kh − h)u(x, kh)),

while

u2(x, k0h) − u2(x, 0) + h2
k0∑

k=1

(ut̄(x, kh))2

=u2(x, k0h) − u2(x, 0) + h2
k0∑

k=1

( 1
h

(u(x, kh) − u(x, kh − h))
)2

=u2(x, k0h) − u2(x, 0) +
k0∑

k=1

(u(x, kh) − u(x, kh − h))2

=2
k0∑

k=1

(u2(x, kh) − u(x, kh − h)u(x, kh)).

Thus the identity (9) is true.
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Using the identity (9), we can make (8) become

∫

Ω

u2(x, k0h)dx −
∫

Ω

u2(x, 0)dx + h2

∫

Ω

k0∑

k=1

(ut̄(x, kh))2dx + 2h

∫

Ω

k0∑

k=1

gh|∇u(x, kh)|2dx = 0.

That is
∫

Ω

u2(x, k0h)dx −
∫

Ω

u2(x, 0)dx + h2
k0∑

k=1

∫

Ωk

(ut̄(x, kh))2dx + 2h

k0∑

k=1

∫

Ωk

gh|∇u(x, kh)|2dx = 0.

Assume ν = inf
c
{g(c)} > 0, then gh ≥ ν. So we have

∫

Ω

u2(x, k0h)dx + h2
k0∑

k=1

∫

Ωk

(ut̄(x, kh))2dx + 2νh

k0∑

k=1

∫

Ωk

|∇u(x, kh)|2dx ≤
∫

Ω

u2(x, 0)dx.

Let

Ih(k0) =
∫

Ω

u2(x, k0h)dx + h2
k0∑

k=1

∫

Ωk

(ut̄(x, kh))2dx + 2νh

k0∑

k=1

∫

Ωk

|∇u(x, kh)|2dx,

then
Ih(k0) ≤ ||u0||L2(Ω), k0 = 0, 1, 2, · · · , m. (10)

Let uh(x, t) =
m∑

k=1

χm,k(t)u(x, kh − h), where χm,k(t) denotes the eigenfunction in [kh −
h, kh), k = 1, 2, · · · , m, then

uh(x, t) ∈ W 1,0
2 (QT ),

∂uh

∂n

∣
∣
∣
∂ΩT

= 0,

uh|t=0 = u0,

where W 1,0
2 (QT ) is the Hilbert space with scalar product (u, v)W 1,0

2 (QT ) =
∫

QT
(uv + 
u ·


v)dxdt. By virtue of (10), in W 1,0
2 (QT )uh(x, t) satisfies

∣
∣
∣

∣
∣
∣uh(x, t)

∣
∣
∣

∣
∣
∣
L2(QT )

+
∣
∣
∣

∣
∣
∣∇uh(x, t)

∣
∣
∣

∣
∣
∣
L2(QT )

≤ C, (11)

where C is constant. Because of (11) we can choose a sequence hl, l = 1, 2 · · · , (hl → 0, l → ∞),
and a function u ∈ W 1,0

2 (QT ) such that
{
uhl(x, t)

}
and

{∇uhl(x, t)
}

converge weakly in L2(QT )
to u and ∇u respectively, here u is from W 1,0

2 (QT ) and ∂u
∂n

∣
∣
∂QT =0

.

Next let us show that u(x, t) satisfies the integral equality in the definition of weak solution:
∫

QT

(
− u

∂η

∂t
+ g(v)∇u∇η

)
dxdt −

∫

Ω

u0η(x, 0)dx = 0,

where η ∈ W 1,1
2 (QT ), η|T = 0, η|∂ΩT = 0. Multiply Equation (7) by hη(x, kh), sum the

resulting equality over k from 1 to m and integerate over Ω :
∫

Ω

m∑

k=1

ut̄(x, kh)hη(x, kh)dx =
∫

Ω

m∑

k=1

div(gh∇u)hη(x, kh)dx. (12)
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For the left side of (12), we give an equality

h

m∑

k=1

ut̄(x, kh)η(x, kh) = −h

m−1∑

k=0

u(x, kh)ηt(x, kh) + u(x, mh)η(x, mh) − u(x, 0)η(x, 0), (13)

here ηt(x, kh) = 1
h (η(x, kh + h) − η(x, kh)). This can be verified directly.

Indeed, since

− h

m−1∑

k=0

u(x, kh)ηt(x, kh)

= −
m−1∑

k=0

u(x, kh)(η(x, kh + h) − η(x, kh))

= − u(x, 0)η(x, h) + u(x, 0)η(x, 0) − u(x, h)η(x, 2h) + u(x, h)η(x, h)
− u(x, 2h)η(x, 3h) + u(x, 2h)η(x, 2h) + · · ·
− u(x, (m − 1)h)η(x, mh) + u(x, (m − 1)h)η(x, (m − 1)h)),

we have

− h

m−1∑

k=0

u(x, kh)ηt(x, kh) + u(x, mh)η(x, mh) − u(x, 0)η(x, 0)

=
m∑

k=1

(u(x, kh) − u(x, kh − h))η(x, kh),

while

h

m∑

k=1

ut̄(x, kh)η(x, kh) =
m∑

k=1

(u(x, kh) − u(x, kh − h))η(x, kh),

so (13) is true.
In this way, (12) can be changed into

−h

m∑

k=0

∫

Ωk

uηtdx −
∫

Ω

u(x, 0)η(x, 0)dx + h

m∑

k=1

∫

Ωk

gh∇u∇ηdx = 0,

in which we take η(x, t) to be equal to zero for t > mh. Rewrite it in the form

−
∫

ΩT

uh(x, t)ηt(x, t) −
∫

Ω

u(x, 0)η(x, 0)dx +
∫ T

h

∫

Ω

gh ∇uh∇ηdxdt = 0,

where the line over functions denotes that at the point (x, t) of each layer x ∈ Ω, t ∈ [kh−h, kh]
the function is equal to its value at the point (x, kh − h). The piece-wise-continuous functions
η(x, t) and ηt(x, t) converge uniformly to a continuous differentiable function η(x, t) and its
derivative ∂η(x,t)

∂t . Because |g(v)| ≤ 1, we can choose from {hl} a subsequence {hlp}, p = 1, 2, · · · ,
such that

ghlp (v) → g(v), p → ∞.

In view of this and the weak convergence of the uh(x, t) and ∇uh(x, t) to u and ∇u, we can get
∫

QT

(
− u

∂η

∂t
+ g(v)∇u∇η

)
dxdt −

∫

Ω

u(x, 0)η(x, 0)dx = 0.
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This shows that u is the weak solution of Equation (5) in W 1,0
2 (QT ).

Now we prove the existence of weak solutions of Equation (6):

∂v

∂t
= (1 − λ)(|∇u| − v) + λdiv (∇v), v|t=0 = v0,

∂v

∂n

∣
∣
∣
∂Ω

= 0.

Similar to the proof of the existence of weak solution for Equation (5), on all the Ωk, k =
1, 2, · · · , m, we consider the problem:

vt̄(x, kh) = (1 − λ)(|∇uh| − v(x, kh)) + λdiv (∇v(x, kh)),
∂v

∂n

∣
∣
∣
∂ΩT

= 0, v|t=0 = v0, (14)

where vt̄(x, kh) = 1
h (v(x, kh)− v(x, kh−h)), uh = 1

h

∫ kh

kh−h
u(x, t)dt. Equation (14) is a strictly

elliptic problem, and we can see it has the weak solution in H1(Ω).
Multiply (14) by 2hv(x, kh) and sum the resulting equality over k from 1 to some k0 ≤ m,

and integrate the obtained equality over Ω and have:

2h

∫

Ω

k0∑

k=1

v(x, kh)vt̄(x, kh)dx =2h(1 − λ)
∫

Ω

( k0∑

k=1

(|∇uh|v(x, kh) − v2(x, kh)
)
dx

+ 2hλ

∫

Ω

( k0∑

k=1

div (∇v(x, kh))v(x, kh)
)
dx.

Using the integration by parts, we have

2h

k0∑

k=1

∫

Ω

vt̄(x, kh)v(x, kh)dx + 2hλ

k0∑

k=1

∫

Ω

|∇v(x, kh)|2dx

=2h(1 − λ)
k0∑

k=1

∫

Ω

|∇uh|v(x, kh)dx − 2h(1 − λ)
k0∑

k=1

∫

Ω

|v(x, kh)|2dx

≤h(1 − λ)
k0∑

k=1

∫

Ω

|∇uh|2dx + h(1 − λ)
k0∑

k=1

∫

Ω

|v(x, kh)|2dx − 2h(1 − λ)
k0∑

k=1

∫

Ω

|v(x, kh)|2dx

=h(1 − λ)
k0∑

k=1

∫

Ωk

|∇uh|2dx − h(1 − λ)
k0∑

k=1

∫

Ω

|v(x, kh)|2dx.

That is

2h

k0∑

k=1

∫

Ω

vt̄(x, kh)v(x, kh)dx + 2hλ

k0∑

k=1

∫

Ωk

|∇v(x, kh)|2dx + h(1 − λ)
k0∑

k=1

∫

Ωk

|v(x, kh)|2dx

≤h(1 − λ)
k0∑

k=1

∫

Ω

|∇uh|2dx.

Using the elementary identity

2h

k0∑

k=1

vt̄(x, kh)v(x, kh) = v2(x, k0h) − v2(x, 0) + h2
k0∑

k=1

(
vt̄(x, kh)

)2
,
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we can obtain

∫

Ω

v2(x, k0h)dx −
∫

Ω

v2(x, 0)dx + h2

∫

Ω

k0∑

k=1

(vt̄(x, kh))2dx

+ 2hλ

k0∑

k=1

∫

Ωk

|∇v(x, kh)|2dx + h(1 − λ)
k0∑

k=1

∫

Ωk

|v(x, kh)|2dx

≤h(1 − λ)
k0∑

k=1

∫

Ωk

|∇uh|2dx.

That is

∫

Ω

v2(x, k0h)dx + h2
k0∑

k=1

∫

Ωk

(vt̄(x, kh))2dx + 2hλ

k0∑

k=1

∫

Ωk

|∇v(x, kh)|2dx

≤h(1 − λ)
k0∑

k=1

∫

Ωk

|∇uh|2dx +
∫

Ω

v2(x, 0)dx − h(1 − λ)
k0∑

k=1

∫

Ωk

|v|2dx

≤h(1 − λ)
k0∑

k=1

∫

Ωk

|∇uh|2dx +
∫

Ω

v2(x, 0)dx.

Let

Jh(k0) =
∫

Ω

v2(x, k0h)dx + h2
k0∑

k=1

∫

Ωk

(vt̄(x, kh))2dx + 2hλ

k0∑

k=1

∫

Ωk

|∇v(x, kh)|2dx,

then
Jh(k0) ≤ c

(||∇u||2L2(Qk0h) + ||v0||2L2(Ω)

)
, K0 = 0, 1, 2, · · · , m. (15)

If assume

vh(x, t) =
m∑

k=1

χm,k(t)v(x, kh − h),

where χm,k(t) is the eigenfunction on [kh − h, kh), k = 1, 2, · · · , m, then

vh(x, t) ∈ W 1,0
2 (QT ),

∂vh

∂n

∣
∣
∣
∂QT

= 0, vh|t=0 = v0.

We can obtain from (15) that the function vh(x, t) have uniformly bounded norms in W 1,0
2 (QT ) :

‖vh‖L2(QT ) + ‖∇vh‖L2(QT ) ≤ c1. (16)

Because of (16), a sequence hl, l = 1, 2, · · · , (hl → 0, l → ∞) and a function v ∈ W 1,0
2 (QT )

can be chosen such that {vh
l (x, t)} and {∇vh

l (x, t)} converge weakly in L2(QT ) to v and ∇v

respectively. In which, v is from W 1,0
2 (QT ), and ∂v

∂n

∣
∣
∂QT

= 0.

Now we prove that v(x, t) is a weak solution i.e. it satisfies the following integral equality:
∫

QT

(
− v

∂η

∂t
+ λ∇v∇η

)
dxdt −

∫

Ω

v0η(x, 0)dx = (1 − λ)
∫

QT

(|∇u| − v)ηdxdt,
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where η ∈ W 1,1
2 (QT ), η|t=T = 0, η|∂QT = 0. Multiply Equation (14) by hη(x, kh), sum the

obtained equality over k from 1 to m and integrate over Ω :
∫

Ω

m∑

k=1

vt(x, kh)hη(x, kh)dx =(1 − λ)
∫

Ω

m∑

k=1

(|∇uh| − v(x, kh)hη(x, kh)dx

+ λ

∫

Ω

m∑

k=1

div (∇v(x, kh))hη(x, kh)dx. (17)

We transform the left term of Equality (17) by means of the following formula:

h
m∑

k=1

vt̄(x, kh)η(x, kh) = −h
m−1∑

k=0

v(x, kh)ηt(x, kh) + v(x, mh)η(x, mh) − v(x, 0)η(x, 0), (18)

in which ηt(x, kh) = 1
h (η(x, kh+h)−η(x, kh)). The proof of this equality is similar to Equality

(13). So (17) can become

− h
m∑

k=0

∫

Ωk

vηtdx −
∫

v(x, 0)η(x, 0)dx + hλ
m∑

k=1

∫

Ωk

∇v∇ηdx

=(1 − λ)h
m∑

k=1

∫

Ωk

(|∇uh| − v(x, kh))ηdx,

where η(x, t) = 0, when t > mh. Let us rewrite it in the form:

−
∫

QT

vh(x, t) ηt(x, t)dxdt −
∫

Ω

v(x, 0)η(x, 0)dx + λ

∫ T

n

∫

Ω

∇vh ∇ηdxdt

=(1 − λ)
∫ T

h

∫

Ω

(|∇uh| − v(x, t))η(x, t)dxdt,

in which the line over some of the functions means that at the point (x, t) of each layer x ∈
Ω, t ∈ [kh − h, kh) the function is the value at the point (x, kh − h).

For a continuously differentiable function η(x, t), the piecewise-continuous functions η(x, t)
converge uniformly to η(x, t), while the functions ηt(x, t) approximate to its derivative ∂η

∂t .

Because uh(x, t) and ∇vh(x, t) converge weakly to v and ∇v, we can obtain
∫

QT

(
− v

∂η

∂t

)
dxdt −

∫

Ω

v(x, 0)η(x, 0)dx + λ

∫

QT

∇v∇ηdxdt = (1 − λ)
∫

QT

(|∇u| − v)ηdxdt.

This equality shows that v is the weak solution of Equality (6) in W 1,0
2 (QT ).

Based on the above results, we can give the following theorem.

Theorem 1. Let T > 0, QT = Ω × [0, T ]. If u0 ∈ H1(Ω), then PDES system:

∂u

∂t
= div (g(v)∇u),

∂u

∂n

∣
∣
∣ = 0, u|t=0 = u0, (19)

∂v

∂t
= (1 − λ)(|∇u| − v) + λdiv (∇v),

∂v

∂n

∣
∣
∣
∂Ω

= 0, v|t=0 = v0, (20)

has a weak solution (u, v) in
(
W 1,0

2 (QT )
) × (

W 1,0
2 (QT )

)
. In which

g(s) =
1

1 + s2

K2

, 0 ≤ λ ≤ 1.
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4 Numerical Scheme and Experimental Results

To solve our proposed model, we use an semi-implicit additive operator splitting (AOS) scheme
(see [17,18,10,3]). Now we describe the numerical method used to implement our model. A
discrete image can be regarded as a vector f ∈ RN , whose components fi, i ∈ {1, 2, · · · , N}
display the grey values at each pixel. Pixel i represents the location xi. In the following dis-
cussion, we use hl to denote the grid size in the l (l = 1, 2) direction. Consider discrete times
tk = kτ, where k ∈ N0 and τ is the time step size, we use uk

i and gk
i to denote the approxi-

mations to u(xi, tk) and g(v(xi, tk)) respectively. A semi-implicit discrete scheme for Equation

(19) with Neumann boundary conditions is given by uk+1
i

−uk
i

τ =
2∑

l=1

∑

j∈Nl(i)

gk
j +gk

i

2h2
l

(uk+1
j − uk

i ),

where Nl(i) consists of the two neighbors of pixel i along the l direction (boundary pixels may
have only one neighbor). We can rewrite the semi-implicit scheme in pix-vector notation as
uk+1−uk

τ = Al(uk)uk+1 (l = 1, 2), with Al(uk) =
(
aijl(uk)

)
and

aijl(uk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

gk
i + gk

j

2h2
l

, j ∈ Nl(j),

−
∑

n∈Nl(i)

gk
i + gk

h

2h2
l

, j = i,

0, else.

Solving for uk+1 yields

uk+1 =
(
I − τ

2∑

l=1

Al(uk)
)−1

uk. (21)

According to the AOS approximation idea [17], we can get the AOS scheme for (19):

uk+1 =
1
2

2∑

l=1

(
I − 2τ

2∑

l=1

Al(uk)
)−1

uk. (22)

In the same way, we can give the AOS scheme for (20). In matrix-vector notation, a semi-
implicit discretization of (20) is given by

vk+1 − vk

τ
= (1 − λ)(|∇uk+1| − vk+1) + λ

2∑

l=1

Bl(vk)vk+1.

Thus vk+1 can be given by

vk+1 =
(
I − λτ

1 + (1 − λ)

2∑

l=1

Bl(vk)
)−1( (1 − λ)τ

1 + (1 − λ)τ
|∇uk+1| + vk

1 + (1 − λ)τ

)
. (23)

So the AOS approximation for (20) is

vk+1 =
1
2

2∑

l=1

(
I − 2λτ

1 + (1 − λ)τ
Bl(vk)

)−1( (1 − λ)τ
1 + (1 − λ)τ

|∇uk+1| + vk

1 + (1 − λ)τ

)
. (24)

Now we can using the above-mentioned AOS scheme to implement our proposed model.
The algorithm to implement the proposed PDES system is as follows:
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Step 1. Fix iteration numbers N, the value of K, and the grid size hl (l = 1, 2).
Step 2. Initialize u and v, let k = 0, u = u0, v0 = |∇u0|.
Step 3. Using (22) to compute uk+1 and give |∇uk+1|, while vk+1 is computed by (24).
Step 4. If k ≤ N, then End else next step.
Step 5. k = k + 1 goto Step 3.
For the complexity of AOS algorithms, we don’t discuss it here. The interested readers can

refer to [17] for the detailed discussion of the complexity for AOS algorithms. We use Peak-
Signal-Noise-Rate(PSNR) and Root-Mean-Square-Error (RMSE) to compare the advantages
and disadvantages between our model and C-model or P-M model. PSNR and RMSE is defined
by the following:

PSNR(u, w) = 10 log 10
2552

1
mn

∑

i,j

(ui,j − wi,j)2
, (25)

RMSE(u, w) =
√

1
mn

∑

i,j

(ui,j − wi,j)2, (26)

where wi,j and ui,j denotes the pixel values of the processed and the original images respectively.
In the following examples, we assume hl = 1, l = 1, 2, K = 10.

Example 1. After the original Lena image is added by the Gaussian white noise with variance
σ = 35, the noisy image can be regarded as an observed image, i.e. u0 in the model. Let
v0 = |∇u0|, and the approximation of ∂u0

∂x and ∂u0
∂y in |∇u0| is given by the following:

∂u0

∂x

∣
∣
∣
i,j

= γ
u0i+1,j − u0i−1,j

2
+

(1 − γ)
2

(u0i+1,j+1 − u0i−1,j+1

2
+

u0i+1,j−1 − u0i−1,j−1

2

)
,

∂u0

∂y

∣
∣
∣
i,j

= γ
u0i,j+1 − u0i,j−1

2
+

(1 − γ)
2

(u0i+1,j+1 − u0i+1,j−1

2
+

u0i−1,j+1 − u0i−1,j−1

2

)
,

where γ is a parameter to be chosen. According to [3], using the above mentioned formula not
only keep rotation-invariance properties, but also make the result less sensitive to noise. The
computation of |∇uk+1| is similar to |∇u0|.

Fig. 1(a) is the original image, Fig. 1(b) is the noisy image corrupted by white Gaussian
noise with standard deviation σ = 35. Fig. 1(c) is v0 that equals to the norm of the gradient
of u0 i. e. Fig. 1(b).

Fig. 1. Lena image. (a) Original image. (b) Noisy image with σ = 35. (c) Norm of the gradient of noisy

image.

In our test, we choose λ = 0.75, γ =
√

2 − 1, N (number of iteration)=12. In order to
show the better of our method, we compare it with P-M model and C-Model. Fig. 2(a) is the
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result of P-M method, Fig. 2(b) is the result of C-model method, and Fig. 2(c) gives the result
processed by our method. From the visual quality, Fig. 2(c) is better than Fig. 2(a) and Fig.
2(b).

Fig. 2. Results for the Lena Image. (a) P-M Method. (b) C-model Method (c) Our Method.

From all the three restored image, it is clear that our proposed model suppresses more noise
while preserves more fine details and small structures in the image. In addition, from the values
of PSNR and RMSE for restored image, our method increases the PSNR by 1.5–2.5 dB and
reduce the RMSE 2.5–4.0. We report the PSNR and RMSE for each of the schemes in Table I.

Table 1. PSNR and RMSE for each of the SCHEMS

model P-M model C-model our model

PSNR 23.8422 dB 23.1465 dB 25.2917 dB

RMSE 16.3844 17.7506 13.8662

Example 2. A fingerprint image is used in the second test. It is added by the white Gaussian
noise with the standard deviation σ = 45. We choose noisy image and the norm of its gradient
as u0 and v0. Let iteration number N=16, the values of other parameters are still equal to the
corresponding values in Example 1. Using our model, P-M model and C-model to process u0,
we can find that our method is also better than other two methods. Fig. 3(a) is the original
image, Fig. 3(b) is the noisy image and Fig. 3(c) is the norm of the gradient of the noisy image.
Fig. 4 (a), (b), and (c) show the results processed by the three methods.

Fig. 3. Fingerprint image. (a) Original image. (b) Noisy image with σ = 45. (c) Norm of the gradient of

noisy image.
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Fig. 4. Results for the fingerprint image. (a) P-M method. (b) C-model method (c) Our method.

Table 2. is the comparison of the values of PSNR and RMSE for restored images.

Table 2. PSNR and RMSE for Restored Images

model P-M model C-model our model

PSNR 23.1576 dB 22.8225 dB 24.4604 dB

RMSE 17.7280 18.4254 15.2588

From the results above, it is obvious that not only for visual quality of images, but also
for quantitative evaluation of restored images, our method in texture image processing is still
better than other two models.

Example 3. We use an woman image containing both a human face and some textures to
do the third test. The challenge with this image is to keep both texture details and smooth
transitions in the human face in the processing. We add the original image (Fig. 5(a)) with
the white Gaussian noise with σ = 15, and get a noisy image (Fig. 5(b)). Fig. 5(c) is the norm
of the gradient of the noisy image. Fig. 6(a),(b), and (c) are the results obtained by three
methods.

Fig. 5. Woman image. (a) Original image. (b) Noisy image with σ = 15. (c) Norm of the gradient of noisy

image.

Table 3. Comparison of Psnr and Rmse for Restored Images

model P-M model C-model our model

PSNR 21.8072 dB 21.4664 dB 22.7290 dB

RMSE 20.7099 21.5386 18.6248
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Fig. 6. Results for the woman image. (a) P-M method. (b) C-model method (c) Our method.

In the computation above, we choose the number of iteration is 8. And the values of other
parameters are the same as in Example 1. Next table is the quantitative comparison among
the three methods.

The results above reveal that our method not only maintain more texture details and smooth
transitions in the face but also suppress more noise than other methods after processing. Addi-
tionally, our model can increase more PSNR and decrease RESE than P-M model and C-model.

Fig. 7. MR image. (a) Original image. (b) Noisy image with σ = 15. (c) The result recovered with our

scheme.

Fig. 8(a), (b) and (c) are an original remote sensing image, the noisy image, and the
processed result by our method. We can see that the recovered image coincides with the true
one almost everywhere.

Fig. 8. Remote sensing image. (a) Original image. (b) Noisy image with σ = 20. (c) The result recovered

with our scheme.

At last, we will show some more restored images, which are from a MR image, a remote
sensing image, and Canaletto image. And we will only give results recovered by our method. A
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MR image (see Fig. 7(a)) has been corrupted with white Gaussian noise (σ = 20) and become
a noisy image, see Fig. 7(b). After the noisy image has been processed with our model, we
can see that our restoration scheme is able to maintain all important information and filter out
much noise, see Fig. 7(c).

The Canaletto image was used in an article[1] by P. Perona and J. Malik. Malik digitized
the image from a small reproduction of the original, which hangs in the National Gallery in
Washington, D.C. and was painted in Venice by Antonio Canal, nicknamed ‘Canaletto,” in
1720. Here we use the Canaletto image again in the test. Fig. 9(a)–(c) are the original image,
the noisy image with σ = 20, and the recovered result with our scheme. From the visual quality,
it is obvious that restored image is as good as the original one.

Fig. 9. Canaletto image. (a) Original image. (b) Noisy image with σ = 20. (c) The result recovered by
our scheme.

5 Conclusion

We have developed a new nonlinear diffusion model for image denoising and edge detection. It is the convex
combination of C-model and P-M model. Our model can be regarded as a general case of C-model or P-M
model. It detects and preserves edges better and also preserves fine details and small structures in the image
than C-model and P-M model. We give the proof of the existence of weak solutions for PDES system. The
numerical experiments also demonstrate by using the AOS algorithm that our method yields better smoothing
and edge detection results and has higher PSNR and less RMSE than other two methods.

Our model can be applied in many kinds of image processing. It can be used in texture image, biomedical
images such as MR, CT images processing. Our method can also reduce noises for SAR images and remote
sensing images.
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