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Abstract Based on the fundamental commutator representation proposed by Cao [4] we established two

explicit expressions for roots of a third order differential operator. By using those expressions we succeeded in

clarifying the relationship between two major approaches in theory of integrable systems: the zero curvature and

the Lax representations for the KdV and the Boussinesq hierarchies. The proposed procedure could be extended

to the general case of higher order of differential operators that leads to the Gel’fand-Dickey hierarchy.
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1 Introduction

Generating new integrable equations and checking if a known equation is integrable are two
main tasks in the modern theory of integrable systems. There are two major approaches for
establishing the integrability: the zero curvature representation and the Lax representation (see
[1,13,15,21,22,25]. For example, the celebrated KdV equation

∂u

∂t
= 6u

∂u

∂x
+

∂3u

∂x3
(1)

and its hierarchy can be derived either from the zero curvature representation

Utn = V (n)
x − [U, V (n)] (2)

or from the Lax representation
Ltn = [Pn, L], (3)

where U , V (n), L and Pn are given by

U =
(

0 1
1
4λ − u 0

)
, V (n) =

(
a(n) b(n)

c(n) −a(n)

)

and
L = ∂2 + u, Pn = (L(2n+1)/2)+, ∂ =

∂

∂x
.

The symbol S+ stands for the non-negative part of the pseudo differential operator S. A detail
explanation of those notations will be given in sections below.

Questions arise naturally. What is the relationship between V (n) and Pn? In the zero
curvature representations the matrices V (n) can be calculated recursively. Is there also a re-
cursive formula among [Pn, L] as seen in the Lax representations? It is known that the traces
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tr (L(2n+1)/2) are conserved densities of the KdV hierarchy. Is there a recursive formula among
those traces as we have seen in the zero curvature representations?

It is far from trivial to explore the relationship between zero curvature and Lax represen-
tations. For example, what is the zero curvature representation of the Gel’fand-Dickey (GD)
hierarchy? The GD hierarchy is generated from the operator L = ∂m + u1∂

m−2 + u2∂
m−3 +

· · ·+um−1. The question become even more crucial when we study 2+1 dimensional integrable
equations such as the KP hierarchy. The KP hierarchy can be reduced from the Gel’fand-Dickey
hierarchy. However, to the author’s knowledge the KP hierarchy does not admit a good zero
curvature representation.

In the present paper we give a partial answer to the questions mentioned above. It turns
out that the bi-Hamiltonian structure is a bridge between two representations. Furthermore,
the fundamental commutator representation, proposed by Cao et al.[4], provides a good tool
to explore bi-Hamiltonian structures. By using the commutator representation we established
two explicit formulas for the roots L1/3 and L2/3, where L = ∂3 + u∂ + ∂u + v. Based on
those two formulas we derived recursive equations among [(L(3m+1)/3)+, L], [(L(3m+2)/3)+, L],
tr (L(3m+1)/3), and tr (L(3m+2)/3).

The paper is organized as follows. The next section contains a brief introduction on pseudo
differential operators, the GD hierarchy, bi-Hamiltonian structures and commutator represen-
tations. The Section 3 constitutes the main body of this paper. We solved the commutator
equation for the operator L3 = ∂3 + u∂ + ∂u + v, and derived the bi-Hamiltonian structure for
the Boussinesq hierarchy. Furthermore, we established formulas of roots L

1/3
3 and L

2/3
3 , and

generated recursive equations among [(L(n/3)
3 )+, L3] and tr(L(n/3)

3 ). Boussinesq hierarchy is a
special case of the GD hierarchy when m = 3. For completeness the Section 4 gives a short
presentation on KdV hierarchy that is a special case of GD hierarchy when m = 2.

2 Preliminaries

2.1 Pseudo Differential Operators

In this section we recall some definitions in the theory of pseudo differential operators. The
readers are referred to the book[7] for details. A pseudo differential operator takes the form

P =
m∑

i=−∞
pi∂

i, (4)

where pi are smooth functions of u = (u1, · · · , up), ui = ui(x, t), and ∂ = ∂
∂x . The positive and

the negative powers ∂n is defined by the Leibniz rule

∂nf =
∞∑

k=0

(
n

k

)
(∂kf)∂n−k,

where
(
n
k

)
stands for the binomial coefficients

(
n

k

)
=

n(n − 1)(n − 2) · · · (n − k + 1)
k!

, n ∈ Z.

For example
∂−1f = f∂−1 − (∂f)∂−2 + (∂2f)∂−3 − (∂3f)∂−4 + · · ·
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The m-th root A = P 1/m of the pseudo differential operator (4) is defined by the equation
Am = P . It is proved that the root exists and is unique. For example let the operator P = L3

where
L3 = ∂3 + 2u∂ + v + ux. (5)

Its roots L
1/3
3 and L

2/3
3 can be calculated by the MAPLE package PSEUDO

L
1/3
3 =∂ +

2
3
u∂−1 +

(
− 1

3
ux +

1
3
v
)
∂−2

+
(
− 4

9
u2 +

1
9
uxx − 1

3
vx

)
∂−3 + · · ·

L
2/3
3 =∂2 +

4
3
u +

2
3
v∂−1 +

(
− 4

9
u2 − 1

9
uxx − 1

3
vx

)
∂−2

+
(8

9
uux − 4

9
uv +

1
9
vxx +

1
9
uxxx

)
∂−3 + · · · .

We define the weight of u, v and ∂ as

σ(u) = 2, σ(v) = 3, σ(∂) = 1. (6)

Each item in the operator L3 is of weight 3 under the above definition. For example σ(u∂) =
σ(u)+σ(∂) = 3. It is easily seen that each term in L

1/3
3 is of weight 1. For example, σ(vx∂−3) =

σ(v) + σ(∂) +σ(∂−3) = 3+ 1− 3 = 1. Similarly, each term in L
2/3
3 is of weight 2. Therefore we

could write that
σ(L3) = 3, σ(L1/3

3 ) = 1, σ(L2/3
3 ) = 2. (7)

The weight plays a key role in some MAPLE packages for automatically generating conserved
densities of an equation[24].

The positive and the negative part of (4) is defined by

P+ =
∑
i≥0

pi∂
i, P− =

∑
i<0

pi∂
i. (8)

Note that we have P = P+ + P−.
Brunelli created a wonderful package PSEUDO[3] for operations with pseudo differential

operators such as taking an n-th roots, multiplication of two operators and etc. The source
code is only of 404 lines. The package has to be extended to include matrices operators.

2.2 The GD Hierarchy

Let
Lm = ∂m + u1∂

m−2 + u2∂
m−3 + · · · + um−1, (9)

where ui, i = 1, · · · , m − 1 are smooth functions of x and t. The Gel’fand-Dickey (GD)
hierarchy[7] is given by the Lax representation

Lm,tn = [(L(n/m)
m )+, Lm], (10)

where Lm,tn = ∂
∂tn

Lm. The special cases m = 2, 3 correspond to the classical KdV and
Boussinesq hierarchies as we will discuss in details in the subsequent two sections.
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2.3 Bi-Hamiltonian Structures

It is welll known that most 1+1 dimensional integrable hiercharchies admit bi-Hamiltonian
structures in the sense that they can be written as

utn = JGn+1 = KGn, (11)

where J and K are two Hamiltonian operators, and they are compatible[9,12,16]. The operator

R = KJ−1 (12)

is frequently referred to as “recursion operator” in literature. The next two sections will show
the bi-Hamitonian structures of the Boussinesq and KdV hierarchies.

To the author’s knowledge all known recursive operators (12) contains an inverse differential
operator ∂−1. Therefore to calculate the next Gn+1 from Gn we have to find an expression Fn

such that Gn = ∂Fn. The operator that carries Gn to Fn is called a homotopy operator. There
are rich literature on this topic[17]. The homotopy operator presented in [17] contains terms
that will be canceled each other. Poole and Hereman[18] gave a simplified representation of the
homotopy operator. The MAPLE procedure that is used to calculate ∂−1G is Inverse Total
Diff. That procedure is contained in the package Jet Calculus.

2.4 Commutator Representations

Let L(u) be a differential operator with coefficients depending on u = u(x, t). Its derivative
(LvL)(u) is defined by

(LvL)(u) =
d

dε

∣∣∣
ε=0

L(u + εv). (13)

The above derivative carries various names: Lie derivative, Frechet derivative, Gateaux deriva-
tive, tangent derivative etc. We will simply use “derivatives along with v”, or simply “deriva-
tives” in case no confusing arises. For many integrable hierarchies with two compatible Hamil-
tonian operators J and K, the following equation had been established (see [4,8,10,12,19,23]).

LKGL = [N(G), L] + (LJGL)L, (14)

where N is an operator that plays a crucial role in derivation of expressions of roots. An
alternative equation is given by

LKGL = [N(G), L] + L(LJGL). (15)

A combination of the above two equations gives the third equation

LKGL = [N(G), L] +
1
2
LJG(L2). (16)

All the above three equations can be use to find operators K and N when the operator J is
known.
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3 Case m = 3: the Boussinesq Hierarchy

The case m = 3 in (9) corresponds to the Boussinesq hierarchy. For convenience we set u1 = 2u

and u2 = v + ux in (9):
L3 = ∂3 + 2u∂ + (v + ux). (17)

This operator can be also written as L3 = ∂3 + u∂ + ∂u+ v. The corresponding hierarchies are
given by

L3,t3m+i = [P3m+i, L3], i = 1, 2, m = 0, 1, 2, · · · ,
Pk = (Lk/3

3 )+.

For late references we write down the first four sets of equations in the hierarchy.

ut1 = ux, vt1 = vx, ut2 = vx, vt2 = −8
3
uux − 1

3
uxxx,

ut4 =
4
3
uxv +

4
3
uvx +

1
3
vxxx,

vt4 = −32
9

u2ux − 8
3
uxuxx +

4
3
vvx − 4

3
uuxxx − 1

9
uxxxxx,

ut5 = −20
9

u2ux − 25
9

uxuxx +
5
3
vvx − 10

9
uuxxx − 1

9
uxxxxx

vt5 = −1
9
vxxxxx − 40

9
vuux − 5

9
uxxxv − 10

9
uxxvx − 5

3
uxvxx

− 10
9

uvxxx − 20
9

vxu2.

The first Hamiltonian operator J for the Bousssinesq hierarchy was found through its zero
curvature representation[5,17]

J =
(

0, ∂
∂, 0

)
. (18)

We are going to solve the commutator Equation (14) to find the second Hamiltonian operator
K and the differential operator N . In this case N is of order m − 1 = 2. Therefore we could
assume

N = a∂2 + b∂ + c, (19)

where a, b and c are unknown functions to be determined. Moreover, G is a 2-dimensional
vector G = (r, s)T . We have

G =
(

r
s

)
, JG =

(
sx

rx

)
, LJGL3 = 2sx∂ + (rx + sxx).

Therefore,

LKGL3 =[N(G), L3] + (LJGL3)L3

=[a∂2 + b∂ + c, ∂3 + 2u∂ + v + ux]

+ (2sx∂ + rx + sxx)(∂3 + 2u∂ + v + ux)

=(−3ax + 2sx)∂4 + (−3bx − 3axx + rx + sxx)∂3
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+ (4aux − 3cx − 2uax − 3bxx − axxx + 4sxu)∂2

+ (2bux + 2avx + 4auxx − 2ubx − 3cxx − bxxx

+ 2sxv + 6sxux + 2urx + 2usxx)∂

+ bvx + buxx + avxx + auxxx − 2ucx − cxxx + rxv

+ rxux + sxxv + sxxux + 2sxvx + 2sxuxx.

Assume that KG = (r̃, s̃)T then LKGL3 = 2 r̃ ∂ +(s̃+ r̃x). Compare both sides of the above
equations we are led to the following equations

− 3ax + 2sx = 0,

− 3bx − 3axx + rx + sxx = 0, (20)

4aux − 3cx − 2uax − 3bxx − axxx + 4sxu = 0,

2 r̃ = 2bux + 2avx + 4auxx − 2ubx − 3cxx

− bxxx + 2sxv + 6sxux + 2urx + 2usxx

s̃ + r̃x = bvx + buxx + avxx + auxxx − 2ucx − cxxx (21)

+ rxv + rxux + sxxv + sxxux + 2sxvx + 2sxuxx.

We solve a, b and c from (20):

a =
2
3
s, b = −1

3
sx +

1
3
r, c =

8
9
su +

1
9
sxx − 1

3
rx. (22)

Substituting those expressions into (21) we obtain

r̃ =
1
3
uxr +

2
3
svx +

2
3
urx +

1
3
rxxx + sxv

s̃ =
(
− 2

9
uxxx − 16

9
uux

)
s +

(
− 16

9
u2 − uxx

)
sx

+
1
3
vxr − 10

9
usxxx − 5

3
sxxux − 1

9
sxxxxx + rxv.

Therefore the operator N and the second Hamiltonian operator K are given by

N =
2
3
s∂2 +

(
− 1

3
sx +

1
3
r
)
∂ +

(8
9
su +

1
9
sxx − 1

3
rx

)
,

K =
1
9

(
3ux + 6u∂ + 3∂3 6vx + 9v∂

3vx + 9v∂ K22

)
, (23)

K22 = (−16uux − 2uxxx) − (16u2 + 9uxx)∂ − 15ux∂2 − 10u∂3 − ∂5.

It is easy to verify that
J∗ = −J, K∗ = −K,

where ∗ stands for the formal conjugate
(∑

ai∂
i
)∗

=
∑

(−1)i∂iai, (Mij)∗ = (M∗
ji).

The recursive operator R is then given by

R = KJ−1 =
1
9

(
6vx∂−1 + 9v 3ux∂−1 + 6u + 3∂2

R21 3vx∂−1 + 9v

)
,

R22 = (−16uux − 2uxxx)∂−1 − (16u2 + 9uxx) − 15ux∂ − 10u∂2 − ∂4.
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We choose the initial vectors

G−2 =
(

3
0

)
, G−1 =

(
0
3
2
.

)
.

Applying the operator K and J we obtain

JG1 = KG−2 =
(

ux

vx

)
, JG2 = KG−1 =

(
vx

−8
3
uux − 1

3
uxxx

)
.

Thus

G1 =
(

v
u

)
, G2 =

(
−4

3
u2 − 1

3
uxx

v

)
.

In general
JGj = KGj−3, j = 1, 2, · · · .

Let

Gn =
(

rn

sn

)
, n = −2,−1, 0, 1, 2, · · · .

It is easy to see that

σ(rn) = n + 2, σ(sn) = n + 1, σ(N(Gn)) = n + 3.

The Boussinesq hierarchy is then given by
(

utn

vtn

)
= JGn, n = 1, 2, · · · , n �≡ 0 (mod 3)

or (
ut3m+i

vt3m+i

)
=

(
s3m+i,x

r3m+i,x

)
, i = 1, 2, m = 0, 1, 2, · · · .

Lemma 3.1. The pseudo differential operator P1 = ∂ +
∞∑

i≥1

pi∂
−i is uniquely determined by

the commutation condition [L3, P1] = 0 and σ(pi) = i + 1, where the weight σ is defined by (6).

Proof. It is easily verified that

[∂3, P1] = 3p1x∂ + 3p2x + 3p1xx +
∑
i≥1

(pi,xxx + 3pi+1,xx + 3pi+2,x)∂−i

and
[2u∂, P1] = −2ux∂ +

∑
i≥1

Fi∂
−i, [v + ux, P1] = −uxx − vx +

∑
i≥1

Hi∂
−i,

where Fi and Hi depend on pj , j ≤ i + 1. Therefore the commutation condition [L3.P1] = 0
leads to the equations

3p1x − 2ux = 0,

3p2x + 3p1xx − uxx − vx = 0

3pi+2,x = Q(pi+1, pi, pi−1, · · ·), i = 1, 2, · · ·
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and we obtain

p1 =
2
3
u, p2 =

1
3
(v − ux),

pi+2,x = Q(pi+1, pi, pi−1, · · ·), i = 1, 2, · · · .

Therefore p3, p4, · · · are determined by their previous terms. The requirement σ(pi) = i+1 will
force us to set the integral constant to zero when we calculate pi+2 = 1

3∂−1Qi. �

Similarly we can prove the following

Lemma 3.2. The pseudo differential operator P2 = ∂2 +
∞∑

i≥0

pi∂
−i is uniquely determined by

the commutation condition [L3, P2] = 0 and σ(pi) = i + 2, where the weight σ is defined by (6).
Now we set

V =
∞∑

j=0

N(G3j−2)L
−j
3 , (24)

V is commute with L3 since we have

[V, L3] =
∞∑

j=0

[N(G3j−2), L3]L
−j
3

=
∞∑

j=0

(LK(G3j−2)L3 − (LJ(G3j−2)L3)L3

)
L−j

3

=
∞∑

j=0

(LJ(G3j+1)L3 − (LJ(G3j−2)L3)L3

)
L−j

3

=
∞∑

j=0

(LJ(G3j+1)L3)L
−j
3 −

∞∑
j=0

(LJ(G3j−2)L3)L
−j+1
3

=
∞∑

j=0

(LJ(G3j+1)L3)L
−j
3 −

∞∑
j=−1

(LJ(G3j+1)L3)L
−j
3

= − (LJ(G−2)L3)L3.

V is homogeneous in weight. Each term in the summation (24) is of weight 1:

σ(V ) = σ(N(G3j−2)) + σ(L−j
3 ) = 3j + 1 − 3j = 1.

Moreover the leading term of ∂j in V is ∂:

V =
∞∑

j=0

N(G3j−2)L
−j
3

=N(G−2) + N(G1)L−1
3 + · · ·

=
2
3
s∂2 +

(
− 1

3
sx +

1
3
r
)
∂ +

(8
9
su +

1
9
sxx − 1

3
rx

)∣∣∣
r=3,s=0

+ o(∂−1)

=∂ +
2
3
u∂−1 + o(∂−2).

Here the symbol o(∂n) refers to terms involving ∂k, k ≤ n. Since V and L
1/3
3 both commute with

L3 and they have the same leading terms ∂ + 2
3u∂−1 + o(∂−2). Moreover, σ(V ) = σ(L1/3

3 ) = 1
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we conclude by the Lemma 3.1 that

L
1/3
3 =

∞∑
j=0

N(G3j−2)L
−j
3 . (25)

From the above formula we deduce especially

(L(3m+1)/3
3 )+ = (L1/3

3 Lm
3 )+ =

m∑
j=0

N(G3j−2)L
m−j
3 .

Therefore

[(L(3m+1)/3
3 )+, L3] =

[ m∑
j=0

N(G3j−2)L
m−j
3 , L3

]

= −
[ ∞∑

j=m+1

N(G3j−2)L
m−j
3 , L3

]

= −
∞∑

j=m+1

[N(G3j−2), L3]L
m−j
3

= −
∞∑

j=m+1

(LK(G3j−2)L3 − (LJ(G3j−2)L3)L3

)
Lm−j

3

= −
∞∑

j=m+1

(LJ(G3j+1)L3 − (LJ(G3j−2)L3)L3

)
Lm−j

3

= −
∞∑

j=m+1

(LJ(G3j+1)L3)L
m−j
3 +

∞∑
j=m+1

(LJ(G3j−2)L3)L
m−j+1
3

= −
∞∑

j=m+1

(LJ(G3j+1)L3)L
m−j
3 +

∞∑
j=m

(LJ(G3j+1)L3)L
m−j
3

=LJ(G3m+1)L3. (26)

From the above equation we see that the Lax representation

L3,t3m+1 =
[
(L(3m+1)/3

3 )+, L3

]
(27)

is the same as L3,t3m+1 = LJ(G3m+1)L3 which, in its turn, is the same as the zero curvature
representation (

ut3m+1

vt3m+1

)
= J(G3m+1). (28)

Thus we proved that two hierarchies (27) and (28), one comes from the Lax representation,
and the other comes from the zero curvature representation, are actually the same. Moreover
we have

tr (L(3m+1)/3
3 ) = tr (L1/3

3 Lm)

=tr
( ∞∑

j=0

N(G3j−2)L
m−j
3

)

=tr (N(G3m+1)L−1
3 )
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=tr
((2

3
s3m+1∂

2 + · · ·
)
(∂−3 + · · ·)

)

=tr
(2

3
s3m+1∂

−1 + · · ·
)

=
2
3
s3m+1. (29)

They are conserved densities of the hierarchy. By a similar reasoning we have

L
2/3
3 =

∞∑
j=0

N(G3j−1)L
−j
3 . (30)

Note that the leading term of the right hand side is ∂2 + 4
3u:

∞∑
j=0

N(G3j−1)L
−j
3

=N(G−1) + N(G2)L−1
3 + · · ·

=
2
3
s∂2 +

(
− 1

3
sx +

1
3
r
)

∂ +
(8

9
su +

1
9
sxx − 1

3
rx

)∣∣∣
r=0,s=3/2

+ o(∂−1)

=∂2 +
4
3
u + o(∂−1). (31)

Similarly we have [
(L(3m+2)/3

3 )+, L3

]
= LJ(G3m+2)L3. (32)

It shows that the Lax representation

L3,t3m+2 = [(L(3m+2)/3
3 )+, L3] (33)

is the same as its zero curvature representation(
ut3m+2

vt3m+2

)
= J(G3m+2). (34)

We sum up the above results in a theorem.

Theorem 3.3. For the third order differential operator L3 = ∂3 + u∂ + ∂u + v, its roots
L

1/3
3 and L

2/3
3 are given by (25) and (30) where N is given by (23). The corresponding

hierarchies in their zero curvature and Lax representations are respectively given by (27),
(28), (33), (34). Those two representations give actually the same equations since it holds
that [(L(3m+i)/3

3 )+, L3] = LJ(G3m+i)L3. The sequence of conserved densities are given by
tr(L(3m+i)/2

3 ) = 2
3s3m+i where Gn = (rn, sn)T .

4 Case m = 2: KdV Hierarchy

The famous KdV hierarchy corresponds to the case m = 2. In this case the operator reduces
to the classical Schrodinger operator

L2 = ∂2 + u. (35)

The first and the second Hamiltonian operators are known to be

J = ∂, K = ∂3 + 4u∂ + 2ux. (36)
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The square root of L2 is given by [20]

L
1/2
2 =

∞∑
n=1

(2bn∂ − bn,x)(4L)−n+1, (37)

where the sequence {bk} is defined by

b1 = 1/2, Jbn+1 = Kbn, n = 1, 2, · · · . (38)

Based on the Formula (37) we can easily derive the following equations

tr (L(2n+1)/2) =
1

22n+1
bn+2 (39)

and
[L(2n+1)/2

+ , L] = 4−nbn+2,x. (40)

Those equations show the relationship between zero curvature and Lax representations. To
sum up we proved the following theorem

Theorem 4.1. For the second order differential operator L2 = ∂2 + u the corresponding
hierarchy in its zero curvature representation is given by utn = Jbn+1 where J = ∂. It holds
that [(L(2n+1)/2

2 )+, L2] = J(4−nbn+1). Therefore the hierarchy in its Lax representation L2,tn =
[(L(2n+1)/2

2 )+, L2] is the same as in its zero curvature representation. Moreover, the sequence
of conserved densities are given by tr (L(2n+1)/2

2 ) = 1
22n+1 bn+2.
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