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Abstract Nearly orthogonal Latin squares are useful for conducting experiments eliminating heterogeneity in

two directions and using different interventions each at each level. In this paper, some constructions of mutually

nearly orthogonal Latin squares are provided. It is proved that there exist 3 MNOLS(2m) if and only if m ≥ 3

and there exist 4 MNOLS(2m) if and only if m ≥ 4 with some possible exceptions.
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1 Introduction

A Latin square of order n is an n×n array in which every row and column is a permutation of
a set N of n elements. We assume that N = {0, 1, 2, · · · , n− 1}. Let L = (li,j) and M = (mi,j)
be two Latin squares of order n, based on the set N . Define the superposition of L onto M to
be the n×n array A = (li,j , mi,j). Then L and M are said to be orthogonal if the superposition
of L onto M has every ordered pair (i, j) appearing exactly once. A set of Latin squares in
which each pair is orthogonal, is called a set of mutually orthogonal Latin squares. Mutually
orthogonal Latin squares have been extensively studied[5].

The concept of two Latin squares being nearly orthogonal was introduced by Raghavarao et
al[9]. Latin squares L and M of even order n are said to be nearly orthogonal if the superposition
of L onto M has every ordered pair (i, j) appearing exactly once except for i = j, when the
ordered pair appears 0 times and except for i−j = n/2 (mod n), when the ordered pair appears
2 times. A set of t Latin squares of order n is called a set of mutually nearly orthogonal Latin
squares, denoted by t MNOLS(n), if the t Latin squares are pairwise nearly orthogonal.

Nearly orthogonal Latin squares are useful for conducting experiments eliminating hetero-
geneity in two directions and using different interventions each at each level[9].

The upper bound on the number of a set of MNOLS(v) is given by Raghavarao et al.[9]. Li
and van Rees[8] gave a new proof of this bound.

Lemma 1.1[8,9]. Let m ≥ 2 be a positive integer.
(a) If there exists a set of t MNOLS(2m), then t ≤ m + 1.
(b) If m is even and there exists a set of t MNOLS(2m), then t < m + 1.
For t = 3, 4, Li and van Rees[8] proved the following.
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Lemma 1.2[8]. (i) There exist 3 MNOLS(2m) for any 3 ≤ m ≤ 10 and m ≥ 179;
(ii) There exist 4 MNOLS(2m) for m = 5, 6.
In this article, we further investigate the existence of t MNOLS(2m) for t = 3, 4 and prove

that the necessary condition of the existence of 3 MNOLS(2m) is also sufficient, which provides
a positive answer to Conjecture 5.1 given by Li and Rees in [8]. It is also true for t = 4 with
several undetermine cases. Specifically, we obtain the following.

Theorem 1.3. There exist 3 MNOLS(2m) if and only if m ≥ 3.

Theorem 1.4. There exist 4 MNOLS(2m) if and only if m ≥ 4 with some possible exceptions
m ∈ E = {4, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46}.

Some terminology and known results are introduced in Section 2. In Section 3, some re-
cursive constructions of HMOLS and MNOLS are provided. The proof of our main results are
given in Sections 4 and 5, respectively. Some remarks are mentioned in Section 6.

2 Preliminaries

In this section, we shall give some terminology and some known results which will be used in
the proof of the main results.

A group divisible design (or GDD) is a triple (X ,G,B) which satisfies the following prop-
erties:

1. G is a partition of a set X (of points) into subsets called groups;
2. B is a set of subsets of X (called blocks) such that a group and a block contain at most

one common point;
3. Every pair of points from distinct groups occurs in exactly λ blocks.
The group type (or type) of GDD is the multiset {|G| : G ∈ G}. We shall use an “exponen-

tial” notation to describe types: so type gu1
1 · · · guk

k denotes ui occurrences of gi, 1 ≤ i ≤ k, in
the multiset. A GDD with block sizes from a set of positive integers K is called a (K, λ)-GDD.

A transversal design TD(k, λ; n) is a (k, λ)-GDD of group type nk. When λ = 1, we simply
write TD(k, n). It is well known that a TD(k, n) is equivalent to k − 2 mutually orthogonal
Latin squares (MOLS) of order n. The following results will be used.

Lemma 2.1[4].
1. A TD(q+1, q) exists, consequently, a TD(k, q) exists for any positive integer k (k ≤ q+1),

where q is a prime power.
2. A TD(5, n) exists for all n and n /∈ {2, 3, 6, 10}.
3. A TD(6, n) exists for all n ≥ 5 and n /∈ {6, 10, 14, 18, 22}.
4. A TD(7, n) exists for all n ≥ 7 and n /∈ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60}.
Let S be a set and H = {S1, S2, · · · , Sn} be a set of disjoint subsets of S. A incomplete

Latin square having hole set H is an |S| × |S| array L, indexed by S, satisfying the following
properties:

(1) Every cell of L either contains a symbol of S or is empty;
(2) Every symbol of S occurs at most once in any row or column of L;
(3) The subarrays indexed by Si × Si are empty for 1 ≤ i ≤ n (these subarrays are called

holes);
(4) Symbol s ∈ S occurs in row or column t if and only if (s, t) ∈ (S × S)\ ⋃

1≤i≤n

(Si × Si).
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Two incomplete Latin squares L and M on symbol set S and hole set H are said to be
orthogonal if their superposition yields every ordered pair in (S × S)\ ⋃

1≤i≤n

(Si × Si). We

shall use the notation IMOLS (s; s1, s2, · · · , sn) to denote a pair of orthogonal incomplete Latin
squares on symbol set S and hole set H = {S1, S2, · · · , Sn}, where s = |S| and si = |Si| for
1 ≤ i ≤ n. If H = ∅, we obtain a pair of MOLS(s).

If H = {S1, S2, · · · , Sn} is a partition of S, then an incomplete Latin square is called a holey
Latin square, denoted by HLS. The type of the HLS is defined to be the multiset {|Si| : 1 ≤ i ≤
n}. We shall use an “exponential” notation to describe types: so type su1

1 su2
2 · · · sun

n denotes ui

occurrences of si, 1 ≤ i ≤ n, in the multiset. If any two HLS in a set of t HLS of type T are
orthogonal, then we denote the set by t HMOLS (T ).

Some known results on IMOLS and HMOLS are summarized in the following.

Lemma 2.2[4]. There exist 3 IMOLS(m+u, u) for m = 6, 8, u = 1, 2 and 4 IMOLS(12+ t, t)
for t = 1, 3.

Lemma 2.3[4,7]. If h ≥ 1 and n ≥ 5, then there exist 3 HMOLS(hn), except for (h, n) = (1, 6)
and possibly for (h, n) ∈ {(1, 10), (3, 6), (3, 18), (3, 28), (3, 34), (6, 18)}.

Lemma 2.4[1,4]. Then there exist 4 HMOLS(hn) for n ≥ 6 and h ∈ {1, 2, 3, 10, 12, 14, 18}
except possibly for the following cases:

1. h = 1 and n ∈ {10, 14, 18, 22, 26} (except n = 6).

2. h = 2 and n ∈ {28, 30, 32, 33, 34, 35, 38, 39, 40}.
3. h = 3 and n ∈ {6, 12, 18, 24, 28, 46, 54, 62}.
4. h = 10 and n ∈ {32, 33, 35, 38}.
5. h = 14 and n = 34.

3 Recursive Constructions

In this section, some recursive constructions of HMOLS and MNOLS are discussed, which will
be used in the proof of our main results.

Construction 3.1[1,6]. Suppose (X ,G,B) is a GDD and let weighting function w : X →
Z+ ∪ {0}. Suppose there exist t HMOLS of type {w(x) : x ∈ B} for every B ∈ B. Then there
exist t HMOLS of type

{ ∑

x∈G

w(x) : G ∈ G}.

Construction 3.2[1,2]. Suppose there exist k+1 MOLS(t), and k IMOLS(m+ui, ui), where

ui ≥ 0, 1 ≤ i ≤ t − 1. Then there exist k HMOLS(mtu1), where u =
t−1∑

i=1

ui.

For the construction of MNOLS, the following construction can be found in [8].

Construction 3.3[8]. Suppose that there exist k MOLS(n), k MOLS(2m) and k MNOLS(2m),
then there exist k MNOLS(2mn).

Construction 3.4 (Filling Holes). Suppose there exist k HMOLS(g1g2 · · · gt) and there exist

k MNOLS(gi), 1 ≤ i ≤ t. Then there exist k MNOLS(v), where v =
t∑

i=1

gi.
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Proof. For each i, 1 ≤ i ≤ t, by the definition of MNOLS(gi), we know that gi is even. Let

m0 = 0, mi =
gi

2
, ai =

i−1∑

u=0

mu, 1 ≤ i ≤ t, h =
v

2
.

Without loss of generality, we assume that L1, L2, · · · , Lk are k HMOLS(g1g2 · · · gt) based on
S = {0, 1, · · · , v−1}, and the holes H

(i)
1 , H

(i)
2 , · · · , H(i)

t of Li are based on the sets S1, S2, · · · , St,
respectively, where

Si =
mi−1⋃

j=0

{ai + j, ai + j + h}, i = 1, 2, · · · , t.

It is readily checked that |Si| = gi, i = 1, 2, · · · , t, and S1, S2, · · · , St form a partition of S.
Let A

(i)
1 , A

(i)
2 , · · · , A(i)

k be k MNOLS(gi) based on the set {0, 1, · · · , gi − 1}, i = 1, 2, · · · , t.
For each i, 1 ≤ i ≤ t, let

σi(j) = ai + j, σi(j + mi) = ai + j + h, j = 0, 1, · · · , mi − 1.

Then σi is a bijection from {0, 1, · · · , gi − 1} to Si. We operate σi on the elements of A
(i)
s to

get a Latin square B
(i)
s based on Si, 1 ≤ s ≤ k.

Now for each i, 1 ≤ i ≤ k, we fill t holes H
(i)
1 , H

(i)
2 , · · · , H(i)

t of Li with B
(1)
i , B

(2)
i , · · ·, B

(t)
i

to get a Latin square Mi based on S. We shall show that M1, M2, · · · , Mk are k MNOLS(v).

In fact, let u, u′ ∈ {1, 2, · · · , s}, u �= u′ and (p, q) ∈ S×S. If (p, q) ∈ (S×S)\(
t⋃

i=1

(Si×Si)
)
,

then (p, q) appears exactly once in the superposition of Mu onto Mu′ since Lu and Lu′ are
orthogonal holy Latin squares. Otherwise, there exists i ∈ {1, 2, · · · , t} such that (p, q) ∈
Si × Si, it follows (σ−1(p), σ−1(q)) ∈ Si × Si. If p = q, then σ−1(p) = σ−1(q), (σ−1(p), σ−1(q))
doesn’t appear in the superposition of A

(i)
u and A

(i)
u′ since A

(i)
u and A

(i)
u′ are nearly orthogonal,

therefore (p, q) doesn’t appear in the superposition of B
(i)
u and B

(i)
u′ . Similarly, one can show

that (p, q) appears exactly twice in the superposition of B
(i)
u and B

(i)
u′ if p− q ≡ h (mod v). So

M1, M2, · · · , Ms are k MNOLS(v). The proof is completed. �

To deal with some cases of 4 MNOLS(2m), we need the following.

Construction 3.5. Suppose that there exist (s+k+1) MOLS(n), s MOLS(2m), s IMOLS(2m+
h, h), s MNOLS(2m) and s MNOLS(2m + kh), then there exist s MNOLS(2mn + kh).

Proof. By hypothesis, there exist (s+k+1) MOLS(n), s MOLS(2m) and s IMOLS(2m+h, h),
so there exist s HMOLS((2m)n−1(2m + kh)1) by Construction 5.6 in [1] (or the references
therein). Since there exist s MNOLS(2m) and s MNOLS(2m+kh), we get s MNOLS(2mn+kh)
by Construction 3.4. �

4 Proof of Theorem 1.3

In this section, we shall give the proof of Theorem 1.3. By Lemma 1.2, we need only to prove
that there exist 3 MNOLS(2m) for all integers m such that 11 ≤ m ≤ 178. For some small
value m, we shall construct t MNOLS(2m) directly by making use of a (t, 2m)-difference set.

A (t, 2m)-difference set is a set of 2m t-tuples in which the ordered differences modulo
2m between elements in two positions form no 0-difference, two m-differences and every other
difference appears once. Raghavarao et al proved the following.
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Lemma 4.1[9]. If there exists a (t, 2m)-difference set, then there exist t MNOLS(2m).
By Lemma 4.1, to construct t MNLOS(2m), it suffices to find a (t, 2m)-difference set.

Lemma 4.2. There is 3 MNOLS(2m) for any m ∈ M = {11, 12, 13, 14, 17, 22}.
Proof. For each m ∈ M , with the aid of a computer, we find a (3, 2m)-difference set list below,
consequently, 3 MNOLS(2m) are obtained by Lemma 4.1.
m = 11: (

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 3 5 7 9 11 13 15 17 19 21 0 2 4 6 8 10 12 14 16 18 20

2 0 3 9 15 21 16 19 4 18 14 8 7 11 17 20 1 6 10 5 13 12

)

.

m = 12: (
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 3 5 7 9 11 13 15 17 19 21 23 0 2 4 6 8 10 12 14 16 18 20 22

2 0 3 1 14 21 20 19 23 15 6 18 16 10 17 8 11 22 5 13 4 9 7 12

)

.

m = 13: (
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 3 5 7 9 11 13 15 17 19 21 23 25 0 2 4 6 8 10 12 14 16 18 20 22 24

2 0 3 1 12 21 19 22 25 4 23 16 8 17 20 18 10 24 15 7 13 5 14 6 9 11

)

.

m = 14:
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 3 5 7 9 11 13 15 17 19 21 23 25 27 0 2 4 6 8 10 12 14 16 18 20 22 24 26

2 0 3 1 11 16 22 25 20 23 4 8 21 5 18 10 19 13 24 27 7 26 15 9 6 14 17 12

)

.

m = 17:
(

0 1 2 3 9 4 15 6 12 5 11 24 28 17 26 33 14 7 18 13 31 19 22 16 21 20 25 10 32 23 29 30 8 27

1 3 5 7 19 9 31 13 25 11 23 14 22 0 18 32 29 15 2 27 28 4 10 33 8 6 16 21 30 12 24 26 17 20

2 0 3 1 23 19 18 16 4 29 30 31 5 12 32 24 22 20 11 33 14 28 9 21 10 17 7 6 26 27 13 8 25 15

)

.

m = 22: (
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 0

4 0 12 8 20 16 28 24 36 32 1 40 9 5 17 21 11 3 43 31 39 29 18

)

,

(
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

10 42 2 35 41 22 30 37 13 34 26 23 15 7 6 14 27 38 19 25 33

)

.

�

Lemma 4.3. There exist 3 MNOLS(2m) for all m ∈ {15, 16, 18, 20, 21, 24−27, 30, 32, 33, 35, 36}.
Proof. For each m ∈ {15, 18, 21, 24, 27, 30, 33, 36}, we write m = 3t, where 5 ≤ t ≤ 12. Since
there exist 3 HMOLS(6t) from Lemma 2.3 and 3 MNOLS(6) from Lemma 1.2, we obtain 3
MNOLS(2m) by Construction 3.4.

For each m ∈ {16, 32}, we write m = 4a, a ∈ {4, 8}. Since there exist 3 MOLS(a), 3
MOLS(8) by Lemma 2.1 and 3 MNOLS(8) by Lemma 1.2, we get 3 MNOLS(2m) by Construc-
tion 3.3.

For each m ∈ {20, 25, 35}, we write m = 5t, where t ∈ {4, 5, 7}. Since there exist 3
HMOLS(10t) from Lemma 2.1 and 3 MNOLS(10) from Lemma 1.2, we obtain 3 MNOLS(2m)
by Construction 3.4.

For m = 26, applying Construction 3.2 with parameters k = 3, t = 7, m = 6, u1 = u2 =

u3 = u4 = 2, u5 = u6 = 1, u =
6∑

i=1

= 10, we get 3 HMOLS(67(10)1). Here the required 4

MOLS(7) and 3 IMOLS(6+ui, ui) comes from Lemma 2.1 and Lemma 2.2, respectively. Noting
that there exist 3 MNOLS(6) and 3 MNOLS(10) by Lemma 1.2, 3 MNOLS(52) is obtained by
Construction 3.4. �

Lemma 4.4. There exist 3 MNOLS(2m) for all m ∈ {19, 23, 37}.
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Proof. For m = 19, since there exist 4 MOLS(5) and 3 IMOLS(6 + 2, 2) from Lemma 2.1 and
Lemma 2.2, respectively, there exist 3 HMOLS(6581) by Construction 3.2. Applying Construc-
tion 3.4, we obtain 3 MNOLS(38), here the input 3 MNOLS(6) and 3 MNOLS(8) come from
Lemma 1.2.

For m = 23, since there exist 4 MOLS(5), 3 MOLS(8) by Lemma 2.1, 3 IMOLS(8 + 2, 2) by
Lemma 2.2. So there exist 3 HMOLS(8561) by Construction 3.2. Applying Construction 3.4,
we obtain 3 MNOLS(46).

For m = 37, since there exist 4 MOLS(8) and 3 IMOLS(8+2, 2) from Lemma 2.1 and Lemma
2.2, respectively, there exist 3 HMOLS(88(10)1) by Construction 3.2. Applying Construction
3.4, we obtain 3 MNOLS(74), here the input 3 MNOLS(8) and 3 MNOLS(10) come from Lemma
1.2. �

Lemma 4.5. There exist 3 MNOLS(2m) for all m ∈ {28, 29, 31, 34}.
Proof. For m ∈ {28, 29}, we write m = 25 + a, where a ∈ {3, 4}. Delete 5− a points from the
last group of a TD(6, 5), we obtain a {5, 6}-GDD of type 55a1. Since there exist 3 HMOLS(25)
and 3 HMOLS(26) coming from Lemma 2.3, we get 3 HMOLS((10)5(2a)1) by Construction
3.1. By Lemma 1.2, 3 MNOLS(10) and 3 MNOLS(2a). Therefore we obtain 3 MNOLS(2m) by
Construction 3.4.

For m = 31, delete 2 points from the last group of a TD(8, 8), we get a {7, 8}-GDD of type
8761. Applying Construction 3.1 with 3 HMOLS(17) and 3 HMOLS(18) coming from Lemma
2.3, we get 3 HMOLS(8761). Since there exist 3 MNOLS(8) and 3 MNOLS(6) coming from
Lemma 1.2, we obtain 3 MNOLS(62) by Construction 3.4.

For m = 34, delete two points from the last two groups of a TD(9, 8), respectively, we get a
{7, 8, 9}-GDD of type 8762. Applying Construction 3.1 with 3 HMOLS(1t), t ∈ {7, 8, 9}, coming
from Lemma 2.3, we obtain 3 HMOLS(8762). Since there exist 3 MNOLS(8) and 3 MNOLS(6)
coming from Lemma 1.2, we get 3 MNOLS(68) by Construction 3.4. �

Lemma 4.6. There exist 3 MNOLS(2m) for all integers m ∈ [38, 178].

Proof. For each integer m ∈ [38, 178], we can write m = 5n + (x+ y), where n ∈ {7, 9, 11, 13,
16, 17, 19, 25, 27} and x, y ∈ [3, n] ∪ {0}. The parameters are listed below.

m n x + y

[38, 49] 7 [3, 14]

[50, 63] 9 [4, 18]

[60, 79] 11 [5, 22]

[80, 91] 13 [15, 26]

[91, 112] 16 [11, 32]

[113, 133] 19 [18, 38]

[134, 175] 25 [9, 50]

[176, 178] 27 [41, 43]

By Lemma 2.1, there exists a TD(7, n). Delete n − x and n − y points from the last two
groups of the TD(7, n), respectively, we get a {5, 6, 7}-GDD of type n5x1y1. By Lemma 2.3,
there exist 3 HMOLS(2t) for t ∈ {5, 6, 7}, we get 3 HMOLS((2n)5(2x)1(2y)1) by Construction
3.1. Noting that there exist 3 MNOLS(2n), 3 MNOLS(2x) and 3 MNOLS(2y) coming from
Lemma 1.2 and Lemmas 4.2–4.5, we obtain 3 MNOLS(2m) by Construction 3.4. �

Combine Lemma 1.2 and Lemmas 4.2–4.6, we get the proof of Theorem 1.3. �
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5 Proof of Theorem 1.4

In this section, we shall give the proof of Theorem 1.4. For some small values m, the corre-
sponding 4 MNOLS(2m) are obtained by finding a (4, 2m)-difference set directly.

Lemma 5.1. There exist 4 MNOLS(2m) for all m ∈ {7, 9, 10, 15}.
Proof. For each m ∈ {7, 9, 10, 15}, with the aid of a computer, we find a (4, 2m)-difference set
listed below. Hence 4 MNOLS(2m) are obtained by Lemma 4.1.
m = 7: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 4 6 11 9 12 3 13 2 7 5 10 8

5 2 11 0 7 12 13 9 6 1 4 10 8 3

12 7 6 4 1 0 11 10 2 8 3 13 5 9

)

.

m = 9: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4 3 11 16 2 15 14 10 5 8 17 12 0 6 1 9 7 13

2 13 0 11 5 9 15 16 1 12 7 3 17 8 10 14 4 6

11 2 5 17 13 7 1 12 14 3 8 0 16 10 4 6 15 9

)

.

m = 10: ( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

12 11 4 2 8 15 17 5 13 6 19 18 0 9 7 16 10 3 1 14

16 5 12 4 9 2 0 14 3 19 18 13 11 6 17 1 8 15 7 10

10 4 1 17 13 9 16 15 14 2 6 8 3 11 19 7 18 12 5 0

)

.

m = 15:
( 5 20 17 18 12 22 3 21 25 7 13 27 2 28 4 16 23 1 11 14 19 9 26 15 6 0 29 24 10 8

20 17 18 12 5 3 21 25 7 22 27 2 28 4 13 23 1 11 14 16 9 26 15 6 19 29 24 10 8 0

17 18 12 5 20 21 25 7 22 3 2 28 4 13 27 1 11 14 16 23 26 15 6 19 9 24 10 8 0 29

18 12 5 20 17 25 7 22 3 21 28 4 13 27 2 11 14 16 23 1 15 6 19 9 26 10 8 0 29 24

)

.

For m ≡ 0 (mod 4), to find a (4, 2m)-difference set, we shall make use of the following useful
construction.

Construction 5.2. Suppose that m ≡ 0 (mod 4), let Ck = (a4k, a4k+1, a4k+2, a4k+3), k =
0, 1, · · · , m

2 − 1 and C0, C1, · · ·, Cm
2 −1 form a partition of {0, 1, · · · , 2m− 1}. Let

M1 =

m
2 −1⋃

k=1

{a4k+1 − a4k, a4k+2 − a4k+1, a4k+3 − a4k+2, a4k − a4k+3},

M2 =

m
2 −1⋃

k=1

{a4k+2 − a4k, a4k+3 − a4k+1, a4k − a4k+2, a4k+1 − a4k+3},

here the operations are all taken modulo 2m. If for each i = 1, 2, each number of {0, 1, · · · , 2m−
1} appears exactly once in Mi except for 0 and m, where 0 �∈ Mi and m appears exactly twice,
then there exists a (4, 2m)-difference set over {0, 1, · · · , 2m − 1}.
Proof. For each k, 0 ≤ k ≤ m

2 − 1, let σ = (0 1 2 3) be a component permutation of Ck. Let
A = (A0, A1, · · · , Am

2 −1), where

Ak =

⎛

⎜
⎝

Ck

σ(Ck)
σ2(Ck)
σ3(Ck)

⎞

⎟
⎠ =

⎛

⎜
⎝

a4k a4k+1 a4k+2 a4k+3

a4k+1 a4k+2 a4k+3 a4k

a4k+2 a4k+3 a4k a4k+1

a4k+3 a4k a4k+1 a4k+2

⎞

⎟
⎠ , k = 0, 1, · · · , m

2
− 1.

It is easy to check that A is a (4, 2m)-difference set. �

Lemma 5.3. There exist 4 MNOLS(2m) for all m ∈ M = {8, 12, 16, 20, 24, 28, 32}.
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Proof. For each m ∈ M , to construct a (4, 2m)-difference set, by Construction 5.2, we need
only to find 4-tuples C0, C1, · · · , Cm

2 −1 satisfying the conditions described in Construction 5.2.
We list the 4-tuples as columns of a 4 × m

2 array below.
m = 8: ( 0 2 4 6

1 15 9 12

3 10 5 11

7 8 13 14

)

.

m = 12: ( 0 11 21 19 1 7

12 3 9 18 14 8

22 23 4 20 17 16

2 6 15 5 10 13

)

.

m = 16: ( 11 30 14 23 15 12 22 2

20 18 3 25 7 28 16 17

27 31 21 5 10 29 1 8

24 26 0 13 9 19 6 4

)

.

m = 20: ( 21 26 24 37 7 16 9 22 2 10

35 13 29 12 5 0 11 17 31 28

6 3 36 8 39 20 14 38 1 32

15 4 27 25 19 33 30 23 34 18

)

.

m = 24: ( 3 41 47 46 30 8 20 4 42 31 22 15

6 26 5 39 12 13 7 18 11 17 21 23

19 1 27 37 16 45 14 9 35 32 0 33

2 29 38 10 36 40 43 28 24 34 44 25

)

.

m = 28: ( 42 52 2 31 17 35 29 6 32 18 43 36 3 9

20 28 19 24 15 37 47 44 51 4 26 25 10 33

49 5 13 39 14 7 16 50 0 41 21 53 22 34

46 8 48 23 30 55 1 40 11 54 12 27 45 38

)

.

m = 32: ( 8 45 7 54 51 52 35 18 13 17 24 22 50 40 5 6

39 14 53 46 49 10 42 21 56 31 23 11 15 12 30 33

59 26 27 1 37 19 25 47 29 2 20 34 16 63 62 48

3 32 61 43 58 4 41 0 9 57 60 36 55 44 28 38

)

.

�

Lemma 5.4. There exist 4 MNOLS(2m) for any m ≥ 30 and m ≡ 0 (mod 6).

Proof. For m = 30, since there exist 4 MOLS(5), 4 MOLS(12) by Lemma 2.1 and 4 MNOLS(12)
by Lemma 4.1, we get 4 MNOLS(60) by Construction 3.3.

For m > 30 and m ≡ 0 (mod 6), we write m = 6n, where n ≥ 6. Since there exist 4
HMOLS(12n) and 4 MNOLS(12) coming from Lemma 2.4 and Lemma 1.2, respectively, we
obtain 4 MNOLS(2m) by Construction 3.4. �

Lemma 5.5. There exist 4 MNOLS(2m) for any m ∈ {35, 40, 45, 50, 51}.
Proof. For each m ∈ {35, 40, 45, 50}, we can write m = 5t, where t ∈ {7, 8, 9, 10}. Since there
exist 4 HMOLS(10t) coming from Lemma 2.4 and 4 MNOLS(10) coming from Lemma 1.2, we
get 4 MNOLS(2m) by Construction 3.4.

For m = 51, since there exist 7 MOLS(8), 4 MOLS(12) coming from Lemma 2.1, 4
IMOLS(12+3,3) coming from Lemma 2.2 and 4 MNOLS (12) coming from Lemma 1.2, we
get 4 MNOLS(102) by Construction 3.5. �

Lemma 5.6. There exist 4 MNOLS(2m) for any m ∈ {47, 49, 52, 57}.
Proof. For each m ∈ {47, 49}, it can be written m = 42 + x, where x ∈ {5, 7}. Delete 7 − x

points from the last group of a TD(7, 7) from Lemma 2.1, we get a {6, 7}-GDD of type 76x1.
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Applying Construction 3.1 with 4 HMOLS(26) and 4 HMOLS(27) coming from Lemma 2.4, we
get 4 HMOLS((14)6(2x)1). Since there exist 4 MNOLS(14) and 4 MNOLS(2x) coming from
Lemma 5.1 and Lemma 1.2, we obtain 4 MNOLS(2m) by Construction 3.4.

For m = 52, delete 2 points from the last two groups of a TD(8, 7), respectively, we get a
{6, 7, 8}-GDD of type 7652. Applying Construction 3.1 with 4 HMOLS(2t) for t = 6, 7, 8 coming
from 2.4, we get 4 HMOLS((14)6(10)2). Since there exist 4 MNOLS(14) and 4 MNOLS(10)
coming from Lemma 5.1 and Lemma 1.2, respectively, we obtain 4 MNOLS(104) by Construc-
tion 3.4.

For m = 57, delete 7 points which belong to a block from a TD(8, 8), we get a {7, 8}-
GDD of type 7781. Applying Construction 3.1 with 4 HMOLS(27) and 4 HMOLS(28) coming
from Lemma 2.4, we get 4 HMOLS((14)7(16)1). Noting that there exist 4 MNOLS(14) and 4
MNOLS(16) coming from Lemma 5.1 and Lemma 5.3, respectively, we obtain 4 MNOLS(114)
by Construction 3.4. �

Lemma 5.7. There exist 4 MNOLS(2m) for all integers m ∈ [53, 64] \ {57}.
Proof. For each integer m ∈ [53, 64]\{57}, we can write m = 48+(x+y), where 5 ≤ (x+y) ≤
16 and x, y ∈ {0, 5, 6, 7, 8}.

Delete 8 − x and 8 − y points from the last two groups of a TD(8, 8), respectively, we get
a {6, 7, 8}-GDD of type 86x1y1. Applying Construction 3.1 with 4 HMOLS(26), 4 HMOLS(27)
and 4 HMOLS(28) from Lemma 2.4, we get 4 HMOLS((16)6(2x)1(2y)1). Since there exist 4
MNOLS(16), 4 MNOLS(2x) and 4 MNOLS(2y) coming from Lemma 5.1 and Lemma 1.2, we
obtain 4 MNOLS(2m) by Construction 3.4. �

Lemma 5.8. There exist 4 MNOLS(2m) for all integers m ∈ [65, 90].

Proof. For each integer m ∈ [65, 90], we can write m = 54 + (x + y + z + w), where 11 ≤
(x + y + z + w) ≤ 36 and x, y, z, w ∈ {0, 5, 6, 7, 8, 9}.

Delete 9−x, 9−y, 9−z, 9−w points from the last four groups of a TD(10, 9), respectively,
we get a {6, 7, 8, 9}-GDD of type 96x1y1z1w1. Applying Construction 3.1 with 4 HMOLS(2t),
t ∈ {6, 7, 8, 9}, coming from 2.4, we get 4 HMOLS((18)6(2x)1(2y)1(2z)1(2w)1).

Since there exist 4 MNOLS(18), 4 MNOLS(2x), 4 MNOLS(2y), 4 MNOLS(2z), 4 MNOLS(2w)
coming from Lemma 5.1 and Lemma 1.2, we obtain 4 MNOLS(2m) by Construction 3.4. �

Lemma 5.9. There exist 4 MNOLS(2m) for all integers m ∈ [91, 100].

Proof. For m ∈ {91, 98}, we can write m = 7t, where t ∈ {13, 14}. Since there exist 4
HMOLS(14t) coming from Lemma 2.4 and 4 MNOLS(14) coming from Lemma 5.1, we get 4
MNOLS(2m) by Construction 3.4.

For m ∈ {92, 94}, we can write m = 84 + a, where a ∈ {8, 10}. Delete 24 − 2a points from
the last group of a TD(8, 24) coming from [4, p.186]), we get a {7, 8}-GDD of type (24)7(2a)1.
Applying Construction 3.1 with 4 HMOLS(17) and 4 HMOLS(18) coming from Lemma 2.4, we
get 4 HMOLS((24)7(2a)1). Since there exist 4 MNOLS(24) and 4 MNOLS (2a) coming from
Lemmas 2.4, we obtain 4 MNOLS (2m) by Construction 3.4.

For m = 93, delete two points from the last group of a TD(8, 8), we get a {7, 8}-GDD
of type 8761. Since there exist 4 HMOLS(37) and 4 HMOLS(38) coming from Lemma 2.4,
by Construction 3.1, we get 4 HMOLS((24)7(18)1). Since there exist 4 MNOLS(18) and 4
MNOLS(24) coming from Lemmas 5.1–5.3, we obtain 4 MNOLS(186) by Construction 3.4.

For m ∈ {95, 100}, we can write m = 5t, where t ∈ {19, 20}. Since there exist 4 HMOLS(10t)
coming from Lemma 2.4 and 4 MNOLS(10) coming from Lemma 1.2, we get 4 MNOLS(2m)
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by Construction 3.4.
For m = 96, 4 MNOLS(192) is given in Lemma 5.4.
For m = 97, since there exist 7 MOLS(16), 4 MOLS(12) by Lemma 2.1, 4 IMOLS(12+1,1)

by Lemma 2.2, 4 MNOLS(12) by Lemma 1.2 and 4 MNOLS(14) by Lemma 5.1, we get 4
MNOLS(194) by Construction 3.4.

For m = 99, there exists 4 HMOLS(1811) by Lemma 2.4 and 4 MNOLS(18) by Lemma 5.1,
we get 4 MNOLS(198) by Construction 3.5. �

Lemma 5.10. There exist 4 MNOLS(2m) for all integers m ∈ [101, 206].

Proof. For integer m ∈ [101, 206], it can be written m = 96 +
11∑

i=1

gi, where 5 ≤
11∑

i=1

gi ≤ 110,

gi ∈ {0, 5, 6, 7, 8, 9, 10}, 1 ≤ i ≤ 11.
Remove 16 − gi points from i-th group of a TD(17, 16), 1 ≤ i ≤ 11, respectively, we get a

{6, 7, · · · , 17}-GDD of type (16)6(g1)1 · · · (g11)1. Applying Construction 3.1 with 4 HMOLS(2u),
6 ≤ u ≤ 17 coming from Lemma 2.4, we get 4 HMOLS((32)6(2g1)1 · · · (2g11)1). Applying
Construction 3.4, we obtain 4 MNOLS(2m). Here, the input 4 MNOLS(32) and 4 MNOLS(2gi),
1 ≤ i ≤ 11, come from Lemma 1.2 and Lemmas 5.1–5.3. �

Lemma 5.11. There exist 4 MNOLS(2m) for all integers m ∈ [207, 370].

Proof. For each integer m ∈ [207, 370], it can be written m = 192+
18∑

i=1

gi, where 15 ≤
18∑

i=1

gi ≤
178, gi ∈ {0, 5, 6, 7, 8, 9, 10}, 1 ≤ i ≤ 18.

Remove 32 − gi points from i-th group of a TD(24, 32), 1 ≤ i ≤ 18, respectively, we
get a {6, 7, · · · , 24}-GDD of type (32)6(g1)1(g2)1 · · · (g18)1. Applying Construction 3.1 with 4
HMOLS(2u), 6 ≤ u ≤ 24 coming from Lemma 2.4, we get 4 HMOLS((64)6(2g1)1 · · · (2g18)1).
Applying Construction 3.4, we obtain 4 MNOLS(2m). Here, the input 4 MNOLS(64) and 4
MNOLS(2gi), 1 ≤ i ≤ 18, come from Lemma 1.2 and Lemmas 5.1–5.3. �

Lemma 5.12. There exist 4 MNOLS(2m) for all integers m ≥ 371.

Proof. For each integer m ≥ 371, we can write m = 6n + a, where n ≥ 61 and 5 ≤ a ≤ 10.
Delete n − a points from the last group of a TD(7, n) coming from Lemma 2.1, we get a

{6, 7, n}-GDD of type 6na1. Applying Construction 3.1 with 4 HMOLS(26), 4 HMOLS(27) and
4 HMOLS(2n) coming from Lemma 2.4, we get 4 HMOLS(T ), where T = (12)n(2a)1. Since
there exist 4 MNOLS(12) and 4 MNOLS(2a) coming from Lemma 1.2 and Lemmas 5.1–5.3, we
obtain 4 MNOLS(2m) by Construction 3.4. �

Combine Lemma 1.2 and Lemmas 5.1–5.12, we get the proof of the Theorem 1.4. �

6 Concluding Remarks

In this paper, we solved the existence of 3-MNOLS(2m) completely and almost solved the
existence of 4-MNOLS(2m) by direct and recursive constructions. In a similar way, one can
consider the existence of 5 MNOLS(2m). For some small values m, to construct 5 MNOLS(2m),
by Lemma 4.1, we need only to find a (5, 2m)-difference set. For m ≡ 0 (mod 5), similar to
Construction 5.2, we have the following.

Construction 6.1. Suppose that m ≡ 0 (mod 5), let Ck = (a5k, a5k+1, a5k+2, a5k+3, a5k+4),
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k = 0, 1, · · ·, 2m
5 − 1 and C0, C1, · · · , C 2m

5 −1 form a partition of {0, 1, · · · , 2m− 1}. Let

M1 =

2m
5 −1⋃

k=1

{a5k+1 − a5k, a5k+2 − a5k+1, a5k+3 − a5k+2, a5k+4 − a5k+3, a5k − a5k+4},

M2 =

2m
5 −1⋃

k=1

{a5k+2 − a5k, a5k+3 − a5k+1, a5k+4 − a5k+2, a5k − a5k+3, a5k+1 − a5k+4},

here the operations are all taken modulo 2m. If for each i = 1, 2, each number of {0, 1, · · · , 2m−
1} appears exactly once in Mi except 0 and m, where 0 �∈ Mi and m appears exactly twice, then
there exist a (5, 2m)-difference set over {0, 1, · · · , 2m − 1}.
Proof. For each k, 0 ≤ k ≤ 2m

5 − 1, let σ = (0 4 3 2 1) be a component permutation of Ck.
Let A = (A0, A1, · · · , A 2m

5 −1), where

Ak =

⎛

⎜
⎜
⎜
⎝

Ck

σ(Ck)
σ2(Ck)
σ3(Ck)
σ4(Ck)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

a5k a5k+1 a5k+2 a5k+3 a5k+4

a5k+1 a5k+2 a5k+3 a5k+4 a5k

a5k+2 a5k+3 a5k+4 a5k a5k+1

a5k+3 a5k+4 a5k a5k+1 a5k+2

a5k+4 a5k a5k+1 a5k+2 a5k+3

⎞

⎟
⎟
⎟
⎠

, k = 0, 1, · · · , 2m

5
− 1.

It is easy to check that A is a (5, 2m)-difference set. �

Example 1. There exists a 5 MNOLS(30).

Proof. With the help of a computer, we find 5-tuples C0, C1, · · · , C 2m
5 −1 satisfying the condi-

tions described in Construction 6.1 which are list as the columns of the following array:
⎛

⎜
⎜
⎜
⎝

5 22 13 16 19 0
20 3 27 23 9 29
17 21 2 1 26 24
18 25 28 11 15 10
12 7 4 14 6 8

⎞

⎟
⎟
⎟
⎠

.

By Construction 6.1, there exits a (5, 30)-difference set. Consequently, there exists a 5 MNOLS(30)
by Lemma 4.1. �

To determine the spectrum of 5 MNOLS(2m) completely, more computation are needed for
small values m.
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