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Abstract In this paper, we propose a class of stable finite difference schemes for the initial-boundary value

problem of the Cahn-Hilliard equation. These schemes are proved to inherit the total mass conservation and

energy dissipation in the discrete level. The dissipation of the total energy implies boundness of the numerical

solutions in the discrete H1 norm. This in turn implies boundedness of the numerical solutions in the maximum

norm and hence the stability of the difference schemes. Unique existence of the numerical solutions is proved by

the fixed-point theorem. Convergence rate of the class of finite difference schemes is proved to be O(h2 + τ2)

with time step τ and mesh size h. An efficient iterative algorithm for solving these nonlinear schemes is proposed

and discussed in detail.
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1 Introduction

The Cahn-Hilliard equation

∂u

∂t
− q

∂4u

∂x4
=

∂2

∂x2
φ(u), (x, t) ∈ (0, L) × (0, T ], (1.1)

φ(u) = pu + ru3, (x, t) ∈ (0, L) × (0, T ], (1.2)

where p < 0, q < 0 and r > 0 are constants, arises in the study of phase separation in cooling
binary solutions such as alloys, glasses and polymer mixtures[3,25,28] and the references cited
therein. Here u(x,t) is a perturbation of the concentration of one of the phases. Initial and
boundary conditions are

u(x, 0) = u0(x), x ∈ [0, L], (1.3)
∂

∂x
u(x, t) =

∂3

∂x3
u(x, t) = 0, (x, t) ∈ {0, L} × (0, T ]. (1.4)

(1.4) leads to
∂

∂x
φ(u(x, t)) = 0, (x, t) ∈ {0, L} × (0, T ].
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By simple calculation we can see that φ(u) + q ∂2u
∂x2 is the variational derivative of

G(u(x, t)) =
1
2
pu2 +

1
4
ru4 − 1

2
q
(∂u

∂x

)2

with respect to u(x, t), i.e., φ(u)+ q ∂2u
∂x2 = δG

δu , where the functional G means a local free energy
called a Ginzburg-Landau free energy.

The important features of the Cahn-Hilliard equation are that the total mass
∫ L

0 u(x, t)dx

is conserved and the total free energy
∫ L

0 G(u(x, t))dx decreases with time. Namely,

M :=
∫ L

0

u(x, t)dx ≡
∫ L

0

u0(x)dx, t > 0, (1.5)

F(u) :=
∫ L

0

G(u(x, t))dx,
d

dt
F(u) ≤ 0. (1.6)

The conservation of mass (1.5) and the dissipation of the total energy (1.6) can be shown easily
as follows:

d

dt

∫ L

0

u(x, t)dx =
∫ L

0

∂u(x, t)
∂t

dx =
∫ L

0

∂2

∂x2

δG

δu
dx =

[ ∂

∂x

δG

δu

]L

0
= 0, (1.7)

d

dt

∫ L

0

G(u(x, t))dx =
∫ L

0

δG

δu

∂u

∂t
dx = −

∫ L

0

[ ∂

∂x

δG

δu

]2

dx ≤ 0. (1.8)

Remark 1.1. We see from (1.8) that the total energy can be employed as a Lyapunov func-
tional of the system[11].

Since the pioneering work of Cahn and Hilliard[3], the Cahn-Hilliard equation has been
extensively studied by Wang and Shi[30], Jabbari and Peppas[24], Puri and Binder[26] for the
study of interfaces. Global existence and uniquiness of the solution have been shown by Elliott
and Zheng[16]. Yin[36] has shown the existence of the continuous solution for the problem
with degenerate mobility. Finite element Galerkin solutions have been obtained by Elliott and
French[12,13] and French and Jensen[18]. Elliott et al.[14] have obtained optimal order bounds
using a second order splitting method. Elliott and Larsson[15] have discussed the error estimates
with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation.
Mixed finite element method has been applied by Dean et al.[9]. A finite difference scheme has
been studied by Furihata et al.[20] who have examined the boundedness of the solution. Sun[27]

has proposed an interesting linearized conservative finite difference scheme which is uniquely
solvable and convergent with the convergence rate of order two in discrete L2 norm. Choo et
al.[6,7] have proposed a nonlinear difference scheme based on the Crank-Nicolson scheme for the
Cahn-Hilliard equation. Their schemes are proved to be unconditional stable and conserve the
total mass. Dehghan and Mirzae[10] have described a numerical method based on the boundary
integral equation and dual reciprocity methods for solving the one-dimensional Cahn-Hilliard
equation. A time-stepping method and a predictor-corrector scheme have been employed to
deal with the time derivative and the nonlinearity respectively. In [23,32], a combined spectral
and large time-stepping methods have been proposed and studied for the nonlinear diffusion
equations for thin film epitaxy. In [21], the convergence of the spatial discretization of the Cahn-
Hilliard has been considered. In resent study[5,17,29], the unconditionally stable algorithms have
been developed for Cahn-Hillard equation. These algorithms allow for an increasing time step
in Cahn-Hillard systems as time proceeds. He and Liu[22] have proposed a class of fully discrete
dissipative Fourier spectral schemes for solving the two-dimensional Cahn-Hilliard equation, and
presented semi-implicit prediction-correction schemes. Ye[33−35] has studied numerically the
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Cahn-Hilliard equation by using the Fourier collocation method, Fourier spectral method and
Legendre spectral method, respectively. Both the semi-discrete and the fully discrete schemes
derived in [33–35] are uniquely solvable and inherit the energy dissipation property and the mass
conservation property. The optimal error bounds of numerical solutions has also been obtained.
Ceniceros and Roma[4] present a nonstiff, fully adaptive mesh refinement-based method for the
Cahn-Hilliard equation. Yinhua Xia et al.[31] develop local discontinuous Galerkin methods for
the fourth order nonlinear Cahn-Hilliard equation and system. In [19], Furihata has designed
a difference scheme which inherits the conservation of the total mass and the decrease of the
total energy, and proved that the designed scheme preserving characteristic properties of the
original equation are numerically stable. Adopting the idea of Furihata[19], Choo, Chung and
Lee[8] have proposed a nonlinear difference scheme for the viscous Cahn-Hilliard equations
with nonconstant gradient energy coefficient q and showed the scheme preserves the energy
dissipation property and mass conservation as for the classical solution.

In this paper, we mainly do three things. Firstly, we propose a class of finite difference
schemes which are stable and preserve both of the two properties (1.5) and (1.6). Secondly, we
prove the unique existence and convergence of the numerical solutions. Lastly, we construct
and discuss in detail an iterative algorithm for solving the proposed nonlinear schemes.

The remainder of this paper is arranged as follows. In Section 2, we propose a class of finite
difference schemes which are proved to inherit the properties (1.5) and (1.6) in the descrete level,
and consequently the stability of them is obtained. In Section 3, the unique existence of the
numerical solutions is discussed by Brouwer fixed-point theorem. In Section 4, the convergence
of the class of finite difference schemes is proved. In Second 5, an iterative algorithm for solving
the proposed nonlinear schemes is constructed and discussed in detail, and then a prediction-
correction scheme is proposed based on the iterative algorithm.

2 Finite Difference Schemes

For a positive number N , let time step τ = T/N and denote time steps tn = nτ, n =
0, 1, 2, · · · , N . Given a temporal discrete function

{
un | n = 0, 1, 2, · · · , N}

, we denote δ+
t un =

(un+1 − un)/τ , δ−t un = (un − un−1)/τ , δtu
n = (un+1 − un−1)/2τ .

For a positive integer J , let mesh size h = L/J and denote mesh points xj = jh, j =
0, 1, 2, · · · , J . To approximate the boundary conditions, let x−2 = −2h, x−1 = −h, xJ+1 = (J+
1)h, xJ+2 = (J +2)h. Given a grid function u = (u0, u1, · · · , uJ), denote δ+

x uj = 1
h (uj+1 − uj),

δ−x uj = 1
h (uj − uj−1), δ

〈1〉
x uj = 1

2h (uj+1 − uj−1), δ
〈2〉
x uj = 1

h2 (uj−1 − 2uj + uj+1), δ
〈3〉
x uj =

1
2h3 (uj+2 − 2uj+1 + 2uj−1 − uj−2), δ

〈4〉
x uj = 1

h4 (uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2),
For two grid functions u = (u0, u1, · · · , uJ) and v = (v0, v1, · · · , vJ), we define discrete inner

product and semi-norms as

(u, v)h = h

J∑
j=0

′′ujvj := h
[1
2
u0v0 +

J−1∑
j=1

ujvj +
1
2
uJvJ

]
,

||vn|| :=
√

(v, v)h, ||v||∞ := max
0≤j≤J

|vj |, ||δ+
x v|| :=

√√√√h

J−1∑
j=0

(
δ+
x vj

)2

In this paper we denote Ck, C̃k, k = 0, 1, 2, · · · , as general positive constants which may
have different values in different occurrences but independent of discrete parameters. We denote
Un

j and un
j be the numerical approximation, and respectively the exact solution of u(x, t) at

the point (xj , tn) for j = 0, 1, 2, · · · , J and n = 0, 1, 2, · · · , N .
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For simplicity of notations, as [22], we denote

ϕ(u, v, α) =
(u + v

2

)(
r(αu2 + (1 − α)v2) + p

)
.

Clearly, ϕ(u, u, 0) = φ(u). In particular,

ϕ
(
Un+1

j , Un
j ,

1
2

)
=

(Un+1
j + Un

j

2

)(
r
(Un+1

j )2 + (Un
j )2

2
+ p

)
.

For the Problems (1.1)–(1.4), we propose the following finite difference scheme

δ+
t Un

j + βh2δ〈2〉x δ+
t Un

j − q

2
δ〈4〉x (Un+1

j + Un
j ) = δ〈2〉x ϕ(Un+1

j , Un
j , α),

j = 0, 1, 2, · · · , J, n = 0, 1, 2, · · · , N − 1, (2.1)
U0

j = u0(xj), j = 0, 1, 2, · · · , J, (2.2)

δ〈1〉x Un
0 = δ〈1〉x Un

J = δ〈3〉x Un
0 = δ〈3〉x Un

J = 0, n = 0, 1, 2, · · · , N. (2.3)

From the boundary Condition (2.3) and the definition of δ
〈2〉
x and δ

〈4〉
x , we obtain

δ〈2〉x uj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
h2

(u1 − u0), when j = 0,

1
h2

(uj−1 − 2uj + uj+1), when j = 1, 2, · · · , J − 1,

2
h2

(uJ−1 − uJ), when j = J,

(2.4)

and

δ〈4〉x uj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
h4

(u2 − 4u1 + 5u0), when j = 0,

2
h4

(u3 − 4u2 + 7u1 − 4u0), when j = 1,

1
h4

(uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2), when j = 2, · · · , J − 2,

2
h4

(uJ−3 − 4uJ−2 + 7uJ−1 − 4uJ), when j = J − 1,

2
h4

(uJ2 − 4uJ−1 + 5uJ), when j = J.

(2.5)

Obviously, the scheme (2.1)–(2.3) is a nonlinear implicit one. In order to obtain the solution
Un+1

j at the level n+1, an outer nonlinear iteration for Un+1
j needs to be done and the iterative

values of Un+1
j are solved by an inner linear system. Therefore, an efficient iterative algorithm

is required to solve the scheme (2.1)–(2.3). For this purpose, we construct and analyze one in
Section 5.

The boundary Condition (2.3), together with the definition of ϕ, gives

[
δ〈1〉x ϕ(Un+1

j , Un
j , α)

]J

0
= 0.

We now turn to establish the discrete analogues of (1.5), (1.6). Let α ≥ 1
2 and β ≤ 1

4 . If
Un

j is the numerical solution of the scheme (2.1)–(2.3), we can obtain the following Lemma.
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Lemma 2.1. The finite difference scheme (2.1)–(2.3) satisfies

Mn := h

J∑
j=0

′′Un
j ≡ M0 = h

J∑
j=0

′′u0(xj), n = 0, 1, 2, · · · , N, (2.6)

1
τ

[
h

J∑
j=0

′′Gd(Un+1
j ) − h

J∑
j=0

′′Gd(Un
j )

]
≤ 0, n = 0, 1, 2, · · · , N − 1, (2.7)

where

Gd(Un
j ) =

1
2
p(Un

j )2 +
1
4
r(Un

j )4 − q

4
[
(δ+

x Un
j )2 + (δ−x Un

j )2
]
.

Proof. Applying summation by parts and noticing the boundary Condition (2.3), we obtain

1
τ

{
h

J∑
j=0

′′Un+1
j − h

J∑
j=0

′′Un
j

}
= h

J∑
j=0

′′δ+
t Un

j

=h

J∑
j=0

′′[ − βh2δ〈2〉x δ+
t Un

j +
q

2
δ〈4〉x (Un+1

j + Un
j ) + δ〈2〉x ϕ(Un+1

j , Un
j , α)

]

=h
J∑

j=0

′′δ〈2〉x

[ − βh2δ+
t Un

j +
q

2
δ〈2〉x (Un+1

j + Un
j ) + ϕ(Un+1

j , Un
j , α)

]

=
[
δ〈1〉x

[ − βh2δ+
t Un

j +
q

2
δ〈2〉x (Un+1

j + Un
j ) + ϕ(Un+1

j , Un
j , α)

]]J

0
= 0. (2.8)

This gives (2.6). Denoting φ̃(s) = 1
2ps2 + 1

4rs4 and applying summation by parts, we obtain

1
τ

[
h

J∑
j=0

′′Gd(Un+1
j ) − h

J∑
j=0

′′Gd(Un
j )

]

=h

J∑
j=0

′′
[
φ̃(Un+1

j ) − q

2
(δ+

j Un+1
j )2 + (δ−j Un+1

j )2

2
− φ̃(Un

j ) +
q

2
(δ+

j Un
j )2 + (δ−j Un

j )2

2

]

=h
J∑

j=0

′′
[
ϕ(Un+1

j , Un
j ,

1
2
) +

q

2
δ〈2〉x (Un+1

j + Un
j )

]
δ+
t Un

j

=h

J∑
j=0

′′
[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

]
δ+
t Un

j −
(
α − 1

2

) 1
2τ

h

J∑
j=0

′′[(Un+1
j )2 − (Un

j )2
]2

= −
(
α − 1

2

) 1
2τ

h

J∑
j=0

′′[(Un+1
j )2 − (Un

j )2
]2

+ h

J∑
j=0

′′
[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

]

× δ〈2〉x

[
− βh2δ+

t Un
j +

q

2
δ〈2〉x (Un+1

j + Un
j ) + ϕ(Un+1

j , Un
j , α)

]
. (2.9)

When 0 ≤ β ≤ 1
4 , it follows from (2.9) that

1
τ

[
h

J∑
j=0

′′Gd(Un+1
j ) − h

J∑
j=0

′′Gd(Un
j )

]
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= −
(
α − 1

2

) 1
2τ

h

J∑
j=0

′′[(Un+1
j )2 − (Un

j )2
]2 − h

J∑
j=0

′′
(
δ+
x

[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

])2

− h

J∑
j=0

′′
[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

]
× βh2δ〈2〉x δ+

t Un
j

= −
(
α − 1

2

) 1
2τ

h
J∑

j=0

′′[(Un+1
j )2 − (Un

j )2
]2 − h

J∑
j=0

′′
(
δ+
x

[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

])2

− h

J∑
j=0

′′δ〈2〉x

[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

]
× βh2δ+

t Un
j

= −
(
α − 1

2

) 1
2τ

h
J∑

j=0

′′[(Un+1
j )2 − (Un

j )2
]2 − h

J∑
j=0

′′(δ+
x

[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

])2

− h

J∑
j=0

′′[δ+
t Un

j + βh2δ〈2〉x δ+
t Un

j

] × βh2δ+
t Un

j

= −
(
α − 1

2

) 1
2τ

h

J∑
j=0

′′[(Un+1
j )2 − (Un

j )2
]2 − h

J∑
j=0

′′
(
δ+
x

[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

])2

− h

J∑
j=0

′′[βh2(δ+
t Un

j )2 − β2h4(δ+
x δ+

t Un
j )2

]

≤−
(
α − 1

2

) 1
2τ

h

J∑
j=0

′′[(Un+1
j )2 − (Un

j )2
]2 − h

J∑
j=0

′′
(
δ+
x

[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

])2

− h
J∑

j=0

′′
[
βh2(δ+

t Un
j )2 − β2h4 4

h2
(δ+

t Un
j )2

]

≤−
(
α − 1

2

) 1
2τ

h

J∑
j=0

′′[(Un+1
j )2 − (Un

j )2
]2 − h

J∑
j=0

′′
(
δ+
x

[
ϕ(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

])2

− h
J∑

j=0

′′βh2(1 − 4β)(δ+
t Un

j )2 ≤ 0. (2.10)

When β ≤ 0, denote ϕ0(Un+1
j , Un

j , α) = −βh2δ+
t Un

j +ϕ(Un+1
j , Un

j , α), then it follows from (2.9)
that

1
τ

[
h

J∑
j=0

′′Gd(Un+1
j ) − h

J∑
j=0

′′Gd(Un
j )

]

= −
(
α − 1

2

) 1
2τ

h

J∑
j=0

′′[(Un+1
j )2 − (Un

j )2
]2 + h

J∑
j=0

′′
[
ϕ0(Un+1

j , Un
j , α) +

q

2
δ〈2〉x (Un+1

j + Un
j )

]

× δ〈2〉x

[q

2
δ〈2〉x (Un+1

j + Un
j ) + ϕ0(Un+1

j , Un
j , α)

]
− h

J∑
j=0

′′βh2δ〈2〉x δ+
t Un

j δ+
t Un

j

= −
(
α − 1

2

) 1
2τ

h

J∑
j=0

′′[(Un+1
j )2 − (Un

j )2
]2 + h

J∑
j=0

′′βh2(δ+
x δ+

t Un
j )2
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− h

J∑
j=0

′′
(
δ+
x

[q

2
δ〈2〉x (Un+1

j + Un
j ) + ϕ0(Un+1

j , Un
j , α)

])2

≤ 0. (2.11)

Then (2.7) is obtained from (2.10) and (2.11). �

Based on Lemma 2.1, we turn to estimate the numerical solution of the scheme (2.1)–(2.3)
by using the similar method in [20].

Lemma 2.2. The numerical solution of the scheme (2.1)–(2.3) satisfies

||Un||2d(1,2) ≤
1

min(λ,− q
2 )

{ (p − 2λ)2

4r
L + h

J∑
j=0

′′Gd(U0
j )

}
, (2.12)

where λ is any a positive number and ||Un||d(1,2) is a discrete first-order Sobolev-Hilbert norm
which is defined as

||f ||d(1,2) :=

√√√√h

J∑
j=0

′′(fj)2 + h

J−1∑
j=0

′′(δ+
x fj)2, f = (fj)J+l

j=−l ∈ RJ+1+2l, l ≥ 0.

Proof. It follows from the dissipation of the total energy (2.7) that

h

J∑
j=0

′′Gd(U0
j )

≥h

J∑
j=0

′′Gd(Un
j ) ≥ h

J∑
j=0

′′
{
λ(Un

j )2 − (p − 2λ)2

4r
− q

2
(δ+

j Un
j )2 + (δ−j Un

j )2

2

}

(
since

1
2
pX2 +

1
4
rX4 ≥ λX2 − (p − 2λ)2

4r

)

≥min
(
λ,− q

2

) J∑
j=0

′′
{
(Un

j )2 +
(δ+

j Un
j )2 + (δ−j Un

j )2

2

}
− (p − 2λ)2

4r
L

= min
(
λ,− q

2

)
||Un||2d(1,2) −

(p − 2λ)2

4r
L, (2.13)

where the boundary condition (2.3) has been used. Then (2.12) is obtain from (2.13). �

Lemma 2.3[37]. For any grid function f, there is

||f ||∞ ≤ C5

√
||f ||

√
||f || + ||δ+

x f ||.

Lemma 2.4[19]. For any grid function f, there is

||f ||∞ ≤ 2 max
( 1√

L
,
√

L
)
||f ||d(1,2).

Applying Lemma 2.4 to (2.11) we obtain the following inequality.

Theorem 2.1. The numerical solution of the scheme (2.1)–(2.3) satisfies

||Un||∞ ≤ 2

√√√√ max ( 1
L , L)

min(λ,− q
2 )

{(p − 2λ)2

4r
L + h

J∑
j=0

′′Gd(U0
j )

}
. (2.14)
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Theorem 2.1 implies that the proposed difference scheme (2.1)–(2.3) is stable.

3 Unique Existence of the Numerical Solutions

To show the existence of the numerical solutions U1, U2, · · · , UN for the scheme (2.1)–(2.3), we
shall use the following Brouwer-type theorem[1,2].

Lemma 3.1. Let (H, (·, ·)) be a finite-dimensional inner product space, || · || be the associated
norm, and g : H → H be continuous. Assume, moreover, that

∃κ > 0, ∀ z ∈ H, ||z|| = κ, Re (g(z), z) ≥ 0.

Then, there exists a z∗ ∈ H such that g(z∗) = 0 and ||z∗|| ≤ κ.
For fixed j, we rewrite (2.1) in the form

Un+1
j + Un

j

2
− Un

j + βh2δ〈2〉x

(Un+1
j + Un

j

2
− Un

j

)
− τ

2
qδ〈4〉x

Un+1
j + Un

j

2

− τ

2
δ〈2〉x

[
p
Un+1

j + Un
j

2
+ 4rα(1 − α)

(Un+1
j + Un

j

2

)3

+ r
Un+1

j + Un
j

2

(
2α

Un+1
j + Un

j

2
− Un

j

)2]

=0.

The mapping � : RJ+1 → RJ+1,

(�(V ))j =Vj − Un
j + βh2CVj − βh2δ〈2〉x Un

j − τ

2
qδ〈4〉x Vj

− τ

2
δ〈2〉x

[
pVj + 4rα(1 − α)(Vj)3 + rVj(2αVj − Un

j )2
]
, 0 ≤ j ≤ J

(3.1)

is obviously continuous. In (3.1), V = (V0, V1, · · · , VJ) and operators δ
〈2〉
x , δ

〈4〉
x are defined as

(2.4) and (2.5). If the mapping � has a zero-point V ∗, then 2V ∗ − Un is the solution Un+1 of
the proposed scheme (2.1)–(2.3). From Theorem 2.1 we know that the ||V ∗||∞ is bounded if
there exists a numerical solution for the scheme (2.1)–(2.3). In the mapping (3.1), we assume
||V ||∞ ≤ C(Un) where C(Un) > 10√

L
||Un||.

Theorem 3.1. If τ is sufficiently small, then the scheme (2.1)–(2.3) has an unique solution.

Proof. Computing the inner product of (3.1) with V and noticing

(δ〈2〉x V, U)h = −h

J−1∑
j=0

δ+
x Ujδ

+
x Vj = (V, δ〈2〉x U)h, (3.2)

− τ

2
(δ〈2〉x [4rα(1 − α)(V )3], V )h

=2τrα(1 − α)h
J−1∑
j=0

(δ+
j Vj)2[(Vj+1)2 + Vj+1V

n
j + (V n

j )2], (3.3)

− τ

2
(δ〈2〉x [rVj(2αVj − Un

j )2], V )h

≥− τ |q|
4

||δ〈2〉x V ||2 − τr

4|q| ||V (2αV − Un)2||2

≥− τ |q|
4

||δ〈2〉x V ||2 − τr

4|q| ||(2αV − Un)2||2∞||V ||2
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≥− τ |q|
4

||δ〈2〉x V ||2 − C0
r

4|q|τ ||V ||2, (3.4)

where ((V )3)j = (Vj)3, (δ+
x V )j = δ+

x Vj , (δ〈2〉x V )j = δ
〈2〉
x Vj and C0 = (2α + 1)4[C(Un)]4, we

have

(�(V ), V )h =(V, V )h − (Un, V )h + βh2(δ〈2〉x V, V )h − βh2(δ〈2〉x Un, V )h − τ

2
q(δ〈4〉x V, V )h

− τ

2
(δ〈2〉x [pVj + 4rα(1 − α)(Vj)3 + rVj(2αVj − Un

j )2], V )h

=||V ||2 − (Un, V )h − βh2||δ+
x V ||2

+
β

2
h2(δ+

x Un, δ+
x V )h +

β

2
h2(δ−x Un, δ−x V )h − τ

2
q||δ〈2〉x V ||2

+ 2τrα(1 − α)h
J−1∑
j=0

(δ+
x Vj)2[(Vj+1)2 + Vj+1V

n
j + (V n

j )2]

− τ

2
(pVj + rVj(2αVj − Un

j )2, δ〈2〉x V )h

≥||V ||2 − 1
2
||V ||2 − 1

2
||Un||2 − 5|β|

4
h2||δ+

x V ||2 − |β|h2||δ+
x Un||2 − τ

2
q||δ〈2〉x V ||2

− τ |q|
4

||δ〈2〉x V ||2 − C0
r

4|q|τ ||V ||2 − τ |q|
4

||δ〈2〉x V ||2 − p2

4|q|τ ||V ||2

≥1
2
||V ||2 − 1

2
||Un||2 − 5|β|h2||V ||2 − 4|β|h2||U2||2 − C1τ ||V ||2

≥
(1

2
− 5|β| − C1τ

)
||V ||2 −

(1
2

+ 4|β|
)
||Un||2, (3.5)

where C1 = C0
r

4|q| + p2

4|q| . Taking β ≤ 1
12 , τ ≤ 1

24C1
and C(Un) > 10√

L
||Un||, we obtain

(�(V ), V )h ≥ 0 for ||V || ≥ 5||Un||. The existence of Un+ 1
2 satisfying ||Un+ 1

2 ||∞ ≤ C(Un)
follows from Lemma 3.1 and consequently the existence of Un+1 is obtained.

Using the similar proof of Theorem 4.1 in the next section, we can obtain the uniqueness of
the numerical solution. �

4 Error Estimate

The purpose of this section is to discuss the convergence of the numerical solutions. We denote
un

j = u(xj , tn) and define the error as

en
j � un

j − Un
j , j = −1, 0, 1 · · · , J, J + 1, (4.1)

where u(xj , tn) is the solution to the Cahn-Hilliard equation at the point (xj , tn). We define
an extension of u by

u(x, t) =
{

u(x − 2mL, t), for 2mL ≤ x ≤ (2m + 1)L,

u(2mL − x, t), for (2m − 1)L ≤ x ≤ 2mL,

where m ∈ Z. Define the truncation error of the scheme (2.1)–(2.3) as follows

r
n+1/2
j = δ+

t un
j + βh2δ〈2〉x δ+

t un
j − δ〈2〉x v

n+1/2
j , (4.2)

η
n+1/2
j = vn

j − ϕ(un+1
j , un

j , α) − q

2
δ〈2〉x (un+1

j + un
j ), (4.3)
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where

v
n+ 1

2
j =

{
pu + ru3 + q

∂2u

∂x2

}∣∣∣
(x,t)=(xj,tn+1/2)

, for j = 0, 1, · · · , J.

Using Taylor expansion, we can obtain

r
n+1/2
j = O(h2 + τ2), η

n+1/2
j = O(h4 + τ). (4.4)

Especially for β = 1
12 and α = 1

2 , there is

r
n+1/2
j = O(h4 + τ2), η

n+1/2
j = O(h4 + τ2). (4.5)

Lemma 4.1.
1
τ

{
(||en+1||2 − βh2||δ+

x en+1||2) − (||en||2 − βh2||δ+
x en||2)}

≤1
2
{||en+1||2 + ||en||2} +

1
q
||ϕ(un+1, un, α) − ϕ(Un+1, Un, α)||2 + ||rn||2 +

1
q
||ηn||2,

(4.6)

where
φ

n+ 1
2

j = {pu + ru3}|(x,t)=(xj,tn+1/2), for j = 0, 1, · · · , J.

Proof. Denote
V

n+ 1
2

j = ϕ(Un+1
j , Un

j , α) +
q

2
δ〈2〉x (Un+1

j + Un
j ), (4.7)

then (2.1) can be written as

δ+
t Un

j + βh2δ〈2〉x δ+
t Un

j = δ〈2〉x V
n+ 1

2
j . (4.8)

Denote
ξn
j � vn

j − V n
j , j = −1, 0, 1 · · · , J, J + 1, (4.9)

then it follows from (4.7) and (4.1)–(4.3) that

δ+
t en

j + βh2δ〈2〉x δ+
t en

j = δ〈2〉x ξ
n+1/2
j + r

n+1/2
j , (4.10)

ξ
n+ 1

2
j = ϕ̃n+1/2 +

q

2
δ〈2〉x (en+1

j + en
j ) + η

n+1/2
j . (4.11)

where ϕ̃n+1/2 = ϕ(un+1
j , un

j , α) − ϕ(Un+1
j , Un

j , α).
Taking the inner product of (4.10) and (4.11) with 1

2 (en+1 + en) and 1
q ξn+ 1

2 respectively,
then adding the results together, we obtain

1
2τ

{
(||en+1||2 − βh2||δ+

x en+1||2) − (||en||2 − βh2||δ+
x en||2)} − 1

q
||ξn+ 1

2 ||2

=
1
2
(δ〈2〉x ξn+1/2, en+1 + en)h +

1
2
(rn+1/2, en+1 + en)h − 1

q
(ϕ̃n+1/2, ξn+ 1

2 )h

− 1
2
(δ〈2〉x en+1 + en, ξn+1/2)h − 1

q
(ηn+1/2, ξn+1/2)h

= − 1
q
(ϕ̃n+1/2, ξn+ 1

2 )h +
1
2
(rn+1/2, en+1 + en)h − 1

q
(ηn+1/2, ξn+1/2)h

≤ 1
2q

||ϕ̃n+1/2||2 +
1
2q

||ξn+ 1
2 ||2 +

1
2
||rn+1/2||2

+
1
4
(||en+1||2 + ||en||2) +

1
2q

||ηn+1/2||2 +
1
2q

||ξn+1/2||2. (4.12)



A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation 873

Hence the inequality (4.6) is obtain from (4.12). �

Lemma 4.2.

1
q
||ϕ(un+1, un, α) − ϕ(Un+1, Un, α)||2 ≤ C3

(||en+1||2 + ||en||2), (4.13)

where

C3 = − 1
2q

(−p + 2r(C2)2)2, C2 = max
0≤n≤N

{||Un||∞, ||un||L∞ ,
}
.

Proof.

ϕ(un+1
j , un

j , α) − ϕ(Un+1
j , Un

j , α)

=p
un+1

j + un
j

2
+ r

un+1
j + un

j

2
[
α(un+1

j )2 + (1 − α)(un
j )2

]

− p
Un+1

j + Un
j

2
− r

Un+1
j + Un

j

2
[
α(Un+1

j )2 + (1 − α)(Un
j )2

]

=p
en+1

j + en
j

2
+ r

en+1
j + en

j

2
[
α(un+1

j )2 + (1 − α)(un
j )2

]

+ r
Un+1

j + Un
j

2
[
α(un+1

j + Un+1
j )en+1

j + (1 − α)(un
j + Un

j )en
j

]
. (4.14)

It follows from (4.13) that

|ϕ(un+1
j , un

j , α) − ϕ(Un+1
j , Un

j , α)| ≤ (−p + 2r(C2)2)
∣∣∣e

n+1
j + en

j

2

∣∣∣. (4.15)

Hence the inequality (4.13) is obtain from (4.15). �

Theorem 4.1. If (1.1) has a solution such that u(x, t) ∈ C6,3([0, L] × [0, T ]), β ≤ 1
12 and τ

is sufficiently small, then the solution of the difference scheme (2.1) converges to the solution
of (1.1) in the sense of discrete L2-norm, and the convergence rate is O(h2 + τ2) for α = 1/2
and O(h2 + τ) for α 
= 1/2.

Proof. It follows from Lemma 4.1 and Lemma 4.2 that

1
τ

{
(||en+1||2 − βh2||δ+

x en+1||2) − (||en||2 − βh2||δ+
x en||2)}

≤
(1

2
+ C3

)
(||en+1||2 + ||en||2) + ||rn||2 +

1
q
||ηn||2. (4.16)

Denote
Bn+1 = ||en+1||2 − βh2||δ+

x en+1||2. (4.17)

Since

||δ+
x en+1||2 ≤ 4

h2
||en+1||2,

we obtain that Bn+1 ≥ 2
3 ||en+1||2 if β ≤ 1

12 . Hence, it follows from (4.16) we obtain

Bn+1 − Bn ≤
(3

4
+

3
2
C3

)
τ(Bn+1 + Bn) + τ

(
||rn||2 +

1
q
||ηn||2

)
. (4.18)
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Using Gronwall inequality, we obtain

max
0≤n≤N

Bn ≤
(
B0 + τ

N∑
k=1

(
||rn||2 +

1
q
||ηn||2

))
e(3+6C3)T

=e(3+6C3)T
N∑

k=1

(
||rn||2 +

1
q
||ηn||2

)
τ, for τ ≤ N + 1

(3 + 6C3)N
.

(4.19)

It follows from (4.2), (4.3), (4.17) and (4.19) that Theorem 4.1 is hold. �

5 Iterative Algorithm

Computing the numerical solutions U1, U2, · · · , Un satisfying (2.1)–(2.3) requires solving at
each level a nonlinear system with J + 1 unknowns, so it is necessary to construct an effective
iterative algorithm to solve it in implementation. In this section, we will construct two iterative
algorithms based on which two predication-correction schemes will be proposed. The first
iterative algorithm is as follows:

δ−t U
n+1(s+1)
j + βh2δ〈2〉x δ−t U

n+1(s+1)
j − q

2
δ〈4〉x (Un+1(s+1)

j + Un
j )

=δ〈2〉x ϕ(Un+1(s)
j , Un

j , α), 0 ≤ j ≤ J, n = 0, 1, 2, · · · , N − 1, (5.1)

U0
j = u0(xj), j = −2,−1, 0, · · · , J, J + 1, J + 2, (5.2)

δ〈1〉x Un
0 = δ〈1〉x Un

J = δ〈3〉x Un
0 = δ〈3〉x Un

J = 0, n = 0, 1, 2, · · · , N, (5.3)

with

U
n+1(0)
j =

{
Un

j , for n = 0,

2Un
j − Un−1

j , for n ≥ 1,

where

δ−t U
n+1(s+1)
j =

U
n+1(s+1)
j − Un

j

τ
.

Theorem 5.1. Suppose that the solution u(x, t) of (1.1)–(1.4) belongs to C6,3([0, L]× [0, T ]),
β ≤ 1

12 and τ, h are sufficiently small, then the solution of the iterative method (5.1)–(5.3)
converges to the numerical solution of the scheme (2.1)–(2.3).

Proof. Denote θ
n+1(s)
j = U

n+1(s)
j − Un+1

j , n = 0, 1, 2, · · · , N − 1; s = 0, 1, 2, · · · . Then sub-
tracting (2.1) from (5.1), we obtain

1
τ
θ

n+1(s+1)
j +

1
τ
βh2δ〈2〉x θ

n+1(s+1)
j − q

2
δ〈4〉x θ

n+1(s+1)
j

=δ〈2〉x ϕ(Un+1(s)
j , Un

j , α) − δ〈2〉x ϕ(Un+1
j , Un

j , α)

=
p

2
δ〈2〉x θ

n+1(s)
j +

r

2
δ〈2〉x

{
θ

n+1(s)
j

[
α(Un+1

j )2 + (1 − α)(Un
j )2

]

+
r

2
α(Un+1(s)

j + Un
j )(Un+1(s)

j + Un+1
j )θn+1(s)

j

}
. (5.4)

Noticing, when n = 0,

θ
1(0)
j =U

1(0)
j − U1

j = U0
j − U1

j

=[(U0
j − u0

j) + (u0
j − u1

j) + (u1
j − U1

j )]

=0 + O(τ) + O(h2 + τ) = O(h2 + τ), (5.5)
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and when n ≥ 1,

θ
n+1(0)
j =U

n+1(0)
j − Un+1

j = 2Un
j − Un−1

j − Un+1
j

=
[
2(Un

j − un
j ) + (un−1

j − Un−1
j ) + (un+1

j − Un+1
j ) + (2un

j − un−1
j − un+1

j )
]

=O(h2 + τ) + O(h2 + τ) + O(h2 + τ) = O(h2 + τ). (5.6)

If taking α = 1/2, we have

θ
n+1(0)
j = O(h2 + τ2), for n ≥ 1. (5.7)

It follows from (5.5)–(5.7) that

||θn+1(0)||∞ ≤ C̃0(h2 + τ), for 1/2 < α ≤ 1 (5.8)

and

||θn+1(0)||∞ ≤
{

C̃0(h2 + τ), for n = 0,

C̃0(h2 + τ2), for n ≥ 1,
(5.9)

if we take α = 1/2. In next study, we just only discuss the case α = 1/2, the case 1/2 < α ≤ 1
can be discussed by the similar method.

Now, suppose

||θn+1(s)|| ≤ C̃s(h2 + τ2), n = 1, 2, · · · , N − 1; s = 0, 1, · · · . (5.10)

It follows from Sobolev estimate, we obtain

||θn+1(s)||∞ ≤C5

√
||θn+1(s)||

√
||δ+

x θn+1(s)|| + ||θn+1(s)||

≤C5

√
||θn+1(s)||

√
2
h
||θn+1(s)|| + ||θn+1(s)||

≤C5

√
1 +

2
h
||θn+1(s)|| ≤ C5C̃s(1 + 2h−1/2)(h2 + τ2)

n = 1, 2, · · · , N − 1; s = 0, 1, 2 · · · . (5.11)

Thus

||Un+1(s)||∞ ≤||Un+1||∞ + ||θn+1(s)||∞ ≤ C4 + C5C̃s(1 + 2h−1/2)(h2 + τ2),
n = 1, 2, · · · , N − 1; s = 0, 1, 2 · · · , (5.12)

where

C4 = 2

√√√√ max( 1
L , L)

min(λ,− q
2 )

{(p − 2λ)2

4r
L + h

J∑
j=0

′′Gd(U0
j )

}
.

Computing the inner product of (5.4) with θn+1(s+1),

||θn+1(s+1)||2 − βh2||δ+
x θn+1(s+1)||2 − q

2
τ ||δ〈2〉x θn+1(s+1)||2

=
p

2
τ(θn+1(s), δ〈2〉x θn+1(s+1))h +

r

2
τ([α(Un+1)2 + (1 − α)(Un)2]θn+1(s), δ〈2〉x θn+1(s+1))h

+
r

2
τ(α(Un+1(s) + Un)(Un+1(s) + Un+1)θn+1(s), +δ〈2〉x θn+1(s+1))h

≤− q

4
τ ||δ〈2〉x θn+1(s+1)||2 − p2

4q
τ ||θn+1(s)||2 − q

8
τ ||δ〈2〉x θn+1(s+1)||2 − r2

2q
(C4)4τ ||θn+1(s)||2

− q

8
τ ||δ〈2〉x θn+1(s+1)||2 − r2

2q
[2C4 + C5C̃s(1 + 2h−1/2)(h2 + τ2)]4τ ||θn+1(s)||2. (5.13)
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When β ≤ 1
12 , we obtain from (5.13) that

||θn+1(s+1)||2 ≤ C6τ ||θn+1(s)||2, (5.14)

where

C6 = −3p2

8q
− 3r2

4q

[
(C4)4 + (2C4 + C5C̃s(1 + 2h−1/2)(h2 + τ2))4

]
.

Thus for sufficiently small τ and h such that C6τ < 1, then the solution of the iterative algorithm
(5.1)–(5.3) converges to the solution of the nonlinear scheme (2.1)–(2.3). The convergence in
the case of n = 0 can be proved by the similar method.

In the case of s = 1, we obtain from the iterative algorithm (5.1)–(5.3) the linearized implicit
prediction-correction scheme

δ−t Ũn+1
j + βh2δ〈2〉x δ−t Ũn+1

j − q

2
δ〈4〉x (Ũn+1

j + Un
j )

=δ〈2〉x ϕ(Un
j , Un

j , α), 0 ≤ j ≤ J, n = 0, (5.15)

δ−t Ũn+1
j + βh2δ〈2〉x δ−t Ũn+1

j − q

2
δ〈4〉x (Ũn+1

j + Un
j )

=δ〈2〉x ϕ(2Un
j − Un−1

j , Un
j , α), 0 ≤ j ≤ J, n = 1, 2, · · · , N, (5.16)

δ−t Un+1
j + βh2δ〈2〉x δ−t Un+1

j − q

2
δ〈4〉x (Un+1

j + Un
j )

=δ〈2〉x ϕ(Ũn
j , Un

j , α), 0 ≤ j ≤ J, n = 0, 1, 2, · · · , N, (5.17)

U0
j = u0(xj), j = −2,−1, 0, · · · , J, J + 1, J + 2, (5.18)

δ〈1〉x Un
0 = δ〈1〉x Un

J = δ〈3〉x Un
0 = δ〈3〉x Un

J = 0, n = 0, 1, 2, · · · , N, (5.19)

where

δ−t Ũn+1
j =

Ũn+1
j − Un

j

τ
.

Now, we give the second iterative algorithm as follows:

δ−t U
n+1(s+1)
j + βh2δ〈2〉x δ−t U

n+1(s+1)
j − q

2
δ〈4〉x (Un+1(s+1)

j + Un
j )

=δ〈2〉x

(p

2
(Un+1(s+1)

j + Un
j ) +

r

2
(Un+1(s+1)

j + Un
j )(α(Un+1(s)

j )2 + (1 − α)(Un
j )2)

)
,

0 ≤ j ≤ J, n = 0, 1, 2, · · · , N − 1, (5.20)
U0

j = u0(xj), j = −2,−1, 0, · · · , J, J + 1, J + 2, (5.21)

δ〈1〉x Un
0 = δ〈1〉x Un

J = δ〈3〉x Un
0 = δ〈3〉x Un

J = 0, n = 0, 1, 2, · · · , N, (5.22)

with

U
n+1(0)
j =

{
Un

j , for n = 0,

2Un
j − Un−1

j , for n ≥ 1.

�

By the similar proof, we can obtain the following theorem:

Theorem 5.2. Suppose that the solution u(x, t) of (1.1)–(1.4) belongs to C6,3([0, L]× [0, T ]),
β ≤ 1

12 and τ, h are sufficiently small, then the solution of the iterative method (5.20)–(5.22)
converges to the numerical solution of the scheme (2.1)–(2.3).
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Similarly, in the case of s = 1, we obtain from the iterative algorithm (5.20)–(5.22) the
linearized implicit prediction-correction scheme:

δ−t Ũn+1
j + βh2δ〈2〉x δ−t Ũn+1

j − q

2
δ〈4〉x (Ũn+1

j + Un
j )

=δ〈2〉x

(p

2
(Ũn+1

j + Un
j ) +

r

2
(Ũn+1

j + Un
j )(Un

j )2
)
, 0 ≤ j ≤ J, n = 0, (5.23)

δ−t Ũn+1
j + βh2δ〈2〉x δ−t Ũn+1

j − q

2
δ〈4〉x (Ũn+1

j + Un
j )

=δ〈2〉x

(p

2
(Ũn+1

j + Un
j ) +

r

2
(Ũn+1

j + Un
j )(α(2Un

j − Un−1
j )2 + (1 − α)(Un

j )2)
)
,

0 ≤ j ≤ J, n = 1, 2, · · · , N − 1, (5.24)

δ−t Un+1
j + βh2δ〈2〉x δ−t Un+1

j − q

2
δ〈4〉x (Un+1

j + Un
j )

=δ〈2〉x

(p

2
(Un+1

j + Un
j ) +

r

2
(Un+1

j + Un
j )(α(Ũn+1

j )2 + (1 − α)(Un
j )2)

)
,

0 ≤ j ≤ J, n = 0, 1, 2, · · · , N − 1, (5.25)
U0

j = u0(xj), j = −2,−1, 0, · · · , J, J + 1, J + 2, (5.26)

δ〈1〉x Un
0 = δ〈1〉x Un

J = δ〈3〉x Un
0 = δ〈3〉x Un

J = 0, n = 0, 1, 2, · · · , N. (5.27)

Obviously, the above implicit scheme is linearized in the practical computation, i.e. at each time
step, we just only use Thomas algorithm to solve two five-diagonal linear systems. Thus, the
prediction-correction scheme can be expected to be more efficient in the practical computation.
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