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Abstract In this paper, we consider the empirical likelihood-based inferences for varying coefficient models

Y = Xτ α(U) + ε when X are subject to missing at random. Based on the inverse probability-weighted idea, a

class of empirical log-likelihood ratios, as well as two maximum empirical likelihood estimators, are developed

for α(u). The resulting statistics are shown to have standard chi-squared or normal distributions asymptotically.

Simulation studies are also constructed to illustrate the finite sample properties of the proposed statistics.
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1 Introduction

Missing data are frequently encountered in many statistical applications due to various reasons[12].
To handle the missing data, the current practice is only using the complete subjects and ig-
noring those with missing values, known as complete case analysis (CCA). However, it is well
known that, in the presence of missing data, CCA can not only lose efficiency, but also generate
considerable bias, especially when the missing mechanism depends on the outcome variables;
see [11,19] for more details. Therefore, it is important to develop some new methods which can
take the partially incomplete data into account.

In this paper, we are interested in the following varying-coefficient model

Y = Xτα(U) + ε. (1)

where Y is a response variable, X a p-variate random covariate vector, U a scalar covariate,
and α(·) = (α1(·), α2(·), · · · , αp(·))τ an unknown vector of some smooth functions. The model
error ε satisfies E(ε|X, U) = 0 and E(ε2|X, U) < ∞. Aτ denotes the transposition of a matrix
A. We focus mainly on the case that the covariates X may be missing at random (MAR). That
is, the available incomplete data are

(δi, Xi, Yi, Ui), i = 1, 2, · · · , n,

where δi = 0 if the Xi is missing, otherwise δi = 1. δi satisfies that P (δi = 1|Xi, Yi, Ui) =
P (δi = 1|Yi, Ui) = π(Zi) = πi with Zi = (Yi, Ui). MAR is commonly assumed in the literature;
see for example [9,11,12,18,22,26].
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As introduced in [7], Model (1) provides a natural and useful extension of the classical linear
regression model by allowing the regression coefficients to depend on certain covariates. Due
to the flexibility, this model has been intensively studied by many authors in the past decades.
For example, [4] considered a two-step estimating procedure for Model (1) when the coefficient
functions have possibly different degrees of smoothness. [1] developed an efficient estimating
procedure for this model in the framework of generalized linear models. When X may be
missing at random, [26] proposed a locally weighted estimator for this model based on the
inverse probability-weighted idea[8]. For more details, we refer the readers to [5]. Nevertheless,
to our best knowledge, there is few research in the literature concerning the empirical likelihood-
based inferences in Model (1). What we know is the work by [28]. However, their method is
not directly applicable in the setting of missing data.

In this paper, we propose three locally weighted empirical log-likelihood ratio (ELR) statis-
tics relying on the inverse probability-weighted idea. The first statistic uses an auxiliary random
vector similar to [26]. For this naive statistic, it is shown that the Wilks’ theorem for ELR is no

longer available due to the mismatch between the variance of the quantity 1√
n

n∑

i=1

Ĥi and the

probability limit of 1
n

n∑

i=1

ĤiĤτ
i (see Section 2). A similar phenomenon has also been found by

[20] in a more general sense. To resolve this problem, we define an another new ELR which has
a standard χ2-distribution asymptotically, inspired by [10] and [18]. However, since the range of
the corresponding bandwidth h does not contain the optimal bandwidth, undersmoothing be-
comes necessary. Aim at avoiding the undersmoothing, we also propose a residual-adjusted ELR
motivated by [28]. Furthermore, from the first two ELR’s, two maximum empirical likelihood
estimators are developed and shown to be asymptotically equivalent to those of [26].

Empirical likelihood is first introduced by [14,15]. Our motivation of using EL is that,
although EL is computer-intensive, it is a powerful tool for statistical inferences due to it
involves no explicit variance estimation, which is difficult especially when missing data are
present[26], and it produces confidence regions with natural shape and orientation. There are
many literature concerning the EL method. See, for example, [15,17,20,24,28] among others.
Many of the early results are summarized in [16], and the updated results can be found in [2].

The rest of this paper is organized as follows. In Section 2, we present three empirical-
likelihood-based statistics for Model (1) with missing at random covariates X , and derive their
asymptotic distributions. Two maximum empirical likelihood estimators (MELE) are also de-
veloped. In Section 3, we construct some simulation studies to illustrate the finite sample
properties of the proposed statistics. In Section 4, we conclude this paper with a brief discus-
sion. The technical details of the proofs of the main results are provided in the Appendix.

2 Methodology and Main Results

In this section, three locally weighted empirical log-likelihood ratio statistics are suggested
relying on the inverse probability-weighted idea. Two maximum empirical likelihood estimators
are also defined as by-products.

2.1 A Naive Locally Weighted Empirical Log-likelihood Ratio

Motivated by [26] and [28], we have the following observation:

E
{ δi

π(Zi)
(Yi − Xτ

i α(Ui))Xi

∣
∣
∣ Ui = u

}
γ(u) = 0, i = 1, 2, · · · , n, (2)

under the assumption of MAR, where γ(u) denotes the density function of U1. Using this, an
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auxiliary random vector can be defined as follows:

Hi(α(u)) =
{ δi

π(Zi)
(Yi − Xτ

i α(u))Xi

}
Kh(Ui − u),

i = 1, 2, · · · , n, where Kh(·) = K(·/h) and h is the bandwidth. For the sake of convenience, in
the sequel we drop the arguments α(u) and Zi from Hi(α(u)) and π(Zi), respectively.

Note that {Hi}n
i=1 are independent and satisfy EHi = 0 if and only if α(u) is the true

parameter. By Owen (1991)???, a naive locally weighted ELR for α(u) can be defined as

Lw(α(u)) = −2 max
{ n∑

i=1

log(npi)
∣
∣
∣ pi ≥ 0,

n∑

i=1

pi = 1,
n∑

i=1

piHi = 0
}
.

Since Lw(α(u)) contains an unknown function π(·), it can not be utilized directly in the sta-
tistical inferences for α(u). A natural idea to solve this problem is to replace π(·) with its
estimator, namely[22],

π̂i := π̂(Zi) =
n∑

j=1

δiK1

(Zi − Zj

b

)/ n∑

j=1

K1

(Zi − Zj

b

)
.

The corresponding estimated ELR is then as follows:

L̂w(α(u)) = −2max
{ n∑

i=1

log(npi)
∣
∣
∣ pi ≥ 0,

n∑

i=1

pi = 1,

n∑

i=1

piĤi = 0
}
.

Assume that 0 lies inside in the convex hull of Ĥ1, · · · , Ĥn. By the Lagrange multiplier
method, L̂w(α(u)) can be represented as

L̂w(α(u)) = 2
n∑

i=1

log(1 + λτ Ĥi), (3)

where λ is a p × 1 vector given as the solution to

1
n

n∑

i=1

Ĥi

1 + λτ Ĥi

= 0. (4)

The following theorem gives the asymptotic distribution of L̂w(α(u)).

Theorem 2.1. Suppose that Assumptions A2-A6 hold (see the Appendix), and that nh → ∞
and nh5 → 0 as n → ∞. If α(u) is the true parameter, then we have

L̂w(α(u)) →L w1χ
2
1,1 + w2χ

2
1,2 + · · · + wpχ

2
1,p,

where →L denotes the convergence in distribution, {χ2
1,i, 1 ≤ i ≤ p} are the independent χ2

1

variables, and wi’s are the eigenvalues of Σ(u) = Ω2(u)−1Ω1(u), which will be specified in the
Appendix.

In order to utilize Theorem 2.1 in practice, one needs to estimate the unknown weights wi’s
consistently. Denote

R̂i(α̂(u)) =
{ δi

π̂i
(Yi − Xτ

i α̂(u))Xi +
π̂i − δi

π̂i
Φ̂u(Zi, α̂(u))

}
Kh(Ui − u),
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where α̂(u) denotes a consistent estimator of α(u) such as the locally weighted estimator pro-
posed by [26], Φ̂u(z, α(u)) = Y ĝ1(z)− ĝ2(z)α(u), ĝ1(z) and ĝ2(z) denote the Horvitz-Thompson
(HT) bivariate local linear estimators of g1(z) = E(X |Z = z) and g2(z) = E(XXτ |Z = z),
respectively. By adopting [11], ĝi(·) (i = 1, 2) converge to gi(·) at order n

1
4 uniformly. Then it

is easy to show that Σ̂(u) = Ω̂2(u)−1Ω̂1(u) is a consistent estimator of Σ(u) (see Lemma A.3),
where

Ω̂1(u) =
1
n

n∑

i=1

R̂i(α̂(u))(R̂i(α̂(u)))τ ,

Ω̂2(u) =
1
n

n∑

i=1

Ĥi(α̂(u))(Ĥi(α̂(u)))τ .

Therefore, one can take the eigenvalues of Σ̂(u) to be the consistent estimators of wi’s.
However, the accuracy of this procedure depends on the values of wi’s. Along the line of [23],

we will give an adjusted ELR, which is exactly standard chi-squared distributed asymptotically.
Denote

r̂(α̂(u)) = tr
{
Ω̂−1

1 (u)V̂ (u)
}/

tr
{
Ω̂−1

2 (u)V̂ (u)
}
,

where

V̂ (u) =
( n∑

i=1

Ĥi(α̂(u))
)( n∑

i=1

Ĥi(α̂(u))
)τ

.

Then an adjusted ELR can be defined as follows

L̂ad(α(u)) = r̂(α(u)) × L̂w(α(u)),

where r̂(α(u)) is obtained from r̂(α̂(u)) by replacing α̂(u) with α(u). Similar to the proof of
Theorem 2 in [23], we can show that

Theorem 2.2. If α(u) is the true parameter, then under the same assumptions of Theorem
2.1, we have

L̂ad(α(u)) −→L χ2
p.

where χ2
p is a chi-squared variable with p degrees of freedom.

Furthermore, from Theorem 2.1, a MELE of α(u), say α̂w(u), can be defined by minimizing
L̂w(α(u)). Write

Â1n(u) =
1

nh

n∑

i=1

δi

π̂i
XiX

τ
i Kh(Ui − u),

B̂1n(u) =
1

nh

n∑

i=1

δi

π̂i
XiYiKh(Ui − u).

Assume that the matrix Â1n(u) is invertible, then it is easy to show that

α̂w(u) = Â−1
1n (u)B̂1n(u) + op((nh)−1/2).

This further implies that the following theorem.

Theorem 2.3. Under the Assumptions of A1–A6, we have

√
nh{α̂w(u) − α(u) − b1(u)} −→L N

(
0,

v0

γ(u)
Ψ(u)−1Ω1(u)Ψ(u)−1

)
,
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where

v0 =
∫

K2(t)dt, Ψ(u) = E(XXτ |U = u), b1(u) =
1
2
h2μ2α

′′(u) + op(h2)

with μ2 =
∫

t2K(t)dt.
This theorem can be shown similarly as that of Theorem 3 in [26]. In other words, this

ELME is asymptotically equivalent to the locally weighted estimator proposed by [26].

2.2 A R-type Locally Weighted Empirical Log-likelihood Ratio

To overcome the mismatch problem of the first ELR, inspired by [10] and [18], we suggest an
another new ELR, named R-type locally weighted ELR, by employing the following constrain

E
{ δi

πi
(Yi − Xτ

i α(Ui))Xi +
(
1 − δi

πi

)
Φu(Zi)

∣
∣
∣Ui = u

}
γ(u) = 0, i = 1, 2, · · · , n, (5)

and auxiliary random vector

Ri(α(u)) =
{ δi

πi
(Yi − Xτ

i α(u))Xi +
(
1 − δi

πi

)
Φu(Zi)

}
Kh(Ui − u),

i = 1, 2, · · · , n, where

Φu(Zi) = E((Yi − Xτ
i α(u))Xi|Zi = z) = Yig1(Zi) − g2(Zi)α(u).

Similar to Section 2.1, by replacing the unknown functions, i.e. π(·), g1(·) and g2(·), with
their estimators, i.e. π̂(·), ĝ1(·), and ĝ2(·), respectively, we obtain the following estimated
empirical log-likelihood ratio

L̂r(α(u)) = −2 max
{ n∑

i=1

log(npi)
∣
∣
∣ pi ≥ 0,

n∑

i=1

pi = 1,

n∑

i=1

piR̂i = 0
}
.

Here R̂i = R̂i(α(u)). The following theorem states the asymptotic distribution of L̂r(α(u)).

Theorem 2.4. If α(u) is the true parameter, then under the same assumptions of Theorem
2.1, we have L̂r(α(u)) →L χ2

p.
As a byproduct, an another MELE of α(u), write α̂r(u), can be defined by minimizing

L̂r(α(u)). Denote

Â2n(u) =
1

nh

n∑

i=1

{ δi

π̂i
XiX

τ
i +

π̂i − δi

π̂i
ĝ2(Zi)

}
Kh(Ui − u),

B̂2n(u) =
1

nh

n∑

i=1

{ δi

π̂i
XiYi +

π̂i − δi

π̂i
ĝ1(Zi)Yi

}
Kh(Ui − u).

Assume that Â2n(u) is invertible. Similar to Section 2.1, we have

α̂r(u) = Â−1
2n (u)B̂2n(u) + op((nh)−1/2).

The following theorem of α̂r(u) can be shown similarly as Theorem 4 of [26].

Theorem 2.5. Under the same assumptions of Theorem 2.3, we have
√

nh{α̂r(u) − α(u) − b1(u)} −→L N
(
0,

v0

γ(r)
Ψ(u)−1Ω1(u)Ψ(u)−1

)
.
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Remark 2.1. The results above show that, although constrain (2) has an advantage over
(5) in terms of establishing estimators (see also Remark 1 of [26]), (5) is more suitable for
constructing empirical likelihood based regions.

2.3 A Residual-adjusted Locally Weighted Empirical Log-likelihood Ratio

Although Theorem 2.4 has removed the mismatch problem, the range of h is within the interval
(c1n

−1/2, c2n
−1/5) for some positive constants c1 and c2, which does not contain the optimal

bandwidth h0 = n−1/5. Similar to [28], we propose a residual-adjusted locally weighted ELR
relying on Section 2.2.

Let Ei := Ei(α(u)) = Ri(α(u)) − φi(u) (i = 1, 2, · · · , n), where

φi(u) =
{ δi

π̂i
XiX

τ
i +

(
1 − δi

π̂i

)
ĝ2(Zi)

}
(α̂r(Ui) − α̂r(u))Kh(Ui − u).

with α̂r(u) being the MELE given in Section 2.2. Clearly, Ei(α(u))’s are adjustments of
Ri(α(u))’s. Similarly, by substituting the unknowns, we obtain the following estimated residual-
adjusted locally weighted ELR

L̂E (α(u)) = −2 max
{ n∑

i=1

log(npi)
∣
∣
∣ pi ≥ 0,

n∑

i=1

pi = 1,

n∑

i=1

piÊi = 0
}
.

The asymptotic result of L̂E (α(u)) is provided as follows.

Theorem 2.6. Under the Assumptions of A1–A6, we have

L̂E (α(u)) →L χ2
p.

Let χ2
p(1 − θ) be the 1 − θ quantile of χ2

p (0 < θ < 1). Using the results of Theorems 2.2,
2.4 and 2.6, an approximate 1 − θ pointwise confidence region for α(u) can be given as

ϕθ(α(u)) =
{
β ∈ Rp | l̂(β) ≤ χ2

p(1 − θ)
}
,

where l̂ denotes L̂ad, L̂R or L̂E , respectively.

2.4 Partial Profile Empirical Log-likelihood Ratio

In order to construct the pointwise confidence interval for a component, say αk(u), of α(u),
we utilize the partial profile empirical likelihood method, and define an estimated empirical
log-likelihood ratio as follows

L̂E,k(αk(u)) = 2
n∑

i=1

log(1 + λτ Êi,k(αk(u))),

where 1 ≤ k ≤ p, Êi,k(αk(u)) = eτ
kÂ−1

2n (u)Êi(α̂1
r(u), · · · , α̂k−1

r (u), αk(u), α̂k+1
r (u), · · · , α̂p

r(u)), ek

is a p-dimensional vector with k-th component 1, and α̂j
r(u) = eτ

j α̂r(u) is the j-th component
of α̂r(u). Similar to [28], we have

Theorem 2.7. Under the same assumptions of Theorem 2.6, we have

L̂E,k(αk(u)) −→L χ2
1.
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This theorem implies that an approximate 1 − θ confidence interval of αk(u) can be defined
as follows:

ϕθ,k(αk(u)) =
{
β ∈ R1

∣
∣L̂E,k(β) ≤ χ2

1(1 − θ)
}
.

3 Simulation Studies

To investigate the finite sample properties of the proposed methods, some simulation studies
are constructed in this section.

Suppose that
Y = α1(U)X1 + α2(U)X2 + ε,

where α1(u) = sin(2πu), α2(u) = exp(−(3u − 1)2), X1 and X2 are uniformly distributed over
[−1, 1], U subjects to uniform distribution over [0, 1] and the model error ε, independent of U
and X , follows the normal distribution N(0, 0.52).

Three methods are compared: (a) CCA, (b) normal approximation (NA), see [26], and (c)
resident-adjusted locally weighted empirical log-likelihood ratio (RAELR). The average lengths
and coverage probabilities of the pointwise intervals, with a nominal level 1 − θ = 95%, are
computed based on 1000 simulations. We choose the following two missing data mechanisms:

Case I. π1(y, t) = exp(1 + 0.15y + 0.2t)/(1 + exp(1 + 0.15y + 0.2y)).

Case II. π2(y, t) = exp(0.5 + 0.15y + 0.2t)/(1 + exp(0.5 + 0.15y + 0.2t)).
For each case, the sample size is n = 200. The kernel function K(·) is taken to be K(z) =

K1(y)K2(u) with
Ki(t) = 15/16(1− t2)2I(|t| ≤ 1), i = 1, 2.

The bandwidth bCV is selected by minimizing

CV1(b) =
1
n

n∑

i=1

(δi − π̂(−i)(Zi))2,

where π̂(−i)(z) is a “delete one out” version of π̂(z). While the kernel function K(u) is taken
to be K(u) = 0.75(1 − u2)I(|u| < 1) with hCV selected by minimizing

CV2(h) =
1
n

n∑

i=1

δi

π̂i
[Yi − Xτ

i α̂(−i)
w (Ui, h)]2,

where α̂
(−i)
w (u, h) is a “delete one out” version of MELE α̂w(u). Furthermore, we choose n− 1

6

as the bandwidth for estimating g1(·) and g2(·).
To construct a confidence region for α(u) by using the NA method, we first estimate the

asymptotic covariance matrix Σ1(u) of the locally weighted estimator given in [26]. That is,

Σ̂1(u) =
v0

γ̂(u)
Ψ̂(u)−1Ω̂1(u)Ψ̂(u)−1,

where

γ̂(u) =
1
n

n∑

i=1

KhCV (Ui − u), Ψ̂(u) =
1
n

n∑

i=1

δi

π̂i
XiX

τ
i KhCV (Ui − u).

The bias term α′′(u) is estimated by using the method proposed in Remark 2 of [26]. For the
quasi-kernel function, we set v0 = 5/7, μ2 = 1/7.
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The average missing rates of these two cases are approximately 0.25 and 0.354, respectively.
Figure 1, corresponding to Case (I), reports the 95% pointwise average confidence intervals
over [0, 1], as well as the average lengths and coverage probabilities of these intervals, for α1(u)
and α2(u). While Figure 2 reports analogous results corresponding to Case (II). The dashed,
dash-dotted and plus curve correspond to RAELR, CCA and NA, respectively.

From Figures 1 and 2, we can see that RAELR and CCA give much narrower confidence
pointwise intervals than NA, although NA can yield higher coverage probabilities. Compared
with RAELR, CCA performs poorly since its pointwise intervals may not cover the true curve
with a high probability, especially when the curvature is larger; see, for example, 2 (e) of Figure
2. Furthermore, as the missing rate increases, the lengths of the pointwise intervals increase
and the coverage probabilities decrease for both α1(u) and α2(u). This implies that the missing
rate also has an impact on the performance of the proposed methods.

Figure 1. The 95% Pointwise Average Confidence Intervals, and the Corresponding Average Lengths

and Coverage Probabilities of αi(u) (i = 1, 2) for Case (I). 1(a), 1(c), 1(e) Correspond to α1(u), the Others

Correspond to α2(u).

To provide more information on the comparison of these three methods, we also consider
the asymptotic confidence regions of (α1(u), α2(u)). Here, we only consider the asymptotic
confidence regions at u = 0.2, because the other case with a different u can be investigated
similarly. The simulation results are reported in Figure 3, which shows that RAELR performs
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best among these three methods. Therefore, we recommend RAELR for constructing confidence
pointswise regions/intervals for Model (1.1) when there are missing covariates.

Figure 2. The 95% Pointwise Average Confidence Intervals, and the Corresponding Average Lengths

and Coverage Probabilities of αi(u) (i = 1, 2) for Case (I). 2(a), 2(c), 2(e) Correspond to α1(u), the Others

Correspond to α2(u).

Figure 3. The 95% Pointwise Confidence Regions of (α1(u), α2(u)) with u = 0.2, where 3(a) and (3b)

Correspond to Case (I) and (II), Respectively.
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4 Concluding Discussions

In this paper, we applied the empirical likelihood method to the varying coefficient models
when the covariates X may be missing at random. A class of empirical log-likelihood ratios for
α(u) have been proposed relying on the locally weighted estimating equations and the nonpara-
metric version of the Wilks’ theorem has also been derived. So the confidence regions for the
nonparametric part α(u) with asymptotically correct coverage probabilities can be constructed.
In addition, we also obtained the asymptotic normality of the maximum empirical likelihood
estimators of α(u). Interesting works for further researches include applying the empirical like-
lihood method to inferences for α(u) when the responses Y may be missing at random, and
developing variable selection procedures for such models with missing data, since the existing
procedures (see, for example, [21]) can not be used directly any more when missing data are
present.

Appendix: Proofs of the Main Results

For the sake of convenience, let c be a positive constant which may be a different value at each
appearance throughout this paper. To derive the main results, we need the following technical
assumptions.

A1. The bandwidth satisfies h = cn−1/5 for a constant c > 0.

A2. The kernel K(·) is a bounded and symmetric probability density function, and satisfies∫
u4K(u)du < ∞.

A3. The density, say γ(u), of U is bounded away from 0, and has continuous first derivatives
at u. The density π(·) has bounded partial derivatives up to order k(> 2) almost surely,
with infz π(z) > 0.

A4. α(·), g1(·), g2(·) and Ψ(·) are twice continuously differentiable. Furthermore, assume
α′′

j (u) �= 0, for j = 1, · · · , p, and Ψ(·) is a p × p positive definite matrix for any given u.

A5. b satisfies nb4 → ∞ and nbh2 → ∞, h/b → 0, bk/h → 0 and nb2k+1 → 0 for k > 2.

A6. supu E[‖X‖4|U = u] < ∞, where ‖ · ‖ denotes the Euclidean distance. The model errors
satisfy sup

i
(Eε4

i ) < ∞.

Assumption A1, A2, A4, A6 are regular and often seen in the literature; see [26] and [28].
A3 and A5 are usually utilized when missing data are present (see [22]). An example for A5 to
be satisfied is that h = n−1/5 (or n−1/4) and b = n−1/6.

The proofs of Theorems 2.1–2.5 rely on the following lemmas.

Lemma 1 (Abel). Let {ai}n
i=1, {bi}n

i=1 be two sequences of real numbers, Sk =
k∑

i=1

ai. Then

max
1≤i≤n

∣
∣
∣

n∑

i=1

aibi

∣
∣
∣ ≤ c max

1≤i≤n
|bi| max

1≤i≤n
|Si|.

Lemma 2. Let vi be i.i.d. r.v.s. with Evi = 0 and Ev2
i < ∞. Then for any permutation

(j1, · · · , jn) of (1, · · · , n), we have

max
1≤k≤n

∣
∣
∣

k∑

i=1

vji

∣
∣
∣ = Op(n

1
2 log n).
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This lemma comes from [6].

Lemma 3. Under the same assumptions of Theorem 2.1, we have

1√
nh

n∑

i=1

Ĥi −→L N(0, v(u)Ω1(u)),

where v(u) = γ(u)v0,

Ω1(u) = E
( 1

π
{Xε}⊗2 +

π − 1
π

E(Xε|Z)⊗2
∣
∣U = u

)
.

Proof. Clearly

1√
nh

n∑

i=1

Ĥi =
1√
nh

n∑

i=1

δi

π̂i
XiεiKh(Ui − u)

+
1√
nh

n∑

i=1

δi

π̂i
XiX

τ
i Γi(u)Kh(Ui − u)

=A1 + A2.

Hereafter, we denote Γi(u) = α(Ui) − α(u) and Γi,k(u) = αk(Ui) − αk(u) for convenience.
Similar to the proof of Theorem 4 in [22], we can prove that

A1 =
1√
nh

n∑

i=1

{ δi

πi
Xiεi +

πi − δi

πi
E(Xε|Zi)

}
Kh(Ui − u) + op(1). (6)

Next, for term A2, we have

A2 =
1√
nh

n∑

i=1

δi

πi
XiX

τ
i Γi(u)Kh(Ui − u)

+
1√
nh

n∑

i=1

δi

π2
i

(πi − π̂i)XiX
τ
i Γi(u)Kh(Ui − u)

+
1√
nh

n∑

i=1

δi

π2
i π̂i

(πi − π̂i)2XiX
τ
i Γi(u)Kh(Ui − u)

=A21 + A22 + A23,

Since we have

E(A2
21,s) =

1
nh

E
( n∑

i=1

{ δi

π2
i

X2
i,s

( p∑

k=1

Xi,kΓi,k(u)
)2

K2
h(Ui − u)

})

+
1

nh
E

( n∑

i�=j

{ δi

πi
Xi,s

( p∑

k=1

Xi,kΓi,k(u)
)
Kh(Ui − u)

}

×
{ δj

πj
Xj,s

( p∑

k=1

Xj,kΓj,k(u)
)
Kh(Uj − u)

})

=A
[1]
21,s + A

[2]
21,s,
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for any 1 ≤ s ≤ p. Here A21,s, Xi,s and αs(·) denote the s-th component of A21, Xi and α(·)
respectively. Then similar to the proof of Lemma 1 in [27], one can show that

A
[1]
21,s ≤ 1

inf2z π(z)
1

nh

n∑

i=1

E
(
X2

i,s

( p∑

k=1

Xi,kΓi,k(u)
)2

K2
h(Ui − u)

)

=
c

nh
· nh3 · {1 + op(1)} −→ 0

and

A
[2]
21,s =

1
nh

n∑

i�=j

( p∑

k=1

∫

Ψs,k(t)(αk(t) − αk(u))K
( t − u

h

)
γ(t)dt

)2

≤ 1
nh

· n2 · (ch3)2 · {1 + op(1)} −→ 0,

where Ψs,k(u) denotes the (s, k)-th component of Ψ(u). This proves

A21 = op(1). (7)

For term A22, since

A22 =
1√
nh

n∑

i=1

δiXiX
τ
i Γi(u)Kh(Ui − u)
nb2π2

i fZ(Zi)

n∑

j=1

(πj − δj)Kb(Zj − Zi)

+
1√
nh

n∑

i=1

δiXiX
τ
i Γi(u)Kh(Ui − u)
nb2π2

i fZ(Zi)

n∑

j=1

(πi − πj)Kb(Zj − Zi) + op(1)

=A
[1]
22 + A

[2]
22 + op(1).

By interchanging the summation, we obtain

A
[1]
22 =

1√
nh

n∑

j=1

πj − δj

πj
E(XXτ |Zj)Γj(u)Kh(Uj − u) + op(1).

Then following a similar fashion of (7), we have A
[1]
22 = op(1). Next, similar to (81) (see [22,

p.77]), we obtain A
[2]
22 = op(1). This proves

A22 = op(1). (8)

By the fact that sup
z
{|π − π̂|} = Op((nb2)−

1
2 ) + Op(bk), we have

|A23,k| ≤ C
√

nh(sup
z
{|π − π̂|})2 1

nh

n∑

i=1

|Xi,k| · ‖Xi‖ · ‖Γi(u)‖ · Kh(Ui − u) = op(1).

This, together with (6)–(8), proves

1√
nh

n∑

i=1

Ĥi =
1√
nh

n∑

i=1

{ δi

πi
Xiεi +

πi − δi

πi
E(Xε|Zi)

}
Kh(Ui − u) + op(1).

Finally, this lemma follows immediately by using the central limit theorem. �
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Lemma 4. Under the same assumptions of Lemma 3, we have

1
nh

n∑

i=1

ĤiĤτ
i →p v(u)Ω2(u),

where →p denotes the convergence in probability, and

Ω2(u) = E
( 1

π
{Xε}⊗2

∣
∣
∣U = u

)
.

Proof. Clearly

1
nh

n∑

i=1

Ĥ1iĤτ
1i

=
1

nh

n∑

i=1

δi

π̂2
i

XiX
τ
i ε2

i K
2
h(Ui − u) +

1
nh

n∑

i=1

δi

π̂2
i

XiX
τ
i (Xτ

i Γi(u))2K2
h(Ui − u)

+
2

nh

n∑

i=1

δi

π̂2
i

XiX
τ
i εiX

τ
i Γi(u)K2

h(Ui − u)

=B1 + B2 + B3,

where

B1 =
1

nh

n∑

i=1

δi

π2
i

XiX
τ
i ε2

i K
2
h(Ui − u) +

1
nh

n∑

i=1

{
1
π̂2

i

− 1
π2

i

}

XiX
τ
i ε2

i K
2
h(Ui − u)

=B11 + B12.

Note that

|B[k,l]
12 | =

∣
∣
∣

1
nh

n∑

i=1

Xi,kXi,lε
2
i K

2
h(Ui − u)

(πi + π̂i)(πi − π̂i)
π2

i π̂2
i

∣
∣
∣

≤ sup
z

|πi − π̂i| 1
(infz π)4

1
nh

n∑

i=1

|Xi,kXi,l|ε2
i K

2
h(Ui − u)

=op(1),

which implies that

B1 =
1

nh

n∑

i=1

δi

π2
i

XiX
τ
i ε2

i K
2
h(Ui − u) + op(1).

For term B2, we have

B2 =
1

nh

n∑

i=1

δi

π2
i

XiX
τ
i (Xτ

i Γi(u))2K2
h(Ui − u) + op(1)

≤c · sup
t

‖α′(t)‖ ·
∫

E(‖X‖4|U = t)(t − u)2K2
( t − u

h

)
dt

≤ch2

∫

s2K2(s)ds −→ 0.

Similarly, we can show B3 = op(1). Finally, this lemma follows immediately by using the
law of large number. �
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Lemma 5. Under the same assumptions of Lemma 3, we have

max
1≤i≤n

‖Ĥi‖ = op((nh)
1
2 ) and λ = Op((nh)−

1
2 ).

Proof. Denote Ui(u) = XiεiKh(Ui − u), Vi(u) = XiX
τ
i Γi(u)Kh(Ui − u) and

Fn =
{

max
1≤i≤n

∣
∣
∣
1
π̂i

∣
∣
∣ ≥ 1

1
2 infz π

}
.

By Assumption A3, it is easy to show that

P (I{Fn} = 1) ≤ P
( n⋃

i=1

|π̂i − πi| ≥ 1
2

inf
z

π
)
≤ P

(
sup

z
|π̂i − πi| ≥ 1

2
inf
z

π
)
−→ 0.

Then by using arguments as Lemma 1 of [28], we can obtain

P
(

max
1≤i≤n

∥
∥
∥

δi

π̂i
Ui(u)

∥
∥
∥ > c(nh)

1
2

)

≤P
(
I{Fn} = 1

)
+ P

(
max

1≤i≤n

∥
∥
∥

δi

π̂i
Ui(u)

∥
∥
∥ > c(nh)

1
2 , I{Fn} = 0

)

≤P
(
I{Fn} = 1

)
+ P

(
max

1≤i≤n
‖Ui(u)‖ > c(nh)

1
2

)
−→ 0.

This leads to
max

1≤i≤n

∥
∥
∥

δi

π̂i
Ui(u)

∥
∥
∥ ≤ op((nh)1/2).

Similarly, we obtain

max
1≤i≤n

∥
∥
∥

δi

π̂i
Vi(u)

∥
∥
∥ ≤ op((nh)1/2).

This completes the first part. Since the proof of the second part follows a similar fashion
as (2.14) in [15], so we omit it.

Proof of Theorem 2.1. By applying Taylor expansion to (3), we obtain

L̂w(α(u)) = 2
N∑

i=1

[
λτ Ĥi − 1

2
(λτ Ĥi)2

]
+ op(1).

By (4), it follows that

0 =
1

nh

n∑

i=1

Ĥi

1 + λτ Ĥi

=
1

nh

n∑

i=1

Ĥi − 1
nh

n∑

i=1

ĤiĤτ
i λ +

1
nh

n∑

i=1

Ĥi(λτ Ĥi)2

1 + λτ Ĥi

.

The application of Lemmas 3–5 yields that
n∑

i=1

(λτ Ĥi)2 =
n∑

i=1

λτ Ĥi + op(1), λ =
( n∑

i=1

ĤiĤi

)−1 n∑

i=1

Ĥi + op(n− 1
2 ).

Then, this together with (10) leads to

L̂w(α(u)) =
( 1√

nh

n∑

i=1

Ĥi

)τ( 1
nh

n∑

i=1

ĤiĤτ
i

)−1( 1√
nh

n∑

i=1

Ĥi

)
+ op(1)

=H̃τ
n ×M1(u) × H̃n + op(1),
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where

H̃n = (v(u)Ω1(u))−
1
2

1√
nh

n∑

i=1

Ĥi

and M1 = (Ω1(u))
1
2 (Ω2(u))−1(Ω1(u))

1
2 .

Denote D0 = diag {w1, w2, · · · , wp}, where wi (1 ≤ i ≤ p) denote the eigenvalues of matrix
M1. Then there exists an orthogonal matrix Q such that QτM1Q = D0. Thus

L̂w(α(u)) = (Qτ × H̃n)τ ×D0 × (Qτ × H̃n) + op(1).

From Lemma 3, we have

Qτ (v(u)Ω1(u))−
1
2

1√
nh

n∑

i=1

Ĥτ
i −→ N(0, Ip).

Theorem 2.1 now follows immediately. �

Lemma 6. it Under the same assumptions of Lemma 3, we have

1√
nh

n∑

i=1

R̂i →L N(0, v(u)Ω1(u)),

Proof. Recall that

1√
nh

n∑

i=1

(
1 − δi

π̂i

)
(Yiĝ1(Zi) − ĝ2(Zi)α(u))Kh(Ui − u)

=
1√
nh

n∑

i=1

(
1 − δi

π̂i

)
Φu(Zi)Kh(Ui − u)

+
1√
nh

n∑

i=1

(
1 − δi

π̂i

)
Yi(ĝ1(Zi) − g1(Zi))Kh(Ui − u)

+
1√
nh

n∑

i=1

(
1 − δi

π̂i

)
(ĝ2(Zi) − g2(Zi))α(u)Kh(Ui − u)

=C1 + C2 + C3.

Similar to (6), we show that

C1 =
1√
nh

n∑

i=1

Φu(Zi)Kh(Ui − u) − 1√
nh

n∑

i=1

{ δi

πi
Φu(Zi)Kh(Ui − u)

+
(
1 − δi

πi

)
E(Φu(Z)|Zi)Kh(Ui − u)

}
+ op(1) = op(1).

Next,

C2 =
1√
nh

n∑

i=1

(
1 − δi

πi

)
Yi(ĝ1(Zi) − g1(Zi))Kh(Ui − u)

+
1√
nh

n∑

i=1

π̂i − πi

πiπ̂i
δiYi(ĝ1(Zi) − g1(Zi))Kh(Ui − u)

=C21 + C22.
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For term C21, by the fact that sup
z

|ĝ1(z)− g1(z)| = op(n− 1
4 ) (see [11]), a direct use of Lemmas

1 and 2 yields that

|C21| ≤c(nh)−
1
2 · sup

z
|ĝ1(z) − g1(z)| · max

1≤k≤n

∣
∣
∣

k∑

j=1

(
1 − δji

πji

)
Yji

∣
∣
∣

=c(nh)−
1
2 · op(n− 1

4 ) · n 1
2 log n −→ 0.

Similar to (9), we have C22 = op(1). This proves C2 = op(1). Similarly, we can show C3 = op(1).
Finally, we obtain

1√
nh

n∑

i=1

R̂i =
1√
nh

n∑

i=1

Ĥi + op(1).

By Lemma 3, this lemma follows immediately. �

Lemma 7. Under the same assumptions of Lemma 3, we have

1
nh

n∑

i=1

R̂iR̂τ
i −→p v(u)Ω1(u).

Proof. By using similar arguments as that of Lemma 4 and (11), we show that

1
nh

n∑

i=1

R̂iR̂τ
i =

1
nh

n∑

i=1

{ δi

π2
i

XiX
τ
i ε2

i + 2
δi

πi

(
1 − δi

πi

)
XiεiE(Xε|Zi)

+
(
1 − δi

πi

)2

E(Xε|Zi)⊗2
}

K2
h(Ui − u) + op(1).

Then a simple derivation leads to this lemma. �

Proof of Theorem 2.4. Based on Lemmas 6 and 7, this theorem can be showed similar to
Theorem 2.1. �

Proof of Theorem 2.6. Using the Taylor expansion to α(Ui) − α(u) and α̂r(Ui) − α̂r(u) at u,
some simple calculations lead to

α(Ui) − α(u) − (α̂r(Ui) − α̂r(u)) = (α′(u) − α̂′
r(u))(Ui − u) + Op(Ui − u)2.

�

By Assumptions A1–A6, we show that

α′(u) − α̂′
r(u) −→p 0,

1√
nh

n∑

i=1

δi

πi
(Ui − u)lKh(Ui − u) = Op(1)

and
1√
nh

n∑

i=1

πi − δi

πi
(Ui − u)lKh(Ui − u) = op(1), l = 1, 2.

Note that

1√
nh

n∑

i=1

Êi = A1 + C1 + C2 + C3 +
(
A2 − 1√

nh

n∑

i=1

φi(u)
)
.
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Then similar to Lemma A.8 of [29], we can prove that

A2 − 1√
nh

n∑

i=1

φi(u) = op(1).

This, combined with Lemmas 3 and 6, proves that

1√
nh

n∑

i=1

Êi =
1√
nh

n∑

i=1

Ĥi + op(1).

The rest of the proof follows a similar fashion as that of Theorems 2.1 and 2.4, so we omit
it. �

Proof of Theorem 2.7. For simplicity, write α̃∗
k(u) = (α̂1

r(u), · · · , α̂k−1
r (u), αk(u), α̂k+1

r (u),
· · · , α̂p

r(u))τ . Obviously,

Êi,k(αk(u)) =eτ
kÂ−1

2n (u)
(
Êi(α(u)) −

(δi

π̂
XiX

τ
i +

(
1 − δi

π̂

)
ĝ2(Zi)

)

× Kh(Ui − u)(α̃∗
k(u) − α(u))

)

=eτ
kÂ−1

2n (u)Êi(α(u)) −Wi.

By Theorem 2.6, we have

eτ
kÂ−1

2n (u)
1√
nh

n∑

i=1

Êi(α(u)) →L N(0, σ2
u)

with σ2
u = v−1(u)eτ

kΩ−1
1 (u)ek. �

Next,

1√
nh

n∑

i=1

Wi =eτ
kÂ−1

2n (u) × 1√
nh

n∑

i=1

(δi

π̂
XiX

τ
i +

(
1 − δi

π̂

)
ĝ2(Zi)

)

× Kh(Ui − u)(α̃∗
k(u) − α(u))

=eτ
kÂ−1

2n (u) · Â2n(u) ·
√

nh · (α̃∗
k(u) − α(u)) = 0.

Then we obtain that
1√
nh

n∑

i=1

Êi,k(αk(u)) −→L N(0, σ2
u).

Next, as Lemma A.2 of [3], a tedious but technically not very challenging derivation yields
that

‖α̂r(u) − α(u)‖ = Op

(
log(1/h)/nh)1/2 + h2

)
+ Op

(
(nb2)−1/2 + bk

)
.

Using this, it is easy to show that

1
nh

n∑

i=1

Êi,k(αk(u))Êτ
i,k(αk(u)) →p σ2

u.

The rest of the proof is similar to that of Theorem 2.6. �
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