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Abstract It is proved that if a nonlinear system possesses some group-symmetry, then under certain transver-

sality it admits solutions with the corresponding symmetry. The method is due to Mawhin’s guiding function

one.
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1 Introduction

The Lyapunov method is a fundamental one in studying the stability and invariance of
differential equations. Actually it also plays a basic role in proving the existence of periodic
solutions. For this we can go back to the Mawhin’s guiding function method[18].

Consider the system
x′ = f(t, x), (1)

where f : R
1 × R

n → R
n is continuous. When f(t + T, x) ≡ f(t, x), namely, f is T -periodic in

t, Mawhin established the following well known result on the existence of periodic solutions.

Theorem 1[18]. Assume that there exist C
1 functions Vi : R

n → R
1, i = 0, 1, · · · , m, such

that
i) for Mi large enough,

〈∇Vi(x), f(t, x)
〉 �= 0, ∀ |x| ≥ Mi;

ii)
m∑

i=0

|Vi(x)| → ∞, as |x| → ∞;

iii)
deg(∇V0, BM0 , 0) �= 0.

Then (1) has T -periodic solutions.
The functions “Vi(x)” mentioned above are called the “guiding functions”.
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Our question is whether (1) has a rotating-symmetric solution x(t), i.e., x(t + T ) = Qx(t),
∀ t, if we assume that for some Q ∈ SO(n),

f(t + T, x) = Qf(t, Q−1x), ∀ (t, x). (2)

In the present paper, we investigate the question mentioned above and give an affirmative
answer. Our main result is the following:

Theorem 2. Assume that (2) is true and there exist C
1 functions Vi(x), i = 0, 1, · · · , m,

such that
i) for Mi large enough,

〈∇Vi(x), f(t, x)
〉 �= 0, ∀ |x| ≥ Mi;

ii)
m∑

i=0

|Vi(x)| → ∞, as |x| → ∞;

iii)

deg(∇V0, BM0 ∩ Ker(id − Q), 0|Ker(id−Q)) �= 0, if Ker (id − Q) �= {0},
where deg(∇V0, BM0 , 0) denotes the Brouwer degree, and BM = {p ∈ R

n : |p| < M0}.
Then (1) has Q-rotating symmetric solutions x(t), i.e.,

x(t + T ) = Qx(t), ∀ t.

Let us make the following comments:
a) The cases of Q = id or −id correspond to the ones of T -periodic or T -anti-periodic

solutions, respectively. The former is Mawhin’s theorem on the existence of T -periodic solutions,
and the latter corresponds to T -anti-periodic solutions. If for some positive integer m0 such that
Qm0 = id, then the Q-symmetric solution is just the harmonic solution, i.e., x(t+m0T ) ≡ x(t).
For some recent achievements (see [1–3, 6, 8–25]).

b) The general Q ∈ SO(n) is thus correspondent to the solutions with Q-rotating symmetry,
in particular to some special quasi-periodic solutions. Theorem 2 presents thus a guiding
function method to solutions with the rotating symmetry. Some related results can be found in,
for example, [4,5,7]. They assumed f(t, ·) is periodic in t, and discussed the existence of periodic
solutions with space symmetry such as antisymmetry. In our result, we do not assume f(t, ·) is
periodic in t. Moreover when Q = diag(eiθ1 , · · · , eiθn), and θ1, · · · , θn are rationally independent,
our solutions are actually the usual quasiperiodic ones with the frequency (θ1, · · · , θn).

The paper is organized as follows. In Section 2, we give the proof of Theorem 2 via the
guiding function method. In Section 3, we illustrate some applications of Theorem 2.

2 Proof of the Main Result

Let us start the proof of Theorem 2. Consider the auxiliary system

x′ = λf(t, x), (3)

where λ ∈ [0, 1]. Without loss of generality, we assume that the solutions of (3) with respect to
initial values are unique. Let x(t, x0, λ) denote the solution of (3) at x(0) = x0.

In the following, we will consider two cases:

Case 1. (id − Q)−1 exists. In order to prove that (3) has a Q-rotating symmetric solution
x(t) it suffices to prove

Q−1x(T ) = x(0).
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Equivalently, we need to prove that there is x0 ∈ R
n such that

H(x0, λ) ≡ x0 + λ(id − Q)−1

∫ T

0

f(s, x(s, x0, λ))ds = 0. (4)

We claim that there is K > 0 such that

H(∂Bk × [0, 1]) �= 0. (5)

Set

Ki = sup{|Vi(x)| : |x| ≤ Mi}, K∗ =
m∑

i=0

Ki,

D =
{

x ∈ R
n :

m∑

i=0

|Vi(x)| < K∗ + 1
}
.

By assumption ii), D is bounded. Hence there is a K > (m + 1)K∗ such that

D ⊂ BK .

Note that
min

Mi≤|x|≤K

∣
∣〈f(t, x),∇Vi(x)

〉∣∣ ≥ α > 0, i = 0, 1, · · · , m. (6)

Put

V (x) =
m∑

i=0

|Vi(x)|.

Let y : R
1 → R

n such that y(t + T ) = Qy(t), ∀ t. Then

y(t + mT ) = Qmy(t),
=⇒ |y(t + mT )| = |y(t)|.

Hence for any Q-symmetric solution x(t) of (3), if (5) fails, then there is {tik} ⊂ R
1 such that

|Vi(x(tik))| → sup
R1

|Vi(x(t))|,

=⇒〈∇Vi(x(tik)), f(tik, x(tik))
〉 −→ 0, as k −→ ∞,

which together with (6) implies that

|x(tik)| < Mi, i = 0, 1, · · · , m.

This shows that x(t) ∈ D, ∀ t, a contradiction. By the homotopy invariance of the topological
degree, we have

1 = deg(id, BK , 0) = deg(H(·, 0), BK , 0) = deg(H(·, 1), BK , 0).

Thus there is x∗
0 ∈ BK such that

x∗
0 + (id − Q)−1

∫ T

0

f(s, x(s, x∗
0, 1))ds = 0,

and hence x(t, x∗
0, 1) is the Q-symmetric solution of (1).



310 H.R. WANG, X. YANG, Y. LI

Case 2. Ker(id − Q) �= {0}. We set

R
n = Ker(id − Q) ⊕ Im(id − Q).

Thus any x0 ∈ R
n can be rewritten as

x0 = x̂ + x, x̂ ∈ Ker(id − Q), x ∈ Im(id − Q).

Let P̂ : R
n → Ker(id − Q) be a projection. We can rewrite (5) as

H((x̂, x), λ) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ T

0

P̂ f(s, x(s, x̂ + x, λ))ds = 0,

x + λ

∫ T

0

(id − P̂ )f(s, x(s, x̂ + x, λ))ds = 0.

By the previous arguments, we have H(∂(Bn1
K ×Bn2

K )×[0, 1]) �= 0, where n1 = dim(Ker(id−Q)),
n2 = dim(Im(id − Q)). Then the homotopy invariance of the topological degree implies

deg
((∫ T

0

P̂ f(s, ·)ds, id
)
, Bn1

K × Bn2
K , 0

)

= deg(H(·, 0), Bn1
K × Bn2

K , 0) = deg(H(·, 1), Bn1
K × Bn2

K , 0).

Now we claim

deg
(( ∫ T

0

P̂ f(s, ·)ds, id
)
, Bn1

K × Bn2
K , 0

)
�= 0.

Equivalently, it suffices to verify

deg
(∫ T

0

P̂ f(s, ·)ds, Bn1
K , 0

)
�= 0.

By i), we may assume without loss generality that
〈∇V0(x), f(t, x)

〉
> 0, ∀ |x| ≥ M0.

Since for each M ≥ M0,

deg(∇V0, BM ∩ Ker(id − Q), 0|Ker(id−Q)) �= 0,

it follows that
〈
P̂∇V0(x), P̂ f(t, x)

〉
> 0, ∀x ∈ Ker(id − Q) and |x| ≥ M0,

=⇒
〈
P̂∇V0(x),

∫ T

0

P̂ f(t, x)dt
〉

> 0, ∀x ∈ Ker(id − Q) and |x| ≥ M0.

Consider the homotopy

H(x, λ) = λP̂∇V0(x) + (1 − λ)
∫ T

0

P̂ f(s, x)ds.

Then
〈
P̂∇V0(x), H(x, λ)

〉

=λ|P̂∇V0(x)|2 + (1 − λ)
〈
P̂∇V0(x),

∫ T

0

P̂ f(s, x)ds
〉

>0, ∀x ∈ Ker(id − Q) and |x| ≥ M0.
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The homotopy invariance implies thus

deg
(∫ T

0

P̂ f(s, ·)ds, Bn1
K , 0|Ker(id−Q)

)

=deg(H(·, 1), Bn1
K , 0|Ker(id−Q)) = deg(H(·, 0), Bn1

K , 0|Ker(id−Q))
=deg(∇V0, BM0 ∩ Ker(id − Q), 0|Ker(id−Q)) �= 0.

The proof is complete. �

3 Applications

In this section, we describe some applications of Theorem 2.
Let us consider the gradient system

x′ = −∇V (x) + f(t), (7)

where V : R
n → R

1 is a C
1 even function, f(t + T ) = −f(t); moreover, as |x| → ∞,

|V (x)| −→ ∞, |∇V (x)| −→ ∞.

We have

Theorem 3. Under the above assumptions, (7) has an anti-symmetric solution.

Proof. Put V0(x) = V (x). Then

〈∇V (x),−∇V (x) + f(t)〉
= − |∇V (x)|2 + 〈∇V (x), f(t)〉
≤ − |∇V (x)|2 +

1
2
|∇V (x)|2 +

1
2
|f(t)|2

= − 1
2
|∇V (x)|2 +

1
2
|f(t)|2

<0, as |x| � 1.

Since V (x) is even, ∇V (x) is odd. By Borsuk’s Theorem, deg(∇V, BM , 0) �= 0 for M large.
The conclusion follows from Theorem 2. This completes the proof. �

In applications, the following result seems more convenient.

Theorem 4. Assume that there is an M > 0 such that

〈Bx, Bf(t, x)〉 ≤ −α < 0, ∀x ∈ R
n and |x| ≥ M,

where B is a nonsingular matrix of order n. Then (1) has a Q-symmetric solution.

Proof. Put
V (x) =

1
2
|Bx|2.

Then
〈∇V, f(t, x)〉 = 〈Bx, Bf(t, x)〉 ≤ −α < 0, ∀x ∈ R

n and |x| ≥ M.

Clearly, deg(∇V, BM , 0) = (−1)β, where β is the sum of the multiplicity of all negative
eigenvalues for the matrix B∗B. Hence β = 0 and deg(∇V, BM , 0) = 1. The conclusion of the
theorem follows. �
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