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Abstract In constructing two-level fractional factorial designs, the so-called doubling method has been em-

ployed. In this paper, we study the problem of uniformity in double designs. The centered L2-discrepancy is

employed as a measure of uniformity. We derive results connecting the centered L2-discrepancy value of D(X)

and generalized wordlength pattern of X, which show the uniformity relationship between D(X) and X. In

addition, we also obtain lower bounds of centered L2-discrepancy value of D(X), which can be used to assess

uniformity of D(X).
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1 Introduction

Two-level fractional factorial designs are widely used in industrial and agriculture experiments
and many scientific investigations. The issue of construction and justifiable interpretation for
fractional factorial designs with two-level has received a great deal of attention in the design
literature. Recently, the so-called doubling method, which is employed to construct two-level
fractional factorial designs, is a simple but powerful method, particularly in constructing two-
level fractional factorial designs of resolution IV (Chen and Cheng[1]). Suppose X is an n × k

matrix with two distinct entries, +1 and −1. We call the 2n× 2k matrix
(

X X

X −X

)
the double

of X , denoted by D(X). Suppose X defines an n−run design with k two-level factors, where
the two levels are denoted by +1 and −1, each column of X corresponds to a factor and each
row defines a factor-level combination. Then D(X) defines a design which has 2n factor-level
combinations and 2k two-level factors. We call D(X) a double design of X , and X the original
design of D(X).

Doubling method was firstly used by Plackett and Burman[11] to construct orthogonal main-
effect plans. Recently, Chen and Cheng[1] attempted to construct a doubling design D(X) of
resolution IV via a regular fractional factorial design X of resolution IV, and proved that there
exists a projection design of D(X) with resolution IV or higher. Xu and Cheng[14] developed
a general complementary design theory for doubling designs. We say that a regular design of
resolution IV or higher is maximal if its resolution reduces to three whenever an extra factor is
added. Chen and Cheng[1] and Xu and Cheng[14] respectively discussed the function of doubling
method in constructing maximal designs with two-level. Xu and Cheng[14] also showed that
one can choose some minimum aberration (Fries and Hunter[6]) projection designs from some
maximal designs. In this paper, our aim is to discuss the issue of double designs in terms of
uniformity.
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In this paper, we shall employ the centered L2-discrepancy as a measure of uniformity,
see Hickernell[7] and Fang and Qin[5] for details. If one fractional factorial design has smaller
centered L2-discrepancy value, then this design possesses better uniformity. The uniformity
criterion favors designs with the best uniformity. Fang and Mukerjee[4] firstly found the analytic
connection between uniformity and aberration (Fries and Hunter[6]) in an arbitrary regular
two-level factorials, and indicated that the uniformity criterion is almost equivalent to the
aberration criterion. Fang, Ma and Mukerjee[3] further showed that uniformity, orthogonality
and aberration criteria agree quite well. Fang and Qin[5] investigated the projection properties
of two-level factorials onto different dimensions in view of uniformity, and proposed the so-
called projection uniformity pattern to assess and compare two-level factorials. Zhang and
Qin[17] and Song and Qin[13] developed the theory of projection uniformity pattern. In this
paper, we will discuss some analytic links between the centered L2-discrepancy value of D(X)
and generalized wordlength pattern /uniformity pattern of X , and derive some lower bounds
of centered L2-discrepancy value of D(X), which can be used to discuss the issue of uniformity
of D(X).

The paper is organized as follows. In Section 2, the centered L2-discrepancy, generalized
minimum aberration and minimum projection uniformity are introduced. In Section 3, the
connection between the centered L2-discrepancy value of D(X) and generalized wordlength
pattern/uniformity pattern is established. Section 4 provides two new lower bounds of the
centered L2-discrepancy value of D(X). We close in Remark section with some notes and
comments.

2 Basic Concepts

Consider a set, denoted by D(n, 2k), of all two-level fractional factorial designs with n runs and
k factors, where n runs are not necessarily distinct. For any design X = (xil) ∈ D(n, 2k), its
centered L2-discrepancy value, denoted by CD(X), can be calculated as follows (Hickernell[7]):
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where dil = (xil + 2)/4.
Following (1), the centered L2-discrepancy value of D(X), denoted by CD(D(X)), can be

easily computed by the following formula
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where dil was defined in (1).
To make our work self contained, below is a brief description of generalized minimum aber-

ration proposed by Xu and Wu [15] and minimum projection uniformity proposed by Fang and
Qin[5].

For any design X = (xil) ∈ D(n, 2k) and j (0 ≤ j ≤ k), define

Ej(X) =
1
n

∣∣{(x1, x2) : dH(x1, x2) = j}∣∣,

where x1 and x2 are two runs of X , and dH(x1, x2) is the Hamming distance between x1 and
x2, namely, the number of places where they differ. |Ω| denotes the cardinality of the set Ω.
Define

Aj(X) ≡ 1
n

k∑
j=0

Pi(j; k)Ej(X), (3)

where Pi(j; k) =
i∑

r=0
(−1)r

(
j
r

)(
k−j
i−r

)
is the Krawtchouk polynomial. The vector (A1(X), · · ·,

Ak(X)) is called generalized wordlength pattern of X by Xu and Wu[15]. The generalized
minimum aberration criterion is to sequentially minimize Aj(X) for j = 1, · · · , k.

Based on the centered L2-discrepancy, Fang and Qin[5] used a quantity, Ii(X), to measure
the overall projection uniformity of X on i-subdimension, where

Ii(X) =
1
8i

i∑
j=1

(
k − j

k − i

)
Aj(X), (4)

1 ≤ i ≤ k. The smaller Ii(X)-value, the better the uniformity of X on i-subdimension. The
vector (I1(X), · · · , Ik(X)) is referred to as uniformity pattern of X in Fang and Qin[5]. The
minimum projection uniformity criterion is to sequentially minimize Ij(X) for j = 1, · · · , k.

3 Relationship Between CD(D(X)) and Generalized Wordlength

Pattern of X

Fang and Mukerjee[4] firstly gave an analytic link between CD(X) and the wordlength pat-
tern of X . According to this result, we can easily connect CD(D(X)) to the generalized
wordlength pattern of D(X). However, in this section, we will give an analytic relationship
between CD(D(X)) and the generalized wordlength pattern of X .

To begin with, we give another expression of CD(D(X)) in the following lemma, whose
proof is due to Fang, Lu and Winker[2].

Lemma 1. X ∈ D(n, 2k), we have

[CD(D(X))]2 = C0 +
1
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(25
16

)λij

, (5)

where λij is the coincidence number between the ith and jth runs of X,
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The following theorem gives an analytic relationship between CD(D(X)) and the general-
ized wordlength pattern of X .

Theorem 1. Let X ∈ D(n, 2k), then
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Proof. Suppose xi = (xi1, · · · , xik) is the ith run of X , 1 ≤ i ≤ k and
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Note that dH(xi, xj) = k − λij .
By (5), we have
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where, the second last equality holds due to the equation

Ei(X) =
n

2k

k∑
j=0

Aj(X)Pi(j; k),

the last equality holds since
k∑

i=0

Pi(j; k)ai = (1 + a)k−j(1 − a)j . This completes the proof. �

Theorem 1 indicates a link between the double design D(X) and its original design X ,
namely, the centered L2-discrepancy value of D(X) only depends on the generalized wordlength
pattern of X . Note that the leading factor, 1

2

(
41
32

)k(
9
41

)j , of Aj(X) in (6) is a positive fraction,
and decreases exponentially with j. Hence, the double design D(X) should have smaller cen-
tered L2-discrepancy value, that is, D(X) possesses better uniformity when its original design
X has less aberration. Fang and Mukerjee[4] and Fang, Ma and Mukerjee[3] showed that if
D(X) has better uniformity, then D(X) also has less aberration. Thus, in order to construct
one double design D(X) with less aberration, we should choose a design X with best uniformity
as an original design.

As an application of Theorem 1, we can obtain the following theorem, which gives the link
between CD(D(X)) and the uniformity pattern of X .
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Theorem 2. Let X ∈ D(n, 2k). Then

[CD(D(X))]2 = C1 +
1
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where C1 was defined in Theorem 1.

Proof. From (4), it is not hard to see that
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If we substitute (8) into (6), we have
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and the proof is completed. �

4 Lower Bounds of CD(D(X))

For any design X in D(n, 2k), the lower bound of CD(X) had been obtained by Fang and
Mukerjee[4], Fang, Ma and Mukerjee[3] and Fang, Lu and Winker[2], respectively. The corre-
sponding lower bound of CD(D(X)) can be directly obtained in those references above litera-
ture. We state this result in the following lemma.

Lemma 2. Let X ∈ D(n, 2k), we have

[CD(D(X))]2 ≥
(13

12

)2k
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2k∑
i=1

(1
8

)i
(

2k
i

)
R2n,i(2i −R2n,i), (9)

where R2n,i is the residual of 2n (mod 2i).
In this section, we will work out another lower bound of CD(D(X)) via the original design

X . It is more valuable to use this lower bound to measure uniformity of given double design
D(X). This lower bound may also be used as a benchmark for searching uniform designs. If
the centered L2-discrepancy value of D(X) achieves this lower bound, then D(X) is called a
uniform design.

Following Zhang and Qin[17], we know that for any i (1 ≤ i ≤ k),

Ii(X) ≥ 1
n28i

(
k

i

)
Rn,i(2i −Rn,i), (10)

where Rn,i was similarly defined in Lemma 2.
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Substituting (10) into (7), we obtain the following theorem.

Theorem 3. Let X ∈ D(n, 2k), we have

[CD(D(X))]2 ≥ C1 +
1

2n2

k∑
i=1

( 9
32

)i
(
k

i

)
Rn,i(2i −Rn,i), (11)

where C1 was defined in Theorem 1.
Note that when all factor-level combinations of any i-subdimension projection design of X

occur with the same frequency, Rn,i = 0. In this case, X is said to have strength i. Thus,
Theorem 3 gives the lower bound of CD(D(X)) in view of orthogonality of the original design
X . The lower bound in Theorem 3 is attainable. For example, the lower bound in Theorem 3
is attained if and only if X is a regular 2k−i design of strength k − i.

Lemma 2 and Theorem 3 give two different lower bounds of CD(D(X)), respectively. Via
numerical results, we find that the lower bound of CD(D(X)) in Theorem 3 is bigger than that
in Lemma 2. Therefore, in assessing uniformity of the double design D(X), we should use the
lower bound of CD(D(X)) in Theorem 3 as a benchmark.

The following theorem gives another lower bound of CD(D(X)).

Theorem 4. Let X ∈ D(n, 2k) and the levels of each factor occur equally often in X. Then

[CD(D(X))]2 ≥ C0 +
n− 1
2n

(25
16

)θ(
1 +

9
16
f
)
, (12)

where C0 was defined in Lemma 1, and λ = k(n− 2)/[2(n− 1)], θ is the largest integer contained
in λ, f = λ− θ.

Proof. Note that |{λij : 1 ≤ i < j ≤ n}| = n(n− 1)/2 ≡ m. The elements in {λij : 1 ≤ i <
j ≤ n} are denoted by βr, r = 1, · · · ,m. Define a function ψ(βr) by

ψ(βr) =
(25

16

)βr

.

Obviously, ψ is a Shchur-convex function on R+ → R. Furthermore, we define another function
Ψ(X ;ψ) by

Ψ(X ;ψ) =
m∑

r=1

ψ(βr) =
m∑

r=1

(25
16

)βr

.

Following the definition of Schur-exponential criterion in [16], it is clear that Ψ(X ;ψ) is a Schur-
exponential criterion. Applying Theorem 1 in [16], we may infer that for the Schur-exponential
criterion Ψ(X ;ψ), its lower bound is m(1 − f)ψ(θ) +mfψ(θ + 1) and

∑
1≤i<j≤n

(25
16

)λij ≥ n(n− 1)
2

(25
16

)θ(
1 +

9
16
f
)
. (13)

If we substitute (13) into (5), (12) follows. This completes the proof. �

Theorem 4 gives a lower bound of CD(D(X)), which is often attainable. If λ is an integer,
and all Hamming distances between any distinct pair of runs of X ∈ D(n, 2k) are equal, that
is, dH(xi, xj) = k − λ, 1 ≤ i �= j ≤ n, then the lower bound on the right-hand side of (12)
can be attained. For example, when X is a two-level saturated orthogonal array (Mukerjee and
Wu[10]) or a two-level supersaturated design obtained by Lin[9] from half-Hadamard designs,
then the lower bound on the right-hand side of (12) is attained. In this case, the double design
D(X) is a uniform design.
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If λ is not an integer, then the lower bound on the right-hand side of (12) may be achieved.
When the difference among all Hamming distances between any distinct pair of runs of X ∈
D(n, 2k) does not exceed one, that is, 2m(1−f) dH(xi, xj)’s have the value k−θ, and other 2mf
ones have the value k − θ − 1, the lower bound on the right-hand side of (12) is also attained.
For example, when X is obtained by adding one balanced two-level factor to or removing one
factor from a two-level saturated orthogonal array, the lower bound on the right-hand side of
(12) is achieved.

Summarizing the above discussions, we are able to make the following conclusion.

Corollary 1. For X ∈ D(n, 2k), we have
(i) if all Hamming distances between any distinct pair of runs of X are equal, then the

double design D(X) is a uniform design;
(ii) if X is obtained by adding one balanced two-level factor to or removing one factor from

a two-level saturated orthogonal array, then the double design D(X) is a uniform design.
Note that the lower bound of CD(D(X)) in Theorem 3 is based on the column balance

of X . It is useful for assessing uniformity of D(X) when X is an orthogonal array. Another
lower bound of CD(D(X)) in Theorem 4 is based on the Hamming distance for rows of X .
It is clear that the lower bound of CD(D(X)) in Theorem 3 is sharper than that in Theorem
4, since the latter lower bound may be achieved for some nearly saturated orthogonal arrays
or supersaturated designs. The lower bound of CD(D(X)) in Theorem 4 is more useful for
assessing uniformity ofD(X) whenX is a nearly saturated orthogonal array or a supersaturated
design.

5 Concluding Remarks

In this paper, we further study the justifiable interpretation of double designs in terms of
uniformity. Some analysis relationships between the centered L2-discrepancy value of D(X)
and generalized wordlength pattern/uniformity pattern of X are reported. These results show
that in order to construct double designs with the best aberration or projection uniformity,
the original designs with best uniformity should be chosen. Two lower bounds of centered L2-
discrepancy value of D(X) are also obtained. They are not only used to assess uniformity of
known double designs, but also used as a guided selection of searching optimal double designs.

Note that there are many other possible discrepancies to be employed as measures of unifor-
mity, such as the symmetric L2-discrepancy, the wrap-around L2-discrepancy, the unanchored
L2-discrepancy proposed by Hickernell[8], the discrete discrepancy defined by Qin and Fang[12]

and the Lee discrepancy proposed by Zhou, Ning and Song[18]. It is of theoretical interest to
develop similar results for these discrepancies. It seems feasible to follow the current approach;
however, the details are omitted.
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