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Abstract In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect

are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by

using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the

sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included

bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics

behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos

in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great

abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse period-

doubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a

given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing

or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets,

non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results

in the current literature with the new results reported in this paper, a more complete understanding is given of

the discrete-time predator-prey systems with Allee effect and without Allee effect.
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1 Introduction

In this paper, we consider the following discrete-time predator-prey system in [2]

F :
(

x
y

)
−→

(
x + rx(1 − x) − axy

y + ay(x − y)

)
, (1)

where r and a are positive constants, x and y can be interpreted as the densities of prey and
predator populations at time t, respectively. Here, x + rx(1 − x) stands for the rate of the
increase of the prey population in the absence of predator, while the term axy represents the
rate of decrease due to predation, where the parameter a is the predation parameter, the term
y + ay(x − y) stands for the variation of predator density with respect to the prey population.

In the following, we call the system (1) as map (1).
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In the last few decades, the dynamics of predator-prey systems of various types have been
extensively investigated and developed by many researchers. In [4, 9, 10, 14], authors studied
the Holling type (II) prey-predator system with partial-dependent and with state feedback
control by using both theoretical and numerical ways, and gave the sufficient conditions for the
existence of limit cycle, stability of semi-trivial and positive periodic solution, and shown that
the positive periodic solution bifurcates from the semi-trivial solution through a fold bifurcation.
The predator-prey models with age-structure for predator are investigated in [15], where they
reported the dynamical complexities included quesiperiodic attractors and strange attractors
by using numerical analysis. The dynamics of discrete-time predator-prey systems are also
investigated in [7, 11, 15], where they gave the conditions of existence for flip bifurcation, Hopf
bifurcation by using center manifold theorem and bifurcation theory, and provided complex
dynamical behaviors by using numerical simulations. In [13] the author uses simulated data
from a simple host-parasitoid model to investigate the interaction of nonlinear dynamics, noise
and system identification, and to make a more ”true” host-parasitoid model. The dynamical
behaviors including the periodic solutions, bifurcations, chaos for the predator-prey systems
with delays are also reported in [5, 6, 18, 20–27]. Fan et al[7] proved the existence of periodic
solutions of nonautonomous discrete predator-prey system. Especially, the population dynamics
with Allee effect have been studied. For examples, Celik et al[2] and Chen et al[3] provided the
conditions of existence for stability, flip bifurcation, Hopf bifurcation, and Marotto’s chaos and
found richer dynamics by using both theoretical and numerical analysis.

For the map (1), Celik et al[2] obtained the local stability conditions of the equilibrium
points. So, our main motivation in this paper is to investigate further the map (1) in detail.

In this paper, we give conditions on the existence of flip bifurcation and Hopf bifurcation by
using bifurcation theory and center manifold Theorem[8,24], and the existence of chaos in the
sense of Marotto[16,17] are proved by using both analytical and numerical methods. Numerical
simulations are shown, including bifurcation diagrams, phase portraits, maximum lyapunov
exponents and fractal dimension[1,12], to verify the theoretical analysis and display new and
interesting dynamical behaviors of the system (1). More specifically, this paper presents the
finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete
period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-
windows, simultaneous occurrence of two different routs (invariant circle and inverse period-
doubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation)
to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits
to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic
attractors, coexisting (2, 3, 4) chaotic sets, non-attracting chaotic sets, in the system (1).

By analyzing both discrete-time predator-prey systems with Allee effect[2,3] and without
Allee effect (see [2] and reported in this paper), we found similar dynamical characters for the
cases with or without Allee effect, such as Hopf bifurcation, flip bifurcation, Marotto’s chaos,
transient chaos, and different conditions of existences for various dynamical characters and the
important role played by the Allee constant[2,3], Thus, a more complete understanding of the
discrete-time predator-prey system (1) is given.

This paper is organized as follows: In section 2, we give the existence and stability of fixed
points. In section 3, conditions on the existence of codimension-one bifurcations, including
flip bifurcation and Hopf bifurcations are obtained. In section 4, conditions on the existence
of Marotto’s chaos are given. In section 5, numerical simulation results are presented for
supporting the theoretical analysis and exhibiting new and rich dynamical behaviors.
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2 Existence and Stability of Fixed Points

The fixed points of map (1) satisfy the following equations
{

rx(1 − x) − axy = 0,

ay(x − y) = 0.

By a simple analysis, it is easy to obtain the following Proposition.

Proposition 1. For any positive parameters, the map (1) has three fixed points at z1(0, 0),
z2(1, 0) and z3(x∗, y∗), where x∗ = y∗ = r

a+r .
We now discuss the stability of the fixed points z(x, y) of map (1). The Jacobian matrix J

of map (1) evaluated at the fixed point z(x, y) is given by

J =
(

1 + r − 2rx − ay −ax
ay 1 + ax − 2ay

)
.

The characteristic equation of Jacobian matrix J can be written as

λ2 + pλ + q = 0, (2)

where

p = −2 − r + 2rx − ax + 3ay, q = (1 + r − 2rx − ay)(1 + ax − 2ay) + a2xy.

The stability of fixed points was given by Canan Celik in [2], which is stated in the following
Proposition.

Proposition 2[2]. The positive equilibrium point z3(x∗, y∗) of the predator-prey system (1) is
asymptotically stable if

2 − 4
r

<
ar

a + r
< 1. (3)

3 Codimension-one Bifurcations

In this section, we give conditions on the existence of flip and Hopf bifurcations. The original
system (1) undergoing fold bifurcation requires r = −a, which contradicts to the conditions
r > 0 and a > 0. Hence the system (1) does not undergo fold bifurcation. We choose parameter
a as a bifurcation parameter to study the flip bifurcation and Hopf bifurcation of the positive
fixed point z0(x0, y0).

3.1 Flip Bifurcation

The characteristic equation associated with the linearized map (1) at z0(x0, y0) is given by

λ2 + p(a)λ + q(a) = 0, (4)

where

p(a) = −2 + r, q(a) =
(
1 + r − 2r2 + ar

a + r

)(
1 − ar

a + r

)
+

a2r2

a + r
.

Let

a0 =
2r(r − 2)

r2 − 2r + 4
. (5)
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Then the eigenvalues of the fixed point z0(x0(a0), y0(a0)) are

λ1 = −1, λ2 = 3 − r.

We require |λ2| �= 1. This leads to the fact that p(r0) �= 0, 2. So we get

r �= 2 and r �= 4. (6)

Let w = x − x0, v = y − y0 and a = a − a0. We transform the fixed point z0(x0, y0) to the
origin and consider the parameter a as a new dependent variable. Thus, map (1) becomes

⎛
⎝ w

a
v

⎞
⎠ −→

⎛
⎝ a11 a12 a13

0 −1 0
a31 0 a33

⎞
⎠

⎛
⎝ w

a
v

⎞
⎠ +

⎛
⎝ f1(w, a, v)

0
f2(w, a, v)

⎞
⎠ , (7)

where

a11 =
3r − r2 − 4

r
,

a12 = − (r2 − 2r + 4)2

r4
,

a13 =
−2r + 4

r
,

a31 =
2r − 4

r
,

a33 =
−r + 4

r
,

f1(w, a, v) = −rw2 − x0āv − a0wv − y0āw − āwv,

f2(w, a, v) = −a0v
2 + a0wv − 2y0āv + y0āw − āv2 + x0āv + āwv.

Let n = r4(r−4)
(r2−2r+4)2 , we construct an invertible matrix

T =

⎛
⎝ a33 + 1 −1 a33 − λ2

0 n 0
−a31 0 −a31

⎞
⎠ ,

and under the transformation ⎛
⎝ w

a
v

⎞
⎠ = T

⎛
⎝X

μ
Y

⎞
⎠ ,

the map (7) becomes
⎛
⎝X

μ
Y

⎞
⎠ −→

⎛
⎝−1 1 0

0 −1 0
0 0 λ2

⎞
⎠

⎛
⎝ X

μ
Y

⎞
⎠ +

⎛
⎝ F1(X, μ, Y )

0
F2(X, μ, Y )

⎞
⎠ , (8)

where

F1(X, μ, Y ) =
1

λ2 + 1
(−rw2 − x0av − a0wv − y0aw − āwv)

+
a33 − λ2

a31(1 + λ2)
(−a0v

2 + a0wv − 2y0av + y0aw − av2 + x0av + awv),
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F2(X, μ, Y ) = − 1
λ2 + 1

(−rw2 − x0av − a0wv − y0aw − awv)

− a33 + 1
a31(1 + λ2)

(−a0v
2 + a0wv − 2y0av + y0aw − av2 + x0av + awv),

w =(a33 + 1)X − μ − (a33 − λ2)Y,

a =nμ,

v = − a31X − a31Y.

By the center manifold theorem, the stability of (X, Y ) = (0, 0) near μ = 0 can be deter-
mined by studying a one-parameter family of maps on a center manifold, which can be written
as:

W c(0) =
{
(X, μ, Y ) ∈ R3 | Y = h∗(X, μ), h∗(0, 0) = 0, Dh∗(0, 0) = 0

}
.

Assume a center manifold with

h∗(X, μ) = m1X
2 + m2Xμ + m3μ

2 + O(3), (9)

where O(3) is the sum of all terms whose order is great than 2.
Then the center manifold must satisfy

N(h∗(X, μ)) = h∗(−X +μ+F1(X, μ, h∗(X, μ)), μ)−λ2h
∗(X, μ)−F2(X, μ, h∗(X, μ)) = 0. (10)

Substituting (8) and (9) into (10) and comparing coefficients of Eq. (10), one obtains

m1 =
−16r

(r2 − 2r + 4)(r − 4)(r − 2)
,

m2 =
2r(r3 − 6r2 + 24r − 56)

(r2 − 2r + 4)(r − 2)(r − 4)2
,

m3 =
−2r(3r2 − 12r + 4)

(r − 4)2(r2 − 2r + 4)(r − 2)
.

Thus the map restricted to the center manifold is given by

F ∗ : X −→− X + μ + h1X
2 + h2Xμ + h3μ

2 + h4m1X
3 + (h4m2 + h5m1 + h7)X2μ

+ (h4m3 + h5m2 + h6)Xμ2 + h5m3μ
3 + O((|X | + |μ|)4), (11)

where

h1 =
4r(r2 − 6r + 12)

(r2 − 2r + 4)(r − 4)
,

h2 = − r(r3 − 2r2 − 16r + 56)
(r − 4)(r2 − 2r + 4)

,

h3 =
r(r3 − 6r2 − 12r + 8)
2(r − 4)(r2 − 2r + 4)

,

h4 = − 2(r + 4)(r2 − 4r + 8)(r − 2)2

r(r2 − 2r + 4)(r − 4)
,

h5 =
(r − 2)(r4 − 8r3 + 20r2 + 24r − 64)

2(r − 4)(r2 − 2r + 4)
,

h6 = − r3(r − 2)(r − 4)
(r2 − 2r + 4)2

,

h7 =
2r2(r4 − 8r3 + 16r2 + 8r − 32)

(r − 4)(r2 − 2r + 4)2
.
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In order for map (11) to undergo a flip bifurcation, it is also required that

α1 =
[∂F ∗

∂μ
· ∂2F ∗

∂X2
+ 2

∂2F ∗

∂X∂μ

]∣∣∣
(0,0)

�= 0

and

α2 =
[1
2
· (∂2F ∗

∂X2
)2 +

1
3
· ∂3F ∗

∂X3

]∣∣∣
(0,0)

�= 0.

It is obvious that

α1 = −2r(r3 − 6r2 + 8r + 8)
(r − 4)(r2 − 2r + 4)

�= 0,

α2 =
32(r6 − 12r5 + 62r4 − 148r3 + 128r2 + 96r − 128)

(r − 4)2(r2 − 2r + 4)2
�= 0.

From the above analysis, we have the following theorem.

Theorem 1. The map (1) undergoes a flip bifurcation at z(x0(a0), y0(a0)) if (5), (6) and the
following conditions are satisfied:

α1 �= 0 and α2 �= 0.

Moreover, if α2 > 0 (< 0), the period-2 points that bifurcate from this fixed point are stable
(resp. unstable).

3.2 Hopf Bifurcation

Next, a condition of the existence of Hopf bifurcation of map (1) is derived by using the Hopf
bifurcation theorem [7, 24].

The characteristic equation associated with the linearizated map (1) at the fixed point
z(x0(a), y0(a)) is given by

λ2 + p(a)λ + q(a) = 0. (12)

The eigenvalues of the characteristic equation (12) are given as

λ1,2(a) =
−p(a) ± √

p2(a) − 4q(a)
2

, (13)

where

p(a) = −2 − r + 2rx0 − ax0 + 3ay0,

q(a) = (1 + r − 2rx0 − ay0)(1 + ax0 − 2ay0) + a2x0y0.

The eigenvalues λ1,2(a) are complex conjugate for p2(a) − 4q(a) < 0, which leads to

(r − 2rx0 − ax0 + ay0)2 < 4a2x0y0. (14)

According to inequality (14) and (x0, y0) =
(

r
r+a , r

r+a

)
, we obtain

0 < r < 3a. (15)

Let
a =

r

r − 1
, for r �= 1. (16)
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We get that q(a) = 1 and λ1,2(a) = 2−r
2 ± i

√
4r−r2

2 = α1 ± iα2.
Under the conditions (15) and (16), we have

|λ1,2(a)| = (q(a))
1
2 and d =

d|λ1,2(a)|
da

∣∣∣
a=a

=
r2

2(r + a)
�= 0. (17)

In addition, if p(a) �= 0, 1, which leads to

a �= 2 and a �= 2r

1 + r
, (18)

then we obtain that λn
1,2(a) �= 1 (n = 1, 2, 3, 4).

Let
{

w = x − x0,

v = y − y0.
The map (1) becomes

G :
(

w
v

)
−→

(
r − 2rx0 −1

1 0

) (
w
v

)
+

(
f1(w, v)
f2(w, v)

)
, (19)

where

f1(w, v) = −rw2 − awv, f2(w, v) = awv − av2.

Using the transformation
(

w

v

)
= T

(
X

Y

)
, where T =

( −1 0

α1−r+2rx0 −α2

)
, then map (19)

becomes (
X
Y

)
−→

(
α1 −α2

α2 α1

) (
X
Y

)
+

(
F1(X, Y )
F2(X, Y )

)
, (20)

where

F1(X, Y ) =rX2 − a(α1 − r + 2rx0)X2 + aα2XY,

F2(X, Y ) =
α1 − r + 2rx0

α2
[rX2 − a(α1 − r + 2rx0)X2 + aα2XY ]

+
1
α2

[a(α1 − r + 2rx0) + a(α1 − r + 2rx0)2]X2 + aα2Y
2

− [a + 2a(α1 − r + 2rx0)]XY.

Next, we study the Hopf bifurcation of map (20) using the method given in [7]. The
coefficients are given as follows:

l1 = −Re
[ (1 − 2λ)λ

2

1 − λ
ξ11ξ20

]
− 1

2
|ξ11|2 − |ξ02|2 + Re (λξ21),

ξ20 =
1
8
[(F1XX − F1Y Y + 2F2XY ) + i(F2XX − F2Y Y − 2F1XY )],

ξ11 =
1
4
[(F1XX + F1Y Y ) + i(F2XX + F2Y Y )],

ξ02 =
1
8
[(F1XX − F1Y Y − 2F2XY ) + i(F2XX − F2Y Y + 2F1XY )],

ξ21 =
1
16

[(F1XXX + F1XY Y + F2XXY + F2Y Y Y )

+ i
(
F2XXX + F2XY Y − F1XXY − F1Y Y Y

)]
.
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Thus, some complicated calculation gives

l1 = − 1
32((1 − α1)2 + α2

2)
{
M [F1XX(F1XX + 2F2XY ) − (F2XX − F2Y Y − 2F1XY )

× (F2XX + F2Y Y )] + N [2F1XX(F2XX − F1XY ) + 2F2XY (F2XX + F2Y Y )]
}

− 1
32

[
F 2

1XX + (F2XX + F2Y Y )2
]

− 1
64

[
(F1XX − 2F2XY )2 + (F2XX − F2Y Y + 2F1XY )2

]
, (21)

where

F1XX = 2[r2 − a(α1 − r + 2rx1)],
F1XY = aα2,

F2XX =
2(α1 − r − 2rx1)(r + a)

α2
,

F2XY = −a(1 + α1 − r + 2rx1),
F2Y Y = 2aα2,

M = α2
1 − 3α3

1 + 2α4
1 − α2

2 + α1α
2
2 − 2α4

2,

N = −α2(α2
2 + 5α2

1 − 2α1 − 4α3
1 − 4α1α

2
2),

α1 =
2 − r

2
,

α2 =
√

4r − r2

2
.

From the above analysis, we have the following theorem.

Theorem 2. The map (1) undergoes a Hopf bifurcation at the fixed point z(x0, y0) if the
conditions (15), (16), (18) hold and l �= 0 in (21). Moreover, if l1 < 0 (resp. l1 > 0) and
d > 0, then an attracting (resp. repelling) invariant closed curve bifurcates from the fixed point
for a > a (resp. a < a).

4 Existence of Marotto’s Chaos

In this section, we prove that the map (1) possesses a chaotic behavior in the sense of Marrotto
(see 16,17]).

We first give a condition under which the fixed point z0(x0, y0) of map (1) is a snap-back
repeller. The eigenvalues associated with the fixed point z0(x0, y0) are given by

λ1,2 =
−p(x0, y0) ±

√
p2(x0, y0) − 4q(x0, y0)

2
,

where

p(x, y) = −2 − r + 2rx − ax + 3ay,

q(x, y) = (1 + r − 2rx − ay)(1 + ax − 2ay) + a2xy.

We need to find a neighborhood Ur(z0) of z0(x0, y0) in which the norm of eigenvalues exceeds
1 for all z ∈ Ur(z0). This is equivalent to the condition

{
p2(x, y) − 4q(x, y) < 0,

q(x, y) − 1 > 0.
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Let
S1(x, y) = p2(x, y) − 4q(x, y) = a2y2 + (2aβ1 − 4a2x)y + β2

1 ,

where β1 = r − 2rx − ax. Since

�1 = (2aβ1 − 4a2x)2 − 4β2
1a2 ≥ 0,

the equation S1(x, y) = 0 has one real root with multiplicity 2 or two real roots denoted as

y1 =
2ax − β1 −

√
4a2x2 − 4aβ1x

a
and y2 =

2ax − β1 +
√

4a2x2 − 4aβ1x

a
.

Since
�1 = (2aβ1 − 4a2x)2 − 4β2

1a2 ≥ 0,

we obtain that
x ≥ r

2(a + r)
.

Thus, S1(x, y) < 0 if x ∈ D1 =
{
x|x ≥ r

2(a+r)

}
and y ∈ D3 = (y1, y2).

Let
S2(x, y) = q(x, y) − 1 = 2a2y2 − (a + 2β2)y + r − 2rx + β2x,

where β2 = a + ar − 2arx. If �2 = (a + 2β2)2 − 8a2(r − 2rx + β2x) ≥ 0, then the equation
S2(x, y) = 0 has one real root with multiplicity 2 or two real roots both denoted as

y1
′
=

a + 2β2 −√�2

4a2
, y2

′
=

a + 2β2 +
√�2

4a2
.

Since �2 ≥ 0, we obtain that

16a2r(r + a)x2 − 8a2(2r2 + a + ar)x + 9a2 + 4a2r + 4a2r2 ≥ 0, (22)

If �3 = 64(a2 + a2r2 + 2a2r− 9r2 − 4r3 − 9ar) ≥ 0, from (22) we get that x ≥ x1 or x ≤ x2,
where

x1 =
2r2 + a + ar +

√�3

4r(r + a)
, x2 =

2r2 + a + ar −√�3

4r(r + a)
.

If �3 < 0 from (22), we obtain that x ∈ R.
If �3 > 0 and x2 < x < x1, then �2 < 0, so we have y ∈ R.

Therefore, we obtain that S2(x, y) > 0 if one of the following conditions holds:
(1) �3 ≥ 0, x ∈ D2 = (−∞, x2) ∪ (x1, +∞) and y ∈ D′

3 = (−∞, y1
′) ∪ (y2

′, +∞);
(2) �3 < 0, x ∈ R and y ∈ D′

3;
(3) �3 > 0, x ∈ D′

2 = (x2, x1).
According to the above analysis, we can get the following lemma.

Lemma 1. Let a > 0, r > 0 if one of the following conditions is satisfied:
(i) �3 ≥ 0, x ∈ D1 ∩ D2 and y ∈ D3 ∩ D′

3;
(ii) �3 < 0, x ∈ D1 and y ∈ D3 ∩ D′

3;
(iii) �3 > 0, x ∈ D1 ∩ D′

2 and y ∈ D3.
Then p2(x, y) − 4q(x, y) < 0 and q(x, y)− 1 > 0. Moveover, if the fixed point z0(x0, y0) of map
(1) satisfies

z0(x0, y0) ∈ Uz0 =
{
(x, y) | x ∈ D1 ∩ D2, y ∈ D3 ∩ D′

3

}
or

z0(x0, y0) ∈ Uz0 =
{
(x, y) | x ∈ D1, y ∈ D3 ∩ D′

3

}
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or

z0(x0, y0) ∈ Uz0 =
{
(x, y) | x ∈ D1 ∩ D′

2, y ∈ D3

}
,

then z0(x0, y0) is an expanding fixed point in Uz0 .
According to the definition of snap-back repeller, one needs to find one point z1(x1, y1) ∈ Uz0

such that z1 �= z0, FM (z1) = z0, and |DFM (z1)| �= 0 for some positive integer M, where map
F is defined by (1).

To proceed, notice that

{
x1 + rx1(1 − x1) − ax1y1 = x2,

y1 + ay1(x1 − y1) = y2,
(23)

and {
x2 + rx2(1 − x2) − ax2y2 = x0,

y2 + ay2(x2 − y2) = y0.
(24)

Now, a map F 2 has been constructed to map the point z1(x1, y1) to the fixed point z0(x0, y0)
after two iterations if Eqs. (23) and (24) have solutions being different from z0. The solutions
of Eq. (24) which are different from z0, satisfy the equation

⎧⎨
⎩

−[x2 − x0 + rx2(1 − x2)]2 + (x2 + ax2
2)[x2 − x0 + rx2(1 − x2)] − ay0x

2
2 = 0,

y2 =
1

ax2
[x2 − x0 + rx2(1 − x2)].

(25)

Let

A = r2 + ar, B = −(2r2 + r + a + ar),
C = r2 + r + 2rx0 + ay0 + ax0, D = x0 + 2rx0, E = x2

0.

From (25), one can get

Ax4
2 + Bx3

2 + Cx2
2 + Dx2 + E = 0. (26)

Let

α = −3B2

8A2
+

C

A
,

β =
B3

8A3
− BC

2A2
+

D

A
,

γ = − 3B4

256A4
+

B2C

16A3
− BD

4A2
+

E

A
,

P = −α2

12
− γ,

Q = − α3

108
+

αγ

3
− β2

8
,

R =
Q

2
±

√
Q2

4
+

P 3

27
,

U = 3
√

R,

ξ = −5α

6
+

P

3U
− U.
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If β = 0 and α < −2
√

r, then the equation (26) has four real roots denoted as

x11 = − B

4A
+

√
−α +

√
α2 − 4r

2
,

x12 = − B

4A
+

√
−α −√

α2 − 4r

2
,

x13 = − B

4A
−

√
−α +

√
α2 − 4r

2
,

x14 = − B

4A
−

√
−α −√

α2 − 4r

2
.

If β �= 0, α + 2ξ > 0 and 3α + 2ξ < 2β√
2ξ+α

or 3α + 2ξ < − 2β√
2ξ+α

, then equation (26) has

real roots denoted as

x′
11 = − B

4A
+

−√
α + 2ξ ±

√
−(3α + 2ξ − 2β√

α+2ξ
)

2
,

or

x′
11 = − B

4A
+

√
α + 2ξ ±

√
−(3α + 2ξ + 2β√

α+2ξ
)

2
.

Substituting x2 and y2 into Eqs. (23) and solving x1, y1, we get⎧⎨
⎩

−[x1 − x2 + rx1(1 − x1)]2 + (x1 + ax2
1)[x1 − x2 + rx1(1 − x1)] − ay2x

2
1 = 0,

y1 =
1

ax1
[x1 − x2 + rx1(1 − x1)].

(27)

Let

A = r2 + ar, B = −(2r2 + r + a + ar),
C = r2 + r + 2rx2 + ay2 + ax2, D = x2 + 2rx2, E = x2

2,

α = −3B
2

8A
2 +

C

A
,

β =
B

3

8A
3 − BC

2A
2 +

D

A
,

γ = − 3B
4

256A
4 +

B
2
C

16A
3 − BD

4A
2 +

E

A
,

P = −α2

12
− γ,

Q = − α3

108
+

αγ

3
− β

2

8
,

R =
Q

2
±

√
Q

2

4
+

P
3

27
,

U =
3
√

R,

ξ = −5α

6
+

P

3U
− U.
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From (27), one can get
Ax4

1 + Bx3
1 + Cx2

1 + Dx1 + E = 0. (28)

If β = 0 and α < −2
√

r, then the equation (28) has four real roots denoted as

x11 = − B

4A
+

√
−α +

√
α2 − 4r

2
,

x12 = − B

4A
+

√
−α −

√
α2 − 4r

2
,

x13 = − B

4A
−

√
−α +

√
α2 − 4r

2
,

x14 = − B

4A
−

√
−α −

√
α2 − 4r

2
.

If β �= 0, α + 2ξ > 0 and 3α + 2ξ < 2β√
2ξ+α

or 3α + 2ξ < − 2β√
2ξ+α

, then equation (28) has

real roots denoted as

x′
11 = − B

4A
+

−
√

α + 2ξ ±
√
−(3α + 2ξ − 2β√

α+2ξ
)

2
,

or

x′
11 = − B

4A
+

√
α + 2ξ ±

√
−(3α + 2ξ + 2β√

α+2ξ
)

2
.

By a simple calculation, we get

|DF 2(z1)| =4
{
− a2y2

1 +
[(

x1 − 1
2

)
(x1 − 2y1)r +

3
2
− 1

2
x1

]
a − 1

2
+

(
x1 − 1

2

)
r
}

× { − 1 + (−2y2
1 + 3x1y1)a2 +

[
(x2

1 − x1)r + 2y1 − x1

]
a
}

×
[
rax1y1 +

1
2

+ (x2
1 − x1)r2 +

(
− x1 +

1
2

)
r
]
.

Obviously, if the condition in Lemma 1 is satisfied and the solutions of Eqs. (25) and (27)
satisfy that z1(x1, y1), z(x2, y2) �= z0(x0, y0), z1(x1, y1) ∈ Uz0 and |DF 2(z1)| �= 0, then z0 is a
snap-back repeller in Uz0 . Thus, the following theorem is established.

Theorem 3. Assume that the conditions in Lemma 1 hold. If
(1) −2ax0 < r(1 − 2x0) < 2ax0 and (r − 2rx0 − 2ax0)(1 − ax0) > 0, and
(2) the solutions (x2, y2) and (x1, y1) of Eqs. (25) and (27) satisfy that (x1, y1), (x2, y2) �=

(x0, y0), (x1, y1) ∈ Uz0 , (x1, y1) �= (0, 0) and |DF 2(z1)| �= 0.
Then z0(x0, y0) is a snap-back repeller of map (1), and hence map (1) is chaotic in the sense
of Marotto.

Next, we give specific values of the parameters for illustrating the existence of conditions in
Theorem 3.

Example 1. For a = 1.5 and r = 4, the map (1) has a fixed point z0(x0, y0) = (0.7272727273,
0.7272727273), and the eigenvalues associated with z0 is λ1,2 = −0.514234591± 0.9544473351i.
Based on Lemma 1 and Theorem 3, we find that a region of z0 is U =

{
(x, y) | 0.5 <

x < 0.74, y2
′ < y < y2

} ⊂ Uz0 =
{
(x, y) | x ∈ D1, y ∈ D3 ∪ D′

3

}
, and there exists a
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point z1(x1, y1) = (0.5110659317, 0.8236756974) satisfying that F 2(z1) = z0 and |DF 2(z1)| =
−2.405093121 �= 0, where

y2 =8.3333333x− 2.66666667 + 0.6666666667
√

9x2 − 6(4 − 9.5 x) x,

y′2 =1.833333333− 2.666666667x+ 0.1111111111

×
√

(16.5 − 24x)2 − 72 + 144x − 18(7.5− 12x)x.

Obviously z0, z1 ∈ U . Thus, z0 is a snapback repeller.

Example 2. For a = 1.55 and r = 4, the map (1) has a fixed point z0(x0, y0) = (0.7207207,
0.7207207207), and the eigenvalues associated with z0 is λ1,2 = −0.4376068055±0.9307112097i.
Based on Lemma 1 and Theorem 3, we find that a region of z0 is U =

{
(x, y) | 0.45 <

x < 0.75, y2
′ < y < y2

} ⊂ Uz0 =
{
(x, y) | x ∈ D1, y ∈ D3 ∪ D′

3

}
, and there exists a

point z1(x1, y1) = (0.4910895415, 0.7973518427) satisfying that F 2(z1) = z0 and |DF 2(z1)| =
−2.346889713 �= 0, where

y2 =8.161290322x− 2.580645161 + 6.451612903×
√

9.61 x2 − 6.214 (4 − 9.55 x) x,

y′
2 =1.774193548− 2.58064516 x + 0.1040582726

×
√

(17.05 − 24.8xx)2 −−76.88 + 153.76− 19.22(7.55− 12.4x)x.

Obviously z0, z1 ∈ U . Thus, z0 is a snapback repeller.

5 Numerical Simulations

In this section, numerical simulations are given, including bifurcation diagrams, Lyapunov
exponents (ML), fractal dimension (FD) and phase portraits, to illustrate the above theoretical
analysis and show new and more complex dynamic behaviors in the map (1).

The fractal dimension [1, 12] is defined by using Lyapunov exponents as follows:

dL = j +

i=j∑
i=1

Li

Lj

with L1, L2, · · · , Ln, which are Lyapunov exponents, where j is the largest integer such that
i=j∑
i=1

≥ 0 and
i=j+1∑

i=1

< 0.

Our model is a two-dimensional map which has the fractal dimension

dL = 1 +
L1

|L2| , L1 > 0 > L2.

5.1 Numerical Simulations on Stability and Codimension One Bifurcations of

Fixed Points

The following two cases are considered:

Case 1. Bifurcation diagram of map (1) in (a, x) plane for 0.2 ≤ a ≤ 1, and r = 2.9148 with
initial values (0.75, 0.75) is given in Fig.1 (a), which shows that there are flip bifurcation (labeled
“PD”) emerging from the fixed point z0(0.7846, 0.7846) with r = 2.9148, α1 = 4.11476532 and
α2 = 84.39293744 > 0.
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Case 2. Bifurcation diagram of map (1) in (a, x) plane is given in Fig.1 (b) for 1.4 < a ≤
1.81 and r = 2.5 with initial values (0.75, 0.75). Fig.1 (b) exhibits Hopf bifurcation (labeled
“HB”), which occurs at fixed point z0(0.6, 0.6) and a = 1.6665 with d = 0.7500750075 > 0,
l1 = −4.417416610 < 0. Fig.1 (a) and (b) verify the correctness of Theorem 1–2.

(a) (b)

Fig.1 (a) Bifurcation diagram of map (1) in (a, x)-plane for r = 2.9148 with (x0, y0) = (0.75, 0.75).

(b) Bifurcation diagram of map (1) in (a, x)-plane for r = 2.5 with (x0, y0) = (0.75, 0.75).

5.2 Numerical Simulations for Marotto’s Chaos

In this subsection, numerical simulations are shown for verifying the condition in Theorem 3.

(1) By Example (1), the bifurcation diagram in (a, x) plane is given in Fig.2 (a) for r = 4
and a ∈ (1.495, 1.505) with initial values (0.75, 0.75). The maximum Lyapunov exponents
corresponding to (a) are computed as shown in Fig.2 (b). From Example (1) and Theorem 3,
one can see that the chaotic attractor is located in the chaotic region a ∈ (1.499, 1.5005). In fact,
for a = 1.5, z0(x0, y0) = (0.7272727273, 0.7272727273) is a fixed point of map (1), the region
of z0 is U =

{
(x, y) | 0.5 < x < 0.74, y2

′ < y < y2

} ⊂ Uz0 =
{
(x, y) | x ∈ D1, y ∈ D3 ∪ D′

3

}
in which z0 is expanding, and the point z1(x1, y1) = (0.5110659317, 0.8236756974) satisifes
F 2(z1) = z0 and |DF 2(z1)| = −2.405093121 �= 0. Thus z0 is a snapback repeller. The Marotto’s
chaotic attractor is given in Fig.2(c) for u = 1.5, which verifies Theorem 3.

(a) (b) (c)

Fig.2 (a) Bifurcation diagram of map (1) in (a, x)-plane for r = 4 with (x0, y0) = (0.75, 0.75).

(b) Maximum Lyapunov exponents corresponding to (a).

(c) Chaotic attractor (ML = 0.0122, FD = 1.298) at a = 1.5 in (a).
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(2) By Example (2), the bifurcation diagram in (a, x) plane is shown in Fig.3 (a) for
r = 4 and a ∈ (1.54, 1.558) with initial values (0.75, 0.75), and the corresponding maximum
Lyapunov exponents is given in Fig.3 (b). From Example (2) and Theorem 3, one can find that
the chaotic attractor is located in the chaotic region a ∈ (1.545, 1.551). In fact, for a = 1.55,
z0(x0, y0) = (0.7207207207, 0.7207207207) is a fixed point of map (1), the region of z0 is
U =

{
(x, y) | 0.45 < x < 0.75, y2

′ < y < y2

} ⊂ Uz0 =
{
(x, y) | x ∈ D1, y ∈ D3 ∪D′

3

}
in which

z0 is expanding, and the point z1(x1, y1) = (0.4910895415, 0.7973518427) satisfies F 2(z1) = z0

and |DF 2(z1)| = −2.346889713 �= 0. Thus z0 is a snapback repeller. The chaotic attractor is
given in Fig.3(c) for a = 1.55, which is verifies Theorem 3.

(a) (b) (c)

Fig.3 (a) Bifurcation diagram of map (1) in (a, x)-plane for r = 4 with (x0, y0) = (0.75, 0.75).

(b) Maximum Lyapunov exponents corresponding to (a).

(c) Chaotic attractor (ML = 0.03725, FD = 1.6085) at a = 1.55 in (a).

5.3 Further Numerical Simulations for the Map (1)

In this subsection, new and complex dynamical behaviors are investigated as the parameters
vary.

The bifurcation diagrams in the two-dimensional plane are considered in the following eight
cases:

(ai) Varying a in range 0 ≤ a ≤ 1.857 and fixing r = 2.7;
(aii) Varying a in range 0 ≤ a ≤ 1.724 and fixing r = 2.8;
(aiii) Varying a in range 0 ≤ a ≤ 1.4985 and fixing r = 3;
(aiv) Varying a in range 0.91 ≤ a ≤ 1.48 and fixing r = 3.5;
(bi) Varying r in range 0.945 ≤ r ≤ 3 and fixing a = 1.5;
(bii) Varying r in range 0 ≤ r ≤ 2.77 and fixing a = 1.9;
(biii) Varying r in range 0.1 ≤ r ≤ 2.71 and fixing a = 2;
(biv) Varying r in range 0 ≤ r ≤ 2.24 and fixing a = 2.1.

For case (ai). The bifurcation diagram of map (1) in (a, x) plane is shown in Fig.4 (a) for
r = 2.7 with initial values (0.75, 0.75), and the maximum Lyapunov exponent corresponding
to Fig.4 (a) is given in Fig.4 (b). In Fig.4, we observe that there are a stable fixed point for
a ∈ (0.642, 1.588), and a Hopf bifurcation occuring at a ∼ 1.588, the simultaneous occurrence
of two different routs (inverse period-doubling bifurcation and invariant circle) to chaos. One
can also see that inverse period-doubling bifurcation, which occurs at a ∼ 0.642, changes into
chaos with interior crisis at a ∼ 0.0265 and the chaotic behaviors suddenly appear at a ∼ 0
and a ∼ 1.86. Fig.4 (c)–(e) present the four-coexisting chaotic sets at a = 0.13, non-attracting
chaotic sets at a = 0.144 and the invariant circle at a = 1.6, respectively.
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(a) (b) (c)

(d) (e)

Fig.4 (a) Bifurcation diagram of map (1) in (a, x)-plane for r = 2.7

and 0 ≤ a ≤ 1.857 with (x0, y0) = (0.75, 0.75).

(b) Maximum Lyapunov exponents corresponding to (a).

Phase portraits:

(c) four-coexisting chaotic sets (ML = 0.051, FD = 1.9523) for a = 0.13 in (a);

(d) non-attracting chaotic sets (ML = 0.0225, FD = 1.4346) for a = 0.144 in (a);

(e) invariant circle (ML = 0) for a = 1.6 in (a).

For case (aii). The bifurcation diagram of map (1) in (a, x) plane is shown in Fig.5 (a)
for r = 2.8 with initial values (0.77, 0.77), local amplification is given Fig.5 (b) and (c) for
a ∈ (0, 0.2) and a ∈ (1.6, 1.7), and the maximum Lyapunov exponents corresponding to (a) is
given in Fig.5 (d). One can observe that there are a stable fixed point for a ∈ (0.718, 1.335),
period-three orbits for a ∈ [1.335, 1.488), and the simultaneous occurrence of two different
routs (inverse period-doubling bifurcation and period-doubling bifurcation) to chaos. Moreover,
there is a great abundance of period windows in the chaotic regions with interior crisis at
a ∼ 0.0645 and 0.14, and the chaotic behaviors suddenly appear at a ∼ 0 and a ∼ 1.725. Fig.5
(e)–(g) give the two-coexisting chaotic sets at a = 0.22, three-coexisting chaotic sets at a = 1.7,
chaotic attractor at a = 1.722.

For case (aiii). The bifurcation diagram of map (1) in (a, x) plane is shown in Fig.6
(a) for r = 3 with initial values (0.77, 0.77), are local amplification is given in Fig.6 (b)
for a ∈ (1.48, 1.4985), and the maximum Lyapunov exponent corresponding to (a) is given
in Fig.6 (c). From the diagrams, One can observe that there is a period-one orbit region for
a ∈ (0.858, 1.48624), the fixed point loses its stability as a decreases and inverse period-doubling
bifurcation which occurs at a ∼ 0.858 changes into chaos with small complex period windows
and the chaotic behavior suddenly appears at a ∼ 0. Moreover, as a increases, the period-
one orbit suddenly becomes period-14 orbits at a ∼ 1.48624 and period-doubling bifurcation
changes into chaos with period-one windows, and the chaotic behavior suddenly disappears at
a ∼ 1.4986. The nice chaotic attractors at a = 1.498 is shown in Fig.6 (d).
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(a) (b) (c)

(d) (e) (f)

(g)

Fig.5 (a) Bifurcation diagrams of map (1) in (a, x)-plane for r = 2.8

and 0 ≤ a ≤ 1.724 with (x0, y0) = (0.77, 0.77).

(b) local amplification for a ∈ (0, 0.2);

(c) Maximum Lyapunov exponents corresponding to (a).

(d) Maximum Lyapunov exponents corresponding to (a);

Phase portraits:

(e) the two coexisting chaotic sets (ML = 0.05, FD = 1.5055) for a = 0.22 in (a);

(f) three-coexisting chaotic sets (ML = 0.0468, FD = 1.3824) for a = 1.7 in (a);

(g) chaotic attractor (ML = 0.05626, FD = 1.4899) for a = 1.722 in (a).

For case (aiv). The bifurcation diagram of map (1) in (a, x) plane is shown in Fig.7 (a)
for r = 3.5 with initial values (0.77, 0.77), the maximum Lyapunov exponent corresponding
to (a) is given in Fig.7 (b). The diagrams show that there are a period-one orbit region for
a ∈ (1.135, 1.4), the simultaneous occurrence of two different routs (inverse period-doubling
bifurcation and invariant circle) to chaos with small period windows and interior crisis which
occurs at a ∼ 0.999. The chaotic attractor at a = 0.92 and two-coexisting chaotic sets at a = 1
are given in Fig.7 (c) and (d), respectively.
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(a) (b) (c)

(d)

Fig.6 (a) Bifurcation diagrams of map (1) in (a, x)-plane for r = 3

and 0 ≤ a ≤ 1.4985 with (x0, y0) = (0.77, 0.77).

(b) The local amplification of (a) for 1.48 ≤ a ≤ 1.4985.

(c) Maximum Lyapunov exponents corresponding to (a).

(d) Chaotic attractor (ML = 0.1089, FD = 1.7559) for r = 1.498 in (a).

(a) (b) (c)

(d)

Fig.7 (a) Bifurcation diagram of map (1) in (a, x)-plane for r = 3.5

and 0.91 ≤ a ≤ 1.48 with (x0, y0) = (0.755, 0.755).

(b) Maximum Lyapunov exponents corresponding to (a).

Phase portraits:

(c) chaotic attractor (ML = 0.13, FD = 1.2640) for a = 0.92 in (a);

(d) two-coexisting chaotic sets (ML = 0.05, FD = 1.1786) for a = 1 in (a).
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For case (bi). The bifurcation diagram of map (1) in (r, x) plane is shown in Fig.8 (a)
for a = 1.5 with initial values (0.75, 0.75), the maximum Lyapunov exponent corresponding
to (a) is given in Fig.8 (b). From Fig.8 (a)–(b), one can see that there is a large stable
region for r ∈ (0.945, 2.72), period-one orbit becomes period-three orbits suddenly at r ∼ 2.72
and period doubling bifurcation changes into chaos with period-one windows, and the chaotic
behavior suddenly disappears at r ∼ 3. The three-coexisting chaotic sets at r = 2.9321, chaotic
attractor at r = 2.998 are exhibited in Fig.8 (c)-(d), respectively.

(a) (b) (c)

(d)

Fig.8 (a) Bifurcation diagram of map (1) in (r, x)-plane for a = 1.5

and 0.945 ≤ r ≤ 3 with (x0, y0) = (0.75, 0.75).

(b) Maximum Lyapunov exponents corresponding to (a).

Phase portraits:

(c) three-coexisting chaotic sets (ML = 0.08, FD = 1.4043) for r = 2.9321 in (a);

(d) chaotic attractor (ML = 0.1176, FD = 1.7576) for r = 2.998 in (a).

For case (bii). The bifurcation diagram of map (1) in (r, x) plane is shown in Fig.9 (a) for
a = 1.9 with initial values (0.1, 0.1), Fig.9 (b) is the local amplification for r ∈ (2.5, 2.77) in (a).
The maximum Lyapunov exponent corresponding to (a) is given in Fig.9 (c). The diagrams
show that there are a wider period-one orbit region for r ∈ (0, 2.11) and sudden appearance of
invariant circle as r increases and that the invariant circle suddenly becomes to period-7 orbits,
the onset of chaos at r ∼ 2.6507, and complex period windows in the chaotic region, and the
chaotic behavior suddenly disappears at r ∼ 2.771. The period chaos at r = 2.652 and period
windows at r = 2.69 are plotted in Fig.9 (d) and (e), respectively.
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(a) (b) (c)

(d) (e)

Fig.9 (a) Bifurcation diagram of map (1) in (r, x)-plane for a = 1.9

and 0 ≤ r ≤ 2.77 with (x0, y0) = (0.1, 0.1).

(b) The local amplification of (a) for 2.5 ≤ a ≤ 2.77.

(c) Maximum Lyapunov exponents corresponding to (a).

Phase portraits:

(d) (d) chaos (ML = 0.0074, FD = 1.0312) for r = 2.652 in (a);

(e) period window for r = 2.69 in (a).

For case (biii). The bifurcation diagram of map (1) in (r, x) plane for a = 2 with initial
values (0.51, 0.51) is shown in Fig.10 (a), and the maximum Lyapunov exponent corresponding
to (a) is given in Fig.10 (b). The diagrams show that there is a period-one orbit region for
r ∈ (0.1, 2), the fixed point loses its stability as r increases, period-one orbit to period-4 orbits,
which occurs at r ∼ 2, changes into chaos with complex period windows, and the chaotic
behavior suddenly disappears at r ∼ 2.711. The four-coexisting chaotic sets at r = 2.25,
chaotic attractor at r = 2.4 are exhibited in Fig.10 (c)–(d), respectively.

For case (biv). The bifurcation diagram of map (1) in (r, x) plane for a = 2.1 with initial
values (0.1, 0.1) is shown in Fig.11 (a) and the maximum Lyapunov exponent corresponding to
(a) is given in Fig.11 (b). One can see that there is a stable fixed point for r ∈ (0, 1.91), the
fixed point loses its stability as r increases, the sudden appearance of invariant circle occurs
at r ∼ 1.91, the invariant circle suddenly becomes chaos at r ∼ 2.069 with complex period
windows, and the chaotic behavior suddenly disappears at r ∼ 2.241. The non-attracting chaos
at r = 2.091, chaotic attractor at r = 2.109, period orbits at r = 2.13, chaotic attractor at
r = 2.225 are shown in Fig.11 (c)–(f), respectively.
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(a) (b) (c)

(d)

Fig.10 (a) Bifurcation diagram of map (1) in (r, x)-plane for a = 2

and 0.1 ≤ r ≤ 2.71 with (x0, y0) = (0.51, 0.51).

(b) Maximum Lyapunov exponents corresponding to (a).

Phase portraits:

(c) four-coexisting chaotic sets (ML = 0.0433, FD = 1.1666) for r = 2.25 in (a);

(d) chaotic attractor (ML = 0.0457, FD = 1.6160) for r = 2.4 in (a).

(a) (b) (c)

(d) (e) (f)

Fig.11 (a) Bifurcation diagram of map (1) in (r, x)-plane for a = 2.1

and 0 ≤ r ≤ 2.24 with (x0, y0) = (0.1, 0.1).

(b) Maximum Lyapunov exponents corresponding to (a).

Phase portraits:

(c) non-attracting chaos (ML = 0.012, FD = 1.1471) for r = 2.091 in (a);

(d) chaotic attractor (ML = 0.0283, FD = 1.4104) for r = 2.109 in (a);

(e) period orbits (ML = −0.00025) for r = 2.13 in (a);

(f) chaotic attractor (ML = 0.071, FD = 1.8461) for r = 2.225 in (a).
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