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1 Introduction

Our aim in this paper is to state and prove a number of parametric sufficient efficiency re-
sults under various generalized (α, η, ρ)-V-invexity assumptions for the following semiinfinite
multiobjective fractional programming problem:

(P) Minimize ϕ(x) =
(
ϕ1(x), · · · , ϕp(x)

)
=

(f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)

subject to
Gj(x, t) ≤ 0, for all t ∈ Tj , j ∈ q,

Hk(x, s) = 0, for all s ∈ Sk, k ∈ r,

x ∈ R
n,

where p, q and r are positive integers, R
n is the n-dimensional Euclidean space, for each j ∈

q ≡ {1, 2, · · · , q} and k ∈ r, Tj and Sk are compact subsets of complete metric spaces, for each
i ∈ p, fi and gi are real-valued functions defined on R

n, for each j ∈ q, Gj(·, t) is a real-valued
function defined on R

n for all t ∈ Tj , for each k ∈ r, Hk(·, s) is a real-valued function defined
on R

n for all s ∈ Sk, for each j ∈ q and k ∈ r, Gj(x, ·) and Hk(x, ·) are continuous real-valued
functions defined, respectively, on Tj and Sk for all x ∈ R

n, and for each i ∈ p, gi(x) > 0 for
all x satisfying the constraints of (P).

Multiobjective programming problems like (P) but with a finite number of constraints,
that is, when the functions Gj are independent of t, and the functions Hk are independent
of s, have been the subject of numerous investigations in the past three decades. Several
classes of static and dynamic optimization problems with multiple fractional objective functions
have been studied and, consequently, a number of sufficient efficiency and duality results are
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currently available for these problems in the related literature. Fairly extensive lists of references
pertaining to various aspects of multiobjective fractional programming are available in [42–44].
For more information about the vast general area of multiobjective programming, the reader
may consult [25, 32, 39, 41].

A close examination of these and other related sources will readily reveal the fact that despite
a phenomenal proliferation of publications in several areas of multiobjective programming, so far
semiinfinite nonlinear multiobjective fractional programming problems have not been studied at
all. In the present study, we shall formulate a number of parametric sufficient efficiency results
for (P) under various generalized (α, η, ρ)-V-invexity assumptions. Their relevance to various
parametric duality relations for (P) is discussed in [50].

A mathematical programming problem with a finite number of variables and infinitely many
constraints is called a semiinfinite programming problem. Problems of this type have been uti-
lized for the modeling and analysis of a staggering array of theoretical as well as concrete,
real-world, practical problems. More specifically, semiinfinite programming concepts and tech-
niques have found relevance and applications in approximation theory, statistics, game theory,
engineering design (earthquake-resistant design of structures, design of control systems, digi-
tal filters, electronic circuits, etc.), boundary value problems, defect minimization for operator
equations, geometry, random graphs, graphs related to Newton flows, wavelet analysis, reliabil-
ity testing, environmental protection planning, decision making under uncertainty, semidefinite
programming, geometric programming, disjunctive programming, optimal control problems,
robotics, and continuum mechanics, among others. For a wealth of information pertaining to
various aspects of semiinfinite programming, including areas of applications, optimality condi-
tions, duality relations, and numerical algorithms, the reader is referred to [2, 5, 6, 9–13, 16–19,
23, 30, 33, 34]. Relatively more recent applications of generalized semiinfinite programming
to the formulation and analysis of anticipatory systems and gene-environment networks are
discussed in [4, 35–38], and to a very interesting gemstone cutting problem in [40].

From these and other related publications one can easily see that the two important trends,
namely, the ubiquity of duality theories and generalized convexity concepts that have been
playing significant roles in the evolution of optimization theory and methodology in general and
in nonlinear programming in particular are conspicuously missing in the area of semiinfinite
nonlinear programming. In fact, until very recently there were no publications dealing with
nonlinear semiinfinite programming that made substantial use of any class of generalized convex
functions in establishing sufficient optimality conditions or duality results. Some small steps
toward bridging this gap have recently been taken by the authors in [45–49]. However, so far no
sufficient efficiency results based on generalized convexity concepts have been published in the
related literature for any kind of semiinfinite multiobjective fractional programming problems.

The rest of this paper is organized as follows. In Section 2, we present a number of definitions
and auxiliary results which will be needed in the sequel. In Section 3, we begin our discussion of
sufficient efficiency conditions where we formulate and prove numerous sets of sufficiency criteria
under a variety of generalized (α, η, ρ)-V-invexity assumptions that are placed on the individual
as well as certain combinations of the problem functions. Utilizing two partitioning schemes, in
Section 4 we establish several sets of generalized parametric sufficient efficiency results each of
which is in fact a family of such results whose members can easily be identified by appropriate
choices of certain sets and functions. Finally, in Section 5 we summarize our main results and
also point out some further research opportunities arising from certain modifications of the
principal problem model considered in this paper.

Evidently, all the parametric sufficient efficiency results established in this paper can easily
be modified and restated for each one of the following seven classes of nonlinear programming
problems, which are special cases of (P):

(P1) Minimize
x∈F

(
f1(x), · · · , fp(x)

)
;
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(P2) Minimize
x∈F

f1(x)
g1(x)

;

(P3) Minimize
x∈F

f1(x),

where F (assumed to be nonempty) is the feasible set of (P), that is,

F =
{
x ∈ R

n : Gj(x, t) � 0 for all t ∈ Tj , j ∈ q, Hk(x, s) = 0 for all s ∈ Sk, k ∈ r
}
;

(P4) Minimize
(f1(x)

g1(x)
, · · · , fp(x)

gp(x)

)

subject to
G̃j(x) � 0, j ∈ q; H̃k(x) = 0, k ∈ r; x ∈ R

n,

where fi and gi, i ∈ p, are as defined in the description of (P), G̃j , j ∈ q and H̃k, k ∈ r,
are real-valued functions defined on R

n, and for each i ∈ p, the denominators of the objective
functions of (P4) are positive for all feasible solutions;

(P5) Minimize
x∈G

(
f1(x), · · · , fp(x)

)
;

(P6) Minimize
x∈G

f1(x)
g1(x)

;

(P7) Minimize
x∈G

f1(x),

where G is the feasible set of (P4), that is,

G =
{
x ∈ R

n : G̃j(x) � 0, j ∈ q, H̃k(x) = 0, k ∈ r
}
.

Since in most cases these results can easily be altered and rephrased for each one of the
above seven problems, we shall not state them explicitly.

2 Preliminaries

In this section we recall, for convenience of reference, the definitions of certain classes of gen-
eralized convex functions which will be needed in the sequel. We begin by defining an invex
function, which has been instrumental in creating a vast array of interesting and important
classes of generalized convex functions.

Definition 2.1. Let f be a real-valued differentiable function defined on R
n. Then f is said

to be η-invex at y if there exists a function η : R
n × R

n → R
n such that for each x ∈ R

n,

f(x) − f(y) � 〈∇f(y), η(x, y)〉,
where ∇f(y) = (∂f(y)/∂y1, ∂f(y)/∂y2, · · · , ∂f(y)/∂yn) is the gradient of f at y, and 〈a, b〉
denotes the inner product of the vectors a and b; f is said to be η-invex on R

n if the above
inequality holds for all x, y ∈ R

n.
From this definition it is clear that every real-valued differentiable convex function is invex

with η(x, y) = x − y. This generalization of the concept of convexity was originally proposed
by Hanson[14] who showed that for a nonlinear programming problem of the form

Minimize f(x) subject to gi(x) � 0, i ∈ m, x ∈ R
n,

where the differentiable functions f, gi : R
n → R, i ∈ m, are invex with respect to the same

function η : R
n × R

n → R
n, the Karush-Kuhn-Tucker necessary optimality conditions are
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also sufficient. The term invex (for invariant convex ) was coined by Craven[3] to signify the
fact that the invexity property, unlike convexity, remains invariant under bijective coordinate
transformations.

In a similar manner, one can readily define η-pseudoinvex and η-quasiinvex functions as
generalizations of differentiable pseudoconvex and quasiconvex functions.

The notion of invexity has been generalized in several directions. For our present purposes,
we shall need a simple extension of invexity, namely, ρ-invexity which was originally defined in
[20].

Let h be a differentiable real-valued function defined on R
n.

Definition 2.2. The function h is said to be (strictly) (η, ρ)-invex at x∗ if there exists a
function η : R

n × R
n → R

n and ρ ∈ R such that for each x ∈ R
n (x 	= x∗),

h(x) − h(x∗)(>) � 〈∇h(x∗), η(x, x∗)〉 + ρ‖x − x∗‖2.

Definition 2.3. The function h is said to be (strictly) (η, ρ)-pseudoinvex at x∗ ∈ R
n if there

exists a function η : R
n × R

n → R
n and ρ ∈ R such that for each x ∈ R

n (x 	= x∗),

〈∇h(x∗), η(x, x∗)〉 � −ρ‖x − x∗‖2 =⇒ h(x)(>) � h(x∗).

Definition 2.4. The function h is said to be (prestrictly) (η, ρ)-quasiinvex at x∗ ∈ R
n if

there exists a function η : R
n × R

n → R
n and ρ ∈ R such that for each x ∈ R

n,

h(x)(<) � h(x∗) =⇒ 〈∇h(x∗), η(x, x∗)〉 � −ρ‖x − x∗‖2.
From the above definitions it is clear that if h is (η, ρ)-invex at x∗, then it is both (η, ρ)-

pseudoinvex and (η, ρ)-quasiinvex at x∗, if h is (η, ρ)-quasiinvex at x∗, then it is prestrictly
(η, ρ)-quasiinvex at x∗, and if h is strictly (η, ρ)-pseudoinvex at x∗, then it is (η, ρ)-quasiinvex
at x∗.

Let the function F = (F1, F2, · · · , FN ) : R
n → R

N be differentiable at x∗. The following
generalizations of the notions of invexity, pseudoinvexity, and quasiinvexity for vector-valued
functions were originally proposed in [21].

Definition 2.5. The function F is said to be (strictly) (α, η, ρ)-V-invex at x∗ if there exist
functions η : R

n × R
n → R

n and αi : R
n × R

n → R+\{0} ≡ (0,∞), and ρi ∈ R, i ∈ N , such
that for each x ∈ R

n (x 	= x∗) and i ∈ N ,

Fi(x) − Fi(x∗) (>) � 〈αi(x, x∗)∇Fi(x∗), η(x, x∗)〉 + ρi‖x − x∗‖2.

Definition 2.6. The function F is said to be (strictly) (β, η, ρ̃)-V-pseudoinvex at x∗ if there
exist functions η : R

n ×R
n → R

n and βi : R
n ×R

n → R+\{0}, i ∈ N , and ρ̃ ∈ R such that for
each x ∈ R

n (x 	= x∗),

〈 N∑

i=1

∇Fi(x∗), η(x, x∗)
〉

� −ρ̃‖x − x∗‖2

=⇒
N∑

i=1

βi(x, x∗)Fi(x)(>) �
N∑

i=1

βi(x, x∗)Fi(x∗).

Definition 2.7. The function F is said to be (prestrictly) (γ, η, ρ̂)-V-quasiinvex at x∗ if
there exist functions η : R

n × R
n → R

n and γi : R
n × R

n → R+\{0}, i ∈ N , and ρ̂ ∈ R such
that for each x ∈ R

n,
N∑

i=1

γi(x, x∗)Fi(x)(<) �
N∑

i=1

γi(x, x∗)Fi(x∗)

=⇒
〈 N∑

i=1

∇Fi(x∗), η(x, x∗)
〉

� −ρ̂‖x − x∗‖2.
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In contrast to the case of (η, ρ)-invex, (η, ρ)-pseudoinvex, and (η, ρ)-quasiinvex functions,
the relationships among the three classes of functions specified in Definitions (2.5–2.7) are not
immediately obvious. However, the underlying relationships can be determined by appropriate
choices of the functions αi, βi, and γi, i ∈ N , and the real numbers ρi, i ∈ N, ρ̃, and ρ̂.
Indeed, it is easily seen that an (α, η, ρ)-V-invex function is both (β, η, ρ̃)-V-pseudoinvex and

(γ, η, ρ̂)-V-quasiinvex if we choose γi = βi = 1/αi, i ∈ N , and ρ̂ = ρ̃ =
N∑

i=1

ρi/αi.

In the proofs of the sufficiency theorems, sometimes it may be more convenient to use certain
alternative but equivalent forms of the above definitions. These are obtained by considering
the contrapositive statements. For example, (β, η, ρ̃)-V-pseudoinvexity can be defined in the
following equivalent way:

The function F is said to be (β, η, ρ̃)-V-pseudoinvex at x∗ if there exist functions η : R
n ×

R
n → R

n and βi : R
n × R

n → R+\{0}, i ∈ N , and ρ̃ ∈ R such that for each x ∈ R
n,

N∑

i=1

βi(x, x∗)Fi(x) <

N∑

i=1

βi(x, x∗)Fi(x∗) =⇒
〈 N∑

i=1

∇Fi(x∗), η(x, x∗)
〉

< −ρ̃‖x − x∗‖2.

The concept of ρ-invexity has been extended in many ways, and various types of general-
ized ρ-invex functions have been utilized for establishing a wide range of sufficient optimality
criteria and duality relations for several classes of nonlinear programming problems. For more
information about invex functions, the reader may consult [1, 3, 7, 8, 15, 24, 26, 28, 31], and
for recent surveys of these and related functions, the reader is referred to [22, 29].

In the sequel, we shall also need a consistent notation for vector inequalities. For a, b ∈ R
m,

the following order notation will be used: a � b if and only if ai � bi for all i ∈ m; a � b if and
only if ai � bi for all i ∈ m, but a 	= b; a > b if and only if ai > bi for all i ∈ m; and a � b is
the negation of a � b.

Consider the multiobjective problem

(P∗) Minimize
x∈F

F (x) = (F1(x), · · · , Fp(x)),

where Fi, i ∈ p, are real-valued functions defined on R
n.

An element x◦ ∈ F is said to be an efficient (Pareto optimal, nondominated, noninferior)
solution of (P ∗) if there exists no x ∈ F such that F (x) � F (x◦). In the area of multiobjective
programming, there exist several versions of the notion of efficiency most of which are discussed
in [25, 32, 39, 41]. However, throughout this paper, we shall deal exclusively with the efficient
solutions of (P) in the sense defined above.

For the purpose of comparison with the sufficient efficiency conditions that will be proposed
and discussed in this paper, we next recall a set of necessary efficiency conditions established
for (P) in [49].

Theorem 2.1[49]. Let x∗ ∈ F, let λ∗ = ϕ(x∗), for each i ∈ p, let fi and gi be continuously
differentiable at x∗, for each j ∈ q, let the function Gj(·, t) be continuously differentiable at x∗

for all t ∈ Tj, and for each k ∈ r, let the function Hk(·, s) be continuously differentiable at
x∗ for all s ∈ Sk. If x∗ is an efficient solution of (P), if the generalized Guignard constraint
qualification holds at x∗, and if for each i0 ∈ p, the set cone

({∇Gj(x∗, t) : t ∈ T̂j(x∗), j ∈
q} ∪ {∇fi(x∗) − λ∗

i∇gi(x∗) : i ∈ p, i 	= i0}
)

+ span
({∇Hk(x∗, s) : s ∈ Sk, k ∈ r}) is closed,

then there exist u∗ ∈ U and integers ν∗
0 and ν∗, with 0 � ν∗

0 � ν∗ � n + 1, such that there
exist ν∗

0 indices jm, with 1 � jm � q, together with ν∗
0 points tm ∈ T̂jm(x∗), m ∈ ν∗

0 , ν∗ − ν∗
0

indices km, with 1 � km � r, together with ν∗ − ν∗
0 points sm ∈ Skm for m ∈ ν∗\ν∗

0 , and ν∗
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real numbers v∗m, with v∗m > 0 for m ∈ ν∗
0 , with the property that

p∑

i=1

u∗
i [∇fi(x∗) − λ∗

i ∇gi(x∗)] +
ν∗
0∑

m=1

v∗m∇Gjm(x∗, tm) +
ν∗
∑

m=ν∗
0+1

v∗m∇Hkm(x∗, sm) = 0,

where cone (V ) is the conic hull of the set V ⊂ R
n (i.e., the smallest convex cone containing

V ), span(V ) is the linear hull of V (i.e., the smallest subspace containing V ), T̂j(x∗) =
{
t ∈

Tj : Gj(x∗, t) = 0
}
, and U =

{
u ∈ R

p : u > 0,
p∑

i=1

ui = 1
}
.

3 Sufficient Efficiency Conditions

In this section, we present several sets of sufficiency results in which various generalized (α, η, ρ)-
V-invexity assumptions are imposed on certain vector functions whose components are the
individual as well as some combinations of the problem functions.

Theorem 3.1. Let x∗ ∈ F, let λ∗ = ϕ(x∗) � 0, let the functions fi, gi, i ∈ p, Gj(·, t), and
Hk(·, s) be differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there
exist u∗ ∈ U and integers ν0 and ν, with 0 � ν0 � ν � n + 1, such that there exist ν0 indices
jm, with 1 � jm � q, together with ν0 points tm ∈ T̂jm(x∗), m ∈ ν0, ν − ν0 indices km, with
1 � km � r, together with ν − ν0 points sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m, with
v∗m > 0 for m ∈ ν0, with the property that

p∑

i=1

u∗
i

[∇fi(x∗) − λ∗
i ∇gi(x∗)

]
+

ν0∑

m=1

v∗m∇Gjm (x∗, tm) +
ν∑

m=ν0+1

v∗m∇Hkm(x∗, sm) = 0. (1)

Assume, furthermore, that either one of the following two sets of conditions holds:

(a) (i) (f1, · · · , fp) is (θ, η, ρ)-V-invex at x∗;

(ii) (−g1, · · · ,−gp) is (ξ, η, ρ̃)-V-invex at x∗;

(iii)
(
v∗1Gj1(·, t1), · · · , v∗ν0

Gjν0
(·, tν0)

)
is (π, η, ρ̂)-V-invex at x∗;

(iv)
(
v∗ν0+1Hkν0+1(·, sν0+1), . . . , v∗νHkν (·, sν)

)
is (δ, η, ρ̆)-V-invex at x∗;

(v) θi = ξj = πk = δl = σ for all i, j ∈ p, k ∈ ν0, and l ∈ ν\ν0;

(vi)
p∑

i=1

u∗
i (ρi + λ∗

i ρ̃i) +
ν0∑

m=1
ρ̂m +

ν∑

m=ν0+1
ρ̆m � 0;

(b) the function
(
L1(·, u∗, v∗, λ∗, t, s), · · · , Lp(·, u∗, v∗, λ∗, t, s)

)
is (θ, η, 0) -V-pseudoinvex at

x∗, where

Li(z, u∗, v∗, λ∗, t, s) =u∗
i

[
fi(z) − λ∗

i gi(z) +
ν0∑

m=1

v∗mGjm(z, tm)

+
ν∑

m=ν0+1

v∗mHkm(z, sm)
]
, i ∈ p.
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Then x∗ is an efficient solution of (P).

Proof. Let x be an arbitrary feasible solution of (P).
(a) Keeping in mind that u∗ > 0 and λ∗ � 0, we have

p∑

i=1

u∗
i [fi(x) − λ∗

i gi(x)]

=
p∑

i=1

u∗
i {fi(x) − fi(x∗) − λ∗

i [gi(x) − gi(x∗)]} (since λ∗ = ϕ(x∗))

�
p∑

i=1

u∗
i

[
σ(x, x∗)〈∇fi(x∗) − λ∗

i∇gi(x∗), η(x, x∗)〉

+ (ρi + λ∗
i ρ̃i)‖x − x∗‖2

]
(by (i), (ii), and (v))

= − σ(x, x∗)
〈 ν0∑

m=1

v∗m∇Gjm(x∗, tm) +
ν∑

m=ν0+1

v∗m∇Hkm(x∗, sm), η(x, x∗)
〉

+
p∑

i=1

u∗
i (ρi + λ∗

i ρ̃i)‖x − x∗‖2 (by (1))

�
ν0∑

m=1

v∗m[Gjm(x∗, tm) − Gjm(x, tm)] +
ν∑

m=ν0+1

v∗mHkm(x∗, sm)

+
[ p∑

i=1

ui(ρi + λ∗ρ̃i) +
ν0∑

m=1

ρ̂m +
ν∑

m=ν0+1

ρ̆m

]
‖x − x∗‖2

(by (iii), (iv), (v), and the primal feasibility of x)
�0, (2)

where the last inequality follows from (vi), the primal feasibility of x∗, and the fact that
tm ∈ T̂jm(x∗), m ∈ ν0.

Since u∗ > 0, the above inequality implies that
(
f1(x) − λ∗

1g1(x), · · · , fp(x) − λ∗
pgp(x)

)
� (0, · · · , 0),

which in turn implies that

ϕ(x) =
(f1(x)

g1(x)
, · · · , fp(x)

gp(x)

)
� (λ∗

1, · · · , λ∗
p) = ϕ(x∗).

Since x ∈ F was arbitrary, we conclude from this inequality that x∗ is an efficient solution of
(P).

(b) By our (θ, η, 0)-V-pseudoinvexity assumption, (1) implies that
p∑

i=1

θi(x, x∗)
{

u∗
i [fi(x) − λ∗

i gi(x)] +
ν0∑

m=1

v∗mGjm(x, tm) +
ν∑

m=ν0+1

v∗mHkm(x, sm)
}

�
p∑

i=1

θi(x, x∗)
{

u∗
i [fi(x∗) − λ∗

i gi(x∗)] +
ν0∑

m=1

v∗mGjm(x∗, tm) +
ν∑

m=ν0+1

v∗mHkm(x∗, sm)
}
.

Because x∗ ∈ F and tm ∈ T̂jm(x∗), m ∈ ν0, the right-hand side of this inequality is equal to
zero, and so we have that

p∑

i=1

θi(x, x∗)
{

u∗
i [fi(x) − λ∗

i gi(x)] +
ν0∑

m=1

v∗mGjm(x, tm) +
ν∑

m=ν0+1

v∗mHkm(x, sm)
}

� 0.
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But x ∈ F and v∗m > 0 for each m ∈ ν0, and hence the above inequality reduces to

p∑

i=1

u∗
i θi(x, x∗)

[
fi(x) − λ∗

i gi(x)
]

� 0. (3)

Since u∗ > 0 and θ(x, x∗) > 0, the above inequality implies that
(
f1(x) − λ∗

1g1(x), · · · , fp(x) − λ∗
pgp(x)

)
� (0, · · · , 0),

which in turn implies that

ϕ(x) =
(f1(x)

g1(x)
, · · · , fp(x)

gp(x)

)
� (λ∗

1, · · · , λ∗
p) = ϕ(x∗).

Since x ∈ F was arbitrary, we conclude from this inequality that x∗ is an efficient solution of
(P).

In Theorem 3.1, separate (α, η, ρ)-V-invexity assumptions were imposed on the vector func-
tions (f1, · · · , fp) and (−g1, . . . ,−gp). In the remainder of this section, we shall formulate some
sufficient efficiency conditions in which various generalized (α, η, ρ)-V-invexity requirements will
be placed on the vector function (E1(·, λ, u), . . . , Ep(·, λ, u)), where for each i ∈ p, the component
function Ei(·, λ, u) is defined, for fixed λ and u, on R

n by

Ei(z, λ, u) = ui

[
fi(z) − λigi(z)

]
.

Theorem 3.2. Let x∗ ∈ F, let λ∗ = ϕ(x∗), let the functions fi, gi, i ∈ p, Gj(·, t), and Hk(·, s)
be differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there exist
u∗ ∈ U and integers ν0 and ν, with 0 � ν0 � ν � n+1, such that there exist ν0 indices jm, with
1 � jm � q, together with ν0 points tm ∈ T̂jm(x∗), m ∈ ν0, ν−ν0 indices km, with 1 � km � r,
together with ν − ν0 points sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m, with v∗m > 0 for
m ∈ ν0, such that (1) holds. Assume, furthermore, that any one of the following four sets of
hypotheses is satisfied:

(a) (i)
(E1(·, λ∗, u∗), · · · , Ep(·, λ∗, u∗)

)
is (θ, η, ρ)-V-pseudoinvex at x∗;

(ii)
(
v∗1Gj1(·, t1), · · · , v∗ν0

Gjν0
(·, tν0)

)
is (π, η, ρ̃)-V-quasiinvex at x∗;

(iii)
(
v∗ν0+1Hkν0+1(·, sν0+1), · · · , v∗νHkν (·, sν)

)
is (δ, η, ρ̂)-V-quasiinvex at x∗;

(iv) ρ + ρ̃ + ρ̂ � 0;

(b) (i)
(E1(·, λ∗, u∗), · · · , Ep(·, λ∗, u∗)

)
is prestrictly (θ, η, ρ)-V-quasiinvex at x∗;

(ii)
(
v∗1Gj1(·, t1), · · · , v∗ν0

Gjν0
(·, tν0)

)
is (π, η, ρ̃)-V-quasiinvex at x∗;

(iii)
(
v∗ν0+1Hkν0+1(·, sν0+1), · · · , v∗νHkν (·, sν)

)
is (δ, η, ρ̂)-V-quasiinvex at x∗;

(iv) ρ + ρ̃ + ρ̂ > 0;

(c) (i)
(E1(·, λ∗, u∗), · · · , Ep(·, λ∗, u∗)

)
is prestrictly (θ, η, ρ)-V-quasiinvex at x∗;

(ii)
(
v∗1Gj1(·, t1), · · · , v∗ν0

Gjν0
(·, tν0)

)
is strictly (π, η, ρ̃)-V-pseudoinvex at x∗;

(iii)
(
v∗ν0+1Hkν0+1(·, sν0+1), · · · , v∗νHkν (·, sν)

)
is (δ, η, ρ̂)-V-quasiinvex at x∗;

(iv) ρ + ρ̃ + ρ̂ � 0;
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(d) (i)
(E1(·, λ∗, u∗), · · · , Ep(·, λ∗, u∗)

)
is prestrictly (θ, η, ρ)-V-quasiinvex at x∗;

(ii)
(
v∗1Gj1(·, t1), · · · , v∗ν0

Gjν0
(·, tν0)

)
is (π, η, ρ̂)-V-quasiinvex at x∗;

(iii)
(
v∗ν0+1Hkν0+1(·, sν0+1), · · · , v∗νHkν (·, sν)

)
is strictly (δ, η, ρ̂)-V-pseudoinvex at x∗;

(iv) ρ + ρ̃ + ρ̂ � 0.

Then x∗ is an efficient solution of (P).

Proof. (a) Let x be an arbitrary feasible solution of (P). Since x ∈ F and tm ∈ T̂jm(x∗), m ∈
ν0, we have Gjm(x, tm) � 0 = Gjm(x∗, tm), and hence

ν0∑

m=1

v∗mπm(x, x∗)Gjm (x, tm) �
ν0∑

m=1

v∗mπm(x, x∗)Gjm(x∗, tm),

which in view of (ii) implies that

〈 ν0∑

m=1

v∗m∇Gjm(x∗, tm), η(x, x∗)
〉

� −ρ̃‖x − x∗‖2. (4)

Similarly, we can show that our assumptions in (iii) combined with the feasibility of x and x∗

lead to the following inequality:
〈 ν∑

m=ν0+1

v∗m∇Hkm(x∗, sm), η(x, x∗)
〉

� −ρ̂‖x − x∗‖2. (5)

Now because of (4), (5) and (iv), (1) reduces to

〈 p∑

i=1

u∗
i [∇fi(x∗) − λ∗

i ∇gi(x∗)], η(x, x∗)
〉

� −ρ‖x − x∗‖2,

which in view of (i) implies that
p∑

i=1

u∗
i θi(x, x∗)[fi(x) − λ∗

i gi(x)] �
p∑

i=1

u∗
i θi(x, x∗)[fi(x∗) − λ∗

i gi(x∗)] = 0,

where the equality follows from the fact that λ∗ = ϕ(x∗). In the proof of part (b) of Theorem
3.1, it was shown that this inequality leads to the desired conclusion that x∗ is an efficient
solution of (P).

(b)–(d) The proofs are similar to that of part (a).
In the remainder of this section, we briefly discuss certain modifications of Theorems 3.1

and 3.2 obtained by replacing (1) with an inequality.

Theorem 3.3. Let x∗ ∈ F, let λ∗ = ϕ(x∗) � 0, let the functions fi, gi, i ∈ p, Gj(·, t), and
Hk(·, s) be differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there
exist u∗ ∈ U and integers ν0 and ν, with 0 � ν0 � ν � n + 1, such that there exist ν0 indices
jm, with 1 � jm � q, together with ν0 points tm ∈ T̂jm(x∗), m ∈ ν0, ν − ν0 indices km, with
1 � km � r, together with ν − ν0 points sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m, with
v∗m > 0 for m ∈ ν0, such that the following inequality holds:

〈 p∑

i=1

u∗
i

[∇fi(x∗) − λ∗
i ∇gi(x∗)

]
+

ν0∑

m=1

v∗m∇Gjm(x∗, tm)

+
ν∑

m=ν0+1

v∗m∇Hkm(x∗, sm), η(x, x∗)
〉

� 0 for all x ∈ F, (6)
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where η : R
n × R

n → R
n is a given function. Furthermore, assume that either one of the two

sets of conditions specified in Theorem 3.1 is satisfied. Then x∗ is an efficient solution of (P).
Although the proofs of Theorems 3.1 and 3.3 are essentially the same, their contents are

somewhat different. This can easily be seen by comparing (1) with (6). We observe that any
solution of (1) is also a solution of (6), but the converse is not necessarily true. Moreover, (1)
is a system of n equations, whereas (6) is a single inequality. Evidently, from a computational
point of view, (1) is preferable to (6) because of the dependence of the latter on the feasible set
of (P).

The modified version of Theorem 3.2 can be stated in a similar manner.

4 Generalized Sufficiency Criteria

In this section, we discuss several families of sufficient efficiency results under various general-
ized (α, η, ρ)-V-invexity hypotheses imposed on certain vector functions whose components are
formed by considering different combinations of the problem functions. This is accomplished
by employing a certain type of partitioning scheme which was originally proposed in [27] for the
purpose of constructing generalized dual problems for nonlinear programming problems. For
this we need some additional notation.

Let ν0 and ν be integers, with 1 � ν0 � ν � n + 1, and let {J0, J1, · · · , JM} and
{K0, K1, · · · , KM} be partitions of the sets ν0 and ν\ν0, respectively; thus, Ji ⊆ ν0 for each

i ∈ M ∪ {0}, Ji ∩ Jj = ∅ for each i, j ∈ M ∪ {0} with i 	= j, and
M⋃

i=0

Ji = ν0. Obviously,

similar properties hold for {K0, K1, · · · , KM}. Moreover, if m1 and m2 are the numbers of the
partitioning sets of ν0 and ν\ν0, respectively, then M = max{m1, m2} and Ji = ∅ or Ki = ∅
for i > min{m1, m2}.

In addition, we use the real-valued functions Φi(·, λ, u, v, t, s), i ∈ p, and Λτ (·, v, t, s), τ ∈
M, defined, for fixed u, v, λ, t ≡ (t1, t2, · · · , tν0), and s ≡ (sν0+1, sν0+2, · · · , sν), on R

n as follows:

Φi(z, u, v, λ, t, s) =ui

[
fi(z) − λigi(z) +

∑

m∈J0

vmGjm(z, tm)

+
∑

m∈K0

vmHkm(z, sm)
]
, i ∈ p,

Λτ (z, v, t, s) =
∑

m∈Jτ

vmGjm(z, tm) +
∑

m∈Kτ

vmHkm(z, sm), τ ∈ M.

Making use of the sets and functions defined above, we can now formulate our first collection
of generalized sufficiency results for (P) as follows.

Theorem 4.1. Let x∗ ∈ F, let λ∗ = ϕ(x∗), let the functions fi, gi, i ∈ p, Gj(·, t), and
Hk(·, s) be differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there
exist u∗ ∈ U and integers ν0 and ν, with 0 � ν0 � ν � n + 1, such that there exist ν0 indices
jm, with 1 � jm � q, together with ν0 points tm ∈ T̂jm(x∗), m ∈ ν0, ν − ν0 indices km, with
1 � km � r, together with ν − ν0 points sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m, with
v∗m > 0 for m ∈ ν0, such that (1) holds. Assume, furthermore, that any one of the following
three sets of hypotheses is satisfied:

(a) (i)
(
Φ1(·, u∗, v∗, λ∗, t, s), · · · , Φp(·, u∗, v∗, λ∗, t, s)

)
is (θ, η, ρ)-V-pseudoinvex at x∗;

(ii)
(
Λ1(·, v∗, t, s), · · · , ΛM (·, v∗, t, s)) is (π, η, ρ̃)-V-quasiinvex at x∗;

(iii) ρ + ρ̃ � 0;
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(b) (i)
(
Φ1(·, u∗, v∗, λ∗, t, s), · · · , Φp(·, u∗, v∗, λ∗, t, s)

)
is prestrictly (θ, η, ρ)-V-quasiinvex at

x∗;

(ii)
(
Λ1(·, v∗, t, s), · · · , ΛM (·, v∗, t, s)) is (π, η, ρ̃)-V-quasiinvex at x∗;

(iii) ρ + ρ̃ > 0;

(c) (i)
(
Φ1(·, u∗, v∗, λ∗, t, s), · · · , Φp(·, u∗, v∗, λ∗, t, s)

)
is prestrictly (θ, η, ρ)-V-quasiinvex at

x∗;

(ii)
(
Λ1(·, v∗, t, s), · · · , ΛM (·, v∗, t, s)) is strictly (π, η, ρ̃)-V-pseudoinvex at x∗;

(iii) ρ + ρ̃ � 0.

Then x∗ is an efficient solution of (P).

Proof. Let x be an arbitrary feasible solution of (P).
(a) It is clear that (1) can be expressed as follows:

p∑

i=1

u∗
i

[
∇fi(x∗) − λ∗

i∇gi(x∗) +
∑

m∈J0

v∗m∇Gjm (x∗, tm) +
∑

m∈K0

v∗m∇Hkm(x∗, sm)
]

+
M∑

τ=1

[ ∑

m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
]

= 0. (7)

Since x, x∗ ∈ F, v∗m > 0, and tm ∈ T̂jm(x∗), m ∈ ν0, it follows that for each τ ∈ M ,

Λτ (x, v∗, t, s) =
∑

m∈Jτ

v∗mGjm(x, tm) +
∑

m∈Kτ

v∗mHkm(x, sm) � 0

=
∑

m∈Jτ

v∗mGjm(x∗, tm) +
∑

m∈Kτ

v∗mHkm(x∗, sm)

=Λτ (x∗, v∗, t, s),

and hence
M∑

τ=1

πτ (x, x∗)Λτ (x, v∗, t, s) �
M∑

τ=1

πτ (x, x∗)Λτ (x∗, v∗, t, s),

which because of (ii) implies that

〈 M∑

τ=1

[ ∑

m∈Jτ

v∗m∇Gjm (x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
]
, η(x, x∗)

〉
� −ρ̃‖x − x∗‖2. (8)

Combining (7) and (8), and using (iii) we get

〈 p∑

i=1

u∗
i

[
∇fi(x∗) − λ∗

i∇gi(x∗) +
∑

m∈J0

v∗m∇Gjm (x∗, tm)

+
∑

m∈K0

v∗m∇Hkm(x∗, sm), η(x, x∗)
]〉

� ρ̃‖x − x∗‖2 � −ρ‖x − x∗‖2, (9)

which by virtue of (i) implies that

p∑

i=1

θi(x, x∗)Φi(x, u∗, v∗, λ∗, t, s) �
p∑

i=1

θi(x, x∗)Φi(x∗, u∗, v∗, λ∗, t, s) = 0, (10)
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where the equality follows from the feasibility of x∗, the fact that tm ∈ T̂jm(x∗), m ∈ ν0, and
λ∗ = ϕ(x∗). Because x ∈ F and v∗m > 0, m ∈ ν0, this inequality reduces to

p∑

i=1

u∗
i θi(x, x∗)[fi(x) − λ∗

i gi(x)] � 0.

Now using this inequality, as in the proof of Theorem 3.1, we obtain ϕ(x) � ϕ(x∗). Since x was
arbitrary, we conclude that x∗ is an efficient solution of (P).

(b) Proceeding in exactly the same manner as in the proof of part (a), we obtain (9) in
which the second inequality is strict. By (i), this implies that (10) holds and, therefore, the
rest of the proof is identical to that of part (a).

(c) The proof is similar to those of parts (a) and (b).
Each one of the six sets of conditions given in Theorem 4.1 and its modified version obtained

by replacing (1) with (6) can be viewed as a family of sufficient efficiency conditions whose
members can easily be identified by appropriate choices of the partitioning sets Jμ and Kμ, μ ∈
M ∪ {0}.

In the remainder of this section we present another collection of sufficiency results which are
somewhat different from those stated in Theorem 4.1. These results are formulated by utilizing
a partition of p in addition to those of ν0 and ν\ν0, and by placing appropriate generalized
(α, η, ρ)-V-invexity requirements on certain vector functions involving Ei(·, λ, u), i ∈ p, Gj , j ∈
q and Hk, k ∈ r.

Let {I0, I1, · · · , Id}, {J0, J1, · · · , Je} and {K0, K1, · · · , Ke} be partitions of p, ν0 and ν\ν0,
respectively, such that D = {0, 1, 2, · · · , d} ⊂ E = {0, 1, · · · , e}, and let the function Πτ (·, u, v, λ,
t, s) : R

n → R be defined, for fixed u, v, λ, t, and s, by

Πτ (z, u, v, λ, t, s) =
∑

i∈Iτ

ui[fi(z) − λigi(z)]

+
∑

m∈Jτ

vmGjm(z, tm) +
∑

m∈Kτ

vmHkm(z, sm), τ ∈ D.

Theorem 4.2. Let x∗ ∈ F, let λ∗ = ϕ(x∗), let the functions fi, gi, i ∈ p, Gj(·, t) and
Hk(·, s) be differentiable at x∗ for all t ∈ Tj and s ∈ Sk, j ∈ q, k ∈ r, and assume that there
exist u∗ ∈ U , and integers ν0 and ν, with 0 � ν0 � ν � n + 1, such that there exist ν0 indices
jm, with 1 � jm � q, together with ν0 points tm ∈ T̂jm(x∗), m ∈ ν0, ν − ν0 indices km, with
1 � km � r, together with ν − ν0 points sm ∈ Skm , m ∈ ν\ν0, and ν real numbers v∗m, with
v∗m > 0 for m ∈ ν0, such that (1) holds. Assume, furthermore, that any one of the following
three sets of hypotheses is satisfied:

(a) (i)
(
Π0(·, u∗, v∗, λ∗, t, s), · · · , Πd(·, u∗, v∗, λ∗, t, s)

)
is (θ, η, ρ)-V-pseudoinvex at x∗;

(ii)
(
Λd+1(·, v∗, t, s), · · · , Λe(·, v∗, t, s)

)
is (π, η, ρ̃)-V-quasiinvex at x∗;

(iii) ρ + ρ̃ � 0;

(b) (i)
(
Π0(·, u∗, v∗, λ∗, t, s), · · · , Πd(·, u∗, v∗, λ∗, t, s)

)
is prestrictly (θ, η, ρ)-V-quasiinvex at

x∗;

(ii)
(
Λd+1(·, v∗, t, s), · · · , Λe(·, v∗, t, s)

)
is strictly (π, η, ρ̃)-V-pseudoinvex at x∗;

(iii) ρ + ρ̃ � 0;

(c) (i)
(
Π0(·, u∗, v∗, λ∗, t, s), · · · , Πd(·, u∗, v∗, λ∗, t, s)

)
is prestrictly (θ, η, ρ)-V-quasiinvex at

x∗;
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(ii)
(
Λd+1(·, v∗, t, s), · · · , Λe(·, v∗, t, s)

)
is (π, η, ρ̃)-V-quasiinvex at x∗;

(iii) ρ + ρ̃ > 0.

Then x∗ is an efficient solution of (P).

Proof. (a) Suppose to the contrary that x∗ is not an efficient solution of (P). Then there is
x ∈ F such that ϕ(x) � ϕ(x∗), and so it follows that

fi(x) − λ∗
i gi(x) � 0, i ∈ p,

with strict inequality holding for at least one index i ∈ p. Since u∗ > 0, we see that for each
τ ∈ D, ∑

i∈Iτ

u∗
i [fi(x) − λ∗

i gi(x)] � 0, (11)

with strict inequality holding for at least one index τ ∈ D.
Now using this inequality, we see that

Πτ (x, u∗, v∗, λ∗, t, s)

=
∑

i∈Iτ

u∗
i [fi(x) − λ∗

i gi(x)] +
∑

m∈Jτ

v∗mGjm(x, tm) +
∑

m∈Kτ

v∗mHkm(x, sm)

�
∑

i∈Iτ

u∗
i [fi(x) − λ∗

i gi(x)] (by the feasibility of x and positivity of v∗m, m ∈ ν0)

�0 (by (11))

=
∑

i∈Iτ

u∗
i [fi(x∗) − λ∗

i gi(x∗)] +
∑

m∈Jτ

v∗mGjm(x∗, tm) +
∑

m∈Kτ

v∗mHkm(x∗, sm)

(since λ∗ = ϕ(x∗), x∗ ∈ F, and tm ∈ T̂jm(x∗), m ∈ ν0)
=Πτ (x∗, u∗, v∗, λ∗, t, s),

with strict inequality holding for at least one index τ ∈ D, and hence
∑

τ∈D

θτ (x, x∗)Πτ (x, u∗, v∗, λ∗, t, s) <
∑

τ∈D

θτ (x, x∗)Πτ (x∗, u∗, v∗, λ∗, t, s),

which in view of (i) implies that

〈 p∑

i=1

u∗
i [∇fi(x∗) − λi∇gi(x∗)] +

∑

τ∈D

[ ∑

m∈Jτ

v∗m∇Gjm(x∗, tm)

+
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
]
, η(x, x∗)

〉
< −ρ‖x − x∗‖2. (12)

As shown in the proof of Theorem 4.1, for each τ ∈ E\D, Λτ (x, v∗, t, s) � Λτ (x∗, v∗, t, s), and
hence ∑

τ∈E\D

πτ (x, x∗)Λτ (x, v∗, t, s) �
∑

τ∈E\D

πτ (x, x∗)Λτ (x∗, v∗, t, s),

which in view of (ii) implies that
〈 ∑

τ∈E\D

[ ∑

m∈Jτ

v∗m∇Gjm(x∗, tm) +
∑

m∈Kτ

v∗m∇Hkm(x∗, sm)
]
, η(x, x∗)

〉

� − ρ̃‖x − x∗‖2. (13)
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Now combining (12) and (13) and using (iii), we see that

〈 p∑

i=1

u∗
i [∇fi(x∗) − λ∗

i ∇gi(x∗)] +
ν0∑

m=1

v∗m∇Gjm(x∗, tm)

+
ν∑

m=ν0+1

v∗m∇Hkm(x∗, sm), η(x, x∗)
〉

< −(ρ + ρ̃)‖x − x∗‖2 � 0,

which contradicts (1). Therefore, x∗ is an efficient solution of (P).
(b) and (c) The proofs are similar to that of part (a). �

As we mentioned previously, one can readily identify numerous special cases of the six fam-
ilies of sufficiency results stated in Theorem 4.2 and its modified version obtained by replacing
(1) with (6).

5 Concluding Remarks

In this study we have established a number of sets of global sufficient efficiency conditions under
various generalized (α, η, ρ)-V-invexity hypotheses for a semiinfinite multiobjective fractional
programming problem. It appears that all these results are new in the area of semiinfinite pro-
gramming. Since all the results obtained here can be modified and restated in a straightforward
manner for each one of the seven problems designated as (P1)–(P7) in Section 1, they collec-
tively subsume a fairly large number of existing results in the areas of conventional nonlinear
programming and semiinfinite nonlinear programming. Furthermore, the style and techniques
employed in this paper can be utilized to establish similar results for some other classes of
related optimization problems. For example, it seems reasonable to expect that a similar ap-
proach can be applied to investigate the optimality and duality aspects of the following closely
related classes of semiinfinite minmax fractional programming problems:

Minimize
x∈F

max
1�i�p

fi(x)
gi(x)

,

Minimize
x∈F

max
y∈Y

f(x, y)
g(x, y)

.

We shall investigate these problems in subsequent papers.
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