
Acta Mathematicae Applicatae Sinica, English Series

Vol. 22, No. 3 (2006) 405–412

A Dynamic Programming Algorithm for the kkk-Haplotyping
Problem
Zhen-ping Li1,2,, Ling-yun Wu1, Yu-ying Zhao3, Xiang-sun Zhang1

1Institute of Applied Mathematics, Academy of Mathematics and Systems Science, CAS, Beijing 100080, China

(E-mail: wlyun@amt.ac.cn, zxs@amt.ac.cn)
2Mathematics Department of Beijing Wuzi University, Beijing, 101149, China. (E-mail: lizhenping@sina.com.cn)
3 Mathematics Department of Beijing Forest University, Beijing, China. (E-mail: zhyuying@amss.ac.cn)

Abstract The Minimum Fragments Removal (MFR) problem is one of the haplotyping problems: given a

set of fragments, remove the minimum number of fragments so that the resulting fragments can be partitioned

into k classes of non-conflicting subsets. In this paper, we formulate the k-MFR problem as an integer linear

programming problem, and develop a dynamic programming approach to solve the k-MFR problem for both

the gapless and gap cases.

Keywords Integer programming, dynamic programming, k-haplotyping, SNP

2000 MR Subject Classification 90C39, 90C90, 92C40

1 Introduction

With complete genome sequences now available for humans and many other important organ-
isms, it becomes a major challenge to locate genetic variants or polymorphism for prediction
of disease using genomic data[2]. Single nucleotide polymorphisms (SNP) are the most frequent
form of human genetic variants. A SNP is a single base pair position in genomic DNA where
different nucleotide variants exist in some populations. We call each variant an allele. In a
human body, SNPs are almost always biallelic, that is, there are two variants at each SNP site.

Diploid organisms, such as humans, possess two nearly identical copies of each chromosome[7],
while multiploid organisms possess multiple nearly identical copies of each chromosome. A hap-
lotype is a collection of SNPs on a single chromosome copy. A diploid individual SNPs can
be combined into two haplotypes, while a multiploid individual SNPs can be combined into
multiple haplotypes. In this paper, we will use number 1 and -1 to denote the two variants
that each SNP can take. A haplotype is then a string over the number {1,−1}. Since DNA
sequencing techniques such as Shotgun Sequencing[8] are restricted to small, overlapping frag-
ments, which may contain errors (e.g. due to low quality reads) and can come from any one
of the chromosome copies. The basic problem of k-haplotyping can be expressed as follows:
Given a set of fragments obtained by DNA sequencing from k (k ≥ 2) copies of a chromosome,
reconstruct k haplotypes from the SNPs value observed in the fragments.

One of the most important k-haplotyping problem is minimum fragment removal (MFR)
problem: Given a set of fragments, remove the minimum number of “bad” fragments so that

Manuscript received February 23, 2004. Revised February 14, 2006.
Supported by the National Natural Science Foundation of China (No. 60503004, No. 10471141).
The authors gratefully acknowledge the support of K.G.Wang Education Foundation of Hong Kong.

406 Z.P. Li, L.Y. Wu, Y.Y. Zhao, X.S. Zhang

the resulting fragments can be divided into k disjoint sets of pairwise compatible fragments, each
determining a haplotype. “Bad” fragments can be due to either contaminants (i.e. DNA
coming from a different organism than the actual target) or read errors (i.e. a false 1, a false
-1 inside a fragment). The problem was shown to be polynomial for gapless cases and NP-hard
in general. The 2-MFR problem was well studied by G. Lancia et al.[3] and R. Rizzi et al.[5].
In [5], a practical algorithm was given for gapless or gap cases.

In this paper, we will generalize some results of [5] to the case of k-MFR problem. The rest
of the paper is organized as follows. In next section, some basic terminologies and notations are
introduced. Then an integer programming formulation for k-MFR problem is stated in Section
3. For the gapless case, a dynamic programming algorithm with polynomial time complexity
is developed in Section 4 and the algorithm dealing with gaps is given in Section 5. The last
section is the conclusions and discussions.

2 Terminology and Notation

Let S = {1, 2, · · · , n} be the set of SNPs and F = {1, 2, · · · ,m} be the set of fragments. Each
SNP is covered by some of the fragments, and can take two values, 1 or −1. Given an ordering
of the SNPs, the data can be represented by an m×n matrix M over the number set {1,−1, 0},
which we call the SNP matrix. The number 0 is called a hole, which represents that a fragment
does not cover a SNP site.

For two fragments f and g, we say that they are conflict if there is a SNP s, such that
M [f, s] �= 0, M [g, s] �= 0 and M [f, s] �= M [g, s], where M [g, s] is the element of M at row g and
column s; otherwise, we say that they are agree. A SNP matrix M is called feasible if we can
partition the rows (fragments) into k classes of non-conflicting fragments.

Given a SNP matrix M , the fragment conflict graph is a graph GF (M) = (F , EF) with an
edge for each pair of conflicting fragments, see Fig 1 for exemple.

⎛
⎜⎜⎜⎝

1 −1 0 1 1 0
−1 1 0 0 −1 1
0 1 −1 1 −1 1
0 1 −1 0 −1 1
−1 0 1 −1 1 0

⎞
⎟⎟⎟⎠ .

� �

� �

�

�
�

�
�

�
�

�
�

��

�
�
�

�
�

�
�

�
�

�
�

�
�
�v2

v1

v4

v3

v5

2

3

1

2

2

2

3

Figure 1. A SNP matrix and its fragment conflict graph

Note that if M is feasible, GF (M) is k−colorable, since each haplotype defines an inde-
pendent set of GF (M), made of all the fragments coming from that haplotype. Conversely, if

A Dynamic Programming Algorithm for the k-Haplotyping Problem 407

GF (M) is k−colorable, with color set H1,H2, · · · ,Hk, all the fragments in Hi (1 ≤ i ≤ k) can
be merged into one haplotype. Hence, M is feasible if and only if GF (M) is k−colorable.

A gapless fragment is one covering a set of consecutive SNPs, that is, the 1s and (−1)s
appear consecutively with no 0s between them. A gap is a maximal run of consecutive holes
between two non-hole numbers. For example, 001-11-1-11000 is a gapless fragment, while there
are two gaps in 001-1000100-1100. A fragment has r gaps if it covers r+1 blocks of consecutive
SNPs. Such a fragment is equivalent to r + 1 gapless fragments with the constraint that they
must be put in the same haplotype or all discarded. The length of a gap is the number of
holes it contains (e.g. 001-1000100-1100 has a total gap length of 5 = 3 + 2). The body of
a fragment extends from the leftmost non-hole to the rightmost non-hole (e.g. the body of
001-1-10100-1100 is 1-1-10100-11). In [3] the 2-MFR problem has been shown to be NP-hard in
general, on the other hand, when all fragments are gapless, the 2-MFR problem can be solved
in polynomial time.

In this paper, we will investigate the k-MFR problem and give the following results:

1. The k-MFR problem can be modelled as an integer linear programming problem.

2. The k-MFR problem is polynomial solvable in the gapless cases.

3. There is an O(m2n+mk+1) polynomial time algorithm for the k-MFR problem on matrices
in which each fragment is gapless.

4. There is an O(22tm2n+2(k+1)tmk+1) polynomial time algorithm for the k-MFR problem
on matrices in which each fragment has total gap length at most t.

3 Integer Programming Model

Denote by rij the jth SNP of the ith fragment, i.e. M [i, j]. Let xil be a Boolean variable such
that xil = 1 if and only if fragment i belongs to haplotype l for 1 ≤ l ≤ k. Let ylj denote the
jth SNP value of the lth haplotype for 1 ≤ l ≤ k and 1 ≤ j ≤ n. Then the objective function
of the k-MFR problem can be formulated as follows.

max
m∑

i=1

k∑
l=1

xil. (1)

The constraint set is as follows:

xil(rij − ylj) = 0,

i = 1, 2, · · · ,m;
j = 1, 2, · · · , n;
l = 1, 2, · · · , k;
rij �= 0,

(2)

k∑
l=1

xil ≤ 1, i = 1, 2, · · · ,m, (3)

xil ∈ {0, 1}, i = 1, 2, · · · ,m; l = 1, 2, · · · k, (4)
ylj ∈ {−1, 1}, l = 1, 2, · · · , k; j = 1, 2, · · · , n. (5)

Constraint (2) says that if fragment i belongs to haplotype l, then they must agree. Constraint
(3) guarantees that any fragment belongs to at most one haplotype. Constraint (4) and (5) are
the integer constraints.

408 Z.P. Li, L.Y. Wu, Y.Y. Zhao, X.S. Zhang

The non-linear constraints (2) can be replaced by the following linear inequations:

−2 + xil ≤ (rij − ylj) ≤ 2 − xil,

i = 1, 2, · · · ,m;
j = 1, 2, · · · , n;
l = 1, 2, · · · , k,

rij �= 0.

(6)

Therefore, the k-MFR problem can be formulated as an integer linear programming with ob-
jective function (1) and constraint set (6), (3)–(5), thus solvable by a general integer linear
programming method such as linear programming based branch and bound algorithm.

4 The Gapless Case

In this section, we will show that in the gapless case, the k-MFR problem can be solved in
polynomial time, and a practical dynamic programming algorithm for the k-MFR problem is
given. Throughout this section, assume that the SNP matrices are gapless.

4.1 kkk-MFR Problem Is Polynomial Solvable

Assume that there are no identical fragments, i.e., if two fragments are identical, they are
denoted by one fragment. In this subsection, assume that there are no fragment inclusions or
equals, i.e., denote by l(i) and r(i) the first and last SNP of a fragment i, l(i) ≤ l(j) implies
r(i) ≤ r(j). We define a directed graph D = (F , A) as follows: Given two fragments i and j,
with l(i) ≤ l(j), there is an arc (i, j) ∈ A if i and j can be aligned without any mismatch, i.e.,
they agree in all their common SNPs (possibly none). Note that the common SNPs are a suffix
of fragment i and a prefix of fragment j.

Lemma 1[5]. Let M be a SNP matrix, P1, P2, · · · , Pk be node-disjoint directed paths in D

such that |V (P1)| + |V (P2)| + · · · + |V (Pk)| is maximum. Let R = F − k∪
i=1

V (Pi), then R is a

minimum set of fragments to remove such that M [F −R] is feasible.

Theorem 2. There is a polynomial time algorithm for finding P1, P2, · · · , Pk in D such that
k∑

i=1

|V (Pi)| is maximum.

Proof. We can transform the problem into a maximum cost flow problem, which can be solved
in polynomial time. We turn D into a network as follows. First, we introduce a dummy source
s, a dummy sink t, and an arc (t, s) of capacity k and cost 0. s is connected to each node i
with an arc (s, i) of cost 0, and each node i is connected to t, with cost 0 and capacity 1. Then
we replace each node i ∈ D with two nodes i′ and i′′ connected by an arc (i′, i′′) of cost 1 and
capacity 1. All original arcs (u, v) of D are then replaced by arcs of type (u′′, v′). A maximum
cost circulation can be computed in polynomial time, by for example, linear programming[6].
Since D is acyclic, the solution is one cycle, which uses the arc (t, s) and then splits into k s → t
directed paths, saturating as many arcs of type (i′, i′′) as possible of D. Since the capacity of
arcs (i′, i′′) is 1, the paths are node-disjoint.

4.2 An O(m2n + mk+1)O(m2n + mk+1)O(m2n + mk+1) Dynamic Programming Algorithm

In what follows, we assume that one fragment can contain another one. In this subsection, we
provide a dynamic programming approach for the solution of k-MFR. The resulting algorithm

A Dynamic Programming Algorithm for the k-Haplotyping Problem 409

can be coded as to take O(m2n + mk+1) time. For convenience, in the following of this paper,
we use kMFR(M) to denote the optimal value of k-MFR problem when the SNP matrix is M .

Propositions 3 and 4 can be easily obtained by the similarity results of [5].

Proposition 3. (S-reduction) Let M ′ be the matrix obtained from M by deleting columns
where no 1 or no -1 occur. Clearly, kMFR(M ′) ≤ kMFR(M). Let X be any set of rows whose
removal makes M ′ feasible, then M \ X is also feasible.

Proposition 4. (F-reduction) Let M ′ be the matrix obtained from M by deleting those rows
conflicting with at most k − 1 other rows. Clearly, kMFR(M ′) ≤ kMFR(M). Let X be any
set of rows whose removal makes M ′ feasible, then M \ X is also feasible.

We assume that the rows of M are ordered so that l(i) ≤ l(j) whenever i < j. For every
i ∈ {1, 2, · · · ,m}, let Mi be the matrix made up by the first i rows of M . For h1, h2, · · · , hk ≤ i
(with hj ≥ −k + 1) such that r(h1) ≤ r(h2) ≤ · · · ≤ r(hk), we define D[h1, h2, · · · , hk; i] as the
minimum number of rows to remove to make Mi feasible, under the condition that

• Row hk is not removed, and among the non-removed rows maximizes r(hk).

• Row hj (1 ≤ j ≤ k − 1) is not removed and goes into another haplotype other than those
of hj+1, · · · , hk, and among such rows maximizes r(hj).

(If all rows of Mi are removed, then h1 = −k + 1, h2 = −k + 2, · · · , hk = 0 and D[−k + 1,−k +
2, · · · , 0; i] := i, rows −k + 1,−k + 2, · · · , 0 are all 0, that is, empty.)

Once all the D[h1, h2, · · · , hk; i] are known, the solution to the k-MFR problem is given by

min
r(h1)≤r(h2)≤···≤r(hk)

D[h1, h2, · · · , hk;m]. (7)

Obviously, for every i, and for every h1, h2, · · · , hk < i with r(h1) ≤ r(h2) ≤ · · · ≤ r(hk),

D[h1, h2, · · · , hk; i] :=

⎧⎪⎨
⎪⎩

D[h1, h2, · · · , hk; i − 1], if r(i) ≤ r(hj) for 1 ≤ j ≤ k,

and rows i and hj agree,
D[h1, h2, · · · , hk; i − 1] + 1, otherwise.

(8)

Equation (8) can be proved by the following fact.

Lemma 5[5]. Consider rows a, b, c ∈ F . Assume a, b < c and r(a) ≤ r(b). If a agrees with b
and b agrees with c, then a agrees with c.

For every i, we define OK(i) as the set of those j with j < i such that rows i and j agree.
We assume 0,−1, · · · ,−k + 1, belong to OK(i) for every i.

Now, for every i and every h1, h2, · · · , hk−1 < i with r(h1) ≤ r(h2) ≤ · · · ≤ r(hk−1) ≤ r(i),

D[h1, h2, · · · , hk−1, i; i] :=

min
j∈OK(i)

j �=h1,h2,···,hk−1
r(j)≤r(i)

⎧⎪⎨
⎪⎩

D[j, h1, h2, · · · , hk−1; i − 1], if r(h1) ≥ r(j),
D[h1, h2, · · · , hk−1, j; i − 1], if r(hk) ≤ r(j),
D[h1, h2, · · · , hl, j, hl+1, · · · , hk−1; i − 1], if r(hl) ≤ r(j) ≤ r(hl+1). (9)

Secondly, for every i and for every h1, h2, · · · , hk−1 < i with r(i) ≤ r(h1) ≤ r(h2) ≤ · · · ≤
r(hk−1),

D[i, h1, h2, · · · , hk−1; i] := min
j∈OK(i)j �=h1,h2,···,hk−1r(j)≤r(i)

D[j, h1, h2, · · · , hk−1; i − 1]. (10)

410 Z.P. Li, L.Y. Wu, Y.Y. Zhao, X.S. Zhang

Finally, for every i, and for every h1, h2, · · · , hk−1 < i with r(h1) ≤ · · · ≤ r(hl) ≤ r(i) ≤
r(hl+1) ≤ · · · ≤ r(hk−1),

D[h1, h2, · · · , hl, i, hl+1, · · · , hk−1; i] :=

min
j∈OK(i)

j �=h1,h2,···,hk−1
r(j)≤r(i)

⎧⎪⎨
⎪⎩

D[h1, h2, · · · , hl, j, hl+1, · · · , hk−1; i − 1], if r(j) ≥ r(hl),
D[j, h1, h2, · · · , hk−1; i − 1], if r(j) ≤ r(h1),
D[h1, h2, · · · , hp, j, hp+1, · · · , hk−1; i − 1], if r(hp) ≤ r(j) ≤ r(hp+1). (11)

Note that for computing the entries D[h1, h2, · · · , hk; i], we only need to know the set OK(i).
The cost of creating the OK(i) data structure is O(m2n). The cost of computing the entries
D[h1, h2, · · · , hk; i] is O(mk+1), since it can be seen as the cost of computing O(mk+1) entries
D[h1, h2, · · · , hk; i] by using Equation (8) (costs O(1) each) plus the cost of computing the
O(mk) entries D[h1, · · · , hk−1, i; i], D[i, h1, · · · , hk−1; i] and D[h1, · · · , hl, i, hl+1, · · · , hk−1; i] by
using Equation (9)–(11) (costs O(m) each).

5 Dealing With the Gaps

In this section, we propose a practical approach to deal with the k-MFR problem with gaps,
when the number of holes in each fragment has an estimated upper bound. For the remainder
of this section, let t be a constant such that the body of each fragment in the input instance
contains at most t holes. We will derive a dynamic programming based polynomial algorithms.
The resulting algorithm can be coded as to take O(22tm2n + 2(k+1)tmk+1) time.

Let f be a fragment and let x ∈ {1,−1}t. We denote by f [x] the fragment obtained from
f by filling in the holes one by one, using the numbers in x. Since we assume that the body
of each fragment in our input instance contains at most t holes, the numbers in x will always
suffice to fill in all the holes of f .

Proposition 6. Let

F1 = {f1
1 , f2

1 , · · · , fm1
1 }, F2 = {f1

2 , f2
2 , · · · , fm2

2 }, · · · , Fk = {f1
k , f2

k , · · · , fmk

k }
be sets of fragments in M such that any two fragments in Fi (i = 1, 2, · · · , k) agree. Then for
every pi ≤ mi, (i = 1, 2, · · · , k), we can give xp1

1 , xp2
2 , · · · , xpk

k ∈ {1,−1}t such that

F ′
1 = {f1

1 , f2
1 , · · · , fp1

1 [xp1
1], · · · , fm1

1 },
F ′

2 = {f1
2 , f2

2 , · · · , fp2
2 [xp2

2], · · · , fm2
2 },

...
F ′

k = {f1
k , f2

k , · · · , fpk

k [xpk

k], · · · , fmk

k }
would still be all without conflicts.

Assume that the rows of M are ordered so that l(i) ≤ l(j) whenever i < j. For every
i ∈ {1, 2, · · · ,m}, let Mi be the matrix made up by the first i rows of M . For h1, h2, · · · , hk ≤ i
(with hj ≥ −k +1, for 1 ≤ j ≤ k) such that r(h1) ≤ r(h2) ≤ · · · ≤ r(hk), and for xi ∈ {1,−1}t,
we define D[h1, x

1;h2, x
2; · · · ;hk, xk; i] as the minimum number of rows to be removed to make

Mi[h1[x1], h2[x2], · · · , hk[xk]] feasible, under the condition that

• Row hk[xk] is not removed, and among the non-removed rows maximizes r(hk).

• Row hj [xj] (1 ≤ j ≤ k − 1) is not removed and goes into another haplotype other than
those of hj+1, · · · , hk, and among such rows maximizes r(hj).

A Dynamic Programming Algorithm for the k-Haplotyping Problem 411

(If all rows are removed, then h1 = −k + 1, h2 = −k + 2, · · · , hk = 0, and D[−k + 1, x1;−k +
2, x2; · · · ; 0, xk; i] := i for all xi ∈ {1,−1}t).

Once all the D[h1, x
1;h2, x

2; · · · ;hk, xk; i] are known, the solution to the problem is given
by

min
xi∈{1,−1}t,1≤i≤k

r(h1)≤r(h2)≤···≤r(hk)

D[h1, x
1;h2, x

2; · · · ;hk, xk;m]. (12)

Clearly, for every i, and for every h1, h2, · · · , hk < i with r(h1) ≤ r(h2) ≤ · · · ≤ r(hk),

D[h1, x
1;h2, x

2; · · · ;hk, xk; i] :=⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D[h1, x
1;h2, x

2; · · · ;hk, xk; i − 1], if r(i) ≤ r(hk)
and rows i and hk[xk] agree,

D[h1, x
1;h2, x

2; · · · ;hk, xk; i − 1], if r(i) ≤ r(hj) for (1 ≤ j ≤ k − 1)
and rows i and hj [xj] agree,

D[h1, x
1;h2, x

2; · · · ;hk, xk; i − 1] + 1, otherwise.

(13)

For every fragment i and for every x ∈ {1,−1}t, we define OK(i, x) as follows:

OK(i, x) = {(j, y)|j < i, y ∈ {1,−1}t, i[x] and j[y] agree}. (14)

Now, for every fragment i and for every h1, h2, · · · , hk < i with r(h1) ≤ r(h2) ≤ · · · ≤
r(hk) ≤ r(i), and for every xi ∈ {1,−1}t, xj ∈ {1,−1}t, 1 ≤ j ≤ k − 1,

D[h1, x
1;h2, x

2; · · · ;hk−1, x
k−1; i, xi; i] :=

min
(j,xj)∈OK(i,xi)
j �=h1,h2,···,hk−1

r(j)≤r(i)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D[j, xj ;h1, x
1; · · · ;hk−1, x

k−1; i − 1], if r(j) ≤ r(h1)
D[h1, x

1; · · · ;hk−1, x
k−1; j, xj ; i − 1], if r(hk) ≤ r(j)

D[h1, x
1; · · · ;hl, x

l; j, xj ;hl+1, x
l+1; · · · ;

hk−1, x
k−1; i − 1], if r(hl) ≤ r(j) ≤ r(hl+1).

(15)

Secondly, for every i and for every h1, h2, · · · , hk−1 < i with r(i) ≤ r(h1) ≤ r(h2) ≤ · · · ≤
r(hk−1) and for every xi ∈ {1,−1}t, xj ∈ {1,−1}t, 1 ≤ j ≤ k − 1,

D[i, xi;h1, x
1; · · · ;hk−1, x

k−1; i] :=
min

(j,xj)∈OK(i,xi)
j �=h1,h2,···,hk−1

r(j)≤r(i)

D[j, xj ;h1, x
1; · · · ;hk−1, x

k−1; i − 1]. (16)

Finally, for every i and for every h1, h2, · · · , hk−1 < i with r(h1) ≤ r(h2) ≤ · · · ≤ r(hl) ≤
r(i) ≤ r(hl+1) ≤ · · · ≤ r(hk−1) and for every xi ∈ {1,−1}t, xj ∈ {1,−1}t, 1 ≤ j ≤ k − 1,

D[h1, x
1;h2, x

2; · · · ;hl, x
l; i, xi;hl+1, x

l+1; · · · ;hk−1, x
k−1; i] :=

min
(j,xj)∈OK(i,xi)
j �=h1,h2,···,hk−1

r(j)≤r(i)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D[h1, x
1; · · · ;hl, x

l; j, xj ;hl+1, x
l+1; · · · ;hk−1, x

k−1; i − 1], if r(j) ≥ r(hl)
D[j, xj ;h1, x

1; · · · ;hk−1, x
k−1; i − 1], if r(j) ≤ r(h1)

D[h1, x
1; · · · ;hp, x

p; j, xj ;hp+1, x
p+1; · · · ;hk−1, x

k−1; i − 1],
if r(hp) ≤ r(j) ≤ r(hp+1).

(17)

Note that for computing the entries D[h1, x
1;h2, x

2; · · · ;hk, xk; i], we only need to know the
sets OK(i), the cost of creating OK(i, xi) data structure (done in the first phase) is O(22tm2n),

412 Z.P. Li, L.Y. Wu, Y.Y. Zhao, X.S. Zhang

the cost of computing the entries D[h1, x
1;h2, x

2; · · · ;hk, xk; i] (done in a second phase) is
O(2(k+1)tmk+1), since it can be seen as the cost of computing the O(2(k+1)tmk+1) entries
D[h1, x

1;h2, x
2; · · · ;hk, xk; i] with h1 < h2 < · · · < hk < i by using Equation (13) plus the

cost of computing the O(2ktmk) entries D[h1, x
1; · · · ; i, xi; · · · ;hk−1, x

k−1; i] by using Equation
(15)–(17) (cost O(2tm) each).

6 Conclusion

In this paper, we consider one of the namely the k-haplotyping problem, k-MFR problem,
and give an integer programming model and a dynamic programming algorithm for both the
gapless and gap cases. For m fragments and n SNPs, the complexity of the algorithm is
O(22tm2n + 2(k+1)tmk+1) when the body of each fragment has at most t holes. The future
research work is to develop models and algorithms for other k-haplotyping problems such as
k-MSR (minimum SNP removal) problem: Given a SNP matrix, remove the minimum number
of SNPs (columns) such that the resulting fragments can be partitioned into k non-conflicting
classes.

References

[1] Greenberg, H.J., Hart, W.E., Lancia, G. Opportunities for combinatorial optimization in computational
Biology. INFORMS Journal on Computing, 16(3): 211–231 (2004)

[2] Lippert, R. Schwartza, R., Lancia, G., Istrail, S. Algorithmic strategies for the SNPs haplotype assembly
problem. Briefings in Bioinformatrics, 3(1): 23–31 (2002)

[3] Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R. SNPs problems, complexity and algorithms.
In Proceedings of Annual European Symposium on Algorithms (ESA), volume 2161, Lecture Notes in
Computer Science, 182–193, Springer-Verlag, Berlin, Heidelberg, 2001

[4] Lund, C., Yannakakis, M. The approximation of maximum subgraph problems. In Proceedings of 20th Int.
Colloqium on Automata, Languages and Programming, 40–51, Springer-Verlag, Berlin, Heidelberg, 1994

[5] Rizzi, R. Bafna, V., Istrail, S., Lancia, G. Practical algorithms and fixed-parameter tractability for the
single individual SNP haploityping problem. In R. Guigo and D. Gusfield, editors. Proceedings of 2nd
Annual Workshop on Algorithms in Bioinformaticcs (WABI), volum 2452 of Lecture Notes in Computer
Science, 29–43, Springer-Verlag, Berlin, Heidelberg, 2002

[6] Tardos, E. A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3): 247–255
(1985)

[7] Venter, J. et al. The sequence of the human genome. Science, 291: 1304–1351 (2001)
[8] Weber, J., Myers. E. Human whole genome shotgun sequencing. Genome Research, 7: 401–409 (1997)

