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Abstract In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited

term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least

two positive periodic solutions of this model.
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1 Introduction

In recent years, the existence of periodic solutions of the predator-prey model is widely studied.
Models with exploited terms are often considered. Generally, the model with exploited terms
is described as follows:

ẋ = xf(x, y) − h, ẏ = yg(x, y) − k,

where x and y are functions of time representing densities of prey and predator, respectively; h
and k are exploited terms standing for the harvests (see [5]). Particularly, a non-autonomous
ratio-dependent predator-prey model with an exploited term is described by the following sys-
tem of ordinary differential equations

ẋ = x
(
a − bx − cy

my + x

)
− h, ẏ = y

(
− d +

fx

my + x

)
, (1.1)

where a, c, d, f,m are the prey intrinsic growth rate, capture rate, death rate of predator,
conversion rate, half saturation-parameter, respectively. Moreover, on account of biological
background of Model (1.1), we always assume that all of the parameters are positive constants.
For the detailed biological meanings, we refer to [1–3] and references cited therein.

Since realistic models require the inclusion of the effect of changing environment, it motivates
us to consider the following model:

⎧
⎪⎪⎨
⎪⎪⎩

x′(t) = x(t)
(
a(t) − b(t)x(t) − c(t)y(t)

m(t)y(t) + x(t)

)
− h(t),

y′(t) = y(t)
(
− d(t) +

f(t)x(t)
m(t)y(t) + x(t)

)
.

(1.2)
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Correspondingly, we assume the parameters in (1.2) are positive ω−periodic functions. The
assumption of periodicity of the parameters is a way of incorporating periodicity of the envi-
ronment (e.g. seasonal effects of weather, food supplies, mating habits etc).

Our aim of this paper is to establish a sufficient condition for the existence of at least
two positive ω−periodic solutions of System (1.2) by applying the continuation theorem of
coincidence degree theory, which was proven in [4] by Gaines and Mawhin. Now we briefly
introduce the coincidence degree theorem.

Let X,Z be real Banach spaces, L : domL ⊂ X → Z a Fredholm oprator of index zero
and P : X → X,Q : Z → Z continuous projects such that ImP = KerL,KerQ = ImL,X =
KerL

⊕
KerP and Z = ImL

⊕
ImQ. Denote the generalized inverse (of L) by KP : ImL →

KerP ∩ domL and an isomorphism of ImQ onto KerL by J : ImQ → KerL. The continuation
theorem is as follows.

Theorem A. Let L,P,Q and KP be defined as above, and let Ω ⊂ X be an open bounded
set and N : X → Z be a continuous mapping, which is L−compact on Ω (i.e., QN : Ω → Z
and Kp(i − Q)N : Ω → X are compact). Assume
(i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ domL,Lx �= λNx;
(ii) for each x ∈ ∂Ω ∩ KerL,QNx �= 0;
(iii) deg{JQN,Ω ∩ KerL, 0} �= 0.
Then Lx = Nx has at least one solution in Ω.

2 Main Result

In the following discussions, we shall use the notations

g =
1
ω

∫ ω

0

g(t)dt, gL = min
t∈[0,ω]

g(t), gM = max
t∈[0,ω]

g(t),

where g is a continuous ω−periodic function.
We now state and prove our main result.

Theorem 2.1. Assume that the following

f > d and
(
a − c

m

)L

> 2
√

bMhM .

Then system (1.2) has at least two positive ω−periodic solutions.

Proof. Let x(t) = exp{u(t)}, y(t) = exp{v(t)}. Then System (1.2) becomes
⎧⎪⎪⎨
⎪⎪⎩

u′(t) = a(t) − b(t)eu(t) − c(t)ev(t)

m(t)ev(t) + eu(t)
− h(t)e−u(t),

v′(t) = −d(t) +
f(t)eu(t)

m(t)ev(t) + eu(t)
.

(2.1)

It is easy to see that if System (2.1) has a ω-periodic solution
(
u∗(t), v∗(t)

)T , then
(
x∗(t), y∗(t)

)T

= (exp{u∗(t)}, exp{v∗(t)})T is a positive ω-periodic solution of System (1.2). So, to prove
Theorem 2.1, it suffices to show that System (2.1) has at least two ω-periodic solutions.

For λ ∈ (0, 1), we consider the following system
⎧⎪⎪⎨
⎪⎪⎩

u′(t) = λ(a(t) − b(t)eu(t) − c(t)ev(t)

m(t)ev(t) + eu(t)
− h(t)e−u(t)),

v′(t) = λ
(
− d(t) +

f(t)eu(t)

m(t)ev(t) + eu(t)

)
.

(2.2)
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Suppose that (u(t), v(t))T is a ω−periodic solution of System (2.2) for some λ ∈ (0, 1). Inte-
grating (2.2) over [0, ω], we obtain

ωa =
∫ ω

0

(
b(t)eu(t) +

c(t)ev(t)

m(t)ev(t) + eu(t)
+ h(t)e−u(t)

)
dt, (2.3)

ωd =
∫ ω

0

f(t)eu(t)

m(t)ev(t) + eu(t)
dt. (2.4)

From (2.2) – (2.4), it follows that

∫ ω

0

|u′(t)|dt ≤λ

∫ ω

0

(
a(t) + b(t)eu(t) +

c(t)ev(t)

m(t)ev(t) + eu(t)
+ h(t)e−u(t)

)
dt

<ωa +
∫ ω

0

(
b(t)eu(t) +

c(t)ev(t)

m(t)ev(t) + eu(t)
+ h(t)e−u(t)

)
dt = 2ωa,

(2.5)

and ∫ ω

0

|v′(t)|dt ≤ λ

∫ ω

0

(
d(t) +

f(t)eu(t)

m(t)ev(t) + eu(t)

)
dt < 2ωd. (2.6)

Choose ti, τi ∈ [0, ω], i = 1, 2, such that

u(t1) = min
t∈[0,ω]

u(t), u(τ1) = max
t∈[0,ω]

u(t), (2.7)

v(t2) = min
t∈[0,ω]

v(t), v(τ2) = max
t∈[0,ω]

v(t). (2.8)

From (2.3) and (2.7), we obtain

ωa =
∫ ω

0

(
b(t)eu(t) +

c(t)ev(t)

m(t)ev(t) + eu(t)
+ h(t)e−u(t)

)
dt >

∫ ω

0

b(t)eu(t) ≥ ωbeu(t1),

which reduces to u(t1) < ln
(

a

b

)
. This, together with (2.5), gives

u(t) ≤ u(t1) +
∫ ω

0

|u′(t)|dt < ln
(a

b

)
+ 2ωa := δ1 (2.9)

Multiplying the first equality of (2.2) by eu(t), and integrating over [0, ω], we obtain

∫ ω

0

a(t)eu(t)dt =
∫ ω

0

b(t)e2u(t)dt +
∫ ω

0

c(t)eu(t)+v(t)dt

m(t)ev(t) + eu(t)
+

∫ ω

0

h(t)dt.

Again from (2.7), it follows that eu(τ1)ωa ≥ ∫ ω

0
a(t)eu(t)dt >

∫ ω

0
h(t)dt = ωh, which reduces to

u(τ1) > ln
(

h
a

)
. This, together with (2.5), gives

u(t) ≥ u(τ1) −
∫ ω

0

|u′(t)|dt > ln
(h

a

)
− 2ωa := δ2. (2.10)

From (2.7) and the first equality of (2.2), we also have

a(τ1) − b(τ1)eu(τ1) − c(τ1)ev(τ1)

m(τ1)ev(τ1) + eu(τ1)
− h(τ1)e−u(τ1) = 0.
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This implies that

b(τ1)e2u(τ1) −
(
a(τ1) − c(τ1)

m(τ1)

)
eu(τ1) + h(τ1) > 0.

Solving this inequality, we obtain

eu(τ1) <

(
a(τ1) − c(τ1)

m(τ1)

) −
√

(a(τ1) − c(τ1)
m(τ1)

)2 − 4b(τ1)h(τ1)

2b(τ1)
≤ l−,

or

eu(τ1) >

(
a(τ1) − c(τ1)

m(τ1)

)
+

√
(a(τ1) − c(τ1)

m(τ1)
)2 − 4b(τ1)h(τ1)

2b(τ1)
≥ l+,

where

l± =
(a − c

m )L ±
√

((a − c
m )L)2 − 4bMhM

2bM
.

Namely,
eu(τ1) < l−, or eu(τ1) > l+.

Similarly,
eu(t1) < l−, or eu(t1) > l+.

These, together with (2.9) and (2.10), give

δ2 < u(t) < ln l−, or ln l+ < u(t) < δ1. (2.11)

From (2.4), (2.8) and (2.9), we have

ωd <

∫ ω

0

f(t)eu(t)dt

m(t)ev(t)
≤

∫ ω

0

f(t)eu(t)dt

m(t)ev(t2)
<

∫ ω

0

f(t)eδ1dt

m(t)ev(t2)
=

1
ev(t2)

a

b

( f

m

)
exp (2ωa)ω,

which reduces to v(t2) < ln
{

a

b·d ·
(

f
m

)}
+ 2ωa. This, together with (2.6), therefore gives

v(t) ≤ v(t2) +
∫ ω

0

|v′(t)|dt < ln
{ a

b · d ·
( f

m

)}
+ 2ω(a + d) := δ3. (2.12)

From (2.4) and (2.10), noticing that
∫ ω

0
f(t)eu(t)dt

m(t)ev(t)+eu(t) is increasing with u(t), we have

ωd ≥
∫ ω

0

f(t)eu(t)dt

mMev(τ2) + eu(t)
>

∫ ω

0

f(t)(h/a) exp (−2ωa)dt

mMev(τ2) + (h/a) exp (−2ωa)
,

which reduces to, v(τ2) > ln
{

(f−d)h

mMad

}
− 2ωa.

Hence, this together with (2.6), gives

v(t) ≥ v(τ2) +
∫ ω

0

|v′(t)|dt > ln
{ (f − d)h

mMad

}
− 2ω(a + d) := δ4. (2.13)

It follows from (2.12) and (2.13) that

|v(t)| < |δ3| + |δ4| + 1 := R1. (2.14)

Clearly, l±, δ1, δ2, R1 are independent of λ.
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Now we consider the set of two equations:
⎧⎪⎪⎨
⎪⎪⎩

a − beu − 1
ω

∫ ω

0

c(t)ev

m(t)ev + eu
dt − he−u = 0,

−d + 1
ω

∫ ω

0

f(t)eu

m(t)ev + eu
dt = 0,

(2.15)

where (u, v)T is a constant vector, and satisfies (2.15).
We point out that (2.15) has two solutions. We introduce the function

ϕ(z) = −d +
1
ω

∫ ω

0

f(t)
m(t)z + 1

dt, z ∈ [0,+∞).

Clearly, ϕ(z) is decreasing with z and,

ϕ(0) = f − d > 0, lim
z→+∞ϕ(z) = −d < 0.

Therefore, there exists a unique z∗ > 0 such that ϕ(z∗) = 0.
Substituting z∗ = ev/eu into the first equation in (2.15), we obtain

a − beu − 1
ω

∫ ω

0

c(t)z∗

m(t)z∗ + 1
dt − he−u = 0, (2.16)

which obviously has two solutions, denoted by u1 and u2 (u1 < u2).
From (2.16), we have a − beu − (

c
m

) − he−u < 0. Solving this inequality, we have

eu1 <
(a − ( c

m)) −
√

(a − ( c
m ))2 − 4b · h

2b
(≤ l−),

eu2 >
(a − ( c

m)) +
√

(a − ( c
m ))2 − 4b · h

2b
(≥ l+).

This implies that (2.15) has two solutions, denoted by (u1, v1)T , (u2, v2)T (v1 < v2). Further, it
follows from (2.16) that

δ2 < u1 < ln l− and ln l+ < u2 < δ1. (2.17)

Take X = Z =
{(

u(t), v(t)
)T ∈ C(R, R2)|u(t+ω) = u(t), v(t+ω) = v(t)

}
and

∥∥(
u(t), v(t)

)T ∥∥
= max

t∈[0,ω]
|u(t)| + max

t∈[0,ω]
|v(t)|. Equipped with the norm, X is a Banach space. Let L : domL ⊂

X → X, L
(
u(t), v(t)

)T =
(
u′(t), v′(t)

)T , where domL =
{(

u(t), v(t)
)T ∈ X :

(
u(t), v(t)

)T ∈
C1(R, R2)

}
. Again let N : X → X,

N

(
u(t)
v(t)

)
=

⎛
⎜⎜⎝

a(t) − b(t)eu(t) − c(t)ev(t)

m(t)ev(t) + eu(t)
− h(t)e−u(t)

−d(t) +
f(t)eu(t)

m(t)ev(t) + eu(t)

⎞
⎟⎟⎠ .

Define projectors P and Q by

P

(
u(t)
v(t)

)
= Q

(
u(t)
v(t)

)
=

(
1
ω

∫ ω

0
u(t)dt

1
ω

∫ ω

0
v(t)dt

)
,

(
u(t)
v(t)

)
∈ X.
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Obviously, KerL = ImP = R
2, ImL = KerQ = {(u(t), v(t))T ∈ X : u = v = 0} is closed in

X, and dimKerL =dim(Z/ImL) = 2. Thus, L is a Fredholm operator of index zero. Moreover,
as usual the inverse KP of L is as follows:

KP : ImL → domL ∩ KerP, KP

(
u(t)
v(t)

)
=

( ∫ t

0 u(s)ds − 1
ω

∫ ω

0

∫ t

0 u(s)dsdt∫ t

0
v(s)ds − 1

ω

∫ ω

0

∫ t

0
v(s)dsdt

)
.

Again take R2 = |v1| + |v2|, and define

Ω1 =
{

(u(t), v(t))T ∈ X : δ2 < u(t) < ln l−, max
t∈[0,ω]

|v(t)| < R1 + R2

}
,

Ω2 =
{

(u(t), v(t))T ∈ X : ln l+ < u(t) < δ1, max
t∈[0,ω]

|v(t)| < R1 + R2

}
.

Both Ω1 and Ω2 are open bounded subsets of X. Since l− < l+, we have Ω1 ∩ Ω2 = ∅. From
(2.17), we see that (u1, v1)T ∈ Ω1 and (u2, v2)T ∈ Ω2.

It is easy to show that QN and KP (I − Q)N are continuous by the Lebesgue convergence
theorem, and by Arzela-Ascoli theorem, QN(Ωi) and KP (I −Q)N(Ωi) (i = 1, 2) are compact.
Therefore, N is L-compact on each Ωi for i = 1, 2.

Since we are concerned with the periodic solutions, (u(t), v(t))T confined in domL, System
(2.2) can be regarded as the following operator equation L(u(t), v(t))T = λN

(
u(t), v(t)

)T
, which

is System (2.1) when λ = 1. According to the above estimation of periodic solutions of (2.2),
we have proven that

(i) for each λ ∈ (0, 1), (u(t), v(t))T ∈ ∂Ωi ∩ domL, L(u(t), v(t))T �= λN(u(t), v(t))T for
i = 1, 2. Namely, Condition (i) in Theorem A is satisfied.

According to Theorem A, next we have to prove the following:
(ii) for any (u, v)T ∈ ∂Ωi ∩ KerL(i = 1, 2), QN(u, v)T �= 0;
(iii) deg{JQN,Ωi ∩ KerL, 0} �= 0.

When (u, v)T ∈ ∂Ωi ∩ KerL = ∂Ωi ∩ R
2 for i = 1, 2 i.e., (u, v)T is a constant vector in R

2,
from (2.14) and (2.17) and the fact that (2.15) has two solutions, it follows that

QN

(
u
v

)
=

⎛
⎜⎝

a − beu − 1
ω

∫ ω

0

c(t)ev

m(t)ev + eu
dt − he−u

−d +
1
ω

∫ ω

0

f(t)eu

m(t)ev + eu
dt

⎞
⎟⎠ �= 0.

This proves that Condition (ii) in Theorem A is satisfied.
Finally, we will prove that Condition (iii) in Theorem A is satisfied. From (2.16), we see

that eu1 · eu2 = h

b
. Since u1 < u2, the above expression implies that beui − h

eui
�= 0, i = 1, 2.

Some straightforward calculations further give

deg{JQN,Ωi ∩ KerL, 0} = sgn
{ 1

ω

(
beui − h

eui

) ∫ ω

0

f(t)m(t)evidt

(m(t)evi + eui)2
}
�= 0, i = 1, 2.

Summarizing the above discussion, we have proved that each Ωi(i = 1, 2) satisfies all the
requirements of Theorem A. Hence, System (2.1) has at least one ω-periodic solution in each
of Ω1 and Ω2. Thus, the proof of Theorem 2.1 is completed.
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