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Abstract In this paper, the L1-norm estimators and the random weighted statistic for a semiparametric

regression model are constructed, the strong convergence rates of estimators are obtain under certain conditions,

the strong efficiency of the random weighting method is shown. A simulation study is conducted to compare

the L1-norm estimator with the least square estimator in term of approximate accuracy, and simulation results

are given for comparison between the random weighting method and normal approximation method.
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1 Introduction

In a semiparametric regression model, one observes
{
(Ti,Xi, Yi), 1 ≤ i ≤ n

}
of which the Yi’s

are response variable depending on covariates (Ti,Xi) through the relationship

Yi = Xτ
i β + g(Ti) + ei, i =, 1, · · · , n, (1.1)

where {(Ti,Xi, Yi), 1 ≤ i ≤ n} are independent and identically distributed (i.i.d.) as (T,X, Y ),
the covariate (T,X) is Rd × [0, 1] valued, β is a d-vector of unknown parametric, and g is an
unknown smooth function on [0,1], {ei, 1 ≤ i ≤ n} are i.i.d. random error which are independent
of {(Xi, Ti), 1 ≤ i ≤ n}.

Model (1.1) was proposed and studied by Engle, Granger and Rice[6] and has been exten-
sively investigated in recent years. For example, see [2,8–10]. By use of piecewise polynomial to
approximate g, Chen[2] acquired the estimators of β and g based on least squares (LS) princi-
ple. Under some mild conditions, he concluded that the underlying estimators of the parametric
components achieved the convergence rate n−1/2. Since the LS-based estimators are not robust,
Shi and Li[9] gave the more robust estimators, the L1-norm estimators of β and g. Specifically,
they used a piecewise polynomial to approximate g and obtained the estimators of β and g,
by way of solving absolution value equations. However, a key condition in Shi and Li[9] was
that T and X were independent. Later, Shi and Li[10] improved their results to a wider class
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of ρ-function, and obtained the M-estimators of β and g, say respectively β̂ and ĝ. They gave
the convergence rates in probability for β̂ and ĝ, and proved the asymptotic normality.

The confidence interval of β naturally lay in the limiting distribution and accuracy depends
on how fast the theoretical distribution converges to its limiting distribution. However, we can
not directly use the asymptotic distribution of β̂ because there are unknown parameters in the
asymptotic distribution. Hence, the confidence interval of β is not obtained by the asymptotic
normal distribution. The asymptotic variance of β̂ need to be estimated.

To simulate the distribution of the estimator β̂, a bootstrap method can be used (see [4]).
The method need to resample the data to obtain a Monte Carlo distribution for the distribu-
tion of estimator. The bootstrap is a very nice method, and had be used comprehensively. The
purpose of this paper is to use an alternative method, the random weighting method, which
was originally suggested by Rubin[7]. It is a effective method to approximate the unknown
distribution of pivotal quantities, which is often treated by the normal approximation or boot-
strap method. This method is motivated by the bootstrap method and can be seen as a kind
of smoothing of bootstrap. The main idea of this approach is: Instead of resampling from
the original data set, we generate a group of random weights directly from the computer and
use them to weight the original samples. The conditional distributions of suitable sums of the
weighted samples are employed to approximate the distribution of original pivotal statistics.
The weights can be chosen from a sequence of suitable i.i.d. random variables.

In this paper, the random weighted statistic of β̂ is constructed. The distribution of β̂ is
simulated by the distribution of random weighted statistic. Therefore, the confidence interval
of β is obtained by using the quantile of the distribution of random weighted statistic. Our
paper shows that the random weighting method produces the confidence intervals with greater
coverage accuracy than those obtained by normal approximation method. This paper also gives
the strong convergence rates of β̂ and ĝ, and the convergence rate of ĝ achieves the optimal
global rate of convergence. Hence, our results improve the results of weak convergence rates in
Shi and Li[10]. A simulation study shows that the L1-norm estimators have many advantage,
and the simulation results are given for comparison between the random weighting method and
normal approximation.

The organization of this paper is as follows. In Section 2, formal definitions of the L1-norm
estimator for β and the piecewise polynomial L1-norm estimator for g(t) are given, and the main
results are presented. In section 3, we conduct a simulation study to compare the advantage
of the L1-norm estimator with the least square estimator, and we also compare the random
weighting method and the normal approximation method.

2 Main Results

This section has two subsections. Section 2.1 gives the asymptotic behaviors of the estimator β̂
and its random weighted statistic. In Section 2.2, the confidence intervals of β are constructed
by using our results.

2.1 Asymptotic Behaviors of the Random Weighted Statistic

We first give some notation. Let m be a nonnegative integer. For an integer Mn, denoting
δn = 1/(2Mn), p = (m + 1)Mn, p1 = p + d and tv = (2v − 1)δn, 1 ≤ v ≤ Mn. We define

Imv =
{

[2(v − 1)δn, 2vδn), 1 ≤ v < Mn,

[1 − 2δn, 1], v = Mn,

ϕv(t) = Inv(t)
(
1, t − tv, · · · , (t − tv)m

)τ
,
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ϕ(t) =
(
ϕ1(t)τ , · · · , ϕMn(t)τ

)τ
,

where Inv(·) stands for the indicator function of Inv.
For r′ ∈ (0, 1], and a nonnegative integer m′, let

Gm′,r′ =
{
g : g has m′ derivative, and | g(m′)(t) − g(m′)(t′) ≤ C0|t − t′|r′

, ∀ t, t′ ∈ [0, 1]
}
,

where C0 is a positive constant. Let | · | denote either the Euclidean norm of a vector or the
absolute value of a real number according to the context. Let ‖g‖2

L2 denote the L2 norm, defined
by ‖g‖2

L2 =
∫ 1

0
g2(t)f(t)dt.

Now, we define the estimators of β and g. Note that ϕ(t) is a p× 1 vector with components
(t−tv)j, v = 1, · · · ,Mn, j = 0, 1, · · · ,m, then ϕ(t)τα(α ∈ Rp) is a piecewise polynomial of degree
m on [0,1]. Let β̂ and ĝ(t) = ϕ(t)τ α̂ be the L1-norm estimators for β and g(t) respectively,
where β̂ and α̂ are chosen to satisfy

n∑

i=1

∣∣Yi − Xτ
i β̂ − ϕ(Ti)τ α̂

∣∣ = min
α,β

n∑

i=1

∣∣Yi − Xτ
i β − ϕ(Ti)τα

∣∣.

To simulate the distribution of β̂, the random weighting L1-norm estimator β̂∗ of β̂ is
introduced, in which β̂∗ satisfies

n∑

i=1

Wi

∣∣Yi − Xτ
i β̂∗ − ϕ(Ti)τ α̂∗∣∣ = min

α,β

n∑

i=1

Wi

∣∣Yi − Xτ
i β − ϕ(Ti)τα

∣∣,

where {Wi, 1 ≤ i ≤ n} are i.i.d. random variable, satisfying
W. P{W1 > 0} = 1, E(W1) = 1, E(W 2

1 ) = γ ≥ 1, E(|W1|2(m+r)+1) < ∞, r ∈ (0, 1], and
{Wi, 1 ≤ i ≤ n} which are independent of {(Ti,Xi, Yi), 1 ≤ i ≤ n}.

There exist the weights satisfying condition W, for example, the exponential mean 1 weights,
that is that the distribution of Wi is the exponential distribution with mean 1 and variance 1.

In order to study the asymptotic behaviors of the estimators, we first give a group of
conditions.

C1. The distribution of T is absolutely continuous having a density function p(t), and there
exist two constants c1 and c2 such that 0 < c1 ≤ p(t) ≤ c2 < ∞, for all t ∈ [0, 1].

C2. g ∈ Gm,r with r ∈ (0, 1] and m + r > 1/2.

C3. There exists a positive constant δ0 ∈ (0,m + r) such that

max
1≤i≤n

|Xi| = O
(
nδ̃

)
, a.s., δ̃ = (m + r − δ0)/[2(m + r) + 1].

C4. P{e1 ≤ 0} = 0.5, the distribution of e1 has a density f in a neighborhood of zero with
f(0) > 0, and there exist two constants c3 and c4 such that

|f(t) − f(0)| ≤ c4|t|, for all |t| ≤ c3.

C5 E(X) = 0; for ξ(t) :=
(
ξ1(t), · · · , ξd(t)

)τ = E(X|T = t), ξi(t) ∈ Gm1,r1 , Σ = cov(X −
ξ(T )) is positive definite and there exists a positive definite matrix Σ0 such that Σ0 −
cov(Xξ(t)) > 0 for all t ∈ (0, 1], where m1 is a nonnegative integer and r1 ∈ (0, 1],
satisfying m1 + r1 > 1/2.
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Remark 2.1. Condition C1 ensures that ĝ has high rate of convergence. Condition C2
demands that g has m derivative g(m), and g(m) satisfies Lipschitz condition of order r. This
ensures the order of the convergence rates of ĝ and β̂. Condition C3 is a constraint for sam-
ples Xi. If Xi has 2δ̃th moment, then, condition C3 is satisfied. Condition C4 demands the
distribution of εi is symmetric and positive in a neighborhood of zero, and has a bounded first
derivative. Condition C5 ensures that there exits the limiting variance for the estimator β̂.
Thus, C1–C5 are some common condition.

We now introduce some notations. Let A1, · · · , Ak respectively be l1×l1, · · · , lk×lk matrices
and let DIAG(A1, · · · , Ak) denote a k × k block diagonal matrix with Ai as the (i, i) block.
Denoting

D0 = diag(1, δn, · · · , δm
n )(m+1)×(m+1),

D = DIAG(D0, · · · ,D0)p×p,

πv(t) = D−1
0 ϕv(t) = Inv(t)

(
1, (t − tv/δn), · · · , (t − tv/δn)m

)τ
,

π(t) = D−1ϕ(t) =
(
πτ

1 (t), · · · , πτ
Mn

(t)
)τ

,

Πτ
n =

(
π(T1), · · · , π(Tn)

)
p×n

,

Gn = Πn(Πτ
nΠn)+Πτ

n,

Σ̂n = (X1, · · · ,Xn)(I − Gn)(X1, · · · ,Xn)τ ,

where A+ is the Moore inverse of a matrix A. Let H2
1n = Σ̂n, H2

2n = 2MnΠτ
nΠn, Hn =

DIAG(H1n,H2n). Then, for i = 1, · · · , n, we define

Zi = (Zτ
1i, Z

τ
2i)

τ , Z2i = H+
2nπ(Ti)δ−1/2

n , (2.1)

Z1i = H+
1n

(
Xi −

n∑

k=1

π(Tk)τ (Πτ
nΠn)+Π(Ti)Xk

)
. (2.2)

Given positive numbers {an} and {bn}, let an ∼ bn denote 0 < infn(an/bn) ≤ sup
n

(an/bn) < ∞.

sgn(x) stands for the sign function of x, that is sgn(x)=1 if x > 0, 0 if x = 0, −1 if x < 0.

Theorem 2.1. Let Mn ∼ n1/[2(m+r)+1] with m + r > 1/2. If conditions C1–C5 hold, then,
we have

|β̂ − β| = O
(
n−(m+r)/[2(m+r)+1]

)
, a.s.,

‖ĝ(t) − g(t)‖L2 = O
(
n−(m+r)/[2(m+r)+1]

)
, a.s.

Theorem 2.2. Addition to the conditions of Theorem 2.1, further, if m+r > 1 and condition
W hold, then, for almost all sample sequences, we have

Σ̂1/2
n (β̂ − β) =

(
2f(0)

)−1
n∑

i=1

Z1i sgn(ei) + oP (1), (2.3)

and when (T1,X1, Y1), · · · , (Tn,Xn, Yn) are given, for almost all sample sequences,

Σ̂1/2
n (β̂∗ − β) =

(
2f(0)

)−1
n∑

i=1

WiZ1i sgn(ei) + oP (1), a.s. (2.4)



L1-Norm Estimation and Inference 299

Theorem 2.3. Under the conditions of Theorem 2.2 and γ = 2 in condition W, then, along
almost sample sequences,

√
n(β̂∗ − β̂) L∗

−→ N(0, (2f(0))−2Σ−1), a.s., (2.5)

sup
u∈Rd

|P ∗{√n(β̂∗ − β̂) ≤ u
} − P

{√
n(β̂ − β) ≤ u

}∣∣ −→ 0, a.s. (2.6)

where Σ is defined in condition C5, L∗ and P ∗ represent respectively the convergence in distri-
bution and the conditional probability operation when (T1,X1, Y1), · · · , (Tn,Xn, Yn) are given.

By (2.3) and Lindeberg Central Limit Theorem, for almost all sample sequences, we obtain

√
n(β̂ − β) L−→ N

(
0, (2f(0))−2Σ−1

)
.

Remark 2.2. The proofs of Theorem 2.1–2.3 can be found in another technical report. (See
[11]).

Remark 2.3. Shi and Li[10] prove that the weak convergence rates of ĝ and β̂ can attain
n−(m+r)/[2(m+r)+1]. Our Theorem 2.1 shows that the strong convergence rates of ĝ and β̂
also can attain n−(m+r)/[2(m+r)+1]. Hence, the result of Theorem 2.1 is stronger than that in
[10]. Specially, when m = 1 and r = 1, the convergence rate of β̂ can achieves the optimal
global rate n−2/5. Theorem 2.2 are the asymptotic expression for the estimators β̂ and β̂∗,
respectively, which is the sum of i.i.d. random variables. Using (2.3) and (2.4), we can prove
the asymptotic normality of the estimators β̂ and β̂∗ respectively. (2.6) of Theorem 2.3 shows
that the distribution of error of estimator β̂ can be approximated by a distribution of random
weighted statistics. (2.6) can be used to construct the confidence intervals of β.

2.2 The Confidence Intervals of β

To construct a confidence interval of β, we would ideally to know the exact distribution of Qn,
where Qn =

√
n(β̂ − β), from which we would compute the quantile uα defined by P{Qn ≤

uα} = 1 − α. The ideal (1 − α)% one-sided confidence interval for β would be I1 = [β̂ −
n−1/2uα,∞). Its converge probability is precisely 1 − α. However, the distribution of Qn is
unknown, and the asymptotic normal distribution of Qn has the unknown parameters f(0) and
Σ. Hence, it is not used to make statistical inference. In such cases, we might replace uα by its
random weighted estimate ûα, defined by

P ∗{√n(β̂∗ − β̂) ≤ ûα

}
= 1 − α.

Hence, the corresponding (1 − α)% one-sided confidence interval for β is

Î1 = [β̂ − n−1/2ûα, ∞).

Its two-sided counterpart is

Î2 = [β̂ − n−1/2ûα/2, β̂ + n−1/2ûα/2]. (2.7)

The interval Î2 has the nominal coverage 1 − α.

3 Simulation Study

In this section, we would do some simulation works to show the practicability of the Theorem 2.1
and Theorem 2.3. We consider three main points. The first, we compare the range of absolute
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errors and root mean squared error for the L1-norm estimators and the least square estimators;
The second is comparison of the random weighted distribution with the true and asymptotic
ones. The third is investigation of how much practical difference there it is between random
weighting and asymptotic normally confidence intervals, and compute the coverage probabilities
of the random weighted confidence intervals and the asymptotic normal confidence intervals.

3.1 Range of the Errors for Estimators

Consider a semiparametric regression model,

Yi = Xiβ + 6T 2
i + ei, i = 1, · · · , n, (3.1)

where β = 0.75, Xi ∼ N(0, 1), Ti ∼ U(0, 1) and ei ∼ N(0, 0.32), i = 1, · · · , n. We take
Mn = [0.8n1/5], where [x] represents the integer part of x. It is the optimum chose of the
estimators based on the 500 simulations( Mean square error is the best small). The estimators
{ĝ(·)} are assessed via the root mean squared error(RMSE),

RMSE =
{

n−1
grid

ngrid∑

k=1

[
ĝ(tk) − g(tk)

]2
}1/2

,

where {tk, 1 ≤ k ≤ ngrid} are regular grid points. The run results are drawn in Figure 1 and
Figure 2. In the two figures, we use L1NE and LSE to represent the L1-norm estimate and the
least squares estimate respectively.
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Figure 1. Range of the absolute errors and the relative errors for the estimators of β.

Figure 1 compares the range of absolute errors and relative errors for 500 error values in
estimation β̂. The LSE range is seen to be much broader than L1-norm. This illustrates the
fact that the L1-norm estimate is more robust than the least squares estimate.

Figure 2 shows the range of absolute errors and root mean squared errors for 500 error
values in estimation ĝ. From figure 2, it is clear to see that the L1-norm estimate is more
robust than the least squares estimate.

3.2 Comparison of the Error Distribution of Estimators

We consider the following three distribution functions:

G(u) = P
{√

n(β̂ − β) ≤ u
}
,

G∗(u) = P ∗{√n(β̂∗ − β̂) ≤ u
}
,

B(u) = P{ξ ≤ u}, ξ ∼ N(0,
(
2f(0)

)−2Σ−1).
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Figure 2. Range of the absolute errors and the root mean squared errors (RMSE) for the estimators of g(t).

We study the questions that G∗(u) and B(u) approximate to G(u). To achieve this purpose,
we run a small simulation study, and data generated from the model (3.1) with β = 0.75.
Simulations were run with sample sizes n = 90, Mn = [0.8n1/5]. we choose two weights, one is
the exponential mean 1 weights; another is that Wi has the following density function,

p(w) = 2−
1
4

(
w − 1 +

√
2

2

)− 1
2
e−(w−1+

√
2

2 )I
(1−

√
2

2 ,∞)
(w),

where I
(1−

√
2

2 ,∞)
(w) is the indicator function of (1−

√
2

2 , ∞). We call the chi-squared weights,
because its density function is obtained by transforming the chi-square distribution with 1
degree of freedom. The run results are drawn in Figure 3.
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Figure 3. Comparison of the random weighted distributions with the true and the asymptotic normal

distributions

In Figure 3, the G1∗(u) and G2∗(u) are the random weighted distributions when choose
exponential weights and chi-squared weights, respectively. Figure 3 compares the different
between the random weighted distributions and the asymptotic normal distributions. It is clear
in this example that the random weighted distribution gives a more accurate approximation to
the true distribution than the asymptotic normal distribution do. But, the exponential weights
are best than both the chi-squared weights and the asymptotic normal distribution. Hence, we
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can use G1∗(u) to obtain the quantile of order p.

3.3 Accuracy of the Confidence Intervals

To study the accuracy of estimators, we consider the lengths and the coverage probabilities for
Î2 in (2.7). We also use the model (3.1) with β = 0.75 and σ = 0.3, 0.6, where σ2 = var(e1).
Simulations were run with sample sizes n = 30, 90, 180. We also take Mn = [0.8n1/5], and Wi’s
are the exponential mean 1 weights and the chi-squared weights. The average lengths and the
coverage probabilities of the confidence intervals with nominal level 0.95, were computed by
using 2000 simulation runs. The simulation results are presented in Tables 1.

Table 1. Lengths and coverage probabilities of the confidence intervals of β when

α=0.05 and use the exponential mean 1 weights and the chi-squared weights.
Average lengths Coverage probabilities

σ n EW CSW NA EW CSW NA

0.3 30 0.120 0.125 0.148 0.905 0.896 0.884
90 0.116 0.119 0.140 0.927 0.921 0.900
180 0.103 0.107 0.135 0.941 0.935 0.916

0.6 30 0.134 0.138 0.158 0.892 0.887 0.890
90 0.125 0.127 0.152 0.916 0.910 0.902
180 0.119 0.124 0.148 0.935 0.928 0.908

Note. EW: the exponential mean 1 weights, CSW: the chi-squared weights, NA: the normal approximation.

It is clear from Tables 1 that the random weighting method consistency gives shorter in-
tervals and higher levels than the normal approximation. We also see from Tables 1 that the
lengths and the coverage probabilities of confidence intervals have relations with error variance
σ2. The larger the error variance is, the larger the length of confidence intervals.
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