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Abstract In this paper we study the homogenization of degenerate quasilinear parabolic equations:

∂tu − diva
( t

ε
,
x

ε
, u,∇u

)
= f(t, x),

where a(t, y, α, λ) is periodic in (t, y).
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1 Introduction and Main Results

Let T > 0 and let Ω ⊂ Rn be an open bounded domain with Lipschitz boundary. We consider
the following initial-boundary value problem:

(Pε)

⎧
⎪⎪⎨

⎪⎪⎩

∂tu
ε − diva

( t
ε
,
x

ε
, uε,∇uε

)
= f(x, t), in ΩT = Ω×(0, T )

uε(x, t) = 0, on ∂Ω×(0, T )
uε(x, 0) = u0(x)

in the space X = Lp[0, T ;V ], where V = W 1,p
0 (µε,Ω) is a weighted sobolev space, f ∈

X∗ = Lp′
(0, T ;V ∗), u0 ∈ L2(Ω), and the degeneration is determined by a vector function

µε(x) = µ(x/ε) = (µ1, µ2, · · · , µn) with positive component µi in Ω satifying certain inte-
gerability assumptions. The existence and regularity result may be found in [3, 7].

Under a coerciveness condition of the type:

a(t, y, α, λ)λ ≥ β|λ|p (p > 1, β > 0 a constant),

the asymptotic behaviour for ε converging to zero of the problem (Pε) has been widely studied
by many authors, (see [1,5] and [8]).

In this paper, we study the homogenization for the degenerate problem (Pε) by combining
classical compensated compactness arguments and some techinques from harmonic analysis.
By degeneration we mean the following assumption (H3) holds.
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We assume throughout that
(H1) : a(t, y, α, λ) = (a1, a2, · · · , an) : Rn+1 ×R×Rn → Rn is Carathodory functions,i.e., a

is measurable in (t, y) and continuous in (α, λ).
(H2) : a(t, y, α, λ) is τ0 − Y periodic in (t, y), where Y = (0, 1)n, and τ0 is some positive

number.
(H3) : for each λ ∈ Rn, a(t, y, α, λ)λ ≥ Lµ(y)|λ|p (p > 1, L > 0), where µ(y) is a positive

function belonging to the Muckenhoupt class Ap and Y -periodic.
(H4) : for every λ1, λ2 ∈ Rn, λ1 �= λ2, we have

[
a(t, y, α, λ1) − a(t, y, α, λ2)

]
(λ1 − λ2) > 0.

(H5) : for each λ ∈ Rn, α ∈ R, C > 0, |a(t, y, α, λ)| ≤ Cµ(y)(1 + |λ|p−1 + |α|p−1).
(H6) : for every α1, α2 ∈ R, r ∈ (0, 1], there exists a constant β > 0 such that

|a(t, y, α1, λ) − a(t, y, α2, λ)| ≤ β|α1 − α2|r(1 + |α1|p−1−r + |α2|p−1−r + |λ|p−1−r).

Definition 1.1[3]. For ε > 0, a function uε is said to be a weak solution of the initial-
boundary value problem (Pε) if

uε ∈ C
(
[0, T ],H

) ∩ Lp(0, T ;V ) and ∂tu
ε ∈ Lp′

(0, T ;V ∗) (1.1)

and uε satisfies the problem (Pε) in the distribution sense. Here 1
p + 1

p′ = 1, H = L2(Ω), V ∗

is the dual space of V = W 1,p
0 (µ,Ω) which is a weighted Sobolev space.

We can now state our main result.

Theorem 1.1. If (H1)-(H6) are fulfilled, then there exists a unique solution uε to problem
(Pε) for ε > 0. Forther let u ∈ Lp

(
0, T ;W 1,p

0 (Ω)
)

be the solution of the following initial-
boundary value problem:

(P0)

⎧
⎪⎨

⎪⎩

∂tu− divA(u,∇u) = f(x, t), in ΩT = Ω×(0, T ),
u(x, t) = 0, on ∂Ω×(0, T ),
u(x, 0) = u0(x).

Then, as ε→ 0, we have

uε ⇀ u weakly in L1
(
0, T ;W 1,1

0 (Ω)
)
, (1.2)

∂tu
ε → ∂tu weakly in L1

(
0, T ;W−1,1(Ω)

)
, (1.3)

a
( t
ε
,
x

ε
, uε,∇uε

)
→ A(u,∇u) weakly in L1(ΩT ), (1.4)

where A : R×Rn −→ Rn is defined by

A(α, λ) = τ−1
0

∫ τ0

0

∫

Y

a(t, y, α, λ+ ∇Φα
λ(t, y))dydt, (1.5)

and Φα
λ is a solution of the problem

{ ∫ τ0

0

∫
Y
a
(
t, y, α, λ+ ∇Φα

λ(t, y)
)
ϕdydt = 0, ∀ϕ ∈ Lp

(
0, T ;W 1,p

per
(µ, Y )

)
;

Φα
λ ∈ Lp

(
0, T ;W 1,p

per
(µ, Y )

)
.

(1.6)

Here W 1,p
per

(µ, Y ) denotes the space which consists of the elements of W 1,p(µ, Y ) having the same
trace on the opposite faces of Y. It is easy to choose Φα

λ such that:

Φα
λ is τ0 - Y periodic in (t, y). (1.7)
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2 Preliminaries

Let p > 1and let µ be a measurable function on Rn such that

µ > 0, a.e µ and µ− 1
p−1 are in L1

loc(Ω). (2.1)

Then for every open Ω ⊂ Rn, we have

Lp(µ,Ω) = {u|u ∈ L1
loc(Ω), uµ

1
p ∈ Lp(Ω)}

W 1,p(µ,Ω) = {u|u ∈W 1,1
loc (Ω), u ∈ Lp(µ,Ω),∇u ∈ Lp(µ,Ω)}

W 1,p
loc (µ,Ω) = {u|u ∈W 1,1

loc (Ω), u ∈W 1,p(B,µ), for every open set Bcompactly contained in Ω}.

It is easy to see thatW 1,p(µ,Ω), endowed with the norm ‖u‖W 1,p(µ,Ω) =
( ∫

Ω
(|u|p+|∇u|p)µdx

) 1
p

,

is a reflexive and separable Banach space. We denote by W 1,p
0 (µ,Ω) the closure of C∞

0 (Ω) in
the W 1,p(µ,Ω) with W−1,p′

(µ,Ω) its dual space and by W 1,p
per(µ, Y ) the set of the real function

u in W 1,1
loc (Rn) such that u is Y -periodic and u ∈ W 1,p

loc (µ, Y ). Let X = Lp[0, T ;V ], V =
W 1,p

0 (µ,Ω), X∗ = Lp′
(0, T ;V ∗), where X∗ denotes the dual space of X.

Definition 2.1[2]. Let p > 1, K ≥ 1 and µ be a weight on Rn (ie. µ satisfies (2.1)). We
say that µ is in the class Ap(k) if

(
−
∫

Q

µdy
)(

−
∫

Q

µ− 1
p−1 dy

)p−1

≤ K (2.2)

for every cube Q of Rn with face parallel to the coordinate planes , where |Q| indicate the
Lebesgue measure of Q, −

∫
Q
µdx = 1

|Q|
∫

Q
µdy. We set Ap :=

⋃

K≥1

Ap(K).

Lemma 2.2[2]. Let p > 1 and K ≥ 1. Then there exist two positive constants δ = δ(n, p,K)
and C = C(n, p,K) such that

(
−
∫

Q

µ1+δdx
)1/(δ+1)

≤ C−
∫

Q

µdx, (2.3)

(
−
∫

Q

µ−(1+δ)/(p−1)dx
)1/(1+δ)

≤ C−
∫

Q

µ−1/(p−1)dx (2.4)

for every cube Q with faces parallel to the coordinate planes and every µ ∈ Ap(K).

Lemma 2.3[7]. Assume that Z1, Z2, Z3 are real reflexive Banach spaces, that the imbeddings
Z1 ⊆ Z2 ⊆ Z3 are continuous, and that the imbedding Z1 ⊆ Z2 is compact. Let 0 < T <
∞, 1 < p, q <∞. Then W = {u ∈ Lp(0, T ;Z1); ∂tu ∈ Lq(0, T ;Z3)} equipped with the norm

‖u‖W = ‖u‖Lp(0,T ;Z1) + ‖∂tu‖Lq(0,T ;Z3), (2.5)

is a Banach space, and the imbedding W ⊆ Lp(0, T ;Z2)is compact.

Lemma 2.4[7]. Let V ⊆ H ⊆ V ∗ be an evolution triple. Then the imbeddingW 1
p (0, T ;V,H) ⊆

C([0, T ],H) is continuous, where W is defined by Lemma 2.3.

Lemma 2.5[2,5]. There exist positive constants C1 = C1(n, p, τ0), C2 = C2(n, p, τ0) such that
for all (α, λ) ∈ R×Rn

|A(α, λ)| ≤ C1(1 + |α|p−1 + |λ|p−1), (2.6)
A(α, λ)λ ≥ C2|λ|p. (2.7)
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Lemma 2.6[2,5]. A(α, λ) : R×Rn → Rn is continuous, and for all α, λ1λ2 with λ1 �= λ2,
[
A(α, λ1) − A(α, λ2)

]
(λ1 − λ2) > 0. (2.8)

3 Proof of the Theorem 1.1

Multiplying (Pε) by uε and integrating we have:

1
2
‖uε(T )‖L2(Ω) − 1

2
‖uε(0)‖L2(Ω) +

∫∫

(0,T )×Ω

a
( t
ε
,
x

ε
, uε,∇uε

)
∇uεdxdt = (f , uε). (3.1)

By virtue of (H3)

1
2
‖uε(T )‖L2(Ω) +

∫∫

(0,T )×Ω

µε|∇uε|pdxdt ≤ (f , uε) +
1
2
‖uε(0)‖L2(Ω)

where µε = µ(x
ε ) .

Using the Young inequality we get
∫∫

(0,T )×Ω

µε|∇uε|pdxdt ≤ C ( C independent of ε). (3.2)

It follows from [7] and (3.2) that
∫∫

(0,T )×Ω

(|uε|p + |∇uε|p)µεdxdt ≤ C ( C independent of ε). (3.3)

On the other hand we want to verify that there exists a positive constant C independent of ε
such that

∫∫

(0,T )×Ω

∣∣∣a
( t
ε
,
x

ε
, uε,∇uε

)∣∣∣
p′

µ−1/(p−1)
ε dxdt ≤ C ( C independent of ε) (3.4)

where 1
p + 1

p′ = 1. From (H5) and the Hölder inequality, we have

∫∫

(0,T )×Ω

∣∣
∣a

( t
ε
,
x

ε
, uε,∇uε

)∣∣
∣
p′

µ−1/(p−1)
ε

)
dxdt

≤
∫∫

(0,T )×Ω

µε(1 + |uε|p−1 + |∇uε|p−1)p′
dxdt ≤ C

∫∫

(0,T )×Ω

µε(|uε|p + |∇uε|p)dxdt

Using (3.3) we get (3.4).
To prove the convergence of {uε} and {aε} let us prove now that there exists σ > 0 such

that {uε} is bounded in L1+σ
(
0, T ;W 1,1+σ

0 (Ω)
)

and {aε} is bounded in
(
L1+1/σ[(0, T ) × Ω]

)n

uniformly with respect to ε ∈ (0, 1). Using the Hölder inequality,one can get
∫∫

(0,T )×Ω

(|uε| + |∇uε|)1+σ
dxdt

≤
(∫∫

(0,T )×Ω

(|uε| + |∇uε|)p
µεdxdt

)(1+σ)/p( ∫∫

(0,T )×Ω

µ
−(1+σ)/

(
p−(1+σ)

)

ε dxdt
)1−(1+σ)/p

≤C
( ∫∫

(0,T )×Ω

µ
−(1+σ)/

(
p−(1+σ)

)

ε dxdt
)1−(1+σ)/p

. (3.5)
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Thus, one can choose σ > 0 such that 1+σ
p−(1+σ) = 1+δ

p−1 , where δ is defined in Lemma 2.2. From
[7] and (3.5) there exists a positive constant C (independent of ε) such that

∫∫

(0,T )×Ω

(|uε| + |∇uε|)1+σ
dxdt ≤ C (3.6)

so,

{uε}is bounded inL1+σ(0, T ;W 1,1+σ
0 (Ω))uniformly with respect to ε ∈ (0, 1) (3.7)

Similarly, by (3.4),

{aε} is bounded in
(
L(1+σ)′ [(0, T ) × Ω]

)nuniformly with respect to ε ∈ (0, 1) (3.8)

(where 1/(1 + σ)′ + 1/(1 + σ) = 1, i.e (1 + σ)′ = 1 + 1/σ). Hence by (3.7) there exists
u ∈ L1+σ(0, T ;W 1,1+σ

0 (Ω)), a0 ∈ (L1+1/σ[(0, T ) × Ω])n such that

uε ⇀ u∗ weakly in L1+σ
(
0, T ;W 1,1+σ

0 (Ω)
)
, (3.9)

a
( t
ε
,
x

ε
, uε,∇uε

)
⇀ a0 weakly in (L1+1/σ[(0, T ) × Ω])n. (3.10)

Lemma 2.2 in [3] implies that

‖∂tu
ε‖X∗ ≤

∥
∥∥a

( t
ε
,
x

ε
, uε,∇uε

)∥
∥∥

X∗
+ ‖f‖X∗ ≤ C (C independent of ε). (3.11)

Argue similarly as inderiving (3.7) and (3.8) to get

{∂tu
ε} is bounded in L1+1/σ

(
0, T ;W−1,1+σ(Ω)

)
uniformly with respect to ε ∈ (0, 1). (3.12)

Thus, by Lemma 2.3,
uε → u∗ strongly in L1+σ(ΩT ). (3.13)

Making use of (3.9), (3.12) and (3.13), we have

∂tu
ε⇀ ∂tu

∗ weakly in L1+1/σ(ΩT ). (3.14)

In order to get the theorem it is sufficient to prove that

u∗ ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
, ∂tu

∗ ∈ Lp′(
0, T ;W−1,p(Ω)

)
, (3.15)

a0 = A(u∗,∇u∗), a.e. in (0, T ) × Ω (3.16)

In fact, by (3.15), (3.16) and the uniqueness of the solution of (P0), it follows that

u = u∗, a.e. in (0, T ) × Ω

We now prove (3.15). To do this, it is enough to show that

∇u∗ ∈ (
Lp[(0, T ) × Ω]n]

)
. (3.17)

By the Hölder inequality,one can get that for every ψ ∈ C1
0 (ΩT ), by (3.2)

∫∫

(0,T )×Ω

|∇uε||ψ|dxdt

≤
(∫∫

(0,T )×Ω

|∇uε|pµεdxdt
)1/p( ∫∫

(0,T )×Ω

µ−1/(p−1)
ε |ψ|p′

dxdt
)1/p′

≤C
( ∫∫

(0,T )×Ω

µ−1/(p−1)
ε |ψ|p′

dxdt
)1/p′

. (3.18)
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Take the limit as ε→ 0 in (3.18) to obtain that
∫∫

(0,T )×Ω

|∇u∗| |ψ|dxdt ≤ C

∫

Y

µ−1/(p−1)(y)dy‖ψ‖Lp′ (ΩT ) ≤ C‖ψ‖Lp′ [(0,T )×Ω]

for any ∀ ψ ∈ C1
0 (ΩT ), where use has been made of Lemma 1.5 of [2] and the fact that µ(y) is

periodic in y. This implies (3.17).
Similarly, by (3.14) one can get

∂tu
∗ ∈ Lp′(

0, T ;W−1,p(Ω)
)
, a0 ∈ (

Lp′
(0, T,Ω)

)n
. (3.19)

From (3.15) and Lemma2.4 one can get that u∗ satisfies (1.1) with V = W 1,p
0 (Ω). Thus it

follows from (Pε) that for each ψ ∈ C1
0 (0, T ; Ω),

∫∫

(0,T )×Ω

a
( t
ε
,
x

ε
, uε,∇uε

)
∇uε∇ψ dxdt = −

∫∫

(0,T )×Ω

∂tu
εuε ψdxdt+

∫∫

(0,T )×Ω

f uε ψ dxdt

by (3.9), (3.10), (3.13), (3.14)

−→ −
∫∫

(0,T )×Ω

∂tu
∗ u∗ ψdxdt+

∫∫

(0,T )×Ω

f u∗ ψ dxdt =
∫∫

(0,T )×Ω

a0∇u∗∇ψ dxdt. (3.20)

The last equality is obtained by first multiplying (Pε) by ζ = uεψ, and then letting ε → 0 in
the equation thus obtained in conjunction with the use of (3.9), (3.10), (3.14).

Let us prove (3.16). To this end, we have to modify the technique in [5]. For k ∈ N ,let
{Qi,k} be a partition of Rn+1 into cubes with edges equal to 2−k, and define

[(0, T ) × Ω](i, k) = Qi,k ∩ [(0, T ) × Ω], Ik =
{
i : |[(0, T ) × Ω](i, k)| �= 0

}
.

Obviously, Ik is a finite set. For a function u let

< u >i,k=
∣∣[(0, T ) × Ω](i, k)

∣∣−1
∫∫

[(0,T )×Ω](i,k)

u(t, x)dxdt.

We use χ
i,k

to denote the characteristic function of [(0, T ) × Ω](i, k). As A(α, λ) is continuous
(Lemma 2.7), we have that for each λ ∈ Rn,

lim
k→∞

∑

i∈Ik

χi,kA(< u >i,k, λ) = A(α, λ), a.e in (0, T ) × Ω.

It is easy to see that

Ak(t, x) =
∑

i∈Ik

χi,kA(< u >i,k, λ) → A(α, λ) strongly in L1+1/σ((0, T ) × Ω). (3.21)

Similarly, ∑

i∈Ik

χi,k|u− < u >i,k |1+σ → 0 strongly in L1((0, T ) × Ω) (3.22)

for each i, k ∈ N and each λ ∈ Rn. Let Φλ
i,k be the solution of (1.6), (1.7) corresponding to the

case α =< u∗ >i,k. Define
W λ

i,k(t, y) = λy + Φλ
i,k(t, y)

and
ωε

i,k(t, x) = εW λ
i,k(t/ε, x/ε) = λx+ εΦλ

i,k(t/ε, x/ε)
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Since Φλ
i,k is a solution of (1.6), (1.7), we have

∫ τ0

0

∫
Y
a
(
t, y, α,∇W λ

i,k(t, y)
)
(∇W λ

i,k −λ)dxdt = 0.
By (H3),

∫ τ0

0

∫

Y

µ(y)|∇W λ
i,k|pdydt ≤

∫ τ0

0

∫

Y

a
(
t, y, α,∇W λ

i,k(t, y)
)
λdydt ≤ C|A(α, λ)| |λ|.

From (2.7) it follows that for every λ ∈ Rn,

∫ τ0

0

∫

Y

µ(y)|∇W λ
i,k|pdydt ≤ C(1 + |α|p−1 + |λ|p−1) |λ| ≤ C(|α|p−1|λ| + |λ|p)

Similarly, it follows that there exist constant C > 0 and σ > 0 such that
∫ τ0

0

∫

Y

|∇W λ
i,k|1+σdydt ≤ C. (3.23)

Then from (3.9)(3.13) one can get

ωε
i,k(t, x) ⇀ λx = ω strongly in L1+σ[(0, T ) × Ω] (3.24)

and ∇ωε
i,k ⇀ λ = ∇ω weakly in L1+σ[(0, T ) × Ω]. (3.25)

From (1.6) and [5] it follows that for all ε,

diva(t/ε, x/ε,< u∗ >i,k,∇ωε
i,k) = 0 on C1

0 [(0, T ) × Ω]. (3.26)

Let

Ek =
{
ψ ∈ C1

0 [(0, T ) × Ω] : ψ = 0 on a neighbourhood of ∪
i∈Ik

∂[(0, T ) × Ω](i, k)
}

and

ωε
k(t, x) =

∑

i∈Ik

χi,k(t, x)ωε
i,k(t, x),

dε
k(t, x) =

∑

i∈Ik

χi,k(t, x)ωε
i,k(t, x)a(t/ε, x/ε,< u∗ >i,k,∇ωε

i,k).

Then by [5] and (3.25), one can get

dε
k(t, x) ⇀

∑

i∈Ik

A(< u∗ >i,k, λ) weakly in Lp′
((0, T ) × Ω).

Arguing similarly as inderiving (3.20) one can get that for each ψk ∈ Ek, by (3.10), (3.13),
(3.14), (3.24)

∫∫

(0,T )×Ω

a(t/ε, x/ε, uε,∇uε)∇[(uε − ωε
k)ψk]dxdt

= −
∫∫

(0,T )×Ω

∂tu
ε(uε − ωε

k)ψk dxdt+
∫∫

(0,T )×Ω

f (uε − ωε
k)ψkdxdt

−→
∫∫

(0,T )×Ω

a0∇[(u∗ − ω)ψk]dxdt. (3.27)
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Again by (3.10), (3.13), (3.24), we have that

lim
ε→0

∫∫

(0,T )×Ω

a(uε − ωε
k)∇ψdxdt =

∫∫

(0,T )×Ω

a0(u∗ − ω)∇ψdxdt for every ψ ∈ C1
0 (ΩT ).

(3.28)
By (3.13), (3.14), (3.24)–(3.28), one can get

lim
ε→0

∫∫

(0,T )×Ω

[
a(t/ε, x/ε, uε,∇uε) − dε

k

]
(∇uε −∇ωε

k)dxdt

=
∫∫

(0,T )×Ω

(a0 −Ak)(∇u∗ −∇ω)ψkdxdt for every ψk ∈ Ek. (3.29)

On the other hand, from (H6) it follows that
∫∫

(0,T )×Ω

∣∣∣a−
∑

i∈Ik

χi,ka(t/ε, x/ε,< u∗ >i,k,∇uε)
∣∣∣
(1+1/σ)

dxdt

≤
∫∫

(0,T )×Ω

[∣∣a(t/ε, x/ε, uε,∇uε) − a(t/ε, x/ε, u∗,∇uε)
∣∣(1+1/σ)

+
∣∣a(t/ε, x/ε, u∗,∇uε) −

∑

i∈Ik

χi,ka(t/ε, x/ε,< u∗ >i,k,∇uε)
∣∣(1+1/σ)

]
dxdt

≤C
[( ∫∫

(0,T )×Ω

|uε − u∗|1+σdxdt
)r/σ

+
∑

i∈Ik

(∫∫

[(0,T )×Ω](i,k)

|u∗− < u∗ >i,k |1+σdxdt
)r/σ]

(3.30)

where C is independent of ε. Then, by (3.9), (3.15), (3.22), (3.29), (3.30) implies
∫∫

(0,T )×Ω

(a0 −Ak)(∇u∗ −∇ω)ψkdxdt ≥ 0.

From (3.21) we have ∫∫

(0,T )×Ω

(a0 −A)(∇u∗ −∇ω)ψdxdt ≥ 0

for all nonnegative functions ψ ∈ C1
0 [(0, T ) × Ω]. Thus using the Minty trick one get

[
a0(t, x) −A

(
u∗(t, x),∇u∗(t, x))]ξ ≥ 0 for all ξ ∈ Rn,

which leads to (3.16). This completes the proof of Theorem 1.1.
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