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Abstract In this paper the dynamical behaviors of a predator-prey system with Holling Type-IV functional

response are investigated in detail by using the analyses of qualitative method, bifurcation theory, and numerical

simulation. The qualitative analyses and numerical simulation for the model indicate that it has a unique stable

limit cycle. The bifurcation analyses of the system exhibit static and dynamical bifurcations including saddle-

node bifurcation, Hopf bifurcation, homoclinic bifurcation and bifurcation of cusp-type with codimension two

(ie, the Bogdanov-Takens bifurcation), and we show the existence of codimension three degenerated equilibrium

and the existence of homoclinic orbit by using numerical simulation.
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1 Introduction

In population dynamics, a functional response of the predator to the prey density refers to the
change in the density of prey attached per unit time per predator as the prey density changes.
The simplest functional response is Lotka-Volterra function which is described as

P (x) = ax, 0 ≤ x ≤ k

a
; P (x) = k, x ≥ k

a
, (P1)

which is also called Holling Type-I function in [8]. Michaelis and Menten proposed the response
function

P (x) =
mx

a+ x
. (P2)

in studying enzymatic reactions, where m > 0 denotes the maximal growth rate of the species
and a > 0 is the half-saturation constant. It is now referred to as a Michaelis-Menten function
or a Holling type-II function. Another class of response function is

P (x) =
mx2

a+ bx+ x2
, (P3)

which is called Sigmoidal response function, while the simplification

P (x) =
mx2

a+ x2
, (P4)
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is known as a Holling type-III function. However , P (x) in (P1)− (P4) is monotonic in the first
quadrant. But some experiments and observations indicate that the nonmonotonic response
occurs at this level: when the nutrient concentration reaches a high level an inhibitory effect on
the specific growth rate may occur. To model such an inhibitory effect, Andrews[2] suggested a
function

P (x) =
mx

a+ bx+ x2
, (P5)

called the Monod-Haldane function , and also called a Holling type-IV function.Sokol and
Howell[12] proposed a simplified Holling Type-IV function of the form

P (x) =
mx

a+ x2
. (P6)

Recently, Ruan and Xiao considered the predator-prey model with the simplified Holling
type-IV function (P6)

ẋ = rx(1 − x

K
) − xy

a+ x2
,

ẏ = y(
µx

a+ x2
−D). (A)

The model describes the predator-prey interaction when the prey exhibits group defense,
which was first proposed by Freedman and Wolkowicz[7], Mischaikow and Wolkowicz[9], and
Wolkowicz[14] in a general form,

ẋ = xg(x,K) − yp(x),
ẏ = y(q(x) −D), (B)

where for the biological implications refer to [7,9,11,14] and to references therein. In [11] they
analyzed the global dynamics of system (A) and showed that system (A) has a bifurcation of
cusp-type with codimension two, but no bifurcations of codimension three.

In this paper, we consider the dynamics of a predator-prey system with Holling type-IV
function as follows:

ẋ = rx(1 − x

K
) − xy

a+ bx+ x2
,

ẏ = y(
µx

a+ bx+ x2
−D), (1)

where x and y are functions of time representing population densities of prey and predator,
respectively. Thus, we only restrict our attention to system (1) in the closed first quadrant
in the (x, y) plane. K > 0 is the carrying capacity of the prey and D > 0 is the death rate
of the predator, and r > 0 is the maximum growth rate of the prey, µ > 0 is the maximum
predation rate , and a > 0 is the so-called half-saturation constant.The parameter b is such that
the denominator of above system does not vanish for non-negative x and b > −2

√
a. Therefore

we study the dynamics of system (1) for b > −2
√
a in the closed first quadrant of the (x, y)

plane. We show that the system exhibits ”paradox enrichment” and a unique stable limit cycle
by qualitative analyses and numerical simulation. And on the basis of bifurcation analysis,
we show that the system exhibits static and dynamical bifurcations including the saddle-node
bifurcation, Hopf bifurcation,and homoclinic bifurcation. Moreover, system (1) has the cusp
bifurcation of codimension 2 (i,e,Bogdanov-Takens bifurcation) and a degenarated equilibrium
with codimension three.

This paper is organized as follows.The conditions for the existence of equilibria and limit
cycles, the uniqueness of limit cycle for system (1) are given in Section 2. Saddle-node bi-
furcation, Hopf bifurcation , Homoclinic bifurcation and the Bogdanov-Takens bifurcation are
obtained in Section 3. The biological explanation of the results is given in Section 4.
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2 Qualitative Analysis of System (1)

In this section, we discuss the existence and stability of positive equilibria of system (1) in
the closed first quadrant. And we show that system (1) has a unique limit cycle for some
values of the parameters, and system (1) has not any closed orbits for some other values of the
parameters. Some numerical simulations of system (1) are given.

It is clear that the solutions of system (1) with positive initial values are positive and
bounded; and there is a hyperbolic saddle point at the origin and an equilibrium (K, 0) on the
x-axis for all permissible parameters. From (1), we can see that if there is a positive equilibrium,
then we have the equation

µx

a+ bx+ x2
−D = 0.

For the sake of simplicity, we denote d1 = (µ− bD)2 − 4aD2, d2 = µ − bD, d3 = µ−bD
2D , d4 =

µ−bD
D . After some calculation, it’s easy to check that the surface SN = {(µ, b,D, a,K) :| 0 <

d3 < K, d1 = 0} is a Saddle-Node bifurcation surface, i.e. on one side of the surface SN
system (1) has not any positive equilibria; on the surface SN system (1) has only one positive
equilibrium; on the other side of the surface SN system (1) has two positive equilibria. Thus,
system (1) has at most four equilibria: (0, 0), (K, 0), and two positive equilibria (x1, y1), (x2, y2),
where

x1 =
µ− bD − √

(µ− bD)2 − 4aD2

2D
, y1 = r

(
1 − x1

K

)
(a+ bx1 + x2

1),

x2 =
µ− bD +

√
(µ− bD)2 − 4aD2

2D
, y2 = r

(
1 − x2

K

)
(a+ bx2 + x2

2).

We also denote d0 = a+2bx1+3x2
1

b+2x1
= 2µ−

√
(µ−bD)2−4aD2

µ−
√

(µ−bD)2−4aD2
x1.

The characteristic equation of the Jacobian matrix at the equilibrium (x, y) of system (1)
is

λ2 − (a1 + b2)λ+ a1b2 − a2b1 = 0,

where a1 = r − 2 rx
K − y a−x2

(a+bx+x2)2 , a2 = x
a+bx+x2 , b1 = y µ(a−x2)

(a+bx+x2)2 , b2 = µx
a+bx+x2 −D.

From some calculation and qualitative analysis, we have the following theorem.

Fig.1. The phase portrait of system (1) when either d1 < 0 or d2 ≤ 0.

Theorem 2.1. (i) If either d1 < 0 or d2 ≤ 0, system (1) has no interior equilibrium, and
the equilibrium (0,0) is a saddle, (K,0) is a global stable node as shown in Fig.1.

(ii) If both d1 = 0 and 0 < d3 < K, system (1) has three equilibria: saddle (0,0), stable node
(K,0), and an unique positive equilibrium (x0, y0), and system (1) has not any closed orbits.
Moreover, (x0, y0) is a saddle-node when K �= d4 and a cusp when K = d4. Detailed phase
portraits can be seen from Fig.2, where x0 = d3, y0 = r(1 − x0

K )(a+ bx2 + x2
0).

(iii) If both d1 > 0 and d2 > 0, system (1) has at most four equilibria: (0, 0), (K, 0), (x1, y1)
and (x2, y2). And, if x1 ≤ K, then system (1) has only two equilibria: saddle (0,0), and stable
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(a) (b) (c)

Fig.2. The phase portraits of system (1) when (a) d3 < K < d4; (b) K = d4; (c) K > d4.

node (K,0); if x1 < K ≤ x2, then system (1) has only three equilibria: saddles (0,0) and
(K,0),focus or node (x1, y1); if K > x2, then system (1) has four equilibria: saddles (0,0) and
(x2, y2), stable node (K,0), stable (unstable) focus or node for K < d0 (K > d0).

We note that system (1) has only a unique positive equilibrium (x1, y1) when both d1 > 0 ,
d2 > 0 and x1 < K ≤ x2. The following theorems give the dynamics of system (1) in this case.

Theorem 2.2. If both b2 < 3a and x1 < K < min
{
x2, d0,

1
2 (
√

12a− 3b2 − b)
}
( or x2 = K <

min
{
d0,

1
2 (
√

12a− 3b2 − b)
}
), then system (1) has three equilibria, saddles (0, 0) and (saddle-

node, respectively ) (K, 0) , and a globally asymptotically stable equilibrium (x1, y1). The phase
portrait is given in Fig.3.

Proof. To show the globally asymptotically stability of (x1, y1), we need to prove that there
are no periodic orbits in R+ =

{
(x, y) | x ≥ 0, y ≥ 0

}
.

We make the substitution dt = (a+ bx+ x2)dτ , and then system (1) becomes

dx

dτ
= rx

(
1 − x

K

)
(a+ bx+ x2) − xy,

dy

dτ
= µxy −D(a+ bx+ x2)y. (2)

Fig.3. Phase Portrait of system (1) for b2 < 3a, x1 < K < min{x2, d0, 1
2
(
√

12a − 3b2 − b)}.

Taking Dulac function D(x, y) = x−1y−1 for system (2), then

div |(2)= ∂

∂x

(
P (x, y)D(x, y)

)
+

∂

∂y

(
Q(x, y)D(x, y)

)
=

r

Ky
(−3x2 − 2(b−K)x+Kb− a),

where

P (x, y) = rx
(
1 − x

K

)
(a+ bx+ x2) − xy,Q(x, y) = µxy −D(a+ bx+ x2)y.

It’s easy to see that 4(b−K)2 + 12(Kb− a) < 0 for 0 < K < 1
2 (
√

12a− 3b2 − b), b2 < 3a. Then
div|(2)< 0, by Dulac’s Theorem[17] and the local stability of (x1, y1), and so (x1, y1) is globally
asymptotically stable.

Theorem 2.3. If d1 > 0, d2 > 0, and x2 > K > d0, then system (1) has at least one stable
limit cycle in R+ = {(x, y) | x ≥ 0, y ≥ 0}.
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Proof. Taking a line L1 = {(x, y) | x = K, y > 0} at (K, 0), we can see the direction of the
vector field of system (1) on L1 is from right to left (see Fig.4.).

The periodic orbit of system (1) must be in the domain E1 if it exists , where E1 = {(x, y) |
0 < x < K, 0 < y < +∞}.

Now we consider the solution
(
x∗(t), y∗(t)

)
of system (1) passing the point B(K, yb), where

yb > y1. Let L2 = {(x, y) | x = x1, y > 0}. It is easy to see that the trajectory
(
x∗(t), y∗(t)

)

must intersect L2 at C(x1, yc)(yc ≥ yb).
Let L3 = {(x, y) | 0 ≤ x ≤ xc, y = yc} which begins at point C(x1, yc) and ends at point

D(0, yc). The direction of the vector field of system (1) on L3 is a downward one (see Fig.4.).
Therefore the trajectory of system (1) in the interior of the region Ω = OABCDO can’t cross
the boundary of Ω.

On the other hand, we can see that equilibrium (x1, y1) is an unstable focus or node for
K > d0. By the Poincaré-Bendixson Theoem there is at least a stable limit cycle.

Fig.4. The phase portrait of system (1) when d1 > 0, d2 > 0, and x2 > K > d0.

According to Theorem 2.2 in [15], we have

Theorem 2.4. If the following conditions are satisfied:

(i) d1 > 0, d2 > 0, and d0 < K < min
{
x2, x1 + a

x1+b

}
,

(ii) if G(xQ) ≤ G(xP ), sup
0≤x≤xQ

(
G(x) + Φ(φ−1F (x))

) ≥ G(xP ); if G(xP ) < G(xQ),

sup
xP ≤x≤0

(G(x) + Φ(φ−1(F (x))) ≥ G(xQ); where G(x) =
∫ x

0
g(s)ds, Φ(y) =

∫ y

0
φ(s)ds, φ−1

is the inverse function of φ(y), and points xP , xQ and functions F (x), g(x) and φ(y) are
as indicated in the proof.

Then system (1) has a limit cycle in R+, and it is stable.

Proof. By Theorem 2.3, system (1) has limit cycles, which are located in E1. Thus, we only
need to consider system (1) in E1 =

{
(x, y) | 0 < x < K, 0 < y < +∞}

.
Let x− x1 = −X, y − y1 = y1(eY − 1) and xdt = (a+ bx+ x2)dτ , and still denote X,Y , τ

by x, y, t. Then system (1) becomes

dx

dt
= φ(y) − F (x),

dy

dt
= −g(x), (3)

where φ(y) = y1(ey − 1), F (x) = r
(
1 − x1−x

K

)
(a+ b(x1 − x) + (x1 − x)2) − y1, and

g(x) = Dx(x−x1+x2)
x1−x ,x1 − k < x < x1, −∞ < y < +∞.

Note that the existence of limit cycles of system (1) in E1 is equivalent to that of system
(3) in E2 =

{
(x, y) | x1 −K < x < x1, −∞ < y < +∞}

.
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When d0 < K < min{x2, x1 + a
x1+b}, the isocline φ(y) = F (x) of system (3) in E2 has two

humps, namely, a local maximum and a local minimum, and intersects the x-axis at P,O and
Q (see Fig.5).

Let

φ(y) =y1(ey − 1) = F (x) =
rxf(x)
K

,

f(x) =x2 + (K − b− 3x1)x+ (3x2
1 + 2(b−K)x1 + a−Kb). (4)

Now considering function f(x), when d0 < K < min
{
x2, x1 + a

x1+b

}
, we have

f(x1) > 0, f(0) < 0, f(x1 −K) > 0;

thus the equation f(x) = 0 has two roots in E2: one is positive xQ, the other is negative xP ,
such that

φ(y) = F (x) =
rx(x− xP )(x− xQ)

K
, x1 −K < xP < 0 < xQ < x1. (5)

Obviously, φ(y) = F (x) has a local maximum and a local minimum in E2.

Fig.5. Illustrating the proof of Theorem 2.4.

According to Theorem 2.2 in [15], we know that system (1) has at most one limit cycle, and
it is stable if it exists. Hence, we complete the proof.

It is easy to find some values of the parameters which satisfy the conditions in Theorem
2.4. In what follows, we show that one limit cycle is in R+ by numerical simulation as in Fig.6,
which is in consistence with Theorem 2.4. In this case, we take r = 5, k = 0.7, D = 1, µ =
1, b = 0.001, a = 0.1.

Theorem 2.5. If d1 > 0, d2 > 0, and K ≥ d4 , then system (1) has no limit cycles in R+.

Proof. Note that the existence of limit cycles of system (1) in E3 is equivalent to that of
system (3) in E4 for K > x2 .

When K ≥ d4,we have

f(x1) < 0, f(0) < 0, f(x1 − x2) ≤ 0

where f(x) is the same as that of Theorem 2.4. So the isocline φ(y) = F (x) of system (3) has
no humps in E4, see Fig.7.

On the contrary,we suppose that system (3) has a limit cycle Γ in E4, which intersects the
y-axis at A and B.(see Fig.7.)

Now we define the function

W (x, y) =
∫ x

0

g(s)ds+
∫ y

0

φ(s)ds;
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Fig.6. A unique limit cycle of system (1) by numerical simulation for
r = 5, K = 0.7, D = 1, µ = 1, b = 0.001, a = 0.1.

Fig.7. Portrait for showing no limit cycle for K ≥ d4.

then ∮

Γ

dW (x, y) = 0. (6)

On the other hand ,
∮

Γ

dW (x, y) =
∫

ÂB

dW +
∫

B̂A

dW =
∫

ÂB

F (x)dy +
∫

B̂A

F (x)dy < 0. (7)

Obviously (6) contradicts (7). Thus there is no limit cycle in R+ for system (1).

Theorem 2.7. If d1 > 0, d2 > 0, and K >
2µ+

√
(µ−bD)2−4aD2

µ+
√

(µ−bD)2−4aD2
x2, then system (1) has four

equilibria : two saddles (0, 0),(x2, y2), a stable node (K, 0) and an unstable equilibrium (x1, y1).
And system (1) has not any closed orbits and homoclinic loops, that is , it exhibits the so-called
“paradox of enrichment”. The phase portrait is shown in Fig.8.

Proof. Suppose that system (1) has a homoclinic loop. Then the homoclinic loop is unstable.
In fact, the saddle quantity of system (1) at (x2, y2) is given by

σ0 =
∂P (x2, y2)

∂x
+
∂Q(x2, y2)

∂y
=

rx2(2x2 + b)
K(a+ bx2 + x2

2)

[
K − 2µ+

√
(µ− bD)2 − 4aD2

µ+
√

(µ− bD)2 − 4aD2
x2

]
,
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Fig.8. The phase portrait of system (1) for d1 > 0, K >
2µ+

√
(µ−bD)2−4aD2

µ+
√

(µ−bD)2−4aD2
x2.

where
P (x, y) = rx(1 − x

K
) − xy

a+ bx+ x2
, Q(x, y) = y

( µx

a+ bx+ x2
−D

)
.

SinceK >
2µ+

√
(µ−bD)2−4aD2

µ+
√

(µ−bD)2−4aD2
x2, σ0 > 0. On the other hand, the equilibrium (x1, y1),which

is unstable, is in the interior of the range surrounded by the homoclinic loop. By Poincaré-
Bendixson Theorem, system (1) has at least one limit cycle inside the homoclinic loop. But

when K >
2µ+

√
(µ−bD)2−4aD2

µ+
√

(µ−bD)2−4aD2
x2, it is easily seen K > d4. Thus, there is not any closed orbit

for system (1) by Theorem 2.6. This leads to a contradiction. Hence, there is not any limit
cycle or homoclinic orbit under the conditions of Theorem 2.7.

Remark. In the following section, we will show the existence of a homoclinic loop of system
(1) for some suitable parameter values.

3 Bifurcation of a Degenarated Equilibrium

By (ii) in Theorem 2.1, system (1) has a cusp-type equilibrium (x0, y0) when d1 = 0 and
0 < d3 < K = d4, i.e. K = d4 and K2 = 4a. In this section, we discuss the bifurcation of
the cusp (x0, y0) as the parameters vary in a small neighborhood of (µ0,K0, a0,D0, b0), where
µ0,K0, a0,D0 and b0 satisfy the following conditions

K = d4, K2 = 4a.

Now we consider the following system:

ẋ = rx(1 − x

K0
) − xy

a0 + b0x+ x2
, ẏ = y

( µ0x

a0 + b0x+ x2
−D0

)
. (8)

First we expand system (8) into a power series around the point (x0, y0). Let X = x−x0, Y =
y − y0. Then (8) can be rewritten as

Ẋ = − x0

a0 + b0x0 + x2
0

Y +
( x0y0

(a0 + b0x0 + x2
0)2

− r

K0

)
X2 + P1(X,Y ),

Ẏ = − µ0x0y0
(a0 + b0x0 + x2

0)2
X2 +Q1(X,Y ), (9)

where x0 = µ0−b0D0
2D0

, y0 = r
(
1 − x0

K0

)
(a0 + b0x0 + x2

0), P1 and Q1 are C∞ functions in (X,Y )
at least of the third order. Making the transformation

x = X, y = − x0

a0 + b0x0 + x2
0

Y,
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system (9) becomes

ẋ =y +
( x0y0

(a0 + b0x0 + x2
0)2

− r

K0

)
x2 + P̃1(x, y),

ẏ =
µ0x

2
0y0

(a0 + b0x0 + x2
0)3

x2 + Q̃1(x, y). (10)

To find the normal form of the cusp, we take

X = x, Y = y +
( x0y0

(a0 + b0x0 + x2
0)2

− r

K0

)
x2 + P̃1(x, y).

Then system (10) becomes

Ẋ = Y, Ẏ =
µ0x

2
0y0

(a0 + b0x0 + x2
0)3

X2 + 2
( x0y0

(a0 + b0x0 + x2
0)2

− r

K0

)
XY +R(X,Y ), (11)

where R is a C∞ function in (X,Y ) at least of the third order. Since

µ0x
2
0y0

(a0 + b0x0 + x2
0)3

=
rµ0a0

2(2a0 + b0x0)2
> 0,

2
( x0y0

(a0 + b0x0 + x2
0)2

− r

K0

)
= −rD0(a0 + b0x0)

a0µ0
,

− rD0(a0+b0x0)
a0µ0

< 0 for b > 0(b0 > 0) , and − rD0(a0+b0x0)
a0µ0

= 0 for b = −√
a < 0,

we can get the following theorem:

Theorem 3.1. The interior equilibrium (x0, y0) of system (8) is a cusp of codimension 2 for
b > −2

√
a and b �= −√

a, and the interior equilibrium (x0, y0) a cusp of codimension at least 3
for b = −√

a.
The parameters K and D are chosen as bifurcation parameters. Consider the following

system

ẋ =rx
(
1 − x

K0 + λ1
|
)
− xy

a0 + b0x+ x2
,

ẏ =y
( µ0x

a0 + b0x+ x2
−D0 − λ2

)
, (12)

where µ0,K0, a0, b0, and D0 are positive constants while satisfy K0 = d4 and K2
0 = 4a0, and

r is a positive constant, λ1 and λ2 are in the small neighborhood of (0,0), x and y are in the
small neighborhood of (x0, y0) =

(
µ0−b0D0

2D0
, 1

2r(2a0 + b0x0)
)
.

We expand system (12) into a power series around the point (x0, y0) and translate (x0, y0)
to the origin, and then, using an affine translation, system (12) becomes

Ẋ =
r

4
λ1 + b1(λ1) + Y +

[ x0y0
(2a0 + b0x0)2

− r

K0
+

r

4a0
λ1 + b3(λ1)

]
X2 + B̂(X,Y, λ1),

Ẏ =
x0y0

2a0 + b0x0
λ2 + c1(λ1) +

(rx0

2a0
λ1 − λ2 + b2(λ1)

)
Y + c2(λ1, λ2)X

+
[ µ0x

2
0y0

(2a0 + b0x0)3
+ c3(λ1)

]
X2 + Ĉ(X,Y, λ1, λ2), (13)

where B̂, Ĉ are C∞ functions in variables (X,Y) at least of the third order and the coefficients
depend smoothly on λ1 and λ2, c1, c2 and c3 are smooth functions of their variables . Let

x = X, y =
r

4
λ1 + b1(λ1) + Y +

[ x0y0
(2a0 + b0x0)2

− r

K0
+

r

4a0
λ1 + b3(λ1)

]
X2 + B̂(X,Y, λ1).
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Then system (13) becomes

ẋ =y,

ẏ =
x0y0

2a0 + b0x0
λ2 + ĉ1(λ1, λ2) +

(rx0

2a0
λ1 − λ2 + b2(λ1)

)
y + ĉ2(λ1, λ2)x

+
[ rµ0a0

2(2a0 + b0x0)2
+ ĉ3(λ1, λ2)

]
x2

−
[ r(a0 + b0x0)
x0(2a0 + b0x0)

− r

2a0
λ1

− 2b3(λ1)
]
xy + R̂(x, y, λ1, λ2), (14)

where ĉi, (i = 1, 2, 3) are smooth functions of (λ1, λ2), R̂ is a C∞ function in variables (λ1, λ2)
at least of the third order with respect to (x,y) and the coefficients depend smoothly on λ1 and
λ2. Using the method in the proof of Lemma 3.2 in [11] , system (14) can be rewritten as

ẋ =y,

ẏ =
x0(2a0 + b0x0)2

a0µ0
λ2 + φ1(λ1, λ2) + φ2(λ1, λ2)x

+
[ rx0

2a0
λ1 − λ2

√
rµ0a0

2(2a0+b0x0)2

+ φ3(λ1, λ2)
]
y + x2

−
[ r(a0+b0x0)

x0(2a0+b0x0)√
rµ0a0

2(2a0+b0x0)2

+ φ4(λ1, λ2)
]
xy +R(x, y, λ1, λ2), (15)

where φ1, φ2 and φ3 are smooth functions in variables (λ1, λ2) at least of the second order, φ4

is a smooth function of λ1 and λ2 at least of the first order, and R is a C∞ function in variables
(x, y) at least of the third order and the coefficients depend smoothly on λ1 and λ2. Let

X = x+
1
2
φ2(λ1, λ2), Y = y.

System (15) becomes

Ẋ = Y, Ẏ = γ1 + γ2Y +X2 − γ3XY +Q(X,Y, λ1, λ2), (16)

where

γ1 =
x0(2a0 + b0x0)2

a0µ0
λ2 + ψ1(λ1, λ2),

γ2 =
rx0
2a0

λ1 − λ2
√

rµ0a0
2(2a0+b0x0)2

+ ψ3(λ1, λ2), γ3 =
r(a0+b0x0)

x0(2a0+b0x0)√
rµ0a0

2(2a0+b0x0)2

+ ψ4(λ1, λ2),

in which ψ1, ψ3, ψ4 are C∞ functions in (λ1, λ2) and Q is a C∞ function in (X,Y ) .
By the theorems in [3] and [4], we get the local representations of bifurcation curves in a

small neighborhood of the origin as follows:
1. Saddle-node bifurcation curve SN =

{
(γ1, γ2) | γ2 = 0, γ1 �= 0

}
,

2. Hopf bifurcation curveH =
{
(γ1, γ2) | γ2 = − r(a0+b0x0)

x0(2a0+b0x0)

√
−2(2a0+b0x0)2γ1

rµ0a0
= − r(a0+b0x0)

x0√
−2

rµ0a0
γ1, γ1 < 0

}
,
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Fig.9. The bifurcation curves of system (12) for b > −2
√

a and b �= −√
a.

3. Homoclinic bifurcation curve HL = {(γ1, γ2) | γ2 = −5
7

r(a0+b0x0)
x0

√
−2

rµ0a0
γ1, γ1 < 0}.

The bifurcation curves in a small neighborhood of the origin in the (γ1, γ2) are shown in
Fig.9, and the bifurcation curves divide the parameter plane into four parts:I,II, III and IV.

Remark 3.2. In Fig.10, by using numerical simulation we show the Hopf bifurcation and the
existence of homoclinic orbit. We fix µ = 3.1, b = D = a = r = 1 and change K: K = 1.5, 1.7,
and 2.5 in Fig.10(a), (b) and (c), respectively. A and B are two positive equilibria, A is a focus
which is stable (unstable) in Fig.10(a) (Fig.10(b) and (c)), B is a saddle. From Fig.10(a) and
(b) we can see the occurence of Hopf bifurcation, and the existence of homoclinic orbit can be
seen from Fig.10(a) and (c), where the relative locations of the stable manifold and unstable
manifold for the saddle B are opposite, then there must exist some K(1.5 < K < 2.5) such that
the stable manifold and unstable manifold coincide.
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Fig.10. Hopf bifurcation and the existence of homoclinic orbit of system (1) by numerical simulation for

µ = 3.1, b = D = a = r = 1. (a) For K = 1.5. (b) For K = 1.7. (c) For K = 2.5.

Remark 3.3. When b = −√
a < 0, then system (11) can be written as

Ẋ = Y, Ẏ =
rµ0

2a0
X2 +R(X,Y ), (17)

where R is a C∞ function in the x, y plane. In this case, system (1) has a degenerate cusp with
codimension 3. In [16] Zhu, Campbell and Wolkowicz carried out bifurcation analysis of this
degenerate cusp with codimension 3.

4 Biological Explanation.

The biological implications for these two different classes of equilibria (the boundary equilibrium
(K,0) on the x-axis , and the interior equilibria (x1, y1) and (x2, y2) in R+) and the limit cycle
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and the homoclinic orbit are quite different, and indicate different results of the interaction of
a predator-prey system (1).

(1) If the trajectories tend to boundary (extinction) equilibrium (K,0) as t → +∞, then it
means that the predator population will ultimately tend to extinction, and the prey population
with a different initial condition will ultimately get to the balance density K.

(2) If the trajectories tend to the stable equilibrium (x1, y1) at t→ +∞, then it means that
the predator-prey interactions will ultimately tend to the balance behavior.

(3) If there are three or four equilibria, then it means that the trajectory with a different
initial condition will ultimately tend to a different equilibrium.

(4) If the stable limit cycle around the equilibrium (x1, y1) arises, then this indicates that
the predator coexists with the prey with oscillatory balance behavior.

(5) If the homoclinic orbit or cusp bifurcation arises as the bifurcation parameters are varied,
then the biological phenomena are very complex and interesting.
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