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1 Introduction

Let (X1, Y1), · · · , (Xn, Yn) be independent copies of Rd+1 random vectors (X,Y ) where X ∈ Rd

with density f . Let m(x) = E(Y |X = x) be the conditional mean function and σ2(x) =
Var(Y |X = x) be the conditional variance function of Y given X = x. For any x, u ∈ Rd, let
V (u|x) = E[{Y − m(x)}2|X = u]. Clearly, V (u|x) = σ2(u) + {m(u) − m(x)}2.

The Nadaraya-Watson estimator for m(x) at any given x is

m̂(x) =
∑

Kh(x − Xi)Yi
∑

Kh(x − Xi)
, (1.1)

where Kh(t) = K(t/h), K is a kernel function and h is the smoothing bandwidth.
This paper is concerned with the construction of point-wise confidence intervals for m(x)

at any fixed x in conjunction with the Nadaraya-Watson estimator when the design points
are random. Confidence intervals based on the asymptotic normality of the Nadaraya-Watson
estimator and the percentile bootstrap are reviewed in [11]. Hall[8] considers coverage accuracy
of the percentile-t bootstrap confidence intervals in the case of fixed design. A dominate issue in
constructing confidence intervals in nonparametric curve estimation is the bias associated with
the curve estimators. The bias has to be reduced to make the confidence intervals appropriate
as confidence intervals for m(x). One way of reducing the bias is to undersmooth by using a
smaller bandwidth h; another way is to conduct explicit bias correction as used in [8].

The paper is aimed at studying coverage accuracy of the confidence intervals based on the
normal approximation and the empirical likelihood by developing Edgeworth expansions for the
coverage probabilities. It is shown that the empirical likelihood confidence interval is Bartlett
correctable.

Manuscript received January 13, 2001.
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The paper is structured as follows. Section 2 introduces confidence intervals originally for
the mean of the Nadaraya-Watson estimator rather than m(x). Section 3 reveals a sufficient
and necessary condition in converting the confidence intervals to those for m(x). The condition
implies that a smaller than usual bandwidth should be used. The coverage accuracy of the
confidence intervals is studied in Section 4 by developing Edgeworth expansions. Section 5
considers the Bartlett correction for the empirical likelihood confidence interval. Some proofs
are given in Appendices.

2 Confidence Intervals for E{m̂(x)}

We outline two types of confidence intervals in nonparametric regression. The first type, based
on the traditional normal approximation, exist already. The one based on the empirical likeli-
hood is new. We first introduce some notations and assumptions.

The Nadaraya-Watson estimator m̂(x) in (1.1) satisfies

n∑

i=1

Kh(x − Xi){Yi − m̂(x)} = 0.

Here a single bandwidth h is used, implying that the design points have the same scale in all
directions. When this is not true, the method of Fukunaga[6] can be used to re-scale the design
points.

We assume the following regularity conditions:
(i) K is a d-dimensional compactly supported symmetrical kernel which is a probability

density itself satisfying
∫

uiujK(u)du = σ2
i (K)δij where δij is the Kronecker delta;

(ii) h → 0 and nhd → ∞ as n → ∞; and there is an s ≥ d + 2 such that E|Y |s < ∞,
nh2s → 0 and ns−2hsd → ∞;

(iii) f and m have continuous partial derivatives up to the 2-nd order in a neighborhood of
x, and f(x) > 0;

(iv) V (u) = V (u|x) has continuous first derivatives in a neighborhood of x and V (x|x) > 0.
Define ωi = Kh(x − Xi){Yi − m(x)} and, for positive integers j,

ωj = (nhd)−1
n∑

i=1

ωj
i , µj = E(ωj) and Rj(K) =

∫

Kj(u)du.

The first type of confidence intervals is based on the fact that

(nhd)1/2
[
m̂(x) − E{m̂(x)}]

√
V (x)R2(K)/f(x)

d−→ N(0, 1), (2.1)

which was derived by Schuster[17] by applying the Central Limit Theorem. Let z 1+α
2

be the
1+α

2 -quantile of N(0, 1). Then, a normal approximation based confidence interval for E{m̂(x)}
with nominal coverage α, as given in [11] (p.100), is

Iα,nor = m̂(x) ± z 1+α
2

√

R2(K)V̂ (x)/{nhdf̂(x)}, (2.2)

where f̂(x) = (nhd)−1
n∑

i=1

Kh(x − Xi) is the kernel estimator for the design density f and

V̂ (x) = (nhd)−1
∑

Kh(x − Xi){Yi − m̂(x)}2/f̂(x). (2.3)
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The second type of confidence intervals considered is based on the empirical likelihood. The
empirical likelihood, introduced by Owen[14,15], is a computer intensive statistical method like
the bootstrap. However, instead of using an equal probability weight n−1 for all data values,
the empirical likelihood chooses the weights, say pi on the i-th data points (Xi, Yi), by profiling
a multinomial likelihood under a set of constraints. The constraints reflect the characteristics
of the quantity of interests. A review of the empirical likelihood is given in [10].

Let p1, . . . , pn be nonnegative numbers adding to unity. The empirical likelihood at θ, a
candidate value of E{m̂(x)}, is defined as

L(θ) = sup∑
piKh(x−Xi)(Yi−θ)=0

n∏

i=1

pi .

After using a Lagrange multiplier to find the optimal pi, the log empirical likelihood ratio is

�(θ) = −2 log{L(θ)nn} = 2
∑

log
{
1 + λ(θ)Kh(x − Xi)(Yi − θ)

}
,

where λ(θ) satisfies

n∑

1

Kh(x − Xi)(Yi − θ)
{
1 + λ(θ)Kh(x − Xi)(Yi − θ)

}−1 = 0. (2.4)

An empirical likelihood confidence interval with nominal coverage of α, denoted as Iα, is

Iα,el = {θ | �(θ) ≤ cα}, (2.5)

where cα = z2
1+α

2
is the αth quantile of the χ2

1 distribution. A special feature of the empirical

likelihood confidence interval is that no explicit variance estimator, like the one in (2.3) for V (x),
is required in its construction as the studentizing is carried out internally via the optimization
procedure.

The two confidence intervals introduced in this section are for E{m̂(x)} which is m(x) plus
the bias of the regression estimator. To convert the confidence intervals into those of m(x), the
bias has to be corrected. We consider the approach of undersmoothing in this paper.

3 A Sufficient and Necessary Condition

In this section we show that, subject to Conditions (i) to (iv), a sufficient and necessary condition
for the two confidence intervals to have correct asymptotic coverage is

nhdµ2
1 = o(1). (3.1)

The coverage probability of Iα,nor for m(x) is P{|Tn| ≤ z 1+α
2
} where

Tn =
m̂(x) − m(x)

√

R2(K)V̂ (x)
/{nhdf̂(x)}

.

An expansion of Tn is

Tn =
{
R2(K)f(x)V (x)

}−1/2√
nhdω1 + op

{
(nhd)1/2(nhd)−1/2 + h2

}

=Z + (nhd)1/2µ
−1/2
2 µ1 + op

[
(nhd)1/2

{
(nhd)−1/2 + h2

}]
, (3.2)
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where Z = (nhd)1/2(ω1−µ1)µ
−1/2
2 is asymptotically distributed as N(0, 1). Thus, Tn is asymp-

totically N(0, 1) if and only if (nhd)1/2µ
−1/2
2 µ1 = o(1). As µ2 = E(ω2) = f(x)V (x)R2(K) +

o(1) �= 0 almost surely under Condition (iii), the above condition is equivalent to (3.1).
To evaluate the coverage of Iα,el, we notice from (2.4) that

∑

ωi − λ(θ)
∑ ω2

i

1 + λ(θ)ωi
= 0. (3.3)

Put Zn = max
i

|ωi| = ◦(n1/s), then

|λ(θ)|
1 + |λ(θ)|Zn

ω2 = Op{(nhd)−1/2 + h2}.

As Zn = ◦(n1/s) almost surely, and nh2s → 0 and ns−2hsd → ∞ as assumed in Condition
(ii), it may be shown, similarly to that given in [15], that

λ(θ) = Op{(nhd)−1/2 + h2}.

From (3.3), we have λ(θ) = (ω2)−1ω1 + Op

[{(nhd)−1/2 + h2}2
]
. Thus,

�(θ) = nhdµ−1
2 ω2

1 + ◦p

[
nhd

{
(nhd)−1/2 + h2

}2]

=
{
Z + (nhd)1/2µ

−1/2
2 µ1

}2 + ◦p

[
nhd

{
(nhd)−1/2 + h2

}2]
.

Now the same argument as used after (3.2) implies that �(θ) is asymptotically χ2
1 if and only if

(3.1) is true.
Note that µ1 = 1

2h2B(f,m,K, x) + O(h4) where

B(f,m,K, x) =
d∑

i=1

σ2
i (K)

{
f(x)m′′

i (x) + 2f ′
i(x)m′

i(x)
}
. (3.4)

Here f ′
i(x), m′

i(x) and m′′
i (x), respectively, are the partial derivatives with respect to xi, the

i-th component of x = (x1, · · · , xn). When d = 1, B(f,m,K, x) = σ2
1(K){f(x)m′′(x) +

2f ′(x)m′(x)}. If B(f,m,K, x) �= 0, then (3.1) is equivalent to

h = o{n−1/(d+4)}. (3.5)

Note that n−1/(d+4) is the standard order for the smoothing bandwidth in curve estimation
when an nonnegative kernel is used. Thus, (3.5) implies undersmoothing.

Remark. If we take h = O(n−l) with 1/(d + 4) < l < (s − 2)/(sd) for s ≥ d + 2, then
condition (ii) and condition (3.5) are both satisfied.

4 Coverage Accuracy

In studying the coverage accuracy of the two types of confidence intervals, we assume two extra
conditions:

(v) h = o{n−1/(d+4)}, and
(vi) nhd(log n)−1 → ∞ and E|Y |15 < ∞.
Condition (v) implies undersmoothing. Condition (vi) is needed to develop Edgeworth

expansions for the coverage probabilities.
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We need the following notations for describing the coverage errors:

Vj(u|x) = E
[{Y − m(x)}j |X = u

]
and Vj(x) = Vj(x|x) for j = 3, 4;

µms = h−dE
[
Km

h (x − Xi){Yi − m(x)}s
]

for positive integers m > 1 and s;

and Hj are the Hermite polynomials of the j-th order.
It may be shown that

µ3 = V3(x)f(x)R3(K) + ◦(1), µ4 = V4(x)f(x)R4(K) + ◦(1),
µ23 = V3(x)f(x)R2(K) + ◦(1), µ24 = V4(x)f(x)R2(K) + ◦(1),
µ34 = V4(x)f(x)R3(K) + ◦(1).

(4.1)

The coverage accuracy of the confidence intervals is studied one by one in the following subsec-
tions.

4.1 Coverage Accuracy of Iα,nor

Let φ(·) be the density of the standard normal distribution. Derivations deferred until Appendix
A.1 give the following Edgeworth expansion for the coverage probability of Iα,nor:

P{m(x) ∈ Iα,nor} =α − {
b1(z 1+α

2
)nhd+4 + b2(z 1+α

2
)h2 + b3(z 1+α

2
)(nhd)−1

}
φ(z 1+α

2
)

+ O
[{

(nhd)1/2h2 + (nhd)−1/2
}4 + {h2 + (nhd)−1}3

]
, (4.2)

where b1(u) = µ2
1µ

−1
2 H1(u) and the definitions for b2(u) and b3(u) are given in (A.3); they are

all functions of µj ,µij , Vj(x) and Hj(z 1+α
2

).
Hiding the argument of bj , the optimal h that minimizes the leading coverage error term is

h�
nor =

{−b2 +
√

b2
2 + d(d + 4)b1b3

(d + 4)b1

} 1
d+2

n− 1
d+2 ,

when b2
2 + d(d + 4)b1b4 > 0. Choosing h = O(n− 1

d+2 ) as prescribed above,

P{m(x) ∈ Iα,nor} = α − O(n− 2
d+2 )

with a coverage error of O(n− 2
d+2 ).

4.2 Coverage Accuracy of Iα,el

The derivation deferred until Appendix 2 shows that the coverage probability of Iα,el admits
the following Edgeworth expansion:

P{m(x) ∈ Iα,el} =α −
{

nhdµ2
1µ

−1
2 +

(1
2
µ−2

2 µ4 − 1
3
µ−3

2 µ2
3

)

(nhd)−1
}

z 1+α
2

φ(z 1+α
2

)

+ O
{
nhd+6 + h4 + (nhd)−1h2 + (nhd)−2

}
. (4.3)

Comparing (4.3) with (4.2) we see that both Iα,nor and Iα,el have the same term nhdµ2
1µ

−1
2

in their coverage errors. However, the leading coverage error term of Iα,nor has an extra term
b2h

2, and its coefficient of the (nhd)−1 term is more complicated than that of Iα,el.
Using the expressions for µj given in (3.4) and (4.1), the dominant coverage error term

becomes
{
η1nhd+4 + η2(nhd)−1

}
z 1+α

2
φ(z 1+α

2
), (4.4)
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where

η1 =
1
4

B2(f,m,K, x)
V (x)f(x)R2(K)

, η2 =
3
2

V4(x)R4(K)
f(x)R2

2(K)V 2(x)
− 1

3
V 2

3 (x)R2
3(K)

f(x)V 3(x)R3
2(K)

.

The optimal h that minimizes (4.4) is

h�
el =

[
dη2(x)/{(d + 4)η1(x)}]1/(2d+4)

n−1/(d+2), (4.5)

which is of the same order as h�
nor given earlier. In practice, the plug-in estimates for h�

nor and
h�

α,el can be obtained by estimating the unknown quantities involved.

Choosing h = O(n− 1
d+2 ), P{m(x) ∈ Iα,el} = α−O(n− 2

d+2 ). So, the coverage error is of the
order n−2/(d+2) and is of the same order of magnitude as Iα,nor.

5 The Bartlett Correction

The results in the last section show that the optimal coverage errors of both Iα,nor and Iα,el are
of the same order of n−2/(d+2). What we are going to show in this section is that the coverage
error of the empirical likelihood confidence interval can be reduced by Bartlett correction.

The Bartlett correction is a novel and elegant property of classical parametric likelihood.
A simple adjustment in the mean of the likelihood ratio statistic will improve the coverage
accuracy of the likelihood ratio based confidence intervals by one order of magnitude. It has
been shown by DiCiccio, Hall and Romano[5], Chen[1,2,3] and Chen, Hall[4] that the empirical
likelihood possesses the Bartlett property for a wide range of situations. Thus far the only
known case where the empirical likelihood does not admit the property is that found by Jing
and Wood[13] by restricting the distributions within the exponential family.

We will show that in the current situation of random design regression the empirical likeli-
hood admits the Bartlett property. It may be shown that

E{�(θ0)} = 1 + (nhd)−1β + o{nhd+4 + (nhd)−1},

where θ0 is the true value of the parameter and

β = µ−1
2 (nhdµ1)2 +

1
2
µ−2

2 µ4 − 1
3
µ−3

2 µ2
3. (5.1)

Notice that β appears in the leading coverage error term in (4.3). On the basis of (4.3) and
choosing h = O(n− 1

d+2 ), we have

P
[
�{m(x)} ≤ cα{1 + β(nhd)−1}]

=P
[
χ2

1 ≤ cα{1 + β(nhd)−1}] − (nhd)−1βc1/2
α {1 + β(nhd)−1}1/2

· φ[
c−1/2
α {1 + β(nhd)−1}1/2

]
+ O{(nhd)−2}

=P (χ2
1 ≤ cα) + (nhd)−1βz 1+α

2
φ(z 1+α

2
) − (nhd)−1βz 1+α

2
φ(z 1+α

2
) + O{(nhd)−2}

= α + O(n− 4
d+2 ). (5.2)

Therefore, the empirical likelihood is Bartlett correctable in the current case of nonparametric
regression.

Let Iα,bcel =
[
θ | �(θ) ≤ cα{1 + β(nhd)−1}] be the Bartlett corrected empirical likelihood

confidence interval. From (5.2), we see that Iα,bcel has coverage errors of n−4/(d+2) if h is chosen
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to be O(n− 1
d+2 ). In practice, the Bartlett factor β has to be estimated which in turn requires

the estimation of µj for j = 1, 2, 3 and 4. Estimators for µj , j ≥ 2, can be defined as

µ̂j = (nhd)−1
∑

Kh(x − Xi)j{Yi − m̂(x)}j .

An estimator for µ1 has to involve the estimation of derivatives of f and m as required in
the definition of B(f,m,K, x) given in (3.4). To avoid estimating the derivatives, we define
β0 = 1

2µ−2
2 µ4 − 1

3µ−3
2 µ2

3 which is only part of β given in (5.1). A partial Bartlett correction
confidence interval is

Iα,pbcel =
[
θ | �(θ) ≤ cα{1 + β0(nhd)−1}].

It may be shown that

P
[
�{m(x)} ≤ cα{1 + β0(nhd)−1}] = α − nhdµ2

1µ
−1
2 z 1+α

2
φ(z 1+α

2
) + O{(nhd)−2}.

That is, the partial Bartlett correction only removes part of the leading coverage error term,
and still has the term involving the bias µ1. However, the term can be of a smaller order by
further reducing h to be of a smaller order than n− 1

d+2 , see [3] for an implementation in the
density estimation.

Appendix. Derivations

A.1. Derivation of (4.2)

Let Q = (nhd)−1
∑

Kh(x − Xi){Yi − m(x)}2 − f(x)V (x). A Taylor expansion for Tn is

Tn =
m̂(x) − m(x)

√

R2(K)V̂ (x)/{nhdf̂(x)}

=µ
−1/2
2

√
nhd

{

ω1 − Qω1

2f(x)V (x)
+

ω3
1

2f2(x)V (x)
+

3
8

Q2ω1

f2(x)V 2(x)

}

+ Op

[{
(nhd)−1/2 + h2

}3]

=̂µ
−1/2
2

√
nhdg(ω1, Q) + Op

[{
(nhd)−1/2 + h2

}3]
.

Let µ = (µ1, µQ) and k1, k2, · · · be the cumulates of µ
−1/2
2

√
nhdg(ω1, Q). Using the formulae

for the cumulates given in [12] after deriving the multivariate cumulates of (ω1, Q) we obtain
that

k1 =µ
−1/2
2

{√
nhdµ1 − a1(nhd)−1/2

}

+ O
{
(nhd)1/2h4 + (nhd)1/2n−1 + (nhd)−1/2h2 + (nhd)−3/2

}
,

k2 =1 − a2h
2 − a3µ1 − µ−1

2 a4(nhd)−1 + O
{
h4 + n−1 + (nhd)−2

}
,

k3 =µ
−3/2
2 a5(nhd)−1/2 + O

{
(nhd)−1/2h2 + (nhd)−3/2

}
,

k4 =µ−2
2 a6(nhd)−1 + O

{
(nhd)−1h2 + n−1 + (nhd)−2

}
,

kl =O
{
(nhd)−(l−2)/2

}
for l ≥ 5,
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where

a1 =
1
2
µ−1

2 µ23R2(K), a2 =
γ(f, V,m)
2f(x)V (x)

{

1 − 1
R2(K)

}

,

a3 = µ−2
2 µ23R2(K),

a4 = µ−1
2 µ34R2(K) − 3V (x)R2

2(K) − 7
4
µ2

23µ
−2
2 R2

2(K) − µ24µ
−1
2 R2

2(K),

a5 = µ3 − 3µ23R2(K),
a6 = µ4 − 6µ34R2(K) − 6µ3µ23µ

−1
2 R2(K) + 12µ2V (x)R2

2(K)
+ 18µ2

23µ
−1
2 R2

2(K) + 3µ24R
2
2(K).

In the above definition for a2,

γ(f, V,m) =
d∑

i=1

σ2
i (K)

[
V ′′

i (x)f(x) + 2V ′
i (x)f ′

i(x) + V (x)f ′′
i (x)

]
.

The generating function for Tn1 is

M(Tn1, t) = exp(t2/2)
[

1 + k1t +
1
2
(k2 − 1)t2 +

1
6
k3t

3 +
1
24

k4t
4

+
1
2

{

k2
1t2 +

1
4
(k2 − 1)2t4 +

1
36

k2
3t6 +

1
3
k1k3t

4
}]

+ O
[{

(nhd)1/2h2 + (nhd)−1/2
}3 + {h2 + (nhd)−1}3

]
.

Converting the above generating functions, we have the following Edgeworth expansion:

P (Tn1 ≤ u) = Φ(u) − φ(u)
[

µ
−1/2
2 (nhd)1/2µ1 +

1
2
µ−1

2 nhdµ2
1H1(u)

− 1
2
a2h

2H1(u) +
{1

6
µ−2

2 a5H3(u) −
(

µ−1
2 a1 +

1
2
a3

)

H1(u)
}

µ1

+
{1

6
µ
−3/2
2 a5H2(u) − µ

−1/2
2 a1

}

(nhd)−1/2 +
{1

2
µ−1

2 (a2
1 − a4)H1(u)

+ µ−2
2

( 1
24

a6 − 1
6
a1a5

)

H3(u) +
1
72

µ−3
2 a2

5H5(x)
}

(nhd)−1
]

+ O
[{(nhd)1/2h2 + (nhd)−1/2}3 + {h2 + (nhd)−1}3

]
. (A.1)

From (A.1), we have the following Edgeworth expansion for |Tn1| for u > 0:

P (|Tn1| ≤ u) = 2Φ(u) − 1 − φ(u)
[
nhdµ2

1µ
−1
2 H1(u) − ξ1H1(u)h2

+ ξ2H3(u)h2 + {ξ3H1(u) + ξ4H3(u) + ξ5H5(u)} (nhd)−1
]

+ O
[{(nhd)1/2h2 + (nhd)−1/2}4 + {h2 + (nhd)−1}3

]
, (A.2)

where

ξ1 = γ(f, V,m){2f(x)V (x)}−1{1 − 1/R2(K)} + µ−2
2 µ23B(f,m,K, x),

ξ2 =
1
6
B(f,m,K, x){µ3 − 3µ23R2(K)}µ−2

2 ,

ξ3 = 2µ2
23R2(K)µ−3

2 − µ34R2(K)µ−2
2 + 3R2(K)/f(x) + µ24R

2
2(K)µ−2

2 ,

ξ4 =
1
12

µ−2
2

{
µ4 − 6µ34R2(K) − 8µ3µ23R2(K)µ−1

2 + 12R2(K)µ2
2/f(x)

+ 24µ2
23R

2
2(K) + 3µ2

24R
2
2(K)

}
,

ξ5 =
1
36

µ−3
2 {µ3 − 3µ23R2(K)}2.
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Using the delta method described in [9], we know that Tn has the same Edgeworth expansion
as Tn1. Replacing u with z 1+α

2
in (A.2), we have the coverage accuracy of Iα,nor is

P{m(x) ∈ Iα,nor} = α − {
b1(z 1+α

2
)nhd+4 + b2(z 1+α

2
)h2 + b3(z 1+α

2
)(nhd)−1

}
φ(z 1+α

2
)

+ O
[{

(nhd)1/2h2 + (nhd)−1/2
}4 + {h2 + (nhd)−1}3

]
,

where bj are functions of µj , µij , Vj(x) and Hj(z 1+α
2

) and are defined as

b1(u) = µ2
1µ

−1
2 H1(u), b2(u) = −ξ1H1(u) + ξ2H3(u),

b3(u) = ξ3H1(u) + ξ4H3(u) + ξ5H5(u).
(A.3)

Thus, we have obtained (4.2).

A.2. Derivation of (4.3)

Note that λ(θ) = Op{(nhd)−1/2 + h2}. By (2.4), for each integer j ≥ 1,

0 = (nhd)−1
∑

ωi

{
1 − λ(θ)ωi +

(
λ(θ)ωi

)2 − (
λ(θ)ωi

)3 + · · ·}

=
j∑

k=1

( − λ(θ)
)k−1

ωk +
{(

(nhd)−1/2 + h2
)j}

.

Similarly to (A1.3) in [4], we obtain the following Taylor expansion of �(θ):

�(θ) =(nhd)
{

ω−1
2 ω2

1 +
2
3
ω−3

2 ω3ω
3
1 +

(

ω−5
2 ω2

3 −
1
2
ω−4

2 ω4

)

ω4
1

+
(

8ω−6
2 ω3ω4 − 8ω−7

2 ω3
3 −

8
5
ω−5

2 ω5

)

ω5
1

}

+ nhd

j∑

k=5

R1kωk+1
1 + Op

[
nhd{(nhd)−1/2 + h2}j+2

]
,

where R1k denotes ω
−(2k−1)
2 multiplied by a polynomial in ω2, · · · , ωk+1, with constant coeffi-

cients.
As in [4], we may write �(θ) = {(nhd)1/2S′

j}2, where

S′
j = ω

−1/2
2

{

ω1 +
1
3
ω−2

2 ω3ω
2
1 +

(4
9
ω−4

2 ω2
3 −

1
4
ω−3

2 ω4

)

ω3
1

+
(

− 112
27

ω−6
2 ω3

3 +
49
12

ω−5
2 ω3ω4 − 4

5
ω−4

2 ω5

)

ω4
1 +

j∑

k=5

Tkωk
1

}

+ Uj

= Sj + Uj ,

where Uj = Op[{(nhd)−1/2 + h2}j+1], and Tk denotes ω
−2(k−1)
2 multiplied by a polynomial in

ω2, · · · , ωk with constant coefficients.
Observe that Sj is a function of ω1, · · · , ωj . Denote that function by sj . Put µk =

E(ωk), µ = (µ1, · · · , µj)T , u = (u1, · · · , uj)T , Vk = ωk − µk, V = (V1, · · · , Vj)T ,

dk1,···,km =
( m∏

l=1

∂

∂ukl

)

sj(u1, · · · , uj)|u=µ,

p(u) = sj(µ) +
6∑

m=1

(m!)−1
∑

k1,···,km∈{1,···,j}
dk1,···,kmuk1 · · · ukm .
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Let k1, k2, · · · be the cumulants of (nhd)1/2p(V ). After calculating the the multivariate
cumulants of V = (V1, · · · , Vj), we have

k1 = n1/2sj(µ)hd/2 − 1
6
µ
−3/2
2 µ3h

−d/2n−1/2 + O
{
(nhd)−1/2h2 + (nhd)−3/2

}
,

k2 = σ2 +
(1

2
µ−2

2 µ4 − 13
36

µ−3
2 µ2

3

)

(nhd)−1 + O
{
(nhd)−1h2 + (nhd)−2

}
,

k3 = O
{
(nhd)−1/2h2 + (nhd)−5/2

}
, k4 = O

{
(nhd)−1h2 + (nhd)−2

}
,

kl = O
{
(nhd)−(l−2)/2

}
for l ≥ 5,

where
σ2 = 1 +

1
3
µ−2

2 µ3µ1 + O(h4).

Thus we could develop a formal Edgeworth expansion for the distribution of (nhd)1/2p(V ):

P{n1/2hd/2p(V ) ≤ t}
=Φ(t) − 1

12
(nhd)−1

{
6µ−1

2 (nhdµ1)2 + 3µ−2
2 µ4 − 2µ−3

2 µ2
3

}
tφ(t)

+ (even polynomial in t)φ(t) + O
{
nhd+6 + h4 + (nhd)−1h2 + (nhd)−2

}
,

which, in turn as in [4], gives the Edgeworth expansion for �(θ) in (4.3).
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