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Abstract C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltrans-
ferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of
C3 exoenzymes are available, allowing novel insights into the structure-function relation-
ships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological
functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmaco-
logical tools to study the cellular functions of Rho GTPases. Recent studies, however, in-
dicate that the functional consequences of C3-induced ADP-ribosylation are more com-
plex than previously suggested. In the present review the basic properties of C3 exoen-
zymes are briefly summarized and new findings are reviewed.

Introduction

Many bacterial ADP-ribosyltransferases are potent bacterial protein toxins and important
virulence factors. After cellular uptake caused by highly efficient cell entry mechanisms,
they modify eukaryotic target proteins with great specificity and often grossly affect bio-
logical functions of their targets. These properties of the toxins are the reason for their use
as cell biological and pharmacological tools (Aktories 2000). Particularly successful phar-
macological tools are ADP-ribosyltransferases of the C3 family, which modify Rho GT-
Pases. In the 1990s, C3 exoenzymes turned out to be very valuable experimental keys to
understand the wide array of diverse regulatory functions of Rho GTPases. In hundreds of
papers, C3 exoenzymes have been widely employed as cell biological tools to elucidate
the cellular functions of Rho GTPases. This holds true despite the fact that these ADP-ri-
bosyltransferases are rather poorly taken up by eukaryotic targets cells and their roles as
virulence factors are still not well defined. Here, we will briefly review the basic proper-
ties of these ADP-ribosyltransferases and will focus on novel findings on the functional
consequences of C3-induced ADP-ribosylation and discuss recent reports on the structure
and function of the enzymes.
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Recent reviews about C3 exoenzymes focused on different aspects of the transferases
(Aktories et al. 1992; Aktories 1997a,b; Boquet et al. 1998; Just et al. 2001; Narumiya and
Morii 1993; Wilde and Aktories 2001). The exciting follow-up of the initial major discov-
eries in the field of Rho GTPases, including the role of C3 in this process, was recently
vividly communicated by Ridley and Hall (Ridley and Hall 2004).

Sources of C3-like ADP-ribosyltransferases

C3 exoenzymes are produced by different types of Gram-positive obligate and facultative
pathogens. So far, seven C3-like isoforms have been described, which are produced by
Clostridium botulinum, Clostridium limosum, Bacillus cereus and Staphylococcus aureus.
C3 was first identified as a product of Clostridium botulinum types C and D (Aktories et
al. 1987, 1988; Rubin et al. 1988). Later it was found that two isoforms are produced by
these Clostridia, which are about 65% identical in their amino acid sequences (Nemoto et
al. 1991). They have been termed C3bot1 and C3bot2. At least the gene for C3bot1 is lo-
cated on the same phage, which also encodes C. botulinum neurotoxins type C (Popoff et
al. 1990). C3lim is produced by Clostridium limosum (Just et al. 1992) and is about 63%
identical with C3bot1. Bacillus cereus produces C3cer (Just et al. 1995a), which is about
30% identical with C3bot1. Three C3 isoforms have been described, which are produced
by Staphylococcus aureus (C3stau1, 2, and 3). These exoenzymes are about 35% identical
with C3bot1 and 66%–77% identical between each other. The C3stau exoenzymes are
also termed EDINs (Epidermal differentiation inhibitor) (Inoue et al. 1991; Wilde et al.
2001b; Yamaguchi et al. 2001) (Fig. 1a, b).

Structure–function analysis of C3-like exoenzymes

C3-like ADP-ribosyltransferases are enzymes of about 25 kDa, which all share the same
activity in the sense that they mono-ADP-ribosylate RhoA, B, and C at the same site at as-
paragine 41 (Aktories et al. 1989; Braun et al. 1989; Chardin et al. 1989; Just et al. 1992,
1995a; Quilliam et al. 1989; Sekine et al. 1989; Sugai et al. 1992; Wilde et al. 2001b). The
bacterial exoenzymes possess no receptor-binding or translocation domain and, consist ex-
clusively of the catalytic domain, which possess ADP-ribosyltransferase and like many
other ADP-ribosyltransferases also NAD glycohydrolase activity (Fig. 1a). Most impor-
tant for understanding of the structure-function-relationship of C3-like transferases were
the analysis of the crystal structures of C3bot either bound or unbound to NAD (Han et al.
2001; M�n�trey et al. 2002). These studies showed that the exoenzymes are very similar
in structure and folding and share almost all functionally pivotal residues despite the limit-
ed primary sequence homology (some are not more than ~30% identical in their amino
acid sequences). These data also corroborated previous mutational analysis, which let to
the identification of many functionally important residues and their possible role in the
ADP-ribosylation reaction (B�hmer et al. 1996; Just et al. 1995a; Saito et al. 1995; Wilde
et al. 2002b).

The active site of C3bot (and most likely of other C3-like ADP-ribosyltransferases)
consists of a mixed a/b-fold with a b-sandwich core, consisting of a five-stranded mixed
b-sheet perpendicularly packed against a three-stranded antiparallel b-sheet. Four consec-
utive a-helices surround the three stranded b-sheet. An additional a-helix flanks the five-
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stranded sheet (Han et al. 2001). After binding of NAD, a clasping movement (“Crab-
claw” movement) of the transferase occurs which involves the structural elements a5, b2,
b7 and b8, and a3 to enclose the substrate (Evans et al. 2003; M�n�trey et al. 2002)
(Fig. 2). A novel structural motif, termed “ADP-ribosylating-toxin-turn-motif” (ARTT-
motif) was proposed to be involved in the ADP-ribosylation reaction and suggested to be
typical for all Rho-modifying C3-like transferases and also for the structurally related ac-
tin-modifying ADP-ribosyltransferases like Clostridium botulinum C2 toxin (Han and
Tainer 2002). In C3bot, this motif consists of residues 167–170 (note that the counting is

Fig. 1 Structure of C3 transferase. a Scheme of the primary sequence of C3bot showing the catalytic gluta-
mate, residues of the ADP-ribosylation toxin-turn-turn (ARTT) loop, which is involved in protein substrate
recognition, and PN-loop, which is involved in binding of phosphates of NAD. The STS-motif, which is
conserved within the family of ADP-ribosyltransferases (C3stau isoforms possess an STQ motif), and sev-
eral arginine residues involved in interaction with NAD are shown. b The sequences of the seven C3-like
ADP-ribosyltransferases are given. Clostridium botulinum C3 transferase type I (C3bot1; Acc.Nr. P15879),
Clostridium botulinum C3 transferase type II (C3bot2; Acc.Nr. Q00901), Clostridium limosum C3 transfer-
ase (C3lim; Acc.Nr. Q46134), Bacillus cereus C3 transferase (C3cer; Acc.Nr. AJ429241.1), Staphylococcus
aureus C3 transferase A, B, and C (C3stau1; Acc.Nr P24121; C3stau2; Acc.Nr BAC22946, C3stau3;
Acc.Nr;. NP_478345 ; also termed EDIN A,B,C).

Rev Physiol Biochem Pharmacol (2004) 152:1–22 3



4 Rev Physiol Biochem Pharmacol (2004) 152:1–22



without the signal sequence of 40 residues) for “turn 1” and residues 171–174 for “turn 2”
(Figs. 1a, b, 2a). Turn 1 contains a conserved aromatic residue (C3botPhe169). The aromat-
ic side chain points to the surface of the molecule and was suggested to recognize the sub-
strate RhoA via hydrophobic patches around the acceptor amino acid residue Rho Asn41.
The exchange of this critical residue to alanine or lysine in C3stau2 leads to a decreased
binding of RhoA and abolishes the ADP-ribosyltransferase activity of these mutants (Wil-
de et al. 2002b). In the second turn, two residues (C3botGln172 and C3botGlu174) play im-
portant roles in enzyme activity. The side chain of C3botGln172 forms hydrogen bonds with
the O2’-hydroxyl of the nicotinamide ribose (Fig. 1b), and is thought to be involved in the
positioning of the ternary C3-NAD-Rho complex on turn 2. The side chain of C3botGlu174

stabilizes the formation of an oxocarbenium transition state that arises during the enzy-
matic reaction (Han et al. 2001; M�n�trey et al. 2002; Oppenheimer 1994) (Fig. 2c). Ex-
change of either of these glutamine or glutamate residues to any other amino acids results
in inhibition of the asparagine-modifying ADP-ribosyltransferase activity (B�hmer et al.
1996; Evans et al. 2003; M�n�trey et al. 2002; Saito et al. 1995; Wilde et al. 2002b).

Recently, it was reported that the ARTT-motif of C3bot undergoes conformational
changes upon NAD-binding. While NAD is bound to C3bot, the complete motif is orien-
tated into the inside of the protein and participates in NAD binding (M�n�trey et al. 2002).
This form of NAD-binding was also observed in other ADP-ribosyltransferases (Bell and
Eisenberg 1996; Choe et al. 1992; Han et al. 1999; Li et al. 1996). In C3stau2, the resting
(NAD free) position of the ARTT loop is similar to the NAD bound state in C3bot. C3 ex-
oenzymes produced by S. aureus are unique as compared to the other C3 transferases, be-
cause the loop before the ARTT loop possesses an additional two residues. These two re-
sidues are suggested to be responsible for positioning the ARTT loop of C3stau isoforms
in a conformation identical not to that of the NAD-free C3bot1 structure but to that of the
C3bot1-NAD-bound conformation. Therefore, conformational changes subsequent to
NAD binding are minor in this region (Evans et al. 2003).

Deduced from the crystal structure of C3bot bound to NAD, a further structural ele-
ment, termed phosphate-nicotinamide-loop (PN-loop), was suggested to be involved in
NAD-binding (Fig. 1b). It covers residues C3bot 137–146 and is also located between
strands b3–b4. At least one critical arginine within this loop is conserved in all C3-like
ADP-ribosyltransferases. It was reported that this residue forms hydrogen bonds to the
phosphate groups of NAD (Fig. 1b). Consequently, exchange to aspartate in C3bot or
C3cer abolished both NAD glycohydrolase activity and ADP-ribosyltransferase activity of
this mutant (M�n�trey et al. 2002; Wilde et al. 2003).

Enzyme activity and substrate specificity

Like typical ADP-ribosyltransferases, C3 exoenzymes split NAD into ADP-ribose and
nicotinamide and transfer the ADP-ribose moiety onto Rho protein (Fig. 3). C3 modifies

Fig. 2 Structure of C3bot. a The crystal structure of C3bot shows the ADP-ribosylation toxin-turn-turn
(ARTT) motif. This motif is suggested to be involved in the interaction with the protein substrate, e.g.,
RhoA (C3 was designed by Swiss-Pdb Viewer 3.7 (database code 1G24). The insert exhibits the putative
interaction of C3stau with RhoA. Data are from Han et al. (Han et al. 2001). b Scheme of the folding of
C3bot (see text). c Residues, which participate in the binding of NAD to C3bot. Note that the counting of
residues is without the signal sequence.
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asparagine residue (Asn41) of the target protein (Sekine et al. 1989). This is unique for
this family of ADP-ribosyltransferases. Many bacterial ADP-ribosyltransferases modify
arginine residues, including cholera toxin, Pseudomonas exoenzyme S and T, and the actin
modifying binary ADP-ribosyltransferases like C. botulinum C2 toxin. Cysteine is modi-
fied by pertussis toxin (Aktories 2000; Barbieri et al. 2002).

C3-like ADP-ribosyltransferases are characterized by their substrate specificity, be-
cause they modify preferentially Rho A, B, and C. Other Rho GTPases are poor sub-
strates, including Rac and Cdc42. Recently, it was reported that the transferases C3stau1
and C3stau2 (EDIN A and EDIN B) from S. aureus ADP-ribosylate also RhoE and Rnd3.
RhoE and Rnd3 are isoforms, identical except for a 15-residue N-terminal extension on
Rnd3, that are antagonistic to RhoA (Guasch et al. 1998; Foster et al. 1996; Nobes et al.
1998; Riento et al. 2003). They bind GTP but lack GTPase activity. However, the kinetics
of the modification of RhoE/Rnd3 is much more slower than that to modify RhoA (Wilde
et al. 2001b).

The targets of C3 exoenzymes are molecular switches

RhoA, B, and C, the main targets of C3 exoenzymes, belong to the Rho subfamily of low
molecular mass GTP-binding proteins, which comprises more than twenty related GTP-
binding proteins, including RhoA, B, C, Rac1, 2, 3, Cdc42, RhoD, Rnd1, Rnd2 (RhoN),
RhoE/Rnd3, RhoF (Rif), RhoG, RhoH (TTF) and TC10, TCL, Chp, and Wrch (Jaffe and
Hall 2002; Nagata et al. 1998; Ridley 2000; Wennerberg and Der 2004). Most of them,
e.g., the prototypes RhoA, B, C, Rac, and Cdc42 cycle between an activated GTP-bound
form and an inactive GDP-bound form (Fig. 4). The exchange is tightly controlled by reg-
ulating proteins: (a) guanine nucleotide exchange factors (GEFs; more than 60 have been
identified) which activate Rho by promoting the exchange of GDP to GTP, (b) GTPase-

Fig. 3 ADP-Ribosylation of RhoA by C3. C3 transferases ADP-ribosylate RhoA at position Asn41. The
acceptor amino acid is located in or very close to the so-called effector region (switch I-region) of RhoA.
Rho structure was designed by Rasmol version 2.7.2 (database code 1FTN).
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activating proteins (GAPs; more than 70 have been identified), which inactivate Rho pro-
teins by increasing their intrinsic rate of GTP-hydrolysis, and (c) guanine nucleotide dis-
sociation inhibitors (GDIs; only three are known), which sequester the isoprenylated Rho
proteins in the cytosol. The active GTP-bound form of Rho GTPases, which is mostly lo-
cated at the cell membrane, interacts with multiple cellular effectors, including different
protein kinases, lipid kinases, phospholipases and a still growing number of adaptor pro-
teins, involved in a large array of distinct cellular functions, including regulation of the
cytoskeleton (Burridge and Wennerberg 2004), cell and smooth muscle contraction, pha-
gocytosis, polarity, activation of transcription, cell cycle progression, and cell transforma-
tion (Bishop and Hall 2000; Etienne-Manneville and Hall 2002; Jaffe and Hall 2002;
Wennerberg and Der 2004).

Rho GTPases have been identified to be the preferred target of several other bacterial
toxins and effectors. They can be activated by deamidation (E. coli cytotoxic necrotizing
factors, CNF1, CNF2, and CNFy) (Flatau et al. 1997; Hoffmann et al. 2004; Schmidt et al.
1997) and by transglutamination (Bordetella dermonecrotizing toxin DNT) (Masuda et al.
2000) at Gln63/61 in Rho and Rac/Cdc42, respectively. Moreover, Rho GTPases are acti-
vated by Salmonella SopEs, which possess GEF activity and mimic the regulatory func-
tions of endogenous activators (Hardt et al. 1998). An inactivation of Rho GTPases is
caused by mono-O-glucosylation by the large clostridial cytotoxins, including toxins A
and B of Clostridium difficile (Just et al. 1995b), lethal toxin from Clostridium sordellii
(Just et al. 1996), and a-toxin from Clostridium novyi (Selzer et al. 1996). Yersinia YopE
(von Pawel-Rammingen et al. 2000), Salmonella SptP (Fu and Gal�n 1999), or Pseudomo-
nas aeruginosa ExoS (Goehring et al. 1999) inactivate Rho GTPases by mimicking en-

Fig. 4 RhoA GTPase cycle. Rho GTPases are inactive in the GDP bound form and activated by GDP/GTP
exchange, which is facilitated by guanine nucleotide exchange factors (GEFs). In the active form RhoA in-
teracts with a large array of effectors to induce various cellular effects indicated. The active form of RhoA
is terminated by hydrolysis of the bound GTP, which is facilitated by GTPase-activating proteins (GAPs).
The inactive form is extracted from the membrane by guanine nucleotide dissociation inhibitor (GDI),
which keep the Rho GTPases in their inactive form in the cytosol.
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dogenous GAP activity. Moreover, it has been shown recently that Yersinia YopT acts as
a protease, which cleaves Rho-GTPases at the C-terminal isoprenylated cysteine to inacti-
vate the GTPase (Shao et al. 2002, 2003).

Functional consequences of the ADP-ribosylation of Rho

The ADP-ribosylation of RhoA (B, C) occurs at asparagine-41 (Sekine et al. 1989), which
is part of or at least located in close vicinity to the switch-1 region (residues 28–40/41) of
the GTPase (Fig. 3). The modification renders Rho biologically inactive (Paterson et al.
1990). The switch-1 region adopts different conformations depending on the nucleotide
bound to the GTPase and is the molecular basis for the conduction of signals downstream.
The inactivation of Rho by C3 exoenzyme-catalyzed ADP-ribosylation can be easily mon-
itored by redistribution of actin filaments and depolymerization of stress fibers (Chardin et
al. 1989; Paterson et al. 1990; Wiegers et al. 1991). ADP-ribosylation of Rho has only mi-
nor effects on the nucleotide binding, intrinsic, and GAP-stimulated GTP hydrolase activi-
ty. Also binding of ADP-ribosylated Rho with effector proteins, e.g., protein kinase N or
Rho kinase (Sehr et al. 1998) and phospholipase D (Genth et al. 2003b) is possible
(Fig. 5). Moreover, ADP-ribosylated RhoA is still able to activate its effectors (Genth et
al. 2003a). However, this activation appears to depend on the fact that it is already in the
active form before ADP-ribosylation. ADP-ribosylation appears to prevent the conforma-
tional changes occurring with activation of Rho proteins (Genth et al. 2003b). In line with
this notion is the finding that activation of ADP-ribosylated Rho by GEFs (e.g., Lbc) is in-
hibited (Sehr et al. 1998) (Fig. 5b). Importantly, ADP-ribosylated RhoA seems to be trap-
ped in the Rho/GDI-complex (Genth et al. 2003a). This was studied with a simple mem-
brane filtration assay. The unmodified RhoA/GDI complex (mass ~45 kDa) is not able to
pass a 30-kDa cut-off membrane filter. In the presence of phosphatidylinositol 4,5-bis-
phosphate (PIP2), the complex dissociates and releases RhoA (~20 kDa) and GDI
(~24 kDa), which are able to pass the membrane filter. After ADP-ribosylation, however,
PIP2 is not able to dissociate the RhoA/GDI-complex, indicating a tight interaction after
modification of Asn41 by C3 (Fig. 5c). In line with the apparent increase in the affinity
between modified RhoA and GDI, ADP-ribosylated RhoA is exclusively found in the cy-
tosolic fraction of C3-treated cells. ADP-ribosylation reduces the binding of RhoA to
membranes (Fujihara et al. 1997; Genth et al. 2003a). Taken together, inhibition of activa-
tion of ADP-ribosylated Rho by GEFs and sequestration of ADP-ribosylated RhoA in the
GDI-complex are most likely the causes of C3-induced blockade of Rho-dependent sig-
naling (Fig. 6).

Nonenzymatic actions of C3 exoenzymes

Recently, it was reported that C3-like exoenzymes interact directly with other small GTP-
binding proteins not belonging to the Rho subfamily of GTPases. Wilde and coworkers
showed that C3 exoenzymes from C. botulinum and C. limosum bind with high affinity
(kD ~10 nM, for C. limosum) to RalA (Wilde et al. 2002a) without modifying the GTPase
by ADP-ribosylation. Ral is a member of the Ras subfamily of small GTPases and occurs
in two isoforms, RalA and B, which share ~35% amino acid identity to RhoA. Ral has
been implicated in several cellular processes, e.g., Ras-mediated cell transformation (Feig
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Fig. 5 Functional consequences of ADP-ribosylation of RhoA. a ADP-ribosylation of RhoA at Asn41 has
no major effect on the interaction of the GTPase with the RhoA effector protein kinase N (PKN). Under
control conditions, only the active GTP-form (here the GTPgS-form) but not the inactive GDP-form of
RhoA is precipitated by the Rho-binding domain (RBD) of protein kinase N (PKN). In the experiment
shown, this RBD-domain was coupled to Sepharose beads and used for precipitation. After ADP-ribosyla-
tion, which can be monitored by the shift of RhoA to an apparent higher molecular mass, RhoA is still able
to interact with PKN (data from Sehr et al. 1998). b ADP-ribosylation decreases the rate of activation by
the GEF protein LBC. The activation of RhoA was followed by the release of the fluorescently labeled
mantGDP from RhoA to allow binding of GTP. Therefore, activation of RhoA causes decrease in fluores-
cence. Pretreatment of RhoA with C3 reduces the rate of RhoA activation (data from Sehr et al. 1998). c
ADP-ribosylation increases the binding of RhoA to GDI. In the cytosol, Rho is in a complex with GDI.
Therefore, only the complex is detected by gel or membrane filtration. Under control conditions phosphati-
dylinositol bisphosphate (PIP2) causes dissociation of this complex. Accordingly, Rho released from the
complex is detected. After ADP-ribosylation PIP2 is not able to induce dissociation of the complex. There-
fore, ADP-ribosylated Rho stays in the cytosol in a complex with GDI. (Data from Genth et al. 2003a).
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et al. 1996; Urano et al. 1996), cytoskeleton rearrangement (Jullien-Flores et al. 1995;
Ohta et al. 1999; Park and Weinberg 1995), and vesicle trafficking, e.g., by regulating the
exocyst via binding to sec5 (Moskalenko et al. 2001). Ral acts on phospholipase D1
(PLD1) (Jiang et al. 1995; Luo et al. 1998) and it is suggested that both RalA and PLD1
modulate receptor endocytosis and vesicle transport. Binding of C3 to RalA inhibits its
ADP-ribosyltransferase activity to modify RhoA (Fig. 7). Similarly, interaction of C3 with
RalA reduces the ability of the GTPase to activate PLD1 in vitro, suggesting that the bind-
ing of the exoenzyme to Ral occurs in a region of the GTPase, which is important for the
interaction with its effectors. Moreover, interaction of C3 with Ral prevents glucosylation
of Ral by Clostridium sordellii lethal toxin in intact cells (Wilde et al. 2002a). Because
glucosylation of Ral occurs in the functionally important switch-1 region, it is likely that
interaction of C3 with this region also affects Ral functions in intact cells. Such a seques-
tration of Ral might be relevant at high concentration of C3, which can be achieved by mi-
croinjection or overexpression of C3 (see below). In contrast to the exoenzymes from C.
botulinum, C. limosum, and B. cereus, the transferase C3stau2 from S. aureus is not capa-
ble of binding to RalA.

Recently another C3 effect, which is independent of the ADP-ribosyltransferase activi-
ty has been reported. It is well-known that Rho proteins regulate neurite outgrowth (see
below). Several studies showed that C3 prevent neurite retraction induced by activated
RhoA (see below). Surprisingly, Ahnert-Hilger and coworkers found that C3bot but not
other C3 exoenzymes promote the axonal growth and branching independent of the en-
zyme activity (Ahnert-Hilger et al. 2004). Moreover, this effect depended on the extracel-
lular application of the exoenzyme. Intracellularly expressed C3bot did not induce axon
growth. They propose a novel neurotrophic function of C3bot independent of its transfer-
ase activity.

Fig. 6 Summary of the functional consequences of the ADP-ribosylation of RhoA by C3. RhoA is ADP-ri-
bosylated by C3 in the GDI-free form. 1 ADP-Ribosylation inhibits the activation of RhoA by GEF. 2
ADP-ribosylated Rho is still able to interact at least with some effectors such as kinases. 3 The nucleotide
binding and the GTP hydrolysis is almost not affected by ADP-ribosylation. 4 ADP-ribosylation decreases
membrane-binding of RhoA. 5 Binding of ADP-ribosylated RhoA to GDI is increased. Therefore, ADP-ri-
bosylated RhoA will remain in the inactive form in the cytosol.

10 Rev Physiol Biochem Pharmacol (2004) 152:1–22



Pathophysiological role of C3

Although much is known about the cellular functions of Rho GTPases, the roles of C3-
like transferases in pathogenicity are not at all understood (Fig. 8). An action of C3 exoen-
zymes on the immune system of the eukaryotic target organism is most likely. Some of
these effects have been already mentioned. Inhibition of immune cell functions including
cytotoxicity of lymphocytes (Lang et al. 1992), adhesion (Nemoto et al. 1996), migration
and invasion of lymphocytes (Stam et al. 1998; Verschueren et al. 1997), and leukocytes
(Laudanna et al. 1996, 1997) by C3bot have been demonstrated. Rho GTPases have been
proven to be important components of signal pathways used by antigen receptors, cyto-
kine, and chemotaxins receptors to regulate the immune response (Heath and Holifield
1991; Henning and Cantrell 1998; Laudanna et al. 1996; Prepens et al. 1996; Price et al.
1995; Wojciak-Stothard et al. 1998). Moreover, Rho proteins participate in the barrier
functions of epithelial cells (Nusrat et al. 1995; Vouret-Craviari et al. 1998) and in wound
healing (Santos et al. 1997). However, considering the poor cell accessibility of C3 exoen-
zymes, an important question remains: how do these specific and potent agents get to their
site of action? At least two possibilities are feasible. Recently, it was shown that pore-
forming toxins appear to act as a delivery system for bacterial proteins. Madden and
coworkers (Madden et al. 2001) reported that Streptococcus pyogenes uses streptolysin O,
a cholesterol-dependent cytolysin, to translocate S. pyogenes NAD-glycohydrolase SPN
into the target cells. This method of target-specific translocation appears to be comparable
with the type-III secretion system frequently found in gram negative bacteria. Considering
the fact that many of the bacteria, which synthesize C3 exoenzymes, also produce pore-
forming agents, it is feasible that a similar mechanism is functional with these pathogens.

Fig. 7 Ral protein inhibits C3-in-
duced ADP-ribosylation of
RhoA. a RhoA was ADP-ribosy-
lated by C3 with [32P]NAD in
the presence of various small
GTPases (Rac, Cdc42, Ras, Rap,
and Ral). Only Ral inhibited the
ADP-ribosylation of RhoA. b
Time course of ADP-ribosylation
of RhoA in the presence and ab-
sence of Ral. Ral caused an im-
mediate inhibition of the modifi-
cation of RhoA. (Data from Wil-
de et al. 2002a).
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The other possibility is based on recent findings that more pathogens than previously sug-
gested are capable of invading host cells. This also applies to Staphylococci (Lowy 2000;
Mempel et al. 2002). Moreover, it was suggested that the pathogens enter the cytosol of
target cells (Bayles et al. 1998). This implies that the bacterium is able to release the Rho-
ADP-ribosylating enzyme directly into the cytosol, where its protein target is localized
(Wilde et al. 2001a; G.S. Chhatwal et al., unpublished data).

C3-like exoenzymes as pharmacological tools

Because C3-like ADP-ribosyltransferases are highly specific for Rho GTPases, they are
established pharmacological and cell biological tools to study the physiological functions
of Rho GTPases. On the other hand, C3-like ADP-ribosyltransferases lack a specific re-
ceptor binding and translocation domain and, therefore, their cellular uptake is rather poor.
Due to this fact, the toxins have to be applied in high concentrations and/or for long incu-
bation periods. Quite often the toxins were introduced into target cells by microinjection
(Paterson et al. 1990; Watanabe et al. 1997). Another approach to overcome this problem
is the use of C3-toxin chimeras. Aullo et al. (Aullo et al. 1993) fused C3bot to diphtheria
toxin. DC3B, a fusion protein of C3 and the binding and translocation domain of diphthe-
ria toxin, has a high affinity for the DT receptor, but apparently enters the target cell by a
mechanism different from the typical pathway of diphtheria toxin. Because the action of
this fusion toxin is limited to cells with receptors for diphtheria toxin, other chimeras were
constructed. Very efficient is a fusion toxin, which is based on the binary C2 toxin from
Clostridium botulinum. C2 toxin consists of the actin-ADP-ribosylating enzyme compo-
nent C2I and the binding and translocation component C2II, which are both separated pro-
teins (Aktories et al. 1986; Barth et al. 2002; Ohishi et al. 1980). After proteolytic activa-
tion of C2II, the activated C2II monomers oligomerize to heptamers (Barth et al. 2000)
and upon binding of C2I to C2II, both components are internalized by receptor-mediated
endocytosis. The N-terminal part (C2IN) of C2I, which alone is sufficient for the interac-
tion with the binding component C2II, was fused to full-length ADP-ribosyltransferases
C3lim or C3stau, respectively (Barth et al. 1998; Wilde et al. 2001b). This chimeric toxin
increases the potency of C3 several hundred-fold (Meyer et al. 2000; Valderrama et al.
2000; Vischer et al. 2000; Wahl et al. 2000). Because the binding component of C2 toxin

Fig. 8 The role of C3 as a viru-
lence factor is not clear. Howev-
er, Rho GTPases (including other
members of the family) have
been shown to be involved in
several processes, which are im-
portant for innate and acquired
immunity, including adhesion in-
vasion and endocytosis of im-
mune cells, migration, superox-
ide anion production (at least
true for Rac), interaction of T-
cells with antigen-presenting
cells (APC), cytokine production,
and epithelial permeability (see
also Table 1).
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appears to bind to complex and/or hybrid carbohydrates present on all vertebrate cells
(Eckhardt et al. 2000), all these cells are sensitive towards the fusion toxin. Also the adap-
tor domain of the enzyme component and the binding component of iota toxin, which are
similar to C2 toxin, have been effectively used for delivery of C3-like toxins into cells
(Marvaud et al. 2002).

Recently, it was reported that C3bot could be transported into cells by adding short
peptides to the C-terminal end of the exoenzyme. For this purpose short sequence of the
human immunodeficiency virus transcription activator Tat was used (Park et al. 2003;
Sauzeau et al. 2001). The transport of C3bot into cells can also be accomplished by fusing
the third helix of the Antennapedia homeodomain protein from Drosophila to C3bot. In
addition, short proline-rich peptides and highly basic arginine-rich peptides were C-termi-
nally fused to C3 exoenzyme to facilitate the uptake of the transferase (Winton et al.
2002).

Another method to use C3-specific inhibition of Rho GTPases is the intracellular ex-
pression of the gene (Hilal-Dandan et al. 2004). Transgenes based on the thymocyte-spe-
cific lck promoter have been used for expression of C3 in thymus. Transgenic mice
showed maturational, proliferative, and cell survival defects during T-cell development
(Henning et al. 1997). Recently, a transgenic mouse model expressing C3 exoenzyme in a
lens-specific manner was utilized (Maddala et al. 2004). Under transcriptional control of
the lens-specific alphaA-crystallin promoter mice, expressing the C3 exoenzyme trans-
gene, exhibited selective ocular defects, including cataract and microphthalmia (Rao et al.
2002).

In the following paragraph, cell biological effects, which are observed with the “C3
tool,” are briefly summarized. Quite early studies showed that treatment of Vero cells with
C3bot induces morphological changes characterized by rounding up of the cells with con-
comitant destruction of stress fibers (Chardin et al. 1989). The same findings were ob-
tained with many other cell types and with different C3-like ADP-ribosyltransferases.
Many of the classical studies on the functions of Rho GTPases performed in the laboratory
of Alan Halls depended on the usage of C3 (Paterson et al. 1990; Ridley et al. 1992;
Ridley and Hall 1992).

After C3 treatment, actin-staining by rhodamine-phalloidin usually reveals loss of
stress fibers; treated cells remain in contact via small extensions. After removal of toxin
from the medium, cells are still viable and the phenotype reverses after a few hours to
days by neosynthesis of Rho (Barth et al. 1999). The reversal appears to be especially fast
with the C3–C2I fusion toxin, which appears to be degraded rapidly (Barth et al. 1999). In
many studies, C3 was shown to prevent the formation of stress fibers and focal adhesions
induced by growth factor (Hall 1994; Mackay et al. 1997; Ridley and Hall 1992) or by in-
tegrins (Barry et al. 1997). In contrast, processes that are mediated by Rac or Cdc42, like
lamellipodia and microspike formation in fibroblasts, are not affected by C3 (Kozma et al.
1995; Nobes and Hall 1995; Ridley and Hall 1992). Although C3bot induces rounding up
in adherent cells, the toxins cause cell spreading in monocytes (Aepfelbacher et al. 1996)
and in T cells (Borroto et al. 2000).

C3bot was frequently used as a tool to study the role of Rho in cell motility, migration
and cell invasion (see Table 1). The exoenzyme was successfully applied in studies on the
regulatory function of Rho GTPases in neurite outgrowth, branching, and neuroregenera-
tion. Similarly the role of Rho GTPases in the control of phospholipase D and in phospho-
lipid metabolism was studied with C3. The role of Rho GTPases in transcriptional activa-
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tion was another important topic, which was frequently addressed with C3 as a tool. More-
over, C3 was successfully employed in delineation of the role of Rho in the signaling of
various heptahelical receptors to the actin cytoskeleton, phospholipases, and the nucleus
via heterotrimeric G proteins. Especially important was C3 in studies on the functions of
Ga12/13. Finally, C3 was studied in cell division and apoptosis (for references see Table 1).

Conclusion

Our information about C3 ADP-ribosyltransferases, their structures and mode of actions
has increased enormously in recent years. We do understand a lot about the functional
consequences of the ADP-ribosylation of Rho GTPases, when C3 is applied as a tool.
However, additional potentially important functions and properties of C3 have been de-
scribed recently, which are not clearly defined or not really understood at present, includ-
ing the high affinity interaction with Ral and the action as a neurotrophic factor. More-
over, many open questions remain concerning the pathogenic role of C3 exoenzymes.
With respect to further progress in the structure function analysis, it would be of major
importance to solve the crystal structure of C3 in the complex with its Rho substrate.
Hopefully, we will get this information in the near future.
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