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ABSTRACT

Let X be a smooth connected projective manifold, together with an snc orbifold divisor �, such that the pair
(X,�) is log-canonical. If KX + � is pseudo-effective, we show, among other things, that any quotient of its orbifold
cotangent bundle has a pseudo-effective determinant. This improves considerably our previous result (Campana and Păun
in Ann. Inst. Fourier. 65:835, 2015), where generic positivity instead of pseudo-effectivity was obtained. One of the new
ingredients in the proof is a version of the Bogomolov-McQuillan algebraicity criterion for holomorphic foliations whose
minimal slope with respect to a movable class (instead of an ample complete intersection class) is positive.
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1. Introduction

In the present text we evaluate the positive directions of the tangent bundle of a pro-
jective manifold by means of the slope of its subsheaves with respect to classes of movable
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curves. The crucial property is the birational nature of this notion. We show that the pos-
itive directions of the tangent bundle are given by fibering-type contractions birationally
preserved. They are the same ones as those appearing in the Log-minimal model pro-
gram, which rest on much more delicate notions and arguments, in some sense dual to
those presented here.

Our basic tool and starting point is Theorem 1.1 below. This result is also valid
in the orbifold context, considerably extending its range of applicability. The arguments
we use lead to positivity/negativity properties of tensor powers of orbifold cotangent
bundles. In this article, we work in characteristic zero exclusively. Classical results on
rational curves are known, and thus quoted here, only when the orbifold divisor is zero.

Let X be a projective manifold, and let F ⊂ TX be a holomorphic foliation. Given
a movable class α ∈ Hn−1,n−1(X,R) on X, the condition: μα,min(F) > 0 means that the
inequality of intersection numbers:

(1) c1(Q).α > 0,

holds for any non-zero quotient F →Q→ 0.
Our first main result is:

Theorem 1.1. — Let X be projective smooth, and let F ⊂ TX be a foliation such that

μα,min(F) > 0 for some movable class α. Then F is an algebraic foliation and the closure of its

leaves are rationally connected.

The algebraicity statement is the movable version of the Bogomolov-McQuillan alge-
braicity criterion [7], where the class α is a complete intersection class [C] = [H]n−1 of
(very) ample hypersurfaces. The condition (1) in this case means that the restriction F |C
is ample. The proof given here follows the ideas from [7], strengthened by the theory of
semi-stability with respect to movable classes introduced and developed in [18]. A main
difference with [7] is that we do not restrict to movable curves of the given class. The
failure of Mehta-Ramanathan in this context would anyhow prevent from doing this.

The rational connectedness statement is obtained by a simple and direct combina-
tion of several results: the existence of a ‘relative rational quotient’ for any fibration, the
pseudo-effectivity of the canonical bundle of its base by [25], and Theorem 3.4 below,
asserting (in a more refined version) the pseudo-effectivity of the relative canonical bun-
dle of a fibration having generic fibres with pseudo-effective canonical bundle. The slope
considerations are central in this proof, as well as their birational preservation in the case
of movable classes.

This proof radically differs from the previous ones given in [7] and [35] in the
special case of α a complete intersection class.

Theorem 1.1 plays a crucial role in the proof of the next statement (we refer to
Theorem 4.9 in Section 4 for a more complete statement).
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Theorem 1.2. — Let X be a non-singular projective manifold, and let F be a foliation on X
having canonical singularities and such that KF pseudo-effective. For any m > 0, the determinant bundle

of any coherent, torsion-free quotient of ⊗m�1
F is pseudo-effective.

When KX is pseudo-effective, Theorem 1.2 follows directly from Theorem 1.3
below, since �1

F is a quotient of �1
X. Remark however that it is interesting in its own right,

since foliations F with KF pseudo-effective on some uniruled X′s do exist (cf. [19]). In
fact, Theorem 1.2 does not seem provable with the methods of [19], even using also [5].

Our original motivation was to establish the birational stability of the cotangent
bundle �1(X,�) of smooth log-canonical orbifold pairs (X,�) for which KX + � is
pseudo-effective (this last condition being essentially necessary).

Recall (cf. [19]) that the orbifold cotangent bundle is defined by lifting logarithmic
differentials with denominators of fractionary exponents to suitable ramified covers π :
X� → X adapted to the pair (X,�). The ramified cover π is Galois, and we denote by
G the corresponding group.

Theorem 1.3. — Let (X,�) be a smooth projective log-canonical pair, with pseudo-effective

canonical bundle KX + �. Let Q be any quotient of the tensor power ⊗mπ��1(X,�), m ≥ 1 being

any integer.

For any movable class α on X, we then have, on X�:

(2) c1(Q).π�α ≥ 0

If � = 0, and if KX is pseudo-effective, this says that the determinant of any quo-
tient of ⊗m�1

X is pseudo-effective, strengthening a fundamental result of Y. Miyaoka [41]
stating that �1

X|C is nef for any sufficiently generic complete intersection curve C ⊂ X.
In [18], Theorem 1.3 is stated1 as Theorem 1.4 when � = 0. In [19] we obtained the
analog of Miyaoka’s theorem for log-canonical orbifolds.

In order to illustrate the main ideas, we now sketch the proof of Theorem 1.3 in
case � = 0.

Assume by contradiction the existence of a sheaf Q and a movable class α as above,
such that the inequality (2) is not satisfied. By dualising, this means that the maximal
destabilising subsheaf F of TX has a positive α-slope. The algebraicity criterion of The-
orem 1.1 shows that F defines a rational map p : X ��� Z, the generic fibre of which is
the Zariski-closure of a leaf of F , and rationally connected. This contradicts the pseudo-
effectivity of KX.

If � �= 0, then the proof of Theorem 1.3 requires several constructions of foun-
dational nature. They are related to the notion of holomorphic orbifold tensors, which

1 As pointed out by A. Langer, there is a gap in the proof of Theorem 1.4 of [18]. On page 49, the reference to
Y. Miyaoka’s paper in Comment. Math. Univ. St Paul. 42 (1993), pp. 1–7 is indeed used in a context which is not covered
by this text. This does not affect the results of Sections 3 and 5 of [18]. In fact, all statements of [18] are true, as special
cases of the ones in the present text.
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is exposed in detail in Section 5. As we have already mentioned, the holomorphic ten-
sors corresponding to (X,�) are defined on suitable covers π : X� → X. An equally
important technical tool is the orbifold version of Lie bracket. We show that the orbifold
tangent bundle is closed with respect to this operation, and we derive an orbifold version
of Frobenius integrability criteria. The inverse image π�TX is not a sub-sheaf of TX�

, and
additional arguments are needed in this broader context.

The difference in the conclusions of Theorem 1.4 and Theorem 1.1 is due to the
absence of a theory of rationally connected objects in the category of orbifold pairs.

A consequence of the results we develop in orbifold setting is the following version
of Theorem 1.1, as follows.

Theorem 1.4. — Let (X,�) be a smooth projective log-canonical pair. Let F ⊂ π∗T(X,�)

be a saturated G-invariant subsheaf such that:

(1) μα,min(F) > 0,

(2) μα,min(F) > 1
2μα,max(π

∗T(X,�)/F).

The saturation of F in π∗(TX) then is equal to the π -inverse image of a coherent sheaf F ′ ⊂ TX.

Moreover, F ′ defines an algebraic foliation on X such that the restriction of KX + � to the closure F′ of

the generic leaf of F ′ is not pseudo-effective.

Structure of the text. — Section 2 recalls the notions and results needed here about the
stability with respect to a movable class, introduced in [18].

Section 3 studies the positivity properties of the relative canonical bundle of a rational
map. In particular, its degree on lifts of movable classes is preserved under modifica-
tions.This permits a reduction to ‘neat’ models of arbitrary rational fibrations.

Section 4 establishes Theorems 1.1 and 1.2.
In the next two sections we treat the orbifold version of these results.
Section 5 reviews the definition of the orbifold (co)tangent bundles. For the smooth

log-canonical pairs (X,�) considered here, these objects admit an explicit simple de-
scription on suitable ramified covers introduced by Y. Kawamata.

The notion of Lie derivative in orbifold setting is introduced here. This operator is
deduced from the lift of the Lie derivative of TX. We establish a version of the classical
Frobenius integrability criteria, in the following sense. If F� ⊂ π�T(X,�) is a saturated
and G-invariant subsheaf for which the orbifold Lie bracket vanishes, then F� is the
π -inverse image of a holomorphic foliation F on X.

Section 6 gives the proofs of Theorems 1.4 and 1.3, by combining the previous
preparatory results.

Section 7 deals with the birational stability of the orbifold cotangent bundle of (X,�)

if KX + � is pseudo-effective. This means that the numerical dimension of any sub-line
bundle L of ⊗mπ∗�1(X,�) is bounded by the numerical dimension of KX + �.

Combined in Section 8 with the work of Viehweg-Zuo [50], these results permit to
compare the variation of families of projective manifolds with ample canonical bundles
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to the canonical bundle on the base of the family. Related results by B. Taji and Popa-
Schnell are mentioned ([49] and [47]).

2. Slope and semi-stability with respect to movable classes

We will collect in this section a few results concerning the notion of slope stability
of a sheaf with respect to a movable class. They were introduced in [18]. These results
play a crucial role in the proof of our algebraicity criteria, cf. section four. See [26] for a
detailed and extended presentation.

2.1. The movable cone. — To start with, let N1(X)R be the space of numerical curves
classes on X. We recall the following notion.

Definition 2.1. — A class α ∈ N1(X)R is called movable if we have α ·D ≥ 0 for any effective

divisor D. The set of such classes form a closed convex cone denoted by Mov(X) and called the movable

cone.

A movable class is said to be rational if it belongs to N1(X)Q.

By the main result in [6], the set Mov(X) is the closed convex cone in N1(X)R

generated by the classes [C] of ‘movable curves’, where an irreducible curve is said to be
‘movable’ if it is a member of a covering algebraic family of curves on X parametrised
by an irreducible projective variety. This is also the closed cone generated by the classes
of curves of the form π�(H1 ∩ · · · ∩ Hn−1), where π : ̂X → X is a modification of the
manifold X, and the H′

j s are hyperplane sections of ̂X.
Let p : Y → X is be a generically finite map between two smooth projective man-

ifolds. If β ∈ N1(Y)R is a movable class on Y, then the p-inverse image of β is denoted by
p�(β) ∈ N1(X)R and it is defined in such a way that the projection formula holds true. Al-
ternatively, β can be represented by a closed real form of bi-degree (n−1, n−1) and then
p�(β) is the class defined by the pull-back of the said form. It is clear that p�(β) ∈ Mov(X)

as soon as we have β ∈ Mov(Y).

2.2. Slopes associated to a movable class. — Let E �= 0 be a coherent, torsion-free sheaf
on X; let detE its determinant, that is, the bi-dual of its top power. This is a line bundle
on X with first Chern class c1(E). If α ∈ Mov(X) is a movable class the α-slope μα(E) of
E is:

(3) μα(E) := c1(E).α

rk(E)

The α-semi-stability is defined as usual.

Definition 2.2. — The torsion-free coherent sheaf E is α-semistable if

(4) μα(G) ≤ μα(E)

for any non-trivial coherent subsheaf G ⊂ E .
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The α-stability (not used here) is defined in a similar manner, the inequality (4)
being strict if the rank of G is strictly smaller than the rank of E .

As showed in [18], essentially all of the properties of the classical slope-stability
theory still hold in this extended setting. A crucial exception is the Mehta-Ramanathan
theorem (see Example 4.3 below).

The construction of Harder-Narasimhan filtrations with respect to movable classes
also holds, with the same properties. We only state the results for smooth projective man-
ifolds since this is the only case needed here. As observed in [26], the theory adapts
immediately when the variety X is Q-factorial.

Definition 2.3. — Let X be a non-singular manifold, and let E be a coherent, torsion-free sheaf

of positive rank on X. We define:

(5) μα,max(E) := sup
{

μα(F) :F ⊂ E, any nonzero coherent subsheaf
}

as well as its dual version:

(6) μα,min(E) := inf
{

μα(Q) : E →Q→ 0
}

where the quotient sheaf Q in (6) is coherent, non-zero and torsion-free.

We quote next the following result.

Proposition 2.4. — [18] There exists a non-zero, coherent sheaf, unique and maximal for the

inclusion F ⊂ E such that we have

(7) μα(F) = μα,max(E).

The supremum in (5) is thus a maximum. Moreover, the sheaf F is saturated in E .

The sheaf F in Proposition 2.4 is obviously α-semistable; it is called the maximal
destabilising subsheaf.

The following simple vanishing criterion for sections of coherent sheaves in terms
of the slope function will be used here.

Lemma 2.5 ([18]). — Let E be a coherent, torsion-free sheaf.

If μα,max(E) < 0 for some movable class α, then H0(X,E) = 0.

More generally: Hom(E,E ′) = 0, if μα,min(E) > μα,max(E ′).

For example, the first claim of this lemma applies if E is α-semistable and of nega-
tive slope.

We will use the following in the proof of Theorem 2.10:

Proposition 2.6. — Let π : X′ → X a finite Galois ramified cover of group G and degree d

between complex and connected projective manifolds. Let α be a movable class on X, and let E be a torsion
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free coherent sheaf on X. We define E ′ := π∗(E) and α′ := π∗(α) the respective inverse images. Then

we have

μα,max(E) = 1
d
μα′,max

(

E ′),

and F ′ := π∗(F) is the maximal destabilising subsheaf of E ′, if F is the maximal destabilising

subsheaf of E .

Proof. — Let F ′ be the maximal destabilising subsheaf of E ′ (with respect to α′). It
is G-invariant, since so is E ′. Moreover, F ′ is saturated in E ′ by Proposition 2.4. Then we
have F ′ = π∗(F) for some torsion free coherent sheaf F on X, cf. [26] and thus we infer
the inequality d · μα,max(E) ≥ μα′,max(E ′).

Since we clearly have d · μα,max(E) ≤ μα′,max(E ′), the claim follows. �

2.3. Tensor products. — If E1,E2 be two coherent, torsion-free sheaves on X. We
denote by E1̂⊗E2 the reflexive hull (E1 ⊗ E2)

��.
The following fundamental result was established in [18] if the class α is either

rational or in the interior of Mov(X). When Ej are vector bundles, the proof given by
Matei Toma relies on the deep analytic Kobayashi-Hitchin correspondance for Gaudu-
chon metrics established by Li-Yau [39]. For α arbitrary, the proof given in [26], is treated
by reduction to this basic case.

Theorem 2.7 ([18, 26]). — Let α be a movable class on X; if Ej as above are both α-

semistable, then so is E1̂⊗E2.

The slope behaves well under tensor operations. We only mention next the few
properties used here, and we refer to the articles quoted above for a complete proof.

Proposition 2.8. — Let E,G be two torsion-free coherent sheaves, and let α be a movable class.

Then we have the following properties:

(1) The slope of the tensor product equals

μα(Ê⊗G) = μα(E) + μα(G).

(2) For each m ≥ 1 we have

μα

(

Symm(E)
)�� = mμα(E).

(3) The slope of the exterior product equals

μα

(∧2(E)
)�� = 2μα(E).

(4) Moreover, if E and G are semistable with respect to α, then the sheaves Ê⊗G, (Symm(E))��

and (∧2(E))�� are equally α-semistable.
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The following statement is established in [26] as consequence of the existence of
the Harder-Narasimhan filtration with respect to a mobile class.

Theorem 2.9 ([18, 26]). — Let E,G be two torsion-free coherent sheaves, and let α be a

movable class. Then we have

(8) μα,max(Ê⊗G) = μα,max(E) + μα,max(G),

together with the corresponding relations for μα,min. Similar identities hold true if we replace the reflexive

tensor product in (8) with (Symm E)�� or with (∧2E)��.

The results collected here are relevant in the context of the vanishing criterion we
discuss next.

2.4. A vanishing criterion: from exterior to tensor powers. — We consider the following
situation: π : X′ → X is a finite ramified Galois cover of group G between two connected
complex projective manifolds. Let E′ be a G-invariant holomorphic vector bundle on
X′, and L′ be any numerically trivial line bundle on X′. We finally consider also ample
movable classes α = Hn−1, for H varying in an non-empty open subset of the polarisation
classes on X, with α′ := π∗(α) their inverse images on X′. By [27], Proposition 6.5, these
α′s thus cover a nonempty open subset U in the cone of movable classes on X. The proof
of [27] consists in differentiating the map p : H → Hn−1, the Hard Lefschetz theorem
implying that it is submersive at any point of H (moreover, the authors also show the
injectivity of p by a ingenious use of Khovanskii-Teissier inequalities).

Theorem 2.10. — We assume that the following holds

(1) μπ∗(γ ),max(E′) ≤ 0, for any γ ∈ U.

(2) H0(X′,∧qE′ ⊗ L′) = 0, for any q > 0, and L′ ≡ 0 on X′.

Then we have

H0
(

X′,⊗mE′ ⊗ L′) = 0,

for any m > 0 and L′ ≡ 0 on X′.

Before proceeding to the proof, we remark that if E′ = π∗(E) for some vector
bundle E on X, and if H1(X,Z) = 0,2 then the hypothesis (2) above can be replaced by
the weaker hypothesis:

(2′) H0(X,∧qE) = 0, for any q > 0.

and obtain the same conclusion.

2 In particular, if the algebraic fundamental group π̂1(X) of X is trivial.
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Proof of Theorem 2.10. — Assume by contradiction that we have a non-zero section
of ⊗mE′ ⊗ L′ for some L′ ≡ 0. Then μα′,max(⊗mE′ ⊗ L′) = m.μα′,max(E′) = 0, for every
α ∈ U. There thus exists an α for which the maximal α′-destabilising subsheaf F ′ ⊂ E′

has maximum rank q > 0. Because μβ ′,max(E′) = 0 for β ′ = π∗(β) with β close to α, we
see3 that F ′ is also the β ′-maximal destabilising subsheaf of E′ (just write β = α + t.γ ,
t > 0, and replace t by −t, just as in the proof of the vanishing of a derivative in a
local maximum). Since F ′ is G-invariant, so is det(F ′), and so N.det(F ′) = π∗(L), for
some L ∈ Pic(X), if N := Card(G) = deg(π). Thus N.det(F ′).π∗(α) = π∗(L).π∗(α) =
N.L.α = 0,∀α ∈ U, and: L ≡ 0, so that, also: det(F ′) ≡ 0. Since det(F ′) ⊂ ∧qE′, we
get that H0(E′,∧qE′ ⊗ L′) �= 0, if L′ = −det(F ′). This contradicts the hypothesis 2, and
proves the theorem.

Let us show how to modify the proof in order to get the conclusion from the hy-
pothesis 2′ if E′ = π∗(E) and if H1(X,Z) = 0: in this case indeed, by Proposition 2.6,
μπ∗(α),max(π

∗(E)) = N.μα,max(E) and the maximal π∗(α)-destabilising subsheaf F ′ of
π∗(E) is the inverse image by π of the maximal destabilising subsheaf F of E. We thus
obtain F ⊂ E such that det(F) ≡ 0, so that OX

∼= det(F), because H1(X,Z) = 0, and
so: OX

∼= det(F) ⊂ ∧q(E), contradicting 2′. �

An illustration of the applications of this result is the following statement.

Corollary 2.11 ([21]). — Let (X,D) be a smooth orbifold pair with X projective smooth and

D a reduced divisor on X with simple normal crossings. Assume that:

(1) (X,D) is Fano (i.e.: −(KX + D) is ample);

(2) H0(X,�
q

X(Log(D)) ⊗ L) = 0, for q > 0 and any L ≡ 0 in Pic(X).

Then we have H0(X,⊗m�1
X(Log(D)) ⊗ L) = 0 for any m > 0 and L ≡ 0 on X.

For the proof we refer to [21].
Remark that, in general, H0(X,�

q

X(Log(D))) �= 0 for Fano pairs (X,D) as above
(as shown by (Pn,D), if D is a union of k ≤ n hyperplanes in general position, for which
h0(X,�1

X(Log(D))) = k.)

2.5. Birational invariance of slope-positive foliations. — We consider a saturated distri-
bution F ⊂ TX, and a birational morphism π : ̂X → X, where ̂X is also non-singular.
Then we get an induced distribution on ̂F ⊂ T̂X, as follows. The tangent bundle of ̂X
can be seen as subsheaf of the π -inverse image π�(TX) of the tangent bundle of X, and
we define ̂F := π�(F) ∩ T̂X.

We establish next the preservation of the slopes under birational modifications.
Although very simple, this observation is fundamental. It is also noticed in the very re-
cent article [23]. It was already stated in [18], Section 5, but not used in the context of
foliations.

3 This clever observation was communicated to us by Matei Toma.
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Lemma 2.12. — Let π : ̂X → X be a birational morphism between two smooth and connected

complex projective manifolds.

Let F ⊂ TX be a saturated distribution, and ̂F := π∗(F)∩ T̂X be its inverse image in T̂X.

Let α be a movable class on X, and α̂ := π�α be its inverse image on ̂X. Then α̂ ∈ Mov(̂X) is a

movable class on ̂X. Moreover, we have

(9) μα(F) = μα̂(̂F)

as well as μα,min(F) = μα̂,min(̂F).

Proof. — The fact that α̂ is a movable class on ̂X is a direct consequence of the
definition. We have μα(F) = μα̂(π

�F); on the other hand, det(̂F) and det(π�F) differ
by an (effective) π -exceptional divisor E on ̂X. Since α̂ · E = 0 for any such divisor, the
statement is proved. �

Remark 2.13. — In particular, both slopes in (9) are simultaneously positive, nega-
tive, or zero provided that the class α̂ is the inverse image of the movable class α on X. However, in
the other-contracting-direction, this type of preservation of slope-positivity with respect
to movable classes β and π�β on ̂X and X respectively may fail, as illustrated by the
following example. Let F be the foliation given by a generic pencil of conics on P2. The
slope of F is negative, but becomes positive on the blow-up ̂P2 of the four base-points, if
one chooses for β on ̂P2, for example the class of the strict transform of a generic mem-
ber of the given pencil of conic, or a suitable ample class. We thank J. Pereira for this
observation and for this example. This example will reappear below in the context of
Theorem 4.9.

Remark 2.14. — Let F1 ⊂ F2 be two torsion-free coherent sheaves having the
same rank (we recall that in this context, the sheaves Fi are locally free outside a subset
of co-dimension at least two, and their respective rank is defined via the associated vector
bundles). If μα,min(F1) > 0, then we equally have μα,min(F2) > 0. This is a consequence
of the fact that det(F2) = det(F1)⊗O(D) for some effective divisor D. Notice, by contrast,
that if F1 is semi-stable, F2 need not be semi-stable (see Remark 4.18).

3. Pseudoeffectivity of relative canonical bundles

Let p : X ��� Z be a dominant and connected rational map, where X and Z are
non-singular projective manifolds. In this section we define the ‘saturated’ relative canon-
ical bundle of p, and establish some of its birational positivity properties with respect to a
movable class. This relies in particular on the preceding observation that changing both
X and the birational model Z, and lifting α, the slopes of the corresponding sheaves are
preserved.
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Let X0 ⊂ X be the largest Zariski open set such that the restriction

(10) p|X0 : X0 → Z

of our given rational map p is holomorphic; in particular we have codimX(X \ X0) ≥ 2.
The map (10) above will be denoted by p0 in the sequel.

Definition 3.1. — Let KZ be any divisor on Z in the canonical class. Let p�KZ be the closure

p�
0KZ of the analytic cycle p�

0KZ of X0. The relative canonical bundle of p is

(11) KX/Z := KX − p�KZ.

We introduce next the divisor D(p) on X by:

(12) D(p) :=
∑

k

(tk − 1)Fk,

where the hypersurfaces Fk in (12) are all the irreducible divisors of X which, restricted
to X0, are mapped by p0 to divisors Gk ⊂ Z, such that p�

0Gk vanishes to the order tk ≥ 2
along Fk . It is a key object in the study of holomorphic foliations, whose definition will be
recalled next.

Definition 3.2. — A foliation on a manifold X is a coherent subsheaf F ⊂ TX enjoying the

following properties:

(i) F is closed under the Lie bracket, and

(ii) The quotient TX/F is torsion-free, i.e. F is saturated in TX.

Let X0 ⊂ X be the maximal open subset of X such that the restriction F |X0 is a
sub-bundle. We note that the codimension of the complement X \ X0 in X is at least
two, given that F is torsion-free. A leaf of F is a connected, locally closed holomorphic
sub-manifold L ⊂ X0 whose tangent bundle coincides with F , i.e. TL = F |L. A leaf L is
called algebraic if it is open in its Zariski closure.

For example, the kernel of the differential of a rational map p : X ��� Z defines a
foliation on X, whose leaves are algebraic. Even if � = 0, the relevance of the divisor
D(p) to the study of foliations is explained by the following remark 3.3. This is certainly
well-known to experts. We will not give the proof of this statement here, because the more
general orbifold version will be established in Lemma 5.12.

Remark 3.3. — Let p : X ��� Z be a dominant rational fibration, and let F be a
foliation on X such that F = Ker(dp). Let πX : ̂X → X and πZ :̂Z → Z be modifications
of X and Z, respectively, such that the following properties are satisfied:

(i) The induced map p̂ : ̂X →̂Z is regular, its discriminant locus E is a snc divisor
and so it is the inverse image p̂−1(E).
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(ii) If a component W of p̂−1(E) is p̂-exceptional, then it is also πX-exceptional.

Let ̂F be the foliation induced by F on ̂X; then we have the equality

(13) K ̂F = K̂X/̂Z − D(̂p).

modulo a divisor which is πX-exceptional, cf. Lemma 5.12 and [23]. In particular, if KX

is pseudo-effective, then so it is KF , by the crucial Theorem 3.4 below.

In the previous remark, we denote by

(14) KF := det
(

F �
)

the canonical bundle of a foliation F .
The main result of this section is the following one. A similar observation is made

in [23], Proposition 4.3 and the references there.

Theorem 3.4. — Let (X,�) be a lc pair, such that X is smooth and such that � is snc. Assume

that KX + � is pseudo-effective. Then for any rational map p as in Remark 3.3, the divisor

KX/Z + �hor − D(p)

is pseudo-effective.

In the statement Theorem 3.4 above we denote by �hor the divisor having the
same multiplicities as � on the irreducible hypersurfaces of X which project onto Y via
the map p, and zero for any other hypersurfaces.

Proof. — We shall deduce this statement from Theorem 2.11 in [19].
Consider a holomorphic birational model of p. There exists a modifications πX :

̂X → X of X for which the next properties hold:

(1) The induced map p̂ : ̂X → Z is holomorphic.
(2) The πX inverse image of � is snc.

Define the divisor ̂� by the usual formula:

(15) E1 + π�
X(KX + �) = K̂X + ̂�

where E1 is effective and πX-exceptional and (̂X, ̂�) is lc.
By Definition 3.1 we deduce that we have the equality

(16) p̂�KZ = π�
X

(

p�KZ

) + E2

where E2 is a πX-exceptional divisor.
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Combining (15) and (16) we get:

(17) E1 + π�
X(KX/Z + �) = K̂X/Z + ̂� + E2,

which is preserved when taking into account the multiplicity divisors of the maps p and p̂:

(18) E1 + π�
X

(

KX/Z + � − D(p)
) = K̂X/Z + ̂� − D(̂p) + E2.

Notice however that the divisors (Ej) in (17) and (18) may be different, but for the notation
simplicity we keep the same symbols. The point is that both of them are πX-exceptional,
and can be assumed to be effective.

Next we use the pseudo-effectivity theorem in [19], which implies that the Q-line
bundle

(19) K̂X/Z + ̂�hor − D(̂p)

is pseudo-effective on ̂X (we remark that at this point the hypothesis (X,�) is log-canonical

is used in an essential manner). The hypothesis in the statement [19] are indeed satisfied,
since for any z ∈ Z generic the restriction K̂Xz

+ ̂�|Xz
is pseudo-effective, since so is

KX + �, and thus also K̂X + ̂�.
The conclusion follows from the following simple statement.

Lemma 3.5. — Let π : ̂X → X be a modification between projective manifolds. Let ̂L,L be

line bundles on ̂X and X respectively. Assume that:

(20) ̂L = π∗L + E1

for some π -exceptional divisor E1 on ̂X. If ̂L is pseudo-effective, then so is L.

Proof. — Let γ be a movable class on X. Then π�γ is a movable class on ̂X, and
then we have

c1(̂L).π�γ ≥ 0.

By relation (20), we deduce that

c1(L).γ ≥ 0

since E1 · π�γ = 0, E1 being exceptional.
Thus L is pseudo-effective, by [6]. �

The following alternative arguments for Lemma 3.5 were kindly pointed out to
us by the referees. We reproduce them here (in arbitrary order), for the benefit of the
readers.
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• We have (π�(̂L))�� = L, as it follows immediately from the assumptions of 3.5.
Since the push-forward of a pseudo-effective class is pseudo-effective, we are done. This
has the advantage of avoiding the use of [6].

• We consider an ample line bundle ̂A := π�(A) − E on ̂X, where E is effective
and π -exceptional, and A is ample on X. Then for any couple of positive integers the
k � m the bundle k̂L + m̂A has non-identically zero sections. They are induced by the
sections of kL + mA (since E1 is exceptional), and the proof is finished.

The proof of Theorem 3.4 is therefore finished, by (18) combined with
Lemma 3.5. �

Remark 3.6. — In the statement Theorem 3.4 above, if the dominant rational map
p : X ��� Z is given, then the pseudo-effectivity of the bundle KX/Z +�hor −D(p) is in fact
equivalent to the pseudo-effectivity of K̂Xz

+ �|̂Xz
for all points z in the complement of a

Zariski closed subset of Z, cf. [19] (here we use the notations in the proof of Theorem 3.4).
From this perspective, the hypothesis “KX + � pseudo-effective” of Theorem 3.4 may
look abusive. However the point is that this hypothesis insures the pseudo-effectivity of
KX/Z +�hor − D(p) even if the rational map p is not given a-priori (and it will be the case
in what follows).

4. Algebraicity criteria for foliations

We begin this section by introducing the following notion—which maybe not stan-
dard, but it is very convenient for us.

Definition 4.1. — Let F ⊂ TX be a holomorphic foliation of rank r. We say that the foliation

F is algebraic if it is induced by a rational map i.e. F = ker(dp) generically on X, for some dominant

rational map p : X ��� Z.

If this is the case, we see that all the leaves of F are algebraic subsets of X.
The main result of this section is the following statement.

Theorem 4.2. — Let X be a smooth projective manifold, and let F be a foliation on X such

that there exists a movable class α for which we have

(21) μα,min(F) > 0.

The following assertions hold true.

(1) The foliation F is algebraic.

(2) The closure of every leaf of F is rationally connected.

If the class α is a complete intersection of ample hypersurfaces on X, and if F is
α-semistable, Theorem 4.2 is due to Bogomolov-McQuillan cf. [7], as well as Kebekus,
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Sola-Conde and Toma in [35]. We equally refer to the article by J.-B. Bost, [8], who
proves a different, but related, result in an arithmetic context. These results originate in
[28], and [7] is motivated by [41]. As already mentioned, the approach of the proof below
for claim (1) is the same as in [7]. The main difference is that we work directly on X and
not by restricting F to complete intersection curves. In this way, the Mehta-Ramanathan
theorem is not needed, and we avoid the inextricable difficulties generated by both the
singularities of F , and the singularities of covering families of movable curves at their
base loci. Notice further that the Mehta-Ramanathan theorem fails for movable curves,
cf. Example 4.3 below, already mentioned in [18]. The extension from “generic complete
intersection class” to “movable class” enlarges considerably the potential applicability.

Example 4.3. — The Mehta-Ramanathan restriction theorem is open in this mov-
able context, but might fail to hold quite drastically even for ‘strongly’ covering families of
curves on surfaces. It is indeed shown in [6], Section 7, that if S is a smooth K3-surface,
then OP(1) is not pseudoeffective on P := P(�1

S). This means that there exists on S an al-
gebraic family of irreducible curves Ct on S effectively parametrised by a quasi-projective
irreducible surface T such that, for each such curve Ct the saturation in TS of the tangent
sheaf to Ct has positive degree on Ct . Moreover, for x ∈ S generic, all but a finite number
of tangent directions of TS at x are realised by the tangent directions to the C′

t s going
through x. The proof given in [6] is quite indirect. It were interesting to have concrete
realisations of such families Ct even on special K3′s.

We shall next prove claim (1); the claim (2) will be established in Section 4.2.

4.1. Algebraicity.

Proof. — Let E ⊂ X be the singular set of the foliation F . By definition, it consists
of points where F is not a subbundle ot TX, and in particular:

(22) codimX(E) ≥ 2.

Let x ∈ X \ E. Since F is not singular at x, there exists an open set �x ⊂ X \ E together
with a submersion πx : �x → Cn−r with connected fibres such that for each y ∈ �x the
intersection Ly ∩ �x of the leaf of F passing through y with �x is given by the fibre of πx

containing y. We recall that n = dim(X) and r is the rank of the foliation F .
Thus we have a cover of the open set X \ E with open sets �x as above. Let (�i)i∈I

be a countable, locally finite cover extracted from (�x)x∈X\E. We define

˜� := ∪i∈I�i × �i ⊂ (X \ E) × (X \ E);
it is an open subset.
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We define the following (n + r)-dimensional locally closed analytic subset 	 ⊂ ˜�

as follows

(23) 	 := {

(z,w) ∈ X × X : z ∈ �i and w ∈ Lz ∩ �i for some i ∈ I
}

.

We note that the (local) analyticity of 	 is a direct consequence of the fact that F is a
holomorphic foliation.

The set 	 contains the open subset of the diagonal defined by:

(24) X0 := {

(z, z) ∈ X × X : z ∈ X \ E
}

and we consider

(25) V := 	
Zar

the Zariski closure of 	 in X × X.
We have dim(V) ≥ dim(	) = n + r, and we show next that the algebraicity of F is

equivalent to the equality dim(V) = n + r. Indeed, if this holds true, then 	 is open in its
Zariski-closure V in X × X. We consider the map πV : V → X given by the restriction to
V of the projection on the first factor X × X → X. Note that the generic fibres of πV are
irreducible, of dimension equal to r (they correspond to the Zariski closure of the leaves
of F ).

Let τ : ̂V → V be a desingularisation of V, and let W ⊂ ̂V be the component of ̂V
which contains the inverse image of the generic fibres of πV. We denote by f : W → X
the composed map πV ◦ τ |W; it is surjective and by general results, there exists a constant
d > 0 such that the degree of each fibre of f is smaller than d .

We consider the Chow scheme Chow(W) = ∪δ>0 Chowr,δ(W) corresponding to
r-dimensional cycles of W (where the index δ above stands for the degree of the cycle).
The rational map

(26) p : X ��� Chow(W) x → f −1(x)

induces the foliation F generically, and we are done by the compactness of the compo-
nents of the Barlet-Chow scheme of X.

The algebraicity of F will then follow from the next standard Riemann-Roch
bound on sections:

Lemma 4.4. — Let X0 ⊂ 	 ⊂ V ⊂ X×X be defined as above. If, for some ample line bundle

L on X × X, there exists a constant C > 0 such that h0(V, kL|V) ≤ Ckn+r as k → ∞, then the

dimension of V is equal to n + r.

We show now the existence of such a constant CL = C > 0 for any ample L.

Proposition 4.5. — Let L be an ample line bundle on X × X. There exists a constant C > 0
such that: h0(V, kL|V) ≤ Ckn+r , for any k ≥ 0. As a consequence, the dimension of the algebraic set V
is equal to n + r.
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Proof. — The main ideas in the proof of Proposition 4.5 are the same as in [7]: for
any k ≥ 0, the sections of Lk on V restrict injectively to 	, since V is its Zariski closure.
Next, one considers the restriction of these sections to the formal neighbourhood of X0

in 	. In other words, we study the Taylor expansion of sections of Lk|	 at the points of
the diagonal X0 in the normal directions in 	.

For any m > 0, let Xm be the mth infinitesimal neighbourhood of X0 in 	, defined
by the structure sheaf: OXm

:= O	/Im+1
0 , where I0 is the sheaf of ideals of the diagonal

X0 ⊂ 	. It is enough to produce a bound C > 0 independent of m, k such that

(27) h0
(

Xm,L⊗k ⊗OXm

) ≤ Ckn+r

for any k,m. Indeed, the space H0(Xm,L⊗k ⊗OXm
) is nothing, but the space of all possible

Taylor expansions at order m of sections of Lk along X0 in the directions of F .
For this, remark that over (X \ E), we have a natural isomorphism F ∼= NX0/	,

since the normal bundle of X0 in 	 is naturally isomorphic to the vector bundle corre-
sponding to F |X\E.

The following exact sequence holds over X0, F∗ being the dual of F :

(28) 0 → Symm
(

F∗) →OXm+1 →OXm
→ 0.

It shows that it is sufficient to establish that there exists a constant C > 0 such that,
for any k ≥ 0:

(29)
∑

m≥0

h0
(

X0,Lk ⊗ Symm
(

F∗)) ≤ C.kn+r.

The estimate (29) will be a consequence of following statement.

Lemma 4.6. — Let F ⊂ TX be a coherent sheaf, which is locally free when restricted to the

open set X0 ⊂ X such that codimX(X \ X0) ≥ 2. Let δ0 > L.α

μα,min(F)
be any positive integer. The

following assertions are true.

(a) We have H0(X0,Lk ⊗ Symm(F∗)) = 0 if m ≥ δ0k.

(b) There exists a non-singular projective manifold Y of dimension dim(Y) = dim(X) +
rk(F) − 1 together with a map p : Y → X and a line bundle B → Y such that we have

(30) p�

(

Bm
) = ̂Sm

(

F �
)

for any m ≥ 1. In (30) we denote by ̂Sm(F �) the double dual of the symmetric power

Symm(F �).

(c) For any pair of positive integers k,m we have the equality

(31) h0
(

X0,Lk ⊗ Symm
(

F �
)) = h0

(

Y, p�
(

Lk
) ⊗ Bm

)

.
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Before proving Lemma 4.6, we notice that it implies almost immediately the in-
equality (29). Indeed, we have

(32)
∑

m≥0

h0
(

X0,Lk ⊗ Symm
(

F �
)) =

∑

m≤δ0k

h0
(

X0,Lk ⊗ Symm
(

F �
))

by the point (a) of Lemma 4.6. Next, the point (c), together with the fact that the dimen-
sion of Y is equal to n+ r −1 shows that the right hand side of (32) is O(kn+r). This can be
seen as follows: the dimension of the space of global sections of the bundle p�(Lk) ⊗ Bm is
smaller that h0(Y, p�(Lk)⊗ Hm), where H is a very ample bundle on Y such that H ⊗ B−1

is effective. We therefore have to evaluate the quantity

(33)
∑

m≤δ0k

h0
(

Y, p�
(

Lk
) ⊗ Hm

)

which is smaller than δ0k · h0(Y, p�(Lk)⊗Hδ0k) where we recall that δ0 is a positive integer.
By Riemann-Roch theorem, we have the estimate h0(Y, p�(Lk) ⊗ HCk) = O(kn+r−1) as
k → ∞, so all in all we have established (29).

In what follows we will identify X with the diagonal of X × X, and X0 with X \ E.

Proof. — The point (a) follows from Lemma 2.5 and the slope inequality, if m ≥ k.B:

(34) μα,max

(

Lk ⊗ ̂Sm
(

F �
)) = k.L.α − m.μα,min(F) < 0.

We remark that here we have used Theorem 2.9.
The point (b) is completely proved in the book by N. Nakayama [45] (cf. Chapter V,

Section 3.23), so we will simply recall the construction of (Y,B) for the convenience of
the reader.

Let π : P(F �) → X be the scheme over X associated to the torsion free coher-
ent sheaf F �, and let OF�(1) be the tautological line bundle on P(F �). Let P′(F �) be
the normalisation of the component of P(F �) which contains the Zariski open subset
π−1(X0) (we recall the crucial fact that the codimension of X \ X0 in X is greater than
two). Finally, let Y be a smooth projective variety such that there exists a birational mor-
phism Y → P′(F �) which is biholomorphic over π−1(X0). We denote by μ : Y → P(F �)

the resulting map, and let

(35) p : Y → X

be the composition π ◦ μ. Nakayama shows that we can take

(36) B := μ�
(

OF�(1)
) + 	,

where 	 is an effective p-exceptional divisor. The important fact here (cf. [45]) is that B
can be chosen so that (30) holds for any m.

The equality (31) is a direct consequence of (b), together with the definition of the
set X0, so we do not provide any further explanations. �
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Thus, Proposition 4.5 is proved as well. �

Hence, the algebraically criterion is established. �

4.2. Rational connectedness. — The following result was proved (by very different
arguments) in the case of ample classes in [7] and [35]. Our proof here is using two main
techniques: the existence of the relative rational quotient of a map p and the fact that the
projective manifolds whose canonical class is not pseudo-effective are uniruled (actually,
this is the unique argument in positive characteristic we need in this paper).

Theorem 4.7. — Let X be projective smooth manifold, and let F ⊂ TX be a foliation. Assume

that there exists a movable class α for which μα,min(F) > 0. Then F is an algebraic foliation and its

leaves are rationally connected.

Proof. — The fact that F is an algebraic foliation has been proved. We now treat
the last claim of Theorem 4.7 using the relative rational quotient.

Let p : X ��� Z be the rational map (26) induced by the application p0 : X ���
Chow(W), with Z a desingularisation of the image of p0. We also consider the relative

rational quotient of p:

(37) r : X ��� Y

This map is constructed in [10] or [36] for the absolute version. The existence of the
relative version follows from [12], Appendix. We also have a map s : Y ��� Z, such that
s ◦ r = p.

Assume by contradiction that the fibres of p are not rationally connected, then:

(a) dim Y > dim Z.
(b) The canonical bundle of the desingularisation of any generic fibre of s is

pseudo-effective by [25].
(c) The generic fibres of r are rationally connected.

We will consider now regular models of the maps defined above: let πX : ̂X → X
and πY : ̂Y → Y be smooth modifications of X and Y respectively, such that the applica-
tions

(38) p̂ := p ◦ πX, ŝ := s ◦ πY

are regular. We can also assume that there exists a map r̂ : ̂X → ̂Y such that the equality
ŝ ◦ r̂ = p̂ is preserved.

Let ̂H := ker(d̂s) be the foliation induced by the kernel of the differential of ŝ. By
formula (13) combined with Remark 3.6 and the property (b) above, we see that

(39) det
(

̂H�
)
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is pseudo-effective on ̂Y, modulo a divisor which is πY-exceptional (we can assume that
the transversality conditions (i) and (ii) in Remark 3.3 hold true, modulo changing Z with
a birational model—this operation is harmless in our present context). Let H be the
foliation induced by ̂H on Y; we deduce that det(H�) is pseudo-effective, by Lemma 3.5.

Let ̂F be the foliation induced by F on ̂X. Then we have a morphism:

(40) ̂F → (πY ◦ r̂)�H

and we claim that it is generically surjective. The first observation is that the map
̂F → r̂ �

̂H is well-defined and generically surjective. This is the case because ̂X and ̂Y
are smooth, and for any general enough z ∈ Z the map in question is induced by the
differential of the map ̂Xz → ̂Yz. The map r̂ �

̂H → (πY ◦ r̂ )�H is an isomorphism at the
generic point of ̂Y.

We have μπ�
Xα,min(̂F) > 0, since μα,min(F) > 0, cf. Lemma 2.12 and its proof.

Hence we infer that

(41) μπ�
Xα

(

r̂ �H
)

> 0,

contradicting the pseudo-effectivity of detH�. �

Remark 4.8. — The discrepancies K̂X − π∗(KX)|F of the generic fibre F of p̂ of a
‘neat model’ of the rational fibration p defined by F above are of great geometric interest
also.

4.3. Pseudo-effectivity of cotangent sheaves of foliations. — We establish here a foliated
version of Theorem 1.3 when � = 0. One of the motivations for this statement is the
existence (cf. [19]) of foliations with KF pseudo-effective on some projective uniruled
manifolds. Due to the non-preservation of the pseudo-effectivity of KF under blow-ups
when F �= TX, new phenomena appear.

Theorem 4.9. — Let X be a non-singular projective manifold, and let F ⊂ O(TX) be a

foliation on X, with KF is pseudo-effective. Then one of the following occurs.

(1) For any positive integer m ≥ 1, and any coherent, torsion-free sheaf Q such that there exists

a generically surjective map

(42) ⊗mF � →Q,

detQ is a pseudo-effective line bundle on X, or:

(2) There exists a proper birational morphism π : ̂X → X and a morphism p : ̂X → Z with

rationally connected fibres tangent to ̂F , the inverse image of F in ̂X. Moreover, ̂F is the

inverse image by p of a foliation H on Z. In particular, K ̂F is not pseudo-effective in this

second case.
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Proof. — Let α ∈ Mov(X) be a movable class; we have to prove that, either:

(43) c1(Q).α ≥ 0,

or that case (2) occurs. Assume thus that the relation (43) does not hold. Thus
μα,min(̂⊗mF �) < 0 and by Theorem 2.9 this implies that we have μα,min(F �) < 0, which
in turns shows the inequality μα,max(F) > 0.

Let G ⊂F the α-maximal destabilising sheaf of F ; then G is α-semi-stable, and:

(44) μα(G) > 0.

It is a simple matter to check that the slope inequalities in Lemma 4.10 below are satisfied,
that is to say:

(45) 2μα,min(G) > μα,max(F/G).

This is a well-known consequence of the maximality of G, so we only sketch the argument
as follows. We consider a sub-sheaf H ⊂ F/G. Then there exists a sub-sheaf H ⊂ F ,
containing G and inducing H. Hence we have μα(H) ≤ μα(G), from which we deduce
(after a few standard computations which we skip) that μα,max(F/G) ≤ μα(G). Now the
semi-stability of G with respect to α implies the inequality (45).

Lemma 4.10. — Let G ⊂ F ⊂ TX be holomorphic (possibly singular) distributions on X
smooth projective connected. Assume that F is a foliation, and that for some movable class α we have:

μα,min(G) > 0 and also:

(46) 2.μα,min(G) > μα,max(F/G)).

Then G is a foliation.

Proof. — The natural composed map ∧2G → TX/G → TX/F derived from
the Lie bracket on X vanishes, since F is a foliation, and thus defines a section of
Hom(∧2(G) → (F/G)) over X. But this vector space vanishes because of the slope con-
ditions. This forces the Lie bracket ∧2G → TX/G to vanish, as claimed. �

In conclusion, G is integrable. Moreover, by Theorem 4.2 the foliation G is alge-
braic, and has rationally connected closure of its leaves. Let X0 ⊂ X be the maximal
Zariski open set such that G|X0 is a vector bundle, and such that the singularities of G are
contained in the complement X \ X0 (which has co-dimension greater than two).

Thus there exists a rational map

p : X ��� Z

such that G = ker(dp) generically on X—thus G is“algebraic”, according to Defini-
tion 4.1, beginning of Section 4.
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We consider a modification πX : ̂X → X such that the composed map p̂ := p ◦ πX

is holomorphic. Since the foliation G is the kernel of the differential of the map p we infer
that the canonical bundle of the fibres of p̂ is not pseudo-effective, by (44).

Let ̂G and ̂F be the foliations induced by G and F on ̂X, respectively. Then we
still have ̂G = ker(d̂p) generically on ̂X and ̂G ⊂ ̂F .

The following “rigidity lemma” (cf. [2], Lemma 6.7 for similar ideas) will then
show that we are in case (2) and this will finish the proof, once we prove that K ̂F is not
pseudo-effective, which is shown below, after the proof of Lemma 4.11.

Lemma 4.11. — Let ̂G ⊂ ̂F be two foliations on ̂X Assume that ̂G is algebraic, defined

generically as G = ker(d̂p) for a dominant map p̂ : ̂X → Z. There then exists a foliation H on Z such

that ̂F = p̂�H, generically on ̂X.

Proof. — Let x0 ∈ ̂X be such that ̂F is non-singular at x0, and such that y0 := p̂(x0)

is a regular value of p̂.
Let 	0 ⊂ ̂X be a germ a submanifold contained in the leaf Lx0 of F at x0, transverse

to G0 := p̂−1(y0), and such that

Fx0 = Gx0 + T	0,x0

is a direct sum decomposition. Next p̂(	0) is a germ of a submanifold V0 of Z at y0, and
W0 := p̂−1(V0) is contained, and hence equal to the germ of the leaf Fx0 . Indeed: for each
x ∈ 	0, p̂−1(̂p(x)) = G(x) ⊂F(x), and F(x) thus contains both p̂−1(̂p(x)), and 	0.

Since this holds for every x0 having the properties specified above, the lemma fol-
lows by analytic continuation. �

We now check that K ̂F is not pseudo-effective: as a consequence of Lemma 4.11,
we have the exact sequence

(47) 0 → ̂G|U → ̂F |U →O⊕r
U → 0

where U := p̂−1(V) and V is a small topological coordinate set centered at a regular value
of p̂.

Therefore we have

(48) KF = K̂G|F = K ̂F |F
where F is a generic fibre of p̂. This shows that K ̂F is not pseudo-effective. Therefore
Theorem 4.9 is proved. �

Remark 4.12. — The case (2) in Theorem 4.9 actually occurs (see Example 4.15
below). This is due to the fact that, contrarily to the case when F = TX, the pseudo-
effectivity of KF is, in general, not birationally invariant. We thank S. Druel, who called
our attention on the fact that K ̂F in the above proof could, a priori, be non pseudo-
effective.
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The following corollary is a consequence of the previous rational connectedness
statement of Theorem 4.2. Claim (1) generalises in the projective case Brunella’s The-
orem [9] (which asserts that this result holds in the compact Kähler case as well). This
corollary gives an optimal geometric obstruction to the pseudo-effectivity of the canonical
bundle of foliations on projective manifolds.

Corollary 4.13. — Let X be a projective manifold, and let F be a foliation of rank 0 < r <

n := dim(X). Assume that F is not algebraic. Then:

(i) If r = 1, the bundle KF is pseudo-effective.

(ii) For an arbitrary rank r, if the bundle KF is not pseudo-effective, there exists a non-trivial

algebraic foliation G ⊂F such that μα,min(G) > 0 for some movable class α.

We remark that the converse of the point (ii) does not hold, by Example 4.15 below.

Proof. — Claim (i). Since by assumption F is not algebraic, Theorem 4.2 implies,
that for each movable class α, we have:

(49) μα,min(F) = μα(F) ≤ 0.

If the rank r of F is equal to one, then this implies (cf. [6]) that KF is pseudo-effective,
and the point (i) is proved.

The second point has been established during the proof of Theorem 4.9. �

The following statement gives a criteria for the conclusion (1) of Theorem 4.9 to
hold true.

Corollary 4.14. — In the set-up of Theorem 4.9 the statement (1) holds true provided that one

of the following conditions is satisfied.

1. The foliation F is “totally transcendental” i.e. its general leaf does not contains any positive

dimensional algebraic submanifold of X.

2. The singularities of F are canonical (this implies that K ̂F is pseudo-effective for any modifi-

cation ̂X → X).

Example 4.15. — Let F0 be the foliation defined on P2 by the pencil of conics
generated by two smooth conics meeting in 4 distinct points. Now take X := P2 × Y,
where Y is any uniruled projective manifold. Take for F the inverse image of F0 on X by
the first projection (on P2). Then KF is pseudo-effective, since KF0 is. On the other hand,
F contains q∗(TY), where q is the second projection. Dualising, we get a projection from
F∗ onto TY∗, which has a non pseudo-effective determinant. We are then in Case 2 of
Theorem 4.9. A modification π : ̂X → X as in the proof is obviously obtained by lifting
F0 to the blow-up of P2 in the 4 base points of the pencil, and taking the product with Y.
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Remark 4.16. — One can easily see, using Chow cycle spaces and the two pre-
ceding lemmas, that any foliation F on X projective smooth contains a largest algebraic
foliation G given as Ker(df ) for a fibration f : X ��� Z, such that F = f ∗(H) for some
‘totally transcendental’ foliation H on Z. And then, KF is pseudo-effective if and only
if KG is, since KF = KG + f ∗(KH), and KH is pseudo-effective. Indeed: if KG is not
pseudo-effective, we have a rationally connected fibration tangent to G, contradicting the
pseudo-effectivity of F ; the other direction is obvious. We refer to [40], Lemma 2.4 for
a more detailed discussion regarding this topic. Moreover, Case 2 of Theorem 4.9 oc-
curs for F if and only if it occurs for G. In other words: Case 2 of Theorem 4.9 occurs
essentially only for algebraic foliations.

4.4. Descent of foliations. — The following consequence of the preceding theorem
will mainly be needed in the proof of Theorem 1.3. But it may have some interest by
itself.

Corollary 4.17. — Let π : X′ → X be a finite surjective holomorphic map of degree d > 1
between complex projective manifolds. Let α be a movable class on X, and let α′ := π∗(α) be its pull-

back to X′. Let F ′ ⊂ π∗(TX) be a torsion-free subsheaf, with F sat its saturation in π∗(TX). Assume

moreover that:

(a) μα′,min(F ′) > 0;

(b) F sat = π∗(F) for some subsheaf F ⊂ TX.

Then μα,min(F) > 0; in particular, if F is integrable, then the corresponding foliation is algebraic.

Proof. — Since μα′,min(F ′) > 0 we deduce that we have

(50) μα′,min

(

F sat
)

> 0

by Remark 2.14. Let Q be a quotient of F ; then π�Q is a quotient of π�F = F sat. By
(50) above, we deduce:

(51) μα′
(

π�Q
)

> 0

and this is equivalent with μα(Q) > 0, which is the claim. The last part of Corollary 4.17
follows from the algebraically criteria. �

Remark 4.18. — In general, in the situation of the preceding corollary, if F ′ is α-
semi-stable, F s does not need to be α-semi-stable, as shown by the natural injection of
O(1) ⊕O(1) in O(1) ⊕O(2) over P1.

Remark 4.19. — These results on foliations immediately extend to logarithmic fo-
liations. We show this in the next section, which will also serve as a simplified model for
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the case of arbitrary smooth ‘orbifold pairs’, treated below, and for which additional con-
structions and definitions are required. We added this short section in order to make the
application (through Corollary 8.7) to families of canonically polarised manifolds in Sec-
tion 8.1 below independent from the general ‘orbifold version’. The proof given here of
Corollary 8.7 is quite different and shorter from the one given in [48], which showed that
the general orbifold pairs could be avoided. Notice however that, once the foundational
material are laid, the continuity method used in Theorem 7.11 gives a much more direct
alternative proof of Corollary 8.7.

5. Orbifold tensor bundles on Kawamata covers

Let (X,�) be a smooth log canonical pair, written as:

(52) � =
∑

j∈J

cj�j =
∑

j∈J

(

1 − bj

aj

)

�j

where J is a finite set, and for each j ∈ J we have 0 ≤ bj < aj are coprime integers, and the
hypersurfaces (�j) are snc. If the coefficient bj is equal to zero, then we agree that the
corresponding denominator aj is equal to 1.

These orbifold pairs (X,�) interpolate between the compact, or projective case (i.e.
when either J = ∅) and the logarithmic, or quasi-projective case, when bj = 0 for all j ∈ J,
respectively. In both cases, the notions of tangent bundle, cotangent bundles and more
generally, of holomorphic tensors are classically defined. They play a fundamental role
in the study of the geometry of (quasi-)projective manifolds.

We shall introduce the analogous notions corresponding to an arbitrary orbifold
pair (X,�). Unfortunately they can only be defined on a suitable ramified cover of X
adapted to (X,�). However, we shall see that they enjoy properties similar to those of
the usual ones in the two standard cases (compact, and logarithmic) mentioned above.
These properties will turn out to be independent on the cover used to define them.

The underlying idea for the definition is that the local generators as an OX-module
of the orbifold cotangent bundle should “look like”:

(53)
dz1

z
1−b1/a1
1

, . . . ,
dzr

z
1−br/ar
r

, dzn1+1, . . . , dzn,

on some coordinate open set U ⊂ X where the divisor ��� is given by z1 . . . zr = 0. Unlike
in the cases mentioned above, these symbols involve multi-valued functions. Nevertheless,
we have the identity

(54) π∗
(

dz

z1−b/a

)

= NwNb/a dw

w
,
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where z = wN, and we see that the right-hand side is an usual logarithmic differential
provided that N/a is an integer.

This suggests that in order to construct the tensor bundle corresponding to the
pair (X,�), one needs an auxiliary object, namely a map which ramifies along D with
divisible enough order. The formal definition will be given in what follows.

5.1. Ramified coverings. — We recall in this sub-section a few basic facts concerning
global ramified covers associated to an orbifold pair (X,�), for which a polarisation is
fixed. Our main references are [38], [32] [24], [31]).

Definition 5.1. — Let (X,�) be an orbifold pair as in (52). A ramified cover adapted to

(X,�) is by definition a Galois covering π : X� → X satisfying the following requirements.

(i) The variety X� is non-singular, and the ramification order of π along each component �i is

equal to ai , i.e. π�(�i) = ai

∑

j Dji .

(ii) The support of the divisor π�(�) + Ram(π) as well as the branching loci
∑

Hj of π

have simple normal crossings.

Such a map π will be referred to as “Kawamata cover” in what follows, cf. [36],
Theorem 1.1.1. The properties which will be relevant for us are stated in the following
lemma.

Lemma 5.2. — Let (X,�) be an orbifold pair; then the following assertions are true.

(a) The pair (X,�) admits a Kawamata cover.

(b) Let π : X� → X be any Kawamata cover corresponding to (X,�), and let G be the

associated Galois group. For any point y ∈ X� there exists an open coordinate set y ∈ U
which is Gy–invariant, and such that the restriction π |U has the following shape

(55) π(w1, . . . ,wn) = (

w
a1
1 , . . . ,w

ak

k ,wk+1, . . . ,wp,w
m1
p+1, . . .w

mn

n

)

with respect to co-ordinates (wi) and (zj) on U and its image, respectively.

In the definition above we denote by Gy the isotropy group of y. We note that in
(55) we assume that the divisor ��� is locally given by the equation z1 . . . zk = 0. Also,
the local hypersurfaces zp+1 = 0, . . . , zn = 0 correspond to the extra-ramification of π—
which is in general unavoidable, but which will not affect us in any way.

As we see from Lemma 5.2, the map π can be seen as the global version of the
standard application w → z = wa and we will use it in order to define the orbifold co-
tangent bundle and its associated tensor powers.

5.2. Orbifold tensor bundles. — Let (X,�) be an orbifold pair, and let π : X� → X
be a Kawamata cover. We first introduce here the notion of co-tangent bundle associated
to (X,�) by following the elegant approach by Y. Miyaoka in [42].



FOLIATIONS WITH POSITIVE SLOPES AND BIRATIONAL STABILITY. . . 27

We denote by �1
X〈���〉 the logarithmic tangent bundle associated to (X, ���).

Then we have a well-defined residue map

(56) �1
X

〈���〉 →
⊕

i

O�i
→ 0,

which induces a map between the π–inverse images of the sheaves above

(57) π��1
X

〈���〉 →
⊕

i

Oπ��i
→ 0.

In (57) we have used the flatness of π in order to identify π�O� with Oπ��. By the
properties of the map π , we can write π��i = aiDi for some Cartier divisor Di on X�.
Therefore, we have a quotient map of sheaves

(58) Oπ��i
→ObiDi

→ 0

for every i in our set of indices.
All in all, we have a surjective map

(59) π��1
X

〈���〉 →
⊕

i

ObiDi
→ 0

and we introduce the following notion.

Definition 5.3. — The orbifold co-tangent bundle associated to (X,�) is the kernel of the map

(59). It is a vector bundle of rank n = dim(X), and it will be denoted in what follows by π��1(X,�).

Thus, we have the exact sequence

(60) 0 → π��1(X,�) → π��1
X

〈���〉 →
⊕

i

ObiDi
→ 0.

At this point, a few remarks are in order.

• The bundle π��1(X,�) is G-invariant: this is a direct consequence of the def-
inition.

• With respect to the coordinate system in Lemma 5.2(2), the local frame of this
bundle is expressed as

w
b1−1
1 dw1, . . . ,w

bk−1
k dwk, dwk+1, . . . , dwp,w

mp+1−1
p+1 dwp+1, . . . ,w

mn−1
n dwn.

• The determinant of the bundle π��1(X,�) is quickly computed from the se-
quence (60),

(61) det
(

π��1(X,�)
) = π�(KX + �).
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5.3. The tangent bundle and the Lie bracket on orbifolds. — The following definition is
natural.

Definition 5.4. — The orbifold tangent bundle associated to (X,�) the dual of π��1(X,�).

It is a G-invariant vector bundle, and it will be denoted in the sequel by π�T(X,�).

With respect to the coordinates in Lemma 5.2, the local generators of π�T(X,�)

can be written as follows

(62) w
a1−b1
1 e1, . . . ,w

ak−bk

k ek, ek+1, . . . , en

where ej := π� ∂

∂zj
is the local frame of the inverse image π�TX.

Remark that the local generators of the orbifold tangent bundle can also be written
as follows

(63) w
1−bj

j

∂

∂wj

,
∂

∂wi

,w
1−ml

l

∂

∂wl

where j = 1, . . . , k as well as i = k + 1, . . . , p and l = p + 1, . . . , n. In this way, the tangent
bundle π�T(X,�) looks more like that dual of π��1(X,�).

Motivation. — Let F ⊂ TX be a coherent subsheaf. The corresponding Lie bracket

(64) 	2F → TX/F

is OX-linear, and if this map vanishes identically, then F defines a holomorphic foliation.
In the remaining part of this sub-section we will consider the orbifold analogue of these
results.

More precisely, let F� ⊂ π�T(X,�) be a coherent subsheaf of the orbifold tangent
bundle. Our objective in what follows is twofold: first we show that under some reasonable
hypothesis, we can construct an OX�

-linear map

(65) 	2F� → π�T(X,�)/F�.

Then we will show here that if the map (65) vanishes identically, then F� is induced by a
holomorphic foliation on X by a very explicit procedure.

The first step in this direction is the following statement which permits to recognize
the subsheaves of π�TX which are inverse images of a sheaf on X.

Lemma 5.5. — [26], [22] Let F ⊂ π�TX be a coherent OX�
-module, which is saturated in

the inverse image of the tangent sheaf TX. If moreover F is G-invariant, then there exists a sheaf FX of

OX-modules on X such that

(66) F = π�(FX).
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This result Lemma 5.5 is completely proved in the references indicated above, so
we will not discuss it here at all.

Let F� ⊂ π�T(X,�) be a coherent G-invariant and saturated subsheaf of the
orbifold tangent bundle. We denote by F s the saturation of F� in π�TX. Then F s is
equally G-invariant, so by Lemma 5.5 there exists a subsheaf FX ⊂ TX such that

(67) F s = π�(FX).

Let

(68) 	2FX → TX/FX

be the OX-linear map induced by the Lie bracket on X. Its π -inverse image composed
with the natural map 	2F� → 	2F 2 gives the OX�

-linear map

(69) 	2F� → π�TX/F s.

On the other hand, given that F� is saturated inside the orbifold tangent bundle, we have
the equality F� =F s ∩ π�T(X,�). Thus, we infer that the natural map

(70) π�T(X,�)/F� → π�TX/F s

is injective.
In this setting, we have the following statement, establishing the existence of the

Lie bracket for orbifolds (X,�).

Proposition 5.6. — Let FX ⊂ π�T(X,�) be a coherent G-invariant and saturated subsheaf

of the orbifold tangent bundle. Then the map (69) factors through (70), i.e. we have an OX�
-linear map

(71) 	2F� → π�T(X,�)/F�

Our proof will unfold as follows. Let U ⊂ X� be one of the coordinate subsets
provided by Lemma 5.2. We first construct lifting of the usual Lie bracket on X

[·, ·]U : 	2π�TX|U → π�TX|U
which is only locally defined. Then we show that the orbifold tangent bundle π�T(X,�)

is closed under this map.
On the other hand, given any subsheaf G ⊂ π�TX we show that the map 	2G →

π�TX/G induced by the π -lifting of the usual Lie bracket on X coincides with the one
given by [·, ·]U. The former is globally defined and OX�

-linear. The proposition follows
by a linear combination of these facts.
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Proof. — Let LX be the Lie bracket defined on vector fields on X:

(72) LX : 	2TX → TX.

Let v be a local section of the bundle π�TX. We chose local coordinates w =
(w1, . . . ,wn) and z = (z1, . . . , zn) near y0 := π(x0) given by Lemma 5.2 (we remark that
the finite group G is not used in the following definition). Then the map π : X� → X is
locally written as follows

(73) π(w) = (

w
a1
1 , . . . ,w

ak

k ,wk+1, . . . ,wp,w
mp+1
p+1 , . . . ,wmn

n

)

.

In order to simplify the notations, let cj := 1 − bj

aj
be the coefficient of Dj in �; if the index

“j” corresponds to one of the hypersurfaces Hj , then we set cj := 0.
We can write v in a unique manner

(74) v =
∑

I∈Er,a

wIπ�vI

where Er,a is the set of indices I = (i1, . . . , ik, ip+1, . . . in) such that 0 ≤ ij ≤ aj − 1 for j =
1, . . . , k and 0 ≤ iα ≤ mα − 1 for i ≥ p + 1. and we use the multi-index notation wI :=
∏

j w
ij

1 . The (vI) above are local vector fields on X.
Then we define

(75) [v1, v2]U :=
∑

I,J

wI+Jπ�
(

LX(v1I ∧ v2J)
)

.

We have the following statement, showing that the orbifold tangent bundle is preserved
by the local map (75) (we thank B. Claudon for pointing out a slight inaccuracy in the
previous version of it).

Proposition 5.7. — The orbifold tangent space π∗T(X,�) is closed under the local bracket

[·, ·]U.

Proof. — We consider the restriction of [·, ·]U to the exterior power of the orbifold
tangent bundle, composed with the natural projection map

(76) [·, ·]�,U : 	2π∗T(X,�) → π∗TX/π∗T(X,�);
the claim is that this map is identically zero.

By definition, the local generators as OY-modules of π∗(TX) are

(77) ∂k := π∗ ∂

∂zk

, k = 1, . . . n.
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As already mentioned, the local generators of π�T(X,�) can be written explicitly as
follows

(78) w
a1c1
1 ∂1, . . . ,w

akck

k ∂k, ∂k+1, . . . ∂n.

Any local function ϕ ∈OX�
can be written in an unique manner ϕ(w) = ∑

I∈Er,a
wIψI(z),

for some holomorphic functions (ψI) defined locally on X; in this expression we are using
the same conventions as in (74).

Let v = ∑n

j=0 ϕj(w)∂j be a local section of π∗T(X,�); in particular it can be ex-
pressed as follows

(79) v =
∑

I∈Er,a

wIπ�ρI

where ρI := ∑n

j=1 ψIj
∂

∂zj
, for each multi-index I.

The main observation now is that we can assume that the function ψIj divisible by zj

provided that the jth index of I satisfies the inequality 0 ≤ ij ≤ ajcj − 1. This is an immediate
consequence of the definitions, and we detail the argument next.

By (78) there exists a family of functions (μj)j=1,...,n such that we have

(80) v =
k

∑

j=1

μjw
aj cj ∂j +

n
∑

j=k+1

μj∂j;

we by identifying the coefficients in (80)–(79), we obtain

(81)
∑

I

wIψIj(z) = μj(w)w
aj cj

j

for each j = 1, . . . , k. This clearly proves our assertion, since we have cj ≤ 1.
Let π∗V := π∗(TX〈���〉) be the inverse image of the logarithmic tangent bundle

of corresponding to the pair (X, ���).
By relation (79) together with the observation above we obtain the decomposition

(82) v =
n

∑

j=1

aj cj−1
∑

ij=0

wIπ�VIj +
n

∑

j=1

aj−1
∑

ij=aj cj

wIπ�WIj

where VIj above are local sections of V , and where WIj are local holomorphic vector fields
on X, multiple of ∂

∂zj
. In (82) we dropped the indexes ip+1, . . . , in since they are playing no

role.
The proof ends by a case by case analysis.
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(a) We have

(83)
[

wIπ�VI,w
Jπ�VJ

]

U
= wI+Jπ�

(

LX(VI,VJ)
)

so it belongs to π�T(X,�), given the fact that the logarithmic tangent bundle
is stable by the Lie bracket LX.

(b) If j, r ≤ k then we have

(84)
[

w
aj cj

j f ∂j,w
ar cr

r g∂r

]

U
= w

aj cj

j war cr

r π�

(

LX

(

f
∂

∂zj

, g
∂

∂zr

))

which clearly belongs to π�T(X,�).
(c) If VI is a local section of V and if r ≤ k then we have

(85)
[

wIπ�VI,w
ar cr

r g∂r

]

U
= wIwar cr

r π�

(

LX

(

VI, g
∂

∂zr

))

and, say, if r �= 1 we have LX(fz1
∂

∂z1
, g ∂

∂zr
) = az1

∂

∂z1
+ b ∂

∂zr
for some functions

a and b whose expressions do not matter: the point is that the π -inverse im-
age of this vector belongs to π�T(X,�) when multiplied with war cr

r . If r = 1,
then no additional explanations are required, because of the factor war cr

r . Also,
if l ≥ k + 1 we have LX(f ∂

∂zl
, g ∂

∂zr
) = a ∂

∂zl
+ b ∂

∂zr
for some (other) functions a

and b, but the result is the same: the π -inverse image of this vector belongs
to π�T(X,�) when multiplied with war cr

r –remark that there is no vanishing
condition imposed for the coefficients ≥ k + 1 in (78).

The Proposition 5.7 is proved. �

Proposition 5.8. — Let G ⊂ π�TX be a coherent subsheaf, such that there exists GX ⊂ TX
with the property that G = π�GX. Then the following map induced by [·, ·]U

(86) 	2G → π�TX/G

coincides with the π -inverse image of the Lie bracket 	2GX → TX/GX. It is therefore OX�
-linear and

globally defined.

Proof. — Let qj, ρj be positive integers, such that ρj ≤ aj −1. We denote by wqa+ρ :=
∏

w
qj aj+ρj

j . The calculation required by the Lemma 5.8 is very simple, based on identities
of the following type

wqa+ρπ�
(

LX(v1, v2)
) = wρπ�

(

zqLX(v1, v2)
)

(87)

= wρπ�
(

LX

(

zqv1, v2

)) + ψπ�v1
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where vj are local sections of GX, and ψ is a local function on X�. This implies that if
V1,V2 are local sections of π�GX, then we have

(88) π�LX

(

ϕ(w)V1 ∧ V2

) ≡ ϕ(w)π�LX(V1 ∧ V2)

modulo a vector in π�GX = G. This is precisely what we need to prove, given the Defini-
tion (75). �

We are now ready for the proof of Proposition 5.6, as follows. By Proposition 5.8,
the composed map:

(89) 	2F� → 	2F s → π�TX/F s

is OX�
-linear (recall that F s is the saturation of F� in π�TX). This induces a unique

factorisation (cf. Proposition 5.7) through:

(90) 	2F� → π�T(X,�)/F�,

since the maps 	2F� → 	2F s and π�T(X,�)/F� → π�TX/F s are both injective. We
are using the fact that F� = F s ∩ π�T(X,�), hence Proposition 5.6 follows from the
OX�

-linearity of (89). �

We have the following consequence of these considerations.

Corollary 5.9. — Let F� ⊂ π�T(X,�) be a coherent subsheaf. Assume that F� is saturated

and G-invariant. Let F s be the saturation of F� in π�TX; by Lemma 5.5 we have F s = π�F .

We assume moreover that the orbifold Lie bracket (90) vanishes identically. Then the sheaf F defines a

holomorphic foliation on X.

Proof. — By hypothesis, the linear map (90) is identically zero, so we obtain the
following partial conclusion: let v1 and v2 be two local sections of F�; then [v1, v2]U ∈F�.

Let V1,V2 be two local sections of F : there exists two local holomorphic functions
ϕ1 and ϕ2 on X� such that

(91) vj := ϕjπ
�Vj ∈F�

for each j = 1,2. Hence we have ϕ1ϕ2π
�LX(V1,V2) ∈F� and thus

(92) π�LX(V1,V2) ∈F s.

This implies that we have

(93) LX(V1,V2) ∈F

and thus F defines a foliation on X. �
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5.4. The relative canonical bundle of an orbifold fibration. — The following results (Theo-
rem 5.10 and Lemma 5.12) have been shown in [19], Proposition 1.9 and Theorem 2.11,
by computing the degree of both sides on complete intersection curves of very ample
classes. We present here a different proof.

Theorem 5.10. — Let F� ⊂ π∗T(X,�) be such that its saturation F sat
� in π�TX is equal

to π�(F), where F = Ker(dp) ⊂ TX is an algebraic foliation induced by the rational fibration

p : X ��� Z. If KX + � is pseudo-effective, then:

(94) μπ�β(F�) ≤ 0,

for any movable class β on X.

Proof. — It is based on the following two statements of possibly independent inter-
est.

Lemma 5.11. — Let F� ⊂ π∗T(X,�) be such that F sat
� = π∗(F), where F =

Ker(dp) ⊂ TX is an algebraic foliation induced by the rational fibration p : X ��� Z. Then we

have

(95) detF �
� = π�

(

KF + �hor
)

.

As in Theorem 5.10, let p : X ��� Z be a rational map, and let F := Ker(dp) be
the foliation induced by the kernel of its differential. The following statement holds true;
it appears in [23] in a slightly different form.

Lemma 5.12. — Let πX : ̂X → X and let πZ : ̂Z → Z be a modification of X and Z,

respectively, such that the following properties are satisfied.

(i) The induced map p̂ : ̂X →̂Z is regular, and let E be its discriminant divisor.

(ii) The inverse image

(96) ̂E := p̂−1E

has normal crossings.

(iii) Every component of ̂E which is contracted by p̂ is equally contracted by πX.

Let ̂F be the foliation induced by F on ̂X; then we claim that the following equality holds true

(97) K ̂F = K̂X/̂Z − D(̂p)

modulo a divisor which is πX-exceptional.

Before proving these statements, we show that they imply Theorem 5.10. Let β be
a movable class on X; by (97) we have the equality

(98) c1

(

K ̂F + ̂�hor
)

.π�
Xβ = c1

(

K̂X/̂Z + ̂�hor − D(̂p)
)

.π�
Xβ
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because W · π�
Xβ = 0 for any πX–exceptional divisor W. Thus we obtain:

(99) c1

(

K ̂F + ̂�hor
)

.π�
Xβ ≥ 0

by Theorem 3.4. By (iii) of Lemma 5.12 combined with the equality (95) we have

(100) c1

(

K ̂F + ̂�hor
)

.π�
Xβ = c1

(

F �
�

)

.π�β,

proving Theorem 5.10.
• Proof of Lemma 5.11
The equality (95) will be shown next to hold by a direct computation in local

coordinates. Let X1 ⊂ X be a Zariski open set such that the restriction F |X1 is a non-
singular foliation, and such that we have X1 ∩ Dj ∩ Dk = ∅ for each pair of indexes j �= k,
cf. (52). We equally assume that X1 does not contain any of the tangency points of F
with the support of �t, i.e. the set of points z ∈ ∪Dj such that the tangent space of the
divisor at z contains Fz. Here we denote by �t the set of components of � which are not
invariant by F .

We have

(101) codimX(X \ X1) ≥ 2,

hence it would be enough to show that (95) holds true when restricted to π−1(X1), given
that the map π is finite.

Let x0 ∈ π−1(D1 ∩ X1) be a point; we have to distinguish between two cases.
If D1 is not invariant by F , then in particular D1 is horizontal with respect to the

map p, and moreover we can choose the local coordinates (z1, . . . , zn) on an open set U
containing the point π(x0) such that

(102) D1 ∩ U = (z1 = 0),

and such that F |U is generated by

(103)
∂

∂z1
, . . . ,

∂

∂zq

.

Near x0 the map π is given by (w1, . . . ,wn) → (w
a1
1 ,w2, . . . ,wn) and the intersection

π�F ∩ π�T(X,�) is generated by

(104) w
a1−b1
1 π� ∂

∂z1
,π� ∂

∂z2
, . . . , π� ∂

∂zq

,

(notations as in Section 5.4) and the formula (95) follows.
If D1 is invariant by F , then we first remark that D1 cannot be horizontal with respect

to the map p (given that F is equal to the kernel of this map generically). An appropriate
choice of coordinates will give

(105) D1 ∩ U = (zq+1 = 0),
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and such that F |U is generated by

(106)
∂

∂z1
, . . . ,

∂

∂zq

and the map π is (w1, . . . ,wq,wq+1, . . . ,wn) → (z1, . . . zq, z
aq+1
q+1 , . . . , zn). The intersection

π�F ∩ π�T(X,�) is generated by

(107) π� ∂

∂z1
,π� ∂

∂z2
, . . . , π� ∂

∂zq

,

which settles Lemma 5.11 in this second case.
If the point x0 does not belong to the support of π−1(�), then the verification

of (95) is simpler. Indeed, near such point the orbifold tangent space coincides with the
inverse image of the tangent bundle of X, thus we have F sat

�,x0
= π�(F)x0 . The formula

(95) follows—we remark that in this case it makes no difference if π is ramified at x0 or
not.

All in all, the lemma is proved. �
• Proof of Lemma 5.12
Let J ⊂ p̂�T̂Z be the image of the differential of p̂, so that we have

(108) 0 → ̂F → T̂X → J → 0

outside a set of codimension at least two.
Let x0 be a generic point of a component W of ̂E which is not p̂-exceptional. Then we

have a coordinate system centered at x0, say (z1, . . . , zn) with respect to which the map p̂

can be written as follows

(109) (z1, . . . , zn) → (

zq+1, . . . , zn−1, zkn

n

)

where W = (zn = 0) near x0.
By a direct computation of the differential, we deduce that J is generated by the

vector fields

(110)
∂

∂ t1
,

∂

∂ t2
, . . . , zkn−1

n

∂

∂ tn−q

near y0.
Hence the determinant of J is equal to

(111) detJ = −p�K̂Z −
∑

i

(ki − 1)Yi

where the hypersurfaces appearing in the first sum in (111) correspond to the components
of the pre-image of E ⊂̂Z which are not exceptional with respect to p̂.
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Thus, by the sequence (108) we obtain

(112) detF − p�K̂Z −
∑

i

(ki − 1)μ�Yi = −K̂X

and after rearranging the terms, this can be reformulated as follows

(113) K ̂F = K̂X/̂Z − D(̂p)

modulo a divisor which is πX-exceptional. This is what we wanted to prove. �

6. Proof of Theorems 1.4 and 1.3

6.1. Proof of Theorem 1.4. — We recall here some notions. Let (X,�) be a smooth
projective log-canonical orbifold pair. Let π : X� → X be a Kawamata cover adapted
to (X,�), and let π∗�1(X,�) and π∗T(X,�) be its cotangent and tangent bundles,
respectively. Let further F� ⊂ π∗T(X,�) be a coherent, saturated subsheaf. We denote
by F sat

� the saturation of F� in π�TX. We assume that we have F sat
� = π∗(FX) for some

uniquely determined distribution FX ⊂ TX on X.
Denote by � : ∧2F� → π∗T(X,�)/F� the associated orbifold Lie bracket (cf.

Corollary 5.6).

Definition 6.1. — We say that F� is a foliation on (X,�) if the above map � vanishes

identically.

Remark 6.2. — We assume that

2.μπ∗α,min(F�) > μπ∗α,max

(

π∗T(X,�)
)

/F�

for some movable class α on X. Then π∗LX vanishes identically, by the usual slope con-
siderations.

Remark 6.3. — If μπ∗α,max(π
∗T(X,�)) > 0 then we obtain a foliation F� by

choosing appropriate pieces of the Harder-Narasimhan filtration of π∗T(X,�).

Recall the statement of Theorem 1.4:

Theorem 6.4. — Let F� ⊂ π∗(T(X,�)) be such that: μπ�α,min(F�) > 0, and such that

2.μα,min(F�) > μα,max(π
∗(T(X,�)/F�). The saturation of F� in π∗(TX) then defines an al-

gebraic foliation FX on X such that the restriction of KX + � to the closure F of the generic leaf of F
is not pseudo-effective.
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Proof. — By Lemma 5.5 there exists a sheaf FX on X such that

π�(FX) =F sat
� .

By Remark 6.2 and Corollary 5.9 we infer that FX is a foliation on X. Moreover we have

μα,min(FX) ≥ μπ∗α,min(F�) > 0.

Next, by Lemma 5.11 and 5.12 we see that KX/Z + � is not pseudo-effective (we use
the same notations as in these statements). We obtain Theorem 6.4 as a consequence of
Remark 3.6 (and the references therein). �

6.2. Proof of Theorem 1.3.

Proof. — Let (X,�) be a smooth lc pair as in Theorem 1.3, and let π : X� → X
be a ramified cover associated to this pair, given by Lemma 5.2. Consider any quotient
⊗mπ��1(X,�) →Q→ 0.

By contradiction, assume that c1(Q).π�α < 0 for some movable class α on X.
Then we have μπ∗α,min(⊗mπ��1(X,�)) < 0. By Theorem 2.9 in Section 2 the inequality
μπ∗α,max(π

�T(X,�)) > 0 is equally satisfied.
Let 0 →F� → π�T(X,�) be the maximal π�α destabilising subsheaf of the orb-

ifold tangent bundle. The maximality of F� induces a few important properties: it is
π�α-semistable, G-invariant and saturated in π�T(X,�).

Moreover, we have: μπ�α(F�) > 0, and

2μπ�α(F�) > μπ�α,max

(

π∗T(X,�)/F�

)

.

The conclusion then follows by combining Remark 6.2, Corollary 5.9 and Theorem 5.10.
Indeed, the saturation of F� in the π -inverse image of TX is the inverse image of a
foliation FX on X. It turns out that FX is algebraic, and the contradiction follows by
applying Theorem 5.10. �

7. Birational stability of the orbifold cotangent bundle

In this section we show the birational stability of �1(X,�) if KX + � is pseudo-
effective, in the sense that, the numerical dimension of any sub-line bundle L of
⊗m(�1(X,�)) is bounded from above by the numerical dimension of KX + �, this for
any m ≥ 0. This term was introduced in [13] to express the fact that the positivity of the
subsheaves of the cotangent bundles (measured in terms of sections rather than slopes) is
at most the same as for the cotangent bundle itself.

If the bundle L is big, then it turns out that the assumption KX + � pseudo-effective

can be dropped. This result was obtained in [19] by delicate arguments using crucially
[5]. The strengthening from ‘generic semi-positive’ to ‘pseudo-effective’ obtained here
permits to give below a short and obvious argument, without using [5].
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7.1. Numerical dimension. — Let X be smooth and projective, and let L be a line-
bundle (or Q-line-bundle) on X. Let A be any sufficiently ample line bundle on X. Recall
from [45]:

Definition 7.1. — The numerical dimension ν(X,L) of L is defined by:

ν(X,L) := max
{

k ∈ Z | lim sup
p→∞

h0(X, p.L+ A)

pk
< +∞

}

.

We have the following properties:
1.1. ν(X,L) ∈ {−∞,0,1, . . . , n}, and ν(X,L) ≥ κ(X,L).
1.2. ν(X,L) ≥ 0 if and only if L is pseudo-effective. See [45], Section 5,

Lemma 1.4.
1.3. ν(X, k.L) = ν(X,L), for any k > 0.
1.4. ν(X, k.L+ P) ≥ ν(X,L) if P is a pseudo-effective Q-line bundle.
1.5. If ν(X,L) = n, then κ(X,L) = n (i.e.: L is ‘big’).
This variant of the Iitaka-Moishezon dimension of Q-line bundles permits, when

applied to adjoint line-bundles, to turn conjectures of Abundance-type into theorems. We
define now:

Definition 7.2. — Let (X,�) be a projective log-canonical pair with X smooth and � sup-

ported on an snc divisor. Let π : X� → X be an adapted cover. Let

ν+(X,�) := max
{

ν(X,L) | ∃ m such that π∗(L) ⊂ ⊗mπ��1(X,�)
}

.

We define, as usual: ν(X,�) := ν(X,KX + �).

We obviously have the following properties:
P.1. ν+(X,�) ≥ ν(X,�) ≥ κ(X,�). We shall show below the equality:

ν+(X,�) = ν(X,�), when KX + � is pseudo-effective.
P.2. When � = 0, we thus have, if KX is pseudo-efective:

κ(X) ≤ κ+(X) ≤ ν+(X) = ν(X),

where κ+(X) was defined in [11] as:

κ+(X) = max
{

κ
(

X,det(F)
) | F ⊂ �p(X), p > 0

}

.

P.3. Let X = Pd × Y, with dim(Y) = n − d < n, and KY pseudo-effective. Then
ν(X) = −∞, while ν+(X) = ν(Y) ≥ 0. These examples show that the restriction KX

pseudo-effective is needed, and explain why the this condition can be dropped when
ν+(X) = n.

P.4. Let rX : X → RX be the ‘rational quotient’ of X (called also its ‘MRC-
fibration’). It has rationally connected fibres and non-uniruled base (by [25]). One can
easily show that ν+(X) = ν(RX).
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7.2. Birational stability of orbifold cotangent bundles.

Theorem 7.3. — Let (X,�) to be smooth projective orbifold pair, such that KX +� is pseudo-

effective. Then ν+(X,�) = ν(X,�). In other words:

Let L be a line bundle on X, together with a non-trivial morphism π�L → ⊗mπ��1(X,�).

Then: ν(X,L) ≤ ν(X,KX + �).

Proof. — Let Q := ⊗mπ��1(X,�)/π�L the quotient sheaf. Since

det(Q) = nm−1π�(KX + �) − π�L,

we have:

nm−1(KX + �) =L+ P.

Here P is a Q-line bundle on X, whose π -inverse image is equal to det(Q).
The bundle det(Q) is non-negative when evaluated on any inverse image of any

movable class on X, by Theorem 1.3. Thus P is pseudo-effective, and therefore ν(KX +
�) ≥ ν(L) by property P.4 above. �

Remark 7.4. — Assume that the line bundle L in Theorem 7.3 is big. Then KX +
� is big if pseudo-effective. Indeed we deduce that ν(X,KX + �) = n, and then the
conclusion follows from the property P.5 in Section 7.1 (or, without it, from the fact that
the sum of a pseudo-effective and of a big Q-line bundle is big). We shall remove the
hypothesis “KX + � pseudo-effective” in the next subsection.

Remark 7.5. — The following observation has been communicated by Behrouz
Taji: if X is smooth projective, n-dimensional, and if ν(X) = 0, with χ(X,OX) �= 0, then
π1(X) is finite of cardinality at most 2n−1.

To see this, just apply [11], Theorem 4.1, which says that X has a finite funda-
mental group of cardinality at most 2n−1 if κ+(X) ≤ 0. But now, observe that: κ+(X) ≤
ν+(X) = ν(X) = 0. The last equality holds by Theorem 7.3, since KX is pseudo-effective
if ν(X) = 0. Notice that ν(X) = 0 implies κ(X) = 0, by [33], and that the converse
is conjecturally true by Abundance. It was conjectured in [11] that κ+(X) = κ(X) if
κ(X) ≥ 0.

7.3. Criteria for pseudoeffectivity and log-general type.

Theorem 7.6. — Let (X,�) be a smooth orbifold log-canonical pair, and let L be a pseudo-

effective line bundle on X. We assume that there exists a non-zero map

(114) π�L → π��⊗m(X,�) ⊗ π�(KX + �)p

for integers m ≥ 0 and p > 0. Then KX + � is pseudo-effective. (The converse is obvious, taking

m = 0, p = 1.)
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Proof. — Let H be an ample line bundle on X. Let tmin be the minimum of the
positive real numbers t such that

(115) KX + � + tH

is pseudo-effective. The existence of tmin is guaranteed by the fact that the pseudo-effective
cone is closed.

We claim that tmin = 0. If not, let (tk) ⊂ Q+ be a decreasing sequence of (positive)
rational numbers converging to tmin. Since H is ample, there exists a smooth Q-divisor
still denoted by H in the linear system |H| such that the orbifold

(116) (X,� + tkH)

is log-smooth and log-canonical for each k ≥ 1. If we denote by πk the corresponding
ramified cover, then the map (114) induces an injective morphism of sheaves

(117) π�
k L ⊗ π�

k (KX + �)−p → π�
k �

m(X,� + tkH)

and let Qk be the co-kernel of (117). As in the proof of 7.11 we infer that we have

(118) nm−1(KX + � + tkH) = L − p(KX + �) + Pk

where Pk is pseudo-effective. But this implies that

(119) KX + � + tk
nm−1

p + nm−1
H

is pseudo-effective, for each value of the parameter k.
On the other hand, there exists k0 � 0 such that

tk0

c(m, n)

p + c(m, n)
< tmin

since we have assumed that tmin > 0 is a strictly positive number. Combined with the fact
that the Q-bundle in (119) is pseudo-effective for k := k0, this is in contradiction with the
choice of tmin. �

Remark 7.7. — When m > 0, p = 0, the above situation occurs with K(X,�) either
pseudo-effective, or not pseudo-effective, as one sees by considering X = Pk × Zn−k , for
0 ≤ k < n, if � = 0,KZ pseudo-effective.

When p < 0 instead, we get a lower bound for the existence of L, by the same
method.
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Theorem 7.8. — Let (X,�) be a smooth orbifold log-canonical pair such that KX + � is

pseudo-effective, but not numerically trivial.

If p > nm−1 is an integer, every map

π�
(

L · (KX + �)p
) → π��⊗m(X,�)

vanishes, for any pseudo-effective line bundle L on X. In particular we have H0(X�,π��⊗m(X,�)⊗
π�(KX + �)−p) = 0, if p > nm−1.

Proof. — Let a non-zero map π∗(L) → π��⊗m(X,�)⊗π�(KX +�)−⊗p be given.
The same arguments as above show that we have

L + P + p.(KX + �) = nm−1.(KX + �)

for some pseudo-effective P. Let now α ∈ Mov(X) be such that (KX + �).α > 0 (this is
here that the numerical non-triviality of (KX + �) is used). We get: (nm−1 − p).((KX +
�).α) ≥ 0, and the conclusion by dividing by (KX + �).α. �

Remark 7.9. — The trivial example of an Abelian variety X together with � = 0
shows that for any (m, p) ∈ Z⊕2 the conclusion may fail when K(X,�) is trivial. It however
holds for any blow-up of these X′s. This example illustrates again the fact that our results
are stable by blow-ups, but not necessarily by contractions.

Remark 7.10. — Also, we note that this statement is considerably weaker than the
version obtained in [20], where the same conclusion is obtained under the assumption
that p > m. However, the technical tools needed in [20] for the proof of this sharper result
are much more involved than the present arguments.

Theorem 7.11 ([19]). — Let (X,�) be a smooth log-canonical pair, together with a big line

bundle L→ X which admits a non-trivial morphism

(120) π�L→ ⊗mπ��1(X,�).

Then KX + � is big.

Proof. — One proof is essentially the same as the one used for Theorem 7.6 above,
and also as the one used in [19], and of Theorem 2.3 in [18], which deals with the
case � = 0. The statement can also however be directly deduced from the preceding
Theorem 7.6 by exactly the same extremely short argument used to deduce Corollary 8.7
from Theorem 8.6, and to which we refer. �
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7.4. Cases −(KX + �) either ample, or numerically trivial. — We give here a strength-
ened form of a result in [19]. The proof is exactly the same as the one of Theorem 7.3
above, so we just state the result.

Theorem 7.12. — Let (X,�) be smooth, projective and log-canonical. Assume that KX +
� ≡ 0.

Then μπ∗(α),max(π
∗(�1(X,�)) ≤ 0.

Let π∗L → ⊗m(π∗�1(X,�)),m > 0 be a non-zero sheaf morphism, for some line bundle L
on X.

Then: −L is pseudo-effective. In particular: κ(X,L) ≤ 0.

Remark 7.13. — It is proved in [15], Theorem 4.6, that if c1(KX + �) = 0 (resp.
if −(KX + �) is ample), and if the coefficients of � are ‘standard’ (i.e.: of the form
cj = (1 − 1

mj
), with mj > 0 integer), the orbifold fundamental group π1(X,�) is almost

abelian (resp. finite).

By combining these ideas with adjacent techniques, the following vanishing result
is established in [21], using algebro-geometric arguments in characteristic 0 only.

Theorem 7.14. — [21] Let (X,�) be a smooth projective klt orbifold pair. Assume that

−(KX + �) is ample. Let π : X� → X be a Kawamata cover adapted to �. Then, for any m > 0
and any line bundle L′ ≡ 0 on X�, we have: H0(X�,⊗m(π∗�1(X,�)) ⊗ L′) = 0. Moreover

π1(X) = {1}.

8. Variation and positivity for quasi-projective families

We mention here an application of Theorem 7.11 in the theory of moduli. An
extremely simplified proof of Theorem 7.11 is presented in the next section.

Let f : V → B a projective submersion with connected fibres between two quasi-
projective connected manifolds V,B. The ‘variation’ Var(f ) ∈ {0, . . . , d := dim(B)} of f

is the rank of the Kodaira-Spencer map κσ : TB → R1f∗(TV/B) at the generic point
of B. Thus Var(f ) = 0 if and only if f is isotrivial.

Let B̄ be any ‘good’ smooth projective compatification of B, such that D = B̄ − B
is an snc divisor.

The following result was conjectured by E. Viehweg, generalising a former hyper-
bolicity conjecture of I. R. Shafarevich. Special cases where obtained previously by [34],
[29], [46].

Theorem 8.1. — Let f : V → B be as above. Assume that the fibres of f all have an ample

canonical bundle and that Var(f ) = dim(B). Then the base B is of log-general type, i.e.

κ(B̄,KB̄ + D) = dim(B).
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Proof. — In [50], Viehweg-Zuo have shown that, in this situation, for some m > 0,
there exists a big sub-line bundle L of Symm(�1

X(Log(D)). From Theorem 7.11 we de-
duce that KB̄ + D is big. �

Partial generalisations have been obtained in [47] and [49], also using Theo-
rem 7.11 and variants of the Viehweg-Zuo sheaf.

In [47], it is shown that, for f : V → B as above, B̄ is of Log-general type if the
fibres of f are of general type, and if the (birational) variation is maximal (equal to d ).

In [49], the ‘isotriviality conjecture’ formulated in [13] is solved. This conjecture
says that if B is ‘special’, and if the fibres of f are canonically polarised, then f is isotrivial.

Recall that B being ‘special’ means that κ(B̄,L) < p, for any p > 0 and any L ⊂
�

p

B̄
(Log(D)). (Very) particular cases of ‘special’ quasi-projective manifolds are the ones

such that κ(B̄,KB̄ + D) = 0 for some (or any) good projective compactification B̄ of B.
We refer to [13] for more details on ‘specialness’ and structure results.

When d = 1, the only ‘special’ quasi-projective curves are: P1,C,C∗, and E, any
elliptic curve. I. R. Shafarevich originally formulated his ‘hyperbolicity conjecture’ as
the isotriviality of smooth families of curves of genus at least 2 parametrised by a ‘special’
quasi-projective curve. Remark that quasi-projective curves are ‘special’ if and only if non-
hyperbolic. In higher dimensions, there are (lots of) ‘special’ quasi-projective manifolds B̄
of all possible log-Kodaira dimensions less than d := dim(B).

We mention here yet another result, which can be seen as a version of Viehweg
conjecture for Calabi-Yau families.

Theorem 8.2. — Let f : V → B be as above. Assume that the first Chern class of the fibres of

f is trivial, and that Var(f ) = dim(B). Then the base B is of log-general type, i.e.

κ(B̄,KB̄ + D) = dim(B).

Proof. — It is completely similar to the argument we have provided for Theo-
rem 8.1, except that the existence of the Viehweg-Zuo sheaf is established in [4], Theo-
rem 9.9. �

The preceding results suggest the more general isotriviality question:

Question. — Let f : V → B be as above4 Assume that the fibres of f have a pseudo-
effective canonical bundle. If B is ‘special’, is then f is birationally isotrivial? If the bira-
tional variation of f is maximal, is then B is of log-general type?

The question is also interesting when f has Fano fibres. A. Kuznetsov in [37],
mentions that ‘Gushel-Mukai’ manifolds (complete intersections in Gr(2,5) of Plücker

4 One may even assume only that f be ‘quasi-submersive’, meaning that the reduction of each of its fibres is smooth.
The conclusion should then hold by replacing B with the ‘orbifold base’ of f , in the sense of [12]. This conjecture was
formulated in this form in [1] when the reduced fibres of f have a semi-ample canonical bundle.
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hyperplanes and one hyperquadric) provide non-isotrivial families of Fano threefolds with
Picard number 1 parametrised by a smooth projective surface. These families are, how-
ever, birationally isotrivial.

8.1. Criteria for pseudoeffectivity and bigness of ‘purely’ logarithmic cotangent bundles. — This
final subsection is inspired by a very recent and elegant article of C. Schnell cf. [48]. The
point in [48] is that Theorem 7.11 can be obtained by combining some of the main
results established in the previous sections with induction on the dimension on X. In
this way one can avoid using the full force of the results we have in the general orbifold
context, provided that all the coefficients of the divisor � are equal to one. Nevertheless,
the algebraicity criteria (Theorem 1.1) seems indispensable.

Notice however that, even for moduli problems, the treatment of multiple fibres
requires the orbifold context.

We change slightly the notations: the orbifold divisor � will be denoted here by
D = ∑

Di , so as to indicate that the pair (X,D) is purely logarithmic. As before, X is
non-singular and D is a reduced divisor with simple normal crossings on X. In what
follows we will only be concerned with orbifold pairs (X,D) of this type.

In this case the orbifold tangent bundle is the usual logarithmic tangent bundle.
This is a vector bundle on X, sometimes denoted by TX(−Log(D)), but for the consis-
tency’s sake, we will conserve the notation T(X,D) here.

The logarithmic tangent bundle T(X,D) is closed under the Lie bracket induced
from TX., i.e. we have

(121) LD : 	2T(X,D) → T(X,D)

given by the restriction of the Lie bracket of X to the subsheaf T(X,D).
Let F ⊂ T(X,D) be a coherent subsheaf. We have a OX-linear map

(122) LF
D : 	2F → T(X,D)/F

induced by LD.
The following statements are particular cases of Corollary 5.9 and of Theorem 6.4,

respectively. In the purely logarithmic case, their proofs simplifies considerably, due to the
fact that no adapted cover is needed.

Lemma 8.3. — Let F ⊂ T(X,D) be a coherent saturated subsheaf, such that the corresponding

Lie bracket LF
D vanishes identically. We denote by F s ⊂ TX the saturation of F in the tangent bundle

of X. Then F s defines a holomorphic foliation.

Theorem 8.4. — Let F ⊂ T(X,D) be a coherent subsheaf such that the corresponding Lie

bracket LF
D is identically zero. We assume moreover that μα,min(F) > 0, for some α ∈ Mov(X).

Then the following are true.
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(1) The saturation F s of F in TX defines an algebraic foliation.

(2) The restriction of KX +D to the closure of the generic leaf of the algebraic foliation F s ⊂ TX

is not pseudo-effective.

As in the general case of an arbitrary orbifold divisor, the conclusion of the point
(2) of Theorem 8.4 means the following. There exists a birational map p : X′ → X such
that the support D′ of p−1(D) has simple normal crossings, together with a surjective map
f : X′ → Z where Z is a non-singular algebraic manifold, such that we have.

• The foliation induced by F s on X′ coincides generically with Ker(f ),
• The restriction KX′ + D′|X′

z
is not pseudo-effective, where X′

z is the fibre of f at
a generic point z ∈ Z.

Remark 8.5. — The conclusion here is considerably weaker than in the case where
D = 0 (rational connectedness being replaced by uniruledness). The analogous result
in this generalised situation is established in [21], after suitable equivalent definitions
of rational connectedness in this context are given (based on negativity of the orbifold
cotangent bundles, but without reference to ‘orbifold rational curves’).

The next result is the particular case of Theorem 7.6, where � is reduced, which
permits to give an extremely simple proof (inspired by, and simplifying [48], who observed
that one can argue directly in the logarithmic setting).

Theorem 8.6. — Let (X,D) be a smooth projective connected purely logarithmic orbifold pair.

Let L be a pseudo-effective line bundle on X such that there exists a sheaf embedding

L → ⊗m
(

�1(X,D)
) ⊗ (

KX ⊗OX(D)
)⊗p

for some m ≥ 0, p > 0. Then KX + D is pseudo-effective.

Proof. — Assume by contradiction that KX + D is not pseudo effective. Let α ∈
Mov(X) be such that (KX +D).α < 0. Let F ⊂ T(X,D) be a maximal destabilising sub-
sheaf, and f : X → Z be a fibration such that F = Ker(df ) generically (here we replace
(X,D) by a suitable birational smooth model in order to make f regular, as explained in
the bullets above). The generic orbifold fibre (Xz,Dz) is thus smooth and KXz

+ Dz not
pseudo-effective.

We proceed now by induction on dim(X).
If dim(Z) = 0, then F = T(X,D), and

0 < μα,min

(

T(X,D)
) = −μα,max

(

�(X,D)
)

.

In the following (in)equalities, we denote �(X,D) := �,T is its dual, and K := KX + D.
We have

0 ≤ L.α ≤ μα,max

((⊗m� ⊗ Kp
)) = −m.μα,min(T) + p.K.α ≤ p.K.α < 0,

and thus we obtain a contradiction.
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If dim(Z) > 0, we apply the preceding argument to Xz. We have a non-zero mor-
phism

L|Xz
→ ⊗k

(

�1(Xz,Dz)
) ⊗ (

KXz
⊗OXz

(Dz)
)⊗p

for some 0 ≤ k ≤ m, and the important thing is that p ≥ 1, so we can use induction to
conclude that KXz

+ Dz is pseudo-effective. This is a contradiction. �

Corollary 8.7. — Let (X,D) be a smooth projective connected purely logarithmic orbifold pair.

Let L be a line bundle on X, which admits an embedding L ⊂ ⊗m�1(X,D) for some m > 0, and

such that the Q-bundle ε(KX + D)+ L is big for some rational number ε ≥ 0. Then KX + D is big.

Proof. — Since ε(KX + D) + L is big, there exists an integer q > 0 such that the
bundle L1 := Lq ⊗ KX ⊗OX(D) is effective (the number q depends on (X,D),L and ε).

The hypothesis of Corollary 8.7 shows that L1 admits an injection into ⊗mq�1(X,D)⊗
KX ⊗OX(D). If so, Theorem 8.6 implies that KX + D is pseudo-effective. The corollary
then follows, since any quotient of ⊗m�1(X,D) has pseudo-effective determinant. �
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49. B. TAJI, The isotriviality of families of canonically-polarised manifolds over a special quasi-projective base, Compos.

Math., 142 (2016), 1421–1434, arXiv:1310.5391.
50. E. V.-K. ZUO, Base spaces of non-isotrivial families of smooth minimal models, in Complex geometry, pp. 279–328,

Springer, Göttingen, 2000.
51. Y. ZHU, Log rationally connected surfaces, arXiv:1412.2665.

F. C.
Institut Elie Cartan,
Université Lorraine,
Nancy, France
and
KIAS,
85 Hoegiro, Dongdaemun-gu,
Seoul 130-722, South Korea
and
Institut Universitaire de France,
1, rue Descartes,
Paris 75005, France
frederic.campana@univ-lorraine.fr

M. P.
KIAS,
85 Hoegiro, Dongdaemun-gu,
Seoul 130-722, South Korea
and
Department of Mathematics, College of Liberal Arts and Sciences,
University of Illinois at Chicago,
851 S. Morgan Street,
Chicago, IL 60607-7045, USA
mpaun@uic.edu

Manuscrit reçu le 10 novembre 2015

Manuscrit accepté le 29 avril 2018

publié en ligne le 18 avril 2019.

http://arxiv.org/abs/arXiv:1109.2835
http://arxiv.org/abs/arXiv:1310.5391
http://arxiv.org/abs/arXiv:1412.2665
mailto:frederic.campana@univ-lorraine.fr
mailto:mpaun@uic.edu

	Foliations with positive slopes and birational stability of orbifold cotangent bundles
	Introduction
	Structure of the text

	Slope and semi-stability with respect to movable classes
	The movable cone
	Slopes associated to a movable class
	Tensor products
	A vanishing criterion: from exterior to tensor powers
	Birational invariance of slope-positive foliations

	Pseudoeffectivity of relative canonical bundles
	Algebraicity criteria for foliations
	Algebraicity
	Rational connectedness
	Pseudo-effectivity of cotangent sheaves of foliations
	Descent of foliations

	Orbifold tensor bundles on Kawamata covers
	Ramiﬁed coverings
	Orbifold tensor bundles
	The tangent bundle and the Lie bracket on orbifolds
	Motivation

	The relative canonical bundle of an orbifold ﬁbration

	Proof of Theorems 1.4 and 1.3
	Proof of Theorem 1.4
	Proof of Theorem 1.3

	Birational stability of the orbifold cotangent bundle
	Numerical dimension
	Birational stability of orbifold cotangent bundles
	Criteria for pseudoeffectivity and log-general type
	Cases -(KX+Delta) either ample, or numerically trivial

	Variation and positivity for quasi-projective families
	Question
	Criteria for pseudoeffectivity and bigness of `purely' logarithmic cotangent bundles

	Acknowledgements
	Publisher's Note
	References


