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ABSTRACT

The article is a contribution to the local theory of geometric Langlands duality. The main result is a categorifica-
tion of the isomorphism between the (extended) affine Hecke algebra associated to a reductive group G and Grothendieck
group of equivariant coherent sheaves on Steinberg variety of Langlands dual group G ;̌ this isomorphism due to Kazhdan–
Lusztig and Ginzburg is a key step in the proof of tamely ramified local Langlands conjectures.

The paper is a continuation of the author’s joint work with Arkhipov, it relies on the technical material developed
in a joint work with Yun.
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1. Introduction and statement of the result

1.1. Affine Hecke algebra and its two categorifications. — Let k be a field, and let F =
k((t)) ⊃ O = k[[t]] be the field of functions on the punctured formal disc over k and its
ring of integers. Let G be a split reductive linear algebraic group over k; let B ⊂ G be
a Borel subgroup, and I ⊂ G(F) be the corresponding Iwahori subgroup (thus I is the
preimage of B under the evaluation map G(O) → G).

If k is finite then the group G(F) is a locally compact topological group, I is its
open compact subgroup, and the space H of C-valued finitely supported functions on
the two-sided quotient I\G(F)/I carries an algebra structure under convolution; this is
the Iwahori-Matsumoto Hecke algebra. Also H = H ⊗Z[q±1] C where H is the (extended)
affine Hecke algebra and the homomorphism Z[q±1] → C sends q to |k|.

Based on Grothendieck “sheaf-function” correspondence principle, one can con-
sider the category of l-adic complexes (or perverse sheaves) on an Fq-scheme (or on its
base change to an algebraically closed field) as the categorical counterpart, or categorifi-
cation, of the space of functions on the set of Fq-points of the scheme; in particular, the
space of functions is a quotient of the Grothendieck group of the category. This approach
yields a certain derived category of étale sheaves (respectively, constructible sheaves or
D-modules) which should be viewed as a categorification of the affine Hecke algebra H.

On the other hand, as was discovered by Kazhdan and Lusztig (and independently
by Ginzburg), the affine Hecke algebra can be realized as the Grothendieck group of
equivariant coherent sheaves on the Steinberg variety of the Langlands dual group, thus
the corresponding derived category of coherent sheaves provides another categorification
of H.

The goal of the present paper is to construct an equivalence between the two trian-
gulated categories which categorify the affine Hecke algebra. A step in this direction has
been made in the previous works [1], [12], where a geometric theory of the anti-spherical
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(Whittaker) module over H was developed;1 in the present paper we extend this analysis
to the affine Hecke algebra itself.

The possibility to realize the affine Hecke algebra H and the “anti-spherical”
module over it as Grothendieck groups of (equivariant) coherent sheaves on varieties
appearing in the Springer theory for Gˇ plays a key role in Kazhdan–Lusztig’s proof of
classification of irreducible representations of H, which constitutes a particular case of
local Langlands conjecture, see [35] and exposition in [24].2 Thus one may hope that
the categorification of these realizations proposed here can contribute to the geometric
Langlands program. In fact, since the result of the paper was announced, it has been
applied and generalized by several authors working in that area, see [28], [10], [19]; see
also [13] for a survey of some applications and related results and [33] for a discussion of
related dualities in gauge theory. Let us point out that existence of (some variant of) such
a categorification was proposed as a conjecture by V. Ginzburg, see Introduction to [24].

1.2. Statement of the result. — Let us now describe our result in more detail.

1.2.1. Categories of l-adic sheaves (the “Galois side”). — Recall the well known group
schemes GO ⊃ I over k (of infinite type) such that GO(k) = G(O), I(k) = I, and a group
ind-scheme GF with GF(k) = G(F). We let I0 be the pro-unipotent radical of I; if k = Fpa

then I0 = I0(k) is the pro-p radical of I. We also have the quotient ind-varieties: the affine
Grassmannian Gr, the affine flag variety F� = GF/I and the extended affine flag variety
˜F� = GF/I0, see e.g. [29], Appendix, §A.5. Thus Gr, F�, ˜F� are direct limits of finite
dimensional varieties with transition maps being closed embeddings, in the case of Gr
and F� all the finite dimensional varieties in the direct system are projective. We have
Gr(k) = G(F)/G(O), F�(k) = G(F)/I, ˜F�(k) = G(F)/I0.

From now on we assume that the base field k is algebraically closed.

Let D(˜F�), D(F�), D(Gr) be the constructible derived categories of l-adic sheaves
(l �= char(k); see [25, §1.1.2], [8, §2.2.14–2.2.18]; and [29, §A.2], for a (straightforward)
generalization of the definition of an l-adic complex to a certain class of ind-schemes) on
the respective spaces.3

The protagonists of this paper are as follows. Let DII = DI(F�) be the I-equivariant
derived category of l-adic sheaves on F�; DI0I = DI0(F�) be the I0-equivariant de-
rived category of l-adic sheaves on F�, and let DI0I0 be the full subcategory in the
I0-equivariant derived category of ˜F� consisting of complexes whose cohomology is

1 In loc. cit. the group G is assumed to be simple. However, its arguments apply also to the case of a general reductive
group G.

2 In fact, some of the key ideas of this theory already appeared in an earlier work of Lusztig [39], [40] where
certain modules over the affine Hecke algebra were realized via K-groups of Springer fibers; also the relation between the
q-deformation of the K-group and dilation equivariance was described in loc. cit.

3 If char(k) = 0 we can also consider the corresponding derived categories of D-modules and if k = C we can work
with the derived category of constructible sheaves in the classical topology. All our results, excepts for some statements in
Section 11 which explicitly involve a Frobenius action, hold in these settings, the proofs are identical.
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monodromic (or weakly equivariant, see [47]) with respect to the right T = I/I0 action
with unipotent monodromy.

The categories DII and DI0I0 are equipped with an associative product operation
provided by convolution; DII is unital while DI0I0 lacks the unit object.4 We have com-
muting actions of DI0I0 and DII on DI0I by left and right convolution respectively. The
convolution operation will be denoted by ∗.

Let PII ⊂ DII, PI0I ⊂ DI0I, PI0I0 ⊂ DI0I0 be the subcategories of perverse sheaves.
A standard argument (see e.g. [9, Proposition 1.5] for the first equivalence, the second
one follows by a similar argument using e.g. [23, Corollary A.4.7]) shows that

(1)
Db(PI0I) ∼= DI0I,

Db(PI0I0) ∼= DI0I0,

while the natural functor Db(PII) → DII is not an equivalence.

1.2.2. The dual side. — Let Gˇ be the Langlands dual group over the field Ql . The
goal of the paper is to provide a description for the above categories in terms of Gˇ. To
formulate the answer we need to recall the following construction.

Let X → Y, X′ → Y be morphisms of algebraic varieties. We will assume that
X,X′,Y are varieties over a field k, Y is smooth and morphisms X → Y, X′ → Y are
proper.

One can consider the derived fiber product X
L×YX′ which is a differential graded scheme

(DG-scheme for short), and the triangulated category DGCoh(X
L×YX′).

If TorOY
i (OX,OX′) = 0 for i > 0 then the derived fiber product reduces to the

ordinary fiber product and DGCoh(X
L×YX′) = Db(Coh(X ×Y X′)).

The triangulated category DGCoh(X
L×YX) has a natural monoidal structure pro-

vided by convolution. The category Db(Coh(X)) is naturally a module category for the

monoidal category DGCoh(X
L×YX). [For example, when X is a finite set and Y is a

point the induced structures on the Grothendieck group amount to matrix multiplication
and the action of n × n matrices on n-vectors respectively]. More generally, the category

DGCoh(X
L×YX′) has two commuting actions: the action of DGCoh(X

L×YX) on the left

and an action of DGCoh(X′ L×YX′) on the right.

4 Notice that convolution with an object of DI0I0 involves direct image under a non-proper morphism, thus con-
volution could be defined in two different ways, using either direct image or direct image with compact support; we use
the version with the ordinary direct image. However, the convolution diagram involved in the definition of convolution in
DI0I0 is a composition of a T bundle and a proper morphism, while the sheaves to which we apply the direct image are
T-monodromic. The direct image under projection to the base of a T-monodromic sheaf on a principal T-bundle can be
expressed as derived invariants of monodromy, cf. Lemma 44, while direct image with proper support is a Verdier dual
operation. Since derived invariants with respect to a symmetric algebra action is a self-dual operation, up to homological
shift, we see that the two definitions produce equivalent monoidal categories.
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Given an action of an affine algebraic group H on X,X′,Y compatible with the
maps, one gets equivariant versions of the above statements.

We will apply this in the following situation. We let Y = gˇ be the Lie algebra of
Gˇ, X = g̃ˇ = {(b, x) | b ∈ B, x ∈ b}, X′ = Ñ = {(b, x) | b ∈ B, x ∈ rad(b)}, where B is the
flag variety for Gˇ parametrizing Borel subalgebras in gˇ.

A standard complete intersection argument shows that TorOY
>0 (OX,OX′) = 0 for

X = g̃ˇ, Y = gˇ and X′ = g̃ˇ or X′ = Ñ , thus the corresponding derived fiber products
coincide with the usual fiber product of schemes. However, it fails for X = X′ = Ñ ,

Y = gˇ, so the derived fiber product Ñ
L×gˇÑ is essentially different from Ñ ×gˇ Ñ .

We set St = g̃ˇ×gˇ g̃ˇ, St′ = g̃ˇ×gˇ Ñ .

1.2.3. Statement of the result. — We now formulate the main result of the paper.
For an algebraic variety X and a closed subset Z ⊂ X we will let CohZ(X) denote

the full subcategory in Coh(X) consisting of sheaves set-theoretically supported on Z. For
a map f : X → Y and a closed subset Z ⊂ Y we will abbreviate Cohf −1(Z)(X) to CohZ(X).

Theorem 1. — There exist natural equivalences of categories:

�I0I0 : DI0I0 ∼= Db
(

CohGˇ
N (St)

)

,(2)

�I0I : DI0I
∼= Db

(

CohGˇ(St′
))

,(3)

�II : DII
∼= DGCohGˇ(Ñ

L×gˇÑ ).(4)

Equivalences (2) and (4) are compatible with the convolution product, while (3) is compatible with the

action of the categories from (2) and (4).

1.3. The action on the Iwahori-Whittaker category. — It was pointed out above that

the monoidal category of DG coherent (equivariant) sheaves on a fiber product X
L×YX

admits a natural action on the derived category of (equivariant) coherent sheaves on

X. In particular, monoidal category DGCohGˇ(Ñ
L×gˇÑ ) acts on Db(Coh(Ñ )), while

Db(CohGˇ(St)) acts on Db(CohGˇ(g̃ˇ)).
To describe the corresponding structures on the loop group side, recall the category

of Iwahori-Whittaker sheaves. The quotient of I0 by its commutant is the sum of copies of
the additive group indexed by vertices of the affine Dynkin graph. Fix an additive charac-
ter ψ of I0 which is trivial on the summand of I0/(I0)′ corresponding to the affine root(s)
and is non zero on the other summands. We denote by DI

IW the I-equivariant derived cat-
egory of l-adic sheaves on the principal homogeneous space GF/(I0)′ which satisfies the
ψ -equivariance condition with respect to the right action of I0/(I0)′, see [1]. (Conven-
tions here differ from those of [1] by switching the roles of left and right multiplication.)
We let DI0

IW denote the category of I monodromic sheaves with unipotent monodromy
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on GF/(I0)′ which are ψ -equivariant with respect to the right action of I0/(I0)′, this is
a particular case of the category considered in [23] (again, one needs to switch left with
right to get from the present setting to that of [23]).

The categories DI0I0 , DII act on DI0

IW, DI
IW respectively by convolution.

Theorem 2. — There exist equivalences of categories

�I
IW : Db

(

CohGˇ(Ñ )
)−̃→DI

IW,(5)

�I0

IW : Db
(

CohGˇ
Ñ (g̃ˇ))−̃→DI0

IW,(6)

satisfying the following compatibilities: the equivalence �I0

IW is compatible with the action of

DbCohGˇ
N (St) coming from the action of DI0I0 on DI0

IW and equivalence (2).

The equivalence �I
IW is compatible with the action of DGCohGˇ(Ñ

L×gˇÑ ) coming from the

action of DII on DI
IW and equivalence (4).

Another useful compatibility between the equivalences in Theorems 1 and 2 is
stated at the end of Section 10.

A variant of equivalence (5) has been established in [1], and (6) can obtained by a
similar argument, see below. More precisely, in [1] a functor F : Db(CohGˇ(Ñ )) → DII is
constructed, below we construct its “monodromic” counterpart �diag : Db(CohGˇ(̂g̃ˇ)) →
D̂, where D̂ is a certain “pro”-completion of DI0I0 and ̂g̃ˇ (a version of) the formal neigh-
borhood of Ñ in g̃ˇ (see Section 2.1 for a precise definition). One can consider the com-
position of F with either left or right Whittaker averaging, both compositions turn out
to be equivalences, the proofs of these two facts are parallel. In [1] we worked with left
Whittaker averaging, while here we work with the right one (this allows us to work with
modules over the monoidal category DII rather than modules over its opposite).

1.4. Description of the strategy: the Hecke algebra perspective. — Some of the constructions
exploited here are sheaf-theoretic analogs of known results in the theory of affine Hecke
algebras.

Recall that H has a standard basis tw indexed by elements w in the extended affine
Weyl group W.

Let � be the coweight lattice of G and �+ ⊂ � be the set of dominant weights.
There exists a unique collection of elements θλ ∈ H, λ ∈ �, such that θλθμ = θλ+μ for
all λ,μ ∈ � and θλ = Tλ for λ ∈ �+. The categorification of the elements θλ are the
so-called Wakimoto sheaves, see [1] and Section 3.3 below.

The elements θλ span a commutative subalgebra A ⊂ H which contains the center
Z(H) of the affine Hecke algebra. Categorification of the center is provided by the work
of Gaitsgory [29]. Categorification of the formula expressing central elements as linear
combinations of θλ is the fact that central sheaves of [29] admit a filtration whose associ-
ated graded is a sum of Wakimoto sheaves, see [1] and Section 3.5 below. This filtration
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plays a key role in our construction, see [1] and Section 4.2, yielding a categorification
of:

(7) A ∼= K0
(

CohGˇ(g̃ˇ)) δ∗−→ K0
(

CohGˇ(St)
)

,

where δ : g̃ˇ → St is the diagonal embedding.
Another ingredient important to us is the q-analog of the Schur anti-symmetrizer, or

anti-spherical projector ξ = ∑

w∈Wf

(−1)�(w)tw. Its relevance to representation theory of p-adic

groups comes from the fact that the left ideal Hξ is canonically isomorphic to I invariants
in the space of Whittaker functions on G(F), while its relation to canonical basis in the affine
Hecke algebra, thus to perverse sheaves on F� goes back to [38].

The categorical counterpart of ξ is the maximal projective object in the category
of perverse sheaves on G/B ∼= GO/I equivariant with respect to I0, it is discussed in Sec-
tion 5. Under the equivalence with the coherent sheaves category that object corresponds
to the structure sheaf of Steinberg variety.

Let Hperf ⊂ H be the two-sided ideal generated by ξ . The full subcategory
DGˇ

perf (St) ⊂ Db(CohGˇ(St)) of perfect complexes can be considered as a categorification
of Hperf . Furthermore, it is easy to see that Hperf is freely generated by ξ as a module over
A ⊗Z A. This allows one to deduce an equivalence between the two categorifications of
Hperf from the categorification of (7). The subcategory DGˇ

perf (St) is dense in Db(CohGˇ(St))
in an appropriate sense, which allows to extend the equivalence from the subcategory to
the whole category.

In this text we follow the original plan conceived more than a decade ago and
treat the issues of homological algebra by ad hoc methods, using explicit DG models
for triangulated categories of constructible sheaves based on generalized tilting sheaves.
While the properties of tilting sheaves established in the course of the argument are (in the
author’s opinion) of an independent interest, it is likely that recent advances in homotopy
algebra can be used to develop an alternative approach.

2. Outline of the argument

2.1. Further notations and conventions. — We let B ⊃ N be a Borel subgroup in G and
its unipotent radical, and Nˇ ⊂ Bˇ be similar subgroups in Gˇ; we assume that B is the
image of I under the evaluation map GO → G.

Let � be the coweight lattice of G, i.e. the coweight lattice of the abstract Cartan
group of G; thus � is identified with the weight lattice of (the abstract Cartan group
of) Gˇ. We let Wf denote the Weyl group and W = Wf � � the extended affine Weyl
group; � : W → Z≥0 is the length function, and �+ ⊂ � is the set of dominant coweights,
w0 ∈ Wf is the longest element.

We let Wf ⊂ W be the subset of minimal length representatives of right cosets
W/Wf . Notice that �+ ⊂ Wf .
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We let B = Gˇ/Bˇ be the flag variety. The set of isomorphism classes of Gˇ-
equivariant line bundles on B is identified with �; for λ ∈ � we let OB(λ) be the corre-
sponding line bundle. Recall that O(λ) is semi-ample iff λ ∈ �+. For λ ∈ �+ we let Vλ

denote the corresponding irreducible G-module, thus Vλ = �(B,O(λ)).
The ind-schemes F� = GF/I, ˜F� = GF/I0 and the categories DII ⊃ PII, DI0I ⊃

PI0I0 , DI0I0 ⊃ PI0I were introduced above. We abbreviate P = PI0I and let P̂ , D̂ be the
pro-completions of DI0I0 and PI0I0 respectively, see Section 3.

Let π : ˜F� →F� be the projection.
The I orbits on F� are indexed by W, for w ∈ W we let jw : F�w → F� be the

embedding of the corresponding orbit. We have dim(F�w) = �(w).
We have standard objects jw! := jw!(Ql[�(w)]) and costandard object jw∗ =

jw∗(Ql[�(w)]) in P . Their counterparts in D̂ are the free monodromic (co)standard ob-
jects ∇w, 
w, see Sections 3.1, 3.2.

We also consider the Iwahori-Whittaker categories DI
IW ⊃ P I

IW, DI0

IW ⊃ P I0

IW, the
pro-completions D̂IW, P̂IW of, respectively, DI0

IW, P I0

IW, (co)standard objects jIWw! , jIWw∗ ∈ P I
IW

and free monodromic (co)standard object 
IW
w , ∇ IW

w ∈ P̂IW, w ∈ Wf (see Section 3 for
further details).

Recall that St = g̃ˇ×gˇ g̃ˇ, let pSpr,1 : St → g̃ˇ, pSpr,2 : St → g̃ˇ be the two projections.
Also St′ = g̃ˇ×gˇ Ñ with two projections p′

Spr,1 : St′ → g̃ˇ, p′
Spr,2 : St′ → Ñ . Let ̂g̃ˇ= g̃ˇ×gˇ

̂gˇ, ̂St = St ×gˇ ̂gˇ, where ̂gˇ is the spectrum5 of the completion of the ring of functions
O(gˇ) at the ideal of the point 0.

For an algebraic group H acting on an (ind)-scheme X we let DH(X) denote
the equivariant derived category of H-equivariant constructible sheaves on X and let
PervH(X) ⊂ DH(X) be the subcategory of perverse sheaves. Given a subgroup K ⊂ H we
have the functor of restricting the equivariance ResH

K : DH(X) → DK(H) and the left ad-
joint functor AvH

K : DK(X) → DH(X) (the latter can be thought of as the !-direct image for
the morphism of stacks X/K → X/H). In particular, we have a functor AvI

I0 : DI0I → DII

(to unburden typography we will write AvI
I0 ).

In order to introduce a similar functor involving Iwahori-Whittaker sheaves we fix
an Iwahori subgroup I− ⊂ GO which is opposite to (in general position with) the sub-
group I. We also fix a nondegenerate additive character ψ− of I0

−. The pair (I0
−,ψ−)

is conjugate to (I0,ψ) by an element in G(F) which is unique up to right multipli-
cation by an element in I0. Thus the categories DI

IW, DI0

IW are canonically equivalent
to the derived categories DI

IW− , DI0

IW− of right (I−,ψ−)-equivariant sheaves. We define

5 Alternatively we could work with completion defined as a formal scheme, the resulting category of coherent
sheaves would be equivalent. In more detail, by [34, Théoreme 5.4.1] the scheme ̂g̃ˇ, ̂St is the inductive limit in the
category of schemes over gˇ of nilpotent thickenings of Ñ in g̃ˇ (respectively, St′ in St). By [34, Théoreme 5.1.4(1)] the
category of coherent sheaves on ̂g̃ˇ is equivalent to the category of coherent sheaves on the formal scheme completion of
Ñ in g̃ˇ and similarly for ̂St, this readily extends to the category of Gˇ-equivariant sheaves; cf. the discussion at the end of
Introduction to [20].
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the functors AvI0

IW : DI0

IW−
∼= DI0

IW → DI0I0 , AvIW : DI0I0 → DI0

IW by setting AvI0

IW = AvI0

I0∩I0−
,

AvIW = Av
I0−,ψ−
I0∩I0−

. Here we used that ψ |I0∩I0− is trivial; the restriction of equivariance func-

tor is omitted from notation, and Av
I0−,ψ−
I0∩I0−

is the left adjoint to the restriction of equiv-

ariance functor from DI0

IW− to the corresponding I0 ∩ I0
−-equivariant category. The result

of [16] implies that we get the same functor AvIW if we replace Av
I0−,ψ−
I0∩I0−

by the corre-
sponding right adjoint to the restriction of equivariance functor: the Whittaker averaging
functor is clean. We also have a similarly defined functor on I-equivariant categories:
IAvIW : DII0 → DI

IW.
Notice that the definition of DI0

IW involves the left action of I0, while AvI0

IW, AvIW

have to do with the right action; when the action used may not be clear from the context
we use notation Avleft

I0 , Avright

I0 to distinguish between the two.

2.2. Idea of the argument: structural aspects. — The functor from the coherent cate-
gory to the constructible one stems from certain natural structures on the constructible
category. To describe the mechanism of obtaining such a functor from the additional
structures on the target category it is convenient to use the concept of a triangulated
category C over a stack X.

2.2.1. Linear structure over a stack. — We refer to [31] for the notion of an abelian
category over an algebraic stack, and to [32] for a generalization to triangulated (or rather
homotopy theoretic) context. For our present purposes it suffices to use the following sim-
plified version of this concept. Let S be an algebraic stack and C a triangulated category
(in all our example S = X/G where X is a quasi-projective algebraic variety and G is a
reductive algebraic group). The subcategory of perfect complexes Dperf (S) ⊂ Db(Coh(S))

is a triangulated tensor category under the usual tensor product of coherent sheaves. By
an S-linear structure on C we will mean an action of the tensor category Dperf (S) on C
compatible with the triangulated structure.

We now list basic classes of examples of such a structure to be used below.

(1) If S = Spec(R) is an affine scheme, then for an R-linear abelian category A
the triangulated category Db(A) acquires a natural S-linear structure.

(2) Let S = pt/H where H is a linear algebraic group. If an abelian category A
is a module category for the tensor category Rep(H) of algebraic (finite di-
mensional) representations acting by exact functors, then Db(A) is an S-linear
triangulated category.

(3) Combining the first two examples, assume now that S = Spec(R)/H is a
quotient of an affine scheme by a linear algebraic group action. Let A be
an abelian category which is a module category for Rep(H) acting on A
by exact functors. Then we can define a new (in general not abelian) “dee-

quivariantized” category Adeeq by setting Ob(Adeeq) = Ob(A), Homdeeq(X,Y) =
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HomInd(A)(X,OH(Y)) where Ind(A) stands for the category of Ind-objects in
A and OH ∈ Ind(Rep(H)) denotes the space of regular functions on H with H
acting by left translations, see Section 4.2.1 for further details.

Then Adeeq is a category enriched over the category of algebraic (not nec-
essarily finite dimensional) representations of H. Then an R-linear structure
on Adeeq which is compatible with the H-action induces an S-linear struc-
ture on Db(A). To see this observe that HomCohH(Spec(R))(V ⊗ O,V′ ⊗ O) =
(V′ ⊗ V∗ ⊗ R)H, thus an equivariant R-linear structure on Adeeq induces
an action of the tensor category Cohfr(S) on A by exact functors; here
Cohfr(S) ⊂ Coh(S) = CohH(Spec(R)) is the full subcategory consisting of ob-
jects V ⊗ OSpec(R), V ∈ Rep(H). Since Dperf (S) is the Karoubi (idempotent)
completion of the homotopy category of finite complexes Ho(Cohfr(S)), the
action of Cohfr(S) on A induces an S-linear structure on Db(A) (notice that
Db(A) is necessarily Karoubian).

(4) Suppose we are given an open embedding of algebraic stacks S ↪→ S′ and a
category C with an S′-linear structure; assume for simplicity that S′ is a quotient
of a quasi-projective variety over a field of characteristic zero by an action of
a reductive group and S comes from an invariant open subvariety therein. By
results of [46] (see also [43, §2.1.4, esp. proof of Lemma 2.6]6) we have

(8) Dperf (S) ∼= Idem
(

Dperf

(

S′)/Dperf

(

S′)
∂S′

)

where Idem denotes the Karoubi (idempotent) completion and Dperf (S′)∂S′ is
the full subcategory of perfect complexes on S′ whose restriction to S vanishes.
Thus if C is a Karoubian (idempotent complete) category, then an S′-linear
structure on C such that Dperf (S′)∂S′ acts by zero induces an S-linear structure
on C.

(5) One can use a variant of Serre’s description of the category of coherent sheaves
on a projective variety as a quotient of the category of graded modules over
the homogeneous coordinate ring to devise a procedure for constructing an
S-linear structure for more general stacks S.

Suppose that S = X/H where X is a quasi-projective variety with an action
of an affine algebraic group H. Assume that a linearization of the action, i.e.
a linear action of H on the linear space An+1 together with an equivariant
locally closed embedding X → Pn is fixed. Let C ⊂ An+1 be the cone over the
closure X of X in Pn. Then C is an affine variety acted upon by H × Gm and
we have an open embedding S → S′ = C/(H × Gm). Using (8) we see that an
S-linear structure on C = Db(A) can be constructed by providing A with a
Rep(H × Gm) action by exact functors, introducing an R-linear structure on

6 The result is only claimed in loc. cit. for a subscheme in a scheme but the case of stacks of the described type follows
by the same argument.
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Adeeq where R = O(C) is the homogeneous coordinate ring of the projective
variety X, and verifying that the resulting S′-linear structure sends Dperf (S′)∂S′

to zero.

Remark 3. — Most of the statements in the main Theorem of the paper assert an
equivalence between (a subcategory of) Db(Coh(S)) for an algebraic stack S and Db(A)

for an abelian category A (with the exception of (4) which involves coherent sheaves on a
DG-stack and an equivariant derived category of constructible sheaves).

We first construct the S-linear structure on C = Db(A) and then consider the ac-
tion on a particular object of C to get an equivalence. The construction of the action
almost follows the pattern of example (5). The difference is as follows. We have S = X/Gˇ
where X admits an affine equivariant map to B2. Though B2 is a projective variety
there is no preferred choice of an equivariant projective embedding, so to keep things
more canonical we work with the “multi-homogeneous” coordinate ring and consider
open embeddings of our stacks into Y/(Gˇ × Tˇ2

) for an appropriate affine variety Y.
A more essential difference is that while Rep(Gˇ) acts by exact functors on our abelian
category A, the action of Rep(Tˇ2

) is only defined on the triangulated category C, it is
not compatible with the natural t-structure on C = Db(A).

An additional argument based on properties of tilting modules is needed to deal
with this issue (see Section 4.4.2).

2.2.2. The list of structures. — We concentrate on the equivalence (2), the equiva-
lence (3) is similar, and (4) will be deduced formally from (2).

Consider the following sequence of maps

St/Gˇ⇒ g̃ˇ/Gˇ → gˇ/Gˇ → pt/Gˇ.
Moving from right to left in this sequence, we successively equip D̂ with the linear

structure for the corresponding stack.
The pt/Gˇ-linear structure comes from an action of the tensor category Rep(Gˇ) on

the abelian category PI0I. Such an action was defined in [29] where the central sheaves cat-
egorifying the canonical basis in the center of the affine Hecke algebra were constructed;
an extension of the action to PI0I0 is sketched in Section 3.5 below.

By a version of the Tannakian formalism, lifting an action of the tensor category
Rep(Gˇ) to a gˇ/Gˇ-linear structure amounts to equipping the Rep(Gˇ) action with a
tensor endomorphism. Such an endomorphism comes from the logarithm of monodromy

acting on central sheaves: recall that the central sheaves are constructed by nearby cycles
which carry a monodromy automorphism.

We now discuss the two structures of a stack over g̃ˇ/Gˇ. The starting point here
is the familiar observation that for a representation V of Gˇ the trivial vector bundle
V ⊗ OB with fiber V on the flag variety B = Gˇ/Bˇ carries a canonical filtration whose
associated graded is a sum of line bundles. This filtration can be lifted to a similar filtration
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for V ⊗ Og̃ˇ. Under our equivalences this filtration corresponds to a filtration on (mon-
odromic) central sheaves by (monodromic) Wakimoto sheaves (the non-monodromic version
was presented in [1], and the monodromic generalization is presented below in Sec-
tion 3.3). It turns out that the filtration defines a monoidal functor Db(CohGˇ(g̃ˇ)) → D̂.
We then get two commuting actions of Db(CohGˇ(g̃ˇ)) on DI0I0 from the left and the right
action of the monoidal category D̂ on itself; combining the two actions we see that D̂ is
naturally a category over g̃ˇ2

/Gˇ. Since Rep(Gˇ) acts by central functors and the tensor en-
domorphism is compatible with the central structure, we conclude that the g̃ˇ2

/Gˇ linear
structure factors through the one for the fiber square (g̃ˇ×gˇ g̃ˇ)/Gˇ = St/Gˇ.

More precisely, we get the monoidal functor Db(CohGˇ(g̃ˇ)) → D̂ from the filtra-
tion following a strategy similar to the one in Example (5) above. The first term of the
filtration (the “lowest weight arrow”) determines a functor from DGˇ×Tˇ

perf (C) where C is a
certain affine scheme with an action of Gˇ×Tˇ with an open Gˇ×Tˇ-equivariant embed-
ding Gˇ/Uˇ → C. The fact that the lowest weight arrow extends to a filtration satisfying
certain properties implies that complexes supported on ∂(Gˇ/Uˇ) = C \ (Gˇ/Uˇ) act by
zero. These ideas have already been used in [1].

The fact that the action of the log monodromy endomorphisms on the category
DI0I0 of monodromic sheaves is nilpotent, allows us to show that the St/Gˇ-linear struc-
ture on DI0I0 , D̂ factors through a canonical ̂St/Gˇ-linear structure, where ̂St is formal
completion of St at the preimage of N .

Once the ̂St/Gˇ-linear structure on D̂ is constructed, any object M ∈ D̂ defines a
functor DGˇ

perf (
̂St) → D̂, F �→F(M). We use the functor (denoted by �perf ) corresponding

to the choice M = �̂ where �̂ is a certain tilting pro-object discussed in Section 5. This
choice can be motivated by the requirement of compatibility with the equivalence �I0

IW:
the object �̂ is obtained from the unit object in D̂ by projection to D̂IW composed with its
adjoint, on the dual side this corresponds to the sheaf pr∗

Spr,2prSpr,2∗(δ∗(Ôg̃ˇ)) ∼=ÔSt, where

δ : g̃ˇ → St is the diagonal embedding. Thus the compatibility implies that �perf (O) ∼= �̂.
The object �̂ can also be thought of as a categorification of the element ξ in the affine
Hecke algebra, thus it is closely related to Whittaker model, see Section 1.4.

The fact that �perf constructed this way is compatible with projection to DI
IW fol-

lows from the properties of �̂.
We then establish the equivalence �I0

IW as in [1]. Together with compatibilities
between �perf and �I0

IW this implies that �perf is a full embedding.
Once �perf is constructed and shown to be full, we get functors in the opposite

direction ̂� : D̂ → Db(CohGˇ(̂St)), � : DI0I0 → Db(CohGˇ(St)). (The logic here is rem-
iniscent of arguments in functional analysis where a map between spaces of (smooth
rapidly decreasing) test functions induces a map between spaces of generalized functions
going in the opposite direction.) We show existence of � , ̂� and check that they are
equivalences based on a general result relating the categories Db(Coh(X)) and Dperf (X)

for an algebraic stack X. We show that Db(Coh(X)) embeds into the category of functors
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Dperf (X) → Vect and characterize the image of this embedding. The characterization
makes use of the standard t-structure on the derived category of coherent sheaves. In or-
der to apply the general criterion in our situation we show that, although the functor �perf

is not t-exact with respect to the natural t-structures on the two triangulated categories, it
satisfies a weaker compatibility (see Section 8).

At this point the equivalence (2) is constructed, it remains to check its compatibility
with the convolution monoidal structure. We use presentation of D̂ as homotopy category
of complexes of free-monodromic tilting (pro)sheaves introduced in [23] and recalled
below. Using the observation that convolution of two free monodromic tilting sheaves is
also a free monodromic tilting sheaf we get an explicit monoidal structure on the category
of tilting complexes, which is identified with the monoidal structure on D̂. It turns out
that ̂� sends a free monodromic tilting sheaf to a coherent sheaf (rather than a complex).
Thus the monoidal structure on the equivalence �I0I0 follows from compatibility with the
action on D̂IW, since a sheaf in Db(CohGˇ(̂St)) can be uniquely reconstructed from the
endo-functor of Db(CohGˇ

Ñ (g̃ˇ)) given by convolution with F .

2.3. Description of the content. — Sections 3 and 5 mostly recall the results of [23]
while Section 4 recalls the material of [1] and extends it to the present slightly more
general setting.

As was indicated above, it is technically convenient to enlarge both categories in
(2) and construct the equivalence

(9) D̂ ∼= Db
(

CohGˇ(̂St)
)

.

In Section 3 we recall the definition of D̂ and an extension of the formalism of
tilting sheaves to this setting. We also present a “monodromic” generalization of central
sheaves [29].

Section 4 provides a generalization of the main result of [1] to the monodromic set-
ting. Namely, it establishes a monoidal functor �diag from the derived category of equiv-
ariant coherent sheaves on the formal completion ̂g̃ˇ of g̃ˇ at Ñ to D̂. (The composition
of this functor with the equivalence (9) which will be established later is the direct image
under the diagonal embedding g̃ˇ → St, see Lemma 43(b).) A variation of the argument
allows us to define the action of the tensor category (DGˇ

perf (St),⊗O) on DI0I0 and D̂.

We also consider the projection of D̂ to the Iwahori-Whittaker category D̂IW and
show that the composition of �diag with this projection induces an equivalence �I0

IW :
Db(CohGˇ(̂g̃ˇ))−̃→D̂IW.

Section 5 is devoted to a particular object �̂ ∈ ̂P which will correspond to the
structure sheaf of ̂St under the equivalence.

In Section 6 we define a functor �perf from the subcategory of perfect com-
plexes DGˇ

perf (
̂St) ⊂ Db(CohGˇ(̂St)) to D̂ by sending an object in the tensor category

(DGˇ
perf (

̂St),⊗O) to the result of its action on �̂.
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We then make a step towards establishing monoidal structure on our functors:
the functor �perf allows to define an action of DGˇ

perf (
̂St) on DI0

IW, while the category

Db(CohGˇ
Ñ (g̃ˇ)) also carries such an action; we use properties of �̂ to show that �I0

IW
is compatible with these module structures. Here (in contrast with the previous para-
graph) DGˇ

perf (
̂St) is equipped with the convolution product (notice that the subcategory

DGˇ
perf (

̂St) ⊂ Db(CohGˇ(̂St)) is easily seen to be closed under convolution).
This compatibility allows us to deduce that �perf is a full embedding and endow it

with the structure of a monoidal functor.
In Section 8 we check a property of �perf with respect to the natural t-structures

on the two categories. In Section 7 we give a general criterion allowing to extend an
equivalence from the category of perfect complexes to the bounded derived category of
coherent sheaves.

In Section 9 we show that the criterion of Section 7 applies, by virtue of prop-
erties established in Section 8, to the present situation yielding (9). We then deduce (3)
and (4) by means of a general lemma describing the equivariant constructible category
via the monodromic one. Section 10 deals with technicalities on DG-models for convo-
lution monoidal categories of sheaves needed to equip our equivalences with a monoidal
structure. The final Section 11 describes additional properties of our functors in relation
to the Frobenius automorphism (where k = F̄q) and t-structures, as well as conjectural
generalizations and relation to Hodge D-modules.

3. Monodromic sheaves and pro-object

3.1. Generalities on monodromic sheaves. — Objects of PI0I0 are by definition perverse
sheaves monodromic with respect to both the left and the right action of T on ˜F�. Thus
we get two actions of the group � × � by automorphisms of the identity functor of PI0I0

coming respectively from the left and the right monodromy. Both actions on each object
are unipotent.

Let P̂ be the category of pro-objects M in PI0I0 such that the coinvariants of the
left (equivalently, right) monodromy action belongs to P . It is easy to see from the defini-
tions that P̂ is identified with the heart of the natural t-structure on the pro-completion
of the derived category DI0I0 introduced in [23, Appendix A]. Furthermore, [23, Corol-
lary A.4.7] implies that the category D̂ = Db(P̂) is identified with that completion.7 Thus
the construction of loc. cit. shows that D̂ is monoidal and contains DI0I0 as a full subcat-
egory closed under the convolution product. An object F ∈ D̂ belongs to DI0I0 iff the

7 This way to define D̂ relies on the formalism of triangulated subcategories in the category of pro-objects in the
derived category of constructible sheaves developed in [23, Appendix A] by Z. Yun. Alternatively one could first define
the category P̂ as a subcategory in the category of pro-objects in P and use free monodromic tilting objects to equip
D̂ := Db(P̂) with a monoidal structure.
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monodromy automorphisms of F are unipotent. The formalism of loc. cit. applies also
to Iwahori-Whittaker sheaves yielding the definition of an abelian category P̂IW and tri-
angulated category D̂IW

∼= Db(P̂IW), so that P̂IW is a full subcategory in the category
of pro-objects in P I0

IW consisting of pro-objects with finite coinvariants of monodromy
automorphisms, while DI0

IW is a full subcategory on D̂IW consisting of objects where mon-
odromy automorphisms are unipotent. Convolution action of DI0I0 on DI0

IW extends to an
action of D̂ on D̂IW.

Let E be the free prounipotent rank one local system on T (see [23]), thus E = lim←−En

where En is the local system whose fiber at the unit element 1T ∈ T is identified with
the quotient of the group algebra of tame fundamental group π tame

1 (T) by the n-th
power of augmentation ideal, where the action of monodromy coincides with the nat-
ural structure of π tame

1 (T) module. Let ˜F�w denote the preimage of F�w in ˜F�. The
quotient I0\˜F�w is a torsor over T, choosing an arbitrary trivialization of the torsor
we get a projection ˜F�w → T which we denote prw. Set 
w = jw!pr∗

w(E)[dim ˜F�w],
∇w = jw∗pr∗

w(E)[dim ˜F�w]. The objects 
w, ∇w are defined uniquely up to a non-unique
isomorphism, we call them a free-monodromic standard and costandard object respec-
tively. One similarly defines 
IW

w , ∇ IW
w ∈ P̂IW.

3.2. More on monodromic (co)standard pro-sheaves. — A free prounipotent local system
on ˜F�w is defined uniquely up to a non-unique isomorphism, thus so are the (co)standard
sheaves 
w, ∇w. We now present geometric data allowing to fix these objects up to a
canonical isomorphism.

Fix a maximal torus T ⊂ B (recall that I maps to B under the evaluation map
GO → G); we get a canonical identification of T with the abstract Cartan group of G,
thus the group of coweights of T is identified with �. Thus for w = λ ∈ � ⊂ W the choice
of a uniformizer t ∈ F defines an element tλ = λ(t) ∈ TF ⊂ G(F); its image in ˜F� = G/I0

lies in the orbit of I corresponding to λ. This yields the choice of a point λ(t) ∈ I0\˜F�λ

which gives a trivialization of the T-torsor, and hence the choice of objects 
λ, ∇λ defined
uniquely up to a unique isomorphism. We use the same notation for those canonically
defined objects and the objects defined earlier uniquely up to a non-unique isomorphism.

Lemma 4. — (a) We have isomorphisms 
w1 ∗ 
w2
∼= 
w1w2 , ∇w1 ∗ ∇w2

∼= ∇w1w2 when

�(w1w2) = �(w1) + �(w2).

(b) Assume that w1 = λ1,w2 = λ2 ∈ �+ and let 
λi
, ∇λi

, (i = 1,2) be the canonically

defined objects as above. We have canonical isomorphisms 
λ1 ∗
λ2
∼= 
λ1+λ2 , ∇λ1 ∗∇λ2

∼= ∇λ1+λ2 ,

which satisfy the associativity identity for a triple λ1, λ2, λ3.

(c) 
0 = ∇0 is the unit object in D̂; and we have a canonical isomorphism ∇w ∗ 
w−1 ∼= ∇0.

(d) We have 
w1 ∗ ∇w2 ∈ P̂ , ∇w1 ∗ 
w2 ∈ P̂ for all w1,w2 ∈ W.

(e) π∗(∇w) ∼= jw∗, π∗(
w) ∼= jw! canonically.
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Proof. — (a) and the first claim in (c) follow from [23, Lemma 4.3.3], [23, Corol-
lary 4.2.2]. A noncanonical isomorphism in the second statement in (c) follows from the
similar non-monodromic statement jw∗ ∗ jw−1! ∼= je! ∼= je∗ by using (10), (11) below and
the observation that any object X in D̂ with π∗(X) ∼= je∗ is isomorphic to 
0. The non-
monodromic statement is standard, in the case of a finite dimensional flag variety it goes
back to [7]; to check it directly one can reduce to the case when w is a simple reflection,
then it amounts to an easy calculation based on the fact that H∗

c (A
1 \ {0}) = 0.

Now given λ1, λ2 ∈ �+ consider the locally closed subvariety in the convolution
diagram: ˜F�λ1 �I0

˜F�λ2 → ˜F�λ1+λ2 . Using the above trivializations of the T torsors
I0\˜F�λ1 , I0\˜F�λ2 , I0\˜F�λ1+λ2 we can identify the quotient of ˜F�λ1 �I0

˜F�λ2 by I0 with
T × T and the quotient of ˜F�λ1+λ2 by I0 with T; the quotient of the convolution map
is readily seen to be the multiplication map T × T → T. Since the convolution E ∗T E
is canonically isomorphic to E[−dim T] (here ∗T denotes convolution of sheaves on the
group T) we get the desired canonical isomorphism. Verification of the associativity iden-
tity is straightforward.

Part (d) follows once we know that the functors M �→M∗∇w, M �→ ∇w ∗M are
right exact, while M �→M ∗ 
w, M �→ 
w ∗M are left exact. These follow from their
nonmonodromic analogues by virtue of (10), (11), which are standard, see e.g. [1, §5.1] (in
loc. cit. only w1, w2 of a special form are considered, but the argument applies generally).
Alternatively, the statement follows from (4.4), (4.5) in the proof of [23, Proposition 4.3.4].

Finally, part (e) easily follows from the fact that cohomology of the free prounipo-
tent local system on T is zero in degrees other than r = dim(T) and r-th cohomology is
one dimensional. �

3.3. Wakimoto pro-sheaves. — Recall Wakimoto sheaves Jλ ∈PII characterized by: Jλ ∗
Jμ

∼= Jλ+μ for λ,μ ∈ � and Jλ = jλ∗ for λ ∈ �+, see [1, 3.2]. The following monodromic
version follows directly from Lemma 4(b,c).

Corollary 5. — There exists a monoidal functor � : Rep(Tˇ) → D̂ sending a dominant

character λ to ∇λ and an anti-dominant character μ to 
μ. Such a functor is defined uniquely up to a

unique isomorphism.

The image of a character λ of Tˇ under this functor will be called a free mon-
odromic Wakimoto sheaf and will be denoted by Jλ.

Some of the basic properties of Wakimoto sheaves are as follows.

Lemma 6. — We have:

(a) Jλ ∈ P̂ ⊂ D̂.

(b) Hom•(Jλ,Jμ) = 0 for μ �� λ where � is the standard partial order on (co)weights.

(c) π∗(Jλ) ∼= Jλ canonically.
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Proof. — (a) follows from Lemma 4(d). (b) is clear since

Hom•(Jλ,Jμ) ∼= Hom•(Jλ+η,Jμ+η) = Hom•(∇λ+η,∇μ+η),

where η ∈ � is chosen so that λ + η,μ + η ∈ �+. The latter Hom space vanishes when
μ �� λ because in this case ˜F�μ+η is not contained in the closure of ˜F�λ+η. The special
case of part (c) when ±λ ∈ �+ is contained in Lemma 4(e). To deduce the general case
we use isomorphisms:

F ∗ π∗(G) ∼= π∗(F ∗ G) ∈ DI0I, F ,G ∈ DI0I0,(10)

F ∗ ResI
I0(G) ∼= π∗(F) ∗ G ∈ DI0I, F ∈ DI0I0,G ∈ DII,(11)

which are easily checked using base change and transitivity of direct image. Given λ ∈ �

we write it as λ = λ+ − λ−, λ± ∈ �+ and apply (10) to F = Jλ+ , G = J−λ− . Applying
then (11) to F = Jλ+ , G = J−λ− we get statement (c). �

3.4. Generalized tilting pro-objects. — Recall that an object of P is called tilting if it
carries a standard and also a costandard filtration; here a filtration is called (co)standard
if its associated graded is a sum of (co)standard objects, see e.g. [9].

An object of P̂ is called free-monodromic tilting if it carries a free-monodromic
standard and also a free-monodromic costandard filtration; here a filtration is called
(co)standard if its associated graded is a sum of free-monodromic (co)standard objects,
see [23].

Let T ⊂ P be the full subcategory of tilting objects and T̂ ⊂ P̂ denote the full
subcategory of free-monodromic tilting objects [23, Definition A.7.1(1)].

Let Ho(T ), Ho(T̂ ) denote the homotopy category of bounded complexes of ob-
jects in T , T̂ respectively.

The next proposition summarizes the properties of tilting objects that will be used
in the argument.

Proposition 7. — (a) The natural functors Ho(T ) → Db(P) = D, Ho(T̂ ) → Db(P̂) =
D̂ are equivalences.

(b) The convolution of two object in T̂ lies in T̂ , thus Ho(T̂ ) has a natural monoidal structure.

The natural functor Ho(T̂ ) → D̂ is a monoidal equivalence.

(c) More generally, assume that F ,G ∈ D̂ are represented by bounded complexes F •, G• of

objects in P̂ , such that F i ∗ G j ∈ P̂ . Then F ∗ G is represented by the total complex of the bicomplex

F i ∗G j . The same statement holds for F ∈ D̂ and G ∈ D̂IW or G ∈ DI0I represented by F •, G• with

F i ∗G j ∈ P̂IW (respectively, F i ∗G j ∈PI0I). Given three complexes F •
1 , F •

2 , G• the two isomorphisms

between F1 ∗F2 ∗ G and the object represented by the complex Cd = ⊕

i+j+l=d

F i
1 ∗F j

2 ∗ G l coincide.
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Proof. — The first statement in (a) appears in [9, Proposition 1.5], the second one
(whose proof is similar) is a particular case of [23, Proposition B.1.7].

The first statement in (b) follows from [23, Proposition 4.3.4], while the second
statement in (b) and (c) follow from [23, Proposition B.3.1] applied to the functor of
push-forward under the convolution (or triple convolution) map and the twisted product
of the corresponding class of sheaves, cf. also [23, Remark B.3.2]. �

Remark 8. — Implicit in Proposition 7(a) is Ext vanishing:

Ext>0(T̂1, T̂2) = 0 = Ext>0(T1,T2)

for T1,T2 ∈ T , T̂1, T̂2 ∈ T̂ . A stronger statement will be used later:

Ext>0(M̂1,M̂2) = 0 = Ext>0(M1,M2)

where M1,M2 ∈PI0I, M1 admits a standard filtration while M2 admits a costandard filtra-
tion, M̂1,M̂2 ∈ P̂ , M̂1 admits a free-monodromic standard filtration, while M̂2 admits a
free-monodromic costandard filtration. The proof is immediate from Ext>0(
w1,∇w2) =
0 = Ext>0( jw1!, jw2∗).

Proposition 9. — An object M ∈ D̂ admits a free-monodromic (co)standard filtration iff

π∗(M) ∈ DI0I lies in P and admits a (co)standard filtration.

Proof. — The “only if ” direction follows from Lemma 4(e), while the “if ” direction
is checked in [23, Lemma A.7.2]. �

Corollary 10. — An object M ∈ D̂ lies in T̂ iff π∗(M) ∈ T .

Proposition 11. — (a) For T ∈ T̂ the functors F �→ T ∗ F and F �→ F ∗ T are t-exact

(i.e. send PI0I0 to PI0I0 and P̂ to P̂ ).

(b) For any w ∈ W there exists a unique (up to an isomorphism) indecomposable object Tw ∈ T
whose support is the closure of F�w. There also exists a unique indecomposable object T̂w ∈ T̂ whose

support is the closure of ˜F�w. We have π∗(T̂w) ∼= Tw.

(c) For T ∈ T̂ and w ∈ W the objects 
w ∗T, T∗
w ∈ P̂ have a free-monodromic standard

filtration, while the objects ∇w ∗ T, T ∗ ∇w ∈ P̂ have a free-monodromic costandard filtration.

Proof. — Parts (a,c) follows from the proof of [23, Proposition 4.3.4]. The first
statement in (b) is standard, see e.g. [9, Proposition 1.4]. The second one then follows
from [23, §A.7] which shows that the functor M �→ π∗(M) induces a bijection between
isomorphism classes of indecomposable objects in T̂ and T : [23, Lemma A.7.2] shows
that π∗ : T̂ → T , by [23, Lemma A.7.3] it induces a surjective map on isomorphism
classes of objects, and [23, Lemma A.7.4] implies that this map is also injective, as it shows
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that for T̂1, T̂2 ∈ T̂ an isomorphism π∗(T̂1) ∼= π∗(T̂2) can be lifted to an isomorphism
T̂1

∼= T̂2. Alternatively, the second statement in (b) follows from [23, Corollary 5.2.2]. �

Corollary 12. — Convolution with a free-monodromic tilting object preserves the categories of

objects admitting a free-monodromic (co)standard filtration.

3.5. Monodromic central sheaves. — We need to extend the central functors of [29] to
the monodromic setting.

3.5.1. A brief summary of [29]. — Recall first the main result of [29]. In our present
notation it reads as follows.

For V ∈ Rep(Gˇ) one defines an exact functor ZV :PII →PII. One then constructs
canonical isomorphisms

ZV ∗F ∼=ZV(F) ∼=F ∗ ZV, F ∈PII;(12)

ZV⊗W
∼=ZV ◦ZW,(13)

where ZV =ZV(δe), where δe = je! = je∗ is the skyscraper at the point F�e.
The two isomorphisms satisfy natural compatibilities (some are demonstrated in

[30]) which amount to saying that V �→ ZV is a tensor functor from Rep(Gˇ) to Drinfeld
center of DII.

The goal of this subsection is to extend these results to the monodromic setting.
Construction of the functor ZV is based on existence of a certain deformation of

the affine flag variety F� and the convolution diagrams.
Let C be a smooth algebraic curve over k and fix a point x0 ∈ C(k) and set C0 =

C \ {x0}. The ind-schemes F�C, F�
(2)

C , ConvC, Conv′
C were constructed in [29]. They

are defined as moduli spaces parametrizing the following collections of data:
F�C = {(x,E, φ,β)}, where x ∈ C, E is a G-bundle on C, φ is a trivialization of

E on C \ {x} and β ∈ (G/B)Ex0
is a point in the fiber of the associated fibration with fiber

G/B at x0.
F�

(2)

C = {(x,E, φ′, β)}, where x, E , β are as above and φ′ is a trivialization of E on
C \ {x, x0}.

ConvC = {(x,E,E ′, φ,ψ,β,β ′)} where x, E , β , φ are as above, E ′ is another G
bundle on C, ψ is an isomorphism E |C\{x} ∼= E ′|C\{x}, while β ′ ∈ (G/B)E

′
x0

.
Conv′

C = {(x,E,E ′, φ,ψ ′, β,β ′)} where x, E , φ, E ′, β , β ′ are as above, while ψ ′ is
an isomorphism E |C\{x,x0} ∼= E ′|C\{x,x0}.

These ind-schemes come with a map to C satisfying the following properties.
The preimage of x0 in F�C is identified with F�, while the preimage of C \ {x0} is

identified with G/B × GrC0 , where GrC0 is the Beilinson-Drinfeld global Grassmannian; thus
the fiber of F�C over y ∈ C0(k) is (noncanonically) isomorphic to G/B × Gr.
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The preimage of x0 in F�
(2)

C is identified with F�, while the preimage of C0 is
identified with F� × GrC0 ; thus the fiber of F�

(2)

C over y ∈ C0(k) is (noncanonically) iso-
morphic to F� × Gr.

To spell out the properties of ConvC, Conv′
C recall the convolution space F�×IF�,

which is the fibration over F� with fiber F� associated with the natural principal I bundle
over F� using the action of I on F�. We have the projection map pr1 :F� ×I F� →F�

and the convolution map conv :F� ×I F� →F� coming from multiplication map of the
group GF.

The fiber of both ConvC and Conv′
C over x0 is F� ×I F�; the preimage of C0

in ConvC is the product ((G/B) ×I F�) × GrC0 , while the preimage of C0 in Conv′
C is

identified with (F� ×I (G/B)) × GrC0 .
One has canonical ind-proper morphisms convC : ConvC →F�

(2), conv′
C : Conv′

C →
F�

(2) whose fiber over x0 is the convolution map conv.
Starting from V ∈ Rep(Gˇ) one can use the geometric Satake isomorphism to pro-

duce a semi-simple perverse sheaf S(V) on GrC0 . For F ∈ Perv(F�) one gets a sheaf
F � S(V) on F� × GrC0 ⊂ F�

(2)

C . Taking nearby cycles of that sheaf with respect to a
local coordinate at x0 one obtains a sheaf ZV(F) on F�.

The spaces ConvC, Conv′
C and the maps convC, conv′

C are used in [29] to show that
the functor ZV|DII is isomorphic to both left and right convolution with a certain object
ZV ∈PII.

3.5.2. The monodromic case. — A straightforward modification of the definition
from [29] yields spaces ˜F�C, ˜F�

(2)

C , C̃onvC, C̃onv
′
C, whose definition repeats the defi-

nition of ind-schemes in Section 3.5.1 with the only difference that β , β ′ are replaced
by β̃ ∈ (G/U)Ex0

, β̃ ′ ∈ (G/U)E
′

x0
. The following facts about these ind-schemes are proven

by an argument similar to that of [29] which deals with parallel statements about ind-
schemes from Section 3.5.1.

The ind-schemes ˜F�C, ˜F�
(2)

C , C̃onvC, C̃onv
′
C come with a map to C satisfying the

following properties.
The preimage of x0 in ˜F�C is identified with ˜F�, while the preimage of C \ {x0}

is identified with G/U × GrC0 ; thus the fiber of ˜F�C over y ∈ C0(k) is (noncanonically)
isomorphic to G/U × Gr.

The preimage of x0 in ˜F�
(2)

C is identified with ˜F�, while the preimage of C \ {x0}
is identified with ˜F� × GrC0 ; thus the fiber of ˜F�

(2)

C over y ∈ C0(k) is (noncanonically)
isomorphic to ˜F� × Gr.

We will now use the convolution space ˜F� ×I0
˜F�, which is a fibration over ˜F�

with fiber ˜F� associated with the natural principal I0 bundle over ˜F� using the action of
I0 on ˜F�. We have the projection map pr1 : ˜F� ×I0

˜F� → ˜F� and the convolution map
c̃onv : ˜F� ×I0

˜F� → ˜F� coming from multiplication map of the group GF.
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The fiber of both C̃onvC and C̃onv
′
C over x0 is ˜F� ×I0

˜F�; the preimage of C0

in C̃onvC is the product ((G/U) ×I0
˜F�) × GrC0 , while the preimage of C0 in C̃onv

′
C is

identified with (˜F� ×I (G/U)) × GrC0 .
One has canonical morphisms c̃onvC : C̃onvC → ˜F�

(2)

C , c̃onv′
C : C̃onv

′
C → ˜F�

(2)

C

whose fiber over x0 is the convolution map c̃onv.
The main technical difference with the setting of [29] recalled in the previous

subsection is that in contrast with the maps convC, conv′
C the maps c̃onvC, c̃onv′

C are not

ind-proper.
For V ∈ Rep(Gˇ) and F ∈ DI0I0 we can form a complex F�S(V) on ˜F�×GrC0 ⊂

˜F�
(2)

C . Taking nearby cycles with respect to a local coordinate on C near x0 we get a
complex which we denote ẐV(F).

The functor ẐV obviously extends to the category D̂. We set ẐV = ẐV(
e).

Proposition 13. — (a) Recall that π : ˜F� → F� is the projection. Then we have

ẐV(π∗F) ∼= π∗(ZV(F)) canonically.

(b) ẐV is canonically isomorphic to the functors of both left and right convolution with ẐV.

(c) The map V �→ ẐV extends to a central functor Rep(Gˇ) → D̂, i.e. to a tensor functor from

Rep(Gˇ) to the Drinfeld center of D̂.

(d) We have a canonical isomorphism π∗(ẐV) ∼= ZV.

Proof. — (a) follows from the fact that nearby cycles commute with pull-back under
a smooth morphism.

The proof of (b,c) is parallel to the argument of [29] and [30] respectively, with
the following modification. The argument of loc. cit. uses that the convolution maps and
its global counterparts (denoted presently by convC, conv′

C) are proper in order to apply
the fact that nearby cycles commute with direct image under a proper map. The maps
c̃onv, c̃onvC, c̃onv′

C are not proper, thus we do not a’priori have an isomorphism between
the direct image under c̃onvC or c̃onv′

C of nearby cycles of a sheaf and nearby cycles of its
direct image. However, we do have a canonical map in one direction. If we start from a
sheaf on ˜F� which is the pull-back of a sheaf on F�, then the map is an isomorphism
because the sheaves in question are pull-backs under a smooth map of ones considered in
[29]. Since all objects of DI0I0 can be obtained from objects in the image of the pull-back
functor DII → DI0I0 by successive extensions, the map in question is an isomorphism for
any F ∈ DI0I0 , and claims (b,c) follows.

Using (b) we see that ẐV(π∗F) ∼= π∗(F ∗ π∗(Ẑ(V))); thus (d) follows from (a). �

3.5.3. Monodromy endomorphisms. — Being defined as (the inverse limit of) nearby
cycles sheaves, the objects ẐV, V ∈ Rep(Gˇ) carry a canonical monodromy automorphism. It is
known that the monodromy automorphism acting on the sheaf ZV is unipotent, it follows
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that the one acting on ẐV is pro-unipotent. We let mV : ẐV → ẐV denote the logarithm of
monodromy.

It will be useful to have an alternative description of this endomorphism. Consider
the action of Gm on ˜F� by loop rotation. Since each I × I orbit on ˜F� is invariant under
this action, every object of PI0I0 is Gm monodromic with unipotent monodromy. Thus
every F ∈PI0I0 acquires a canonical logarithm of monodromy endomorphism which we
denote by μF . By passing to the limit we also get a definition of μF for F ∈ P̂ .

Proposition 14. — (a) We have mV = −μẐV
.

(b) The logarithm of monodromy defines a tensor endomorphism of the functor Ẑ, i.e. we have

mV⊗W = mV ∗ IdẐW
+ IdẐV

∗ mW.

Proof. — (a) follows by the argument of [1, 5.2], while (b) is parallel to [29, Theo-
rem 2]. �

3.5.4. Filtration of central sheaves by Wakimoto sheaves. — It will be convenient to fix a
total ordering on � compatible with addition and the standard partial order. This allows
to make sense of an object in an abelian category with a filtration indexed by � and of
its associated graded.

Recall that the object Jλ was defined canonically up to a unique isomorphism
starting from a fixed uniformizer t of the local field F, while the central functor ZV was
defined using an algebraic curve C with a point x0 together with a fixed isomorphism
between F and the field of functions on the punctured formal neighborhood of x0 in C. In
the next proposition we assume that t is given by a local étale coordinate. We abbreviate
ZVλ

, ẐVλ
to Zλ, Ẑλ respectively.

Proposition 15. — (a) For any λ there exists a canonical surjective morphism �λ : Ẑλ → Jλ.

It is compatible with convolution in the following way: the composition of �λ+μ with the canonical

map Ẑλ ∗ Ẑμ → Ẑλ+μ coming from the canonical map Vλ ⊗ Vμ = �(OB(λ)) ⊗ �(OB(μ)) →
Vλ+μ = �(OB(λ + μ)) equals �λ ∗ �μ.

(b) The surjection �λ extends to a unique filtration on Ẑλ indexed by � with associated graded

isomorphic to a sum of Wakimoto sheaves Jμ.

(c) The filtration on Ẑλ is compatible with the monoidal structure on the functor V �→ ẐV,

making V �→ gr(ẐV) a monoidal functor.

Proof. — (a) follows from the following standard geometric facts. Let (F�
(2)

C )λ be
the closure of F�e × (GrC0)λ ⊂ F�

(2)

C , where e ∈ W is the unit element and (GrC0)λ is
the locally closed subscheme in the Beilinson-Drinfeld global Grassmannian GrC0 whose
intersection with a fiber of the projection to C0 is the GO orbit Grλ (recall that such a
fiber is identified with Gr). Then F�λ ⊂ F� (where F� is identified with the fiber of
F�

(2)

C over x0) is contained in the smooth locus of (F�
(2)

C )λ, it is open in (F�
(2)

C )λ ×C



ON TWO GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 23

{x0}. It follows that Zλ which is by definition the nearby cycles of δe � ICλ (where δe is
the skyscraper at F�e) is constant on F�λ which is open in its support; see [1, 3.3.1,
Lemma 9]. Likewise, considering the preimage (˜F�

(2)

C )λ of (F�
(2)

C )λ in ˜F�
(2)

C we see that
˜F�λ is open in the support of Ẑλ and the restriction of Ẑλ to ˜F�λ is a free pro-unipotent
local system (shifted by dim(˜F�λ)). This yields a surjection as in (a). To see existence of a
canonical choice of the surjection it suffices to see that the stalk of Ẑλ over the point λ(t)

has a canonical generator as a topological π1(T) module. This follows from the fact that
the section (1˜F�, λGr) : C0 → ˜F�C extends to C and its value at x0 is λ(t)˜F�.

Uniqueness of the filtration in (b) follows from the fact that Hom•(Jλ,Jμ) = 0 for
μ �� λ (Lemma 6(b)). Together with the isomorphism Jλ ∗ Jμ

∼= Jλ+μ this also implies
compatibility with convolution and the monoidal property. Existence of the filtration is
equivalent to the fact that Jμ ∗ Ẑλ admits a free-monodromic costandard filtration when
μ is deep in the dominant chamber (more precisely, when μ + ν is dominant for any
weight ν of Vλ). This follows from Proposition 9 and the corresponding fact about the
sheaves Zλ established in [1, §3.6]. �

Remark. — It is shown in [1] that the multiplicity of Jμ as a subquotient of ZV equals
the multiplicity of the weight μ in representation V. It is clear that the same multiplicity
also equals the multiplicity of Jμ as a subquotient of ẐV. This is also a consequence of (9),
since that equivalence sends ẐV to V ⊗ Ôg̃ˇ which admits a filtration whose associated
graded is a direct sum of line bundles on ̂g̃ˇ with the above multiplicities.

The objects Zλ, Ẑλ can be thought of as a categorification of the central elements
Sλ in the affine Hecke algebra introduced by Lusztig in [38]; the filtration by Wakimoto
sheaves with the above multiplicities categorifies formula (8.2) of loc. cit.

3.5.5. Torus monodromy. — Every sheaf in PI0I0 is monodromic with respect to
T × T with unipotent monodromy, since every irreducible object in PI0I0 is equivari-
ant. Thus taking logarithm of monodromy we get an action of Sym(t ⊕ t) on PI0I0 by
endomorphisms of the identity functor.

Lemma 16. — (a) The action of the two copies of t on 
w, ∇w differ by twist with the element

w̄ ∈ Wf , where we use the notation w �→ w̄ for the projection W → Wf . In particular, the left action

of t on the objects 
λ, ∇λ, λ ∈ �, coincides with the right one.

(b) The left action of t on the objects Jλ, λ ∈ �, Ẑμ, μ ∈ �+ coincides with the right one.

(c) The action of loop rotation monodromy on 
λ, ∇λ, Jλ coincides with the image of coweight

dλ ∈ t under the above action of t.

Proof. — Let xw be a point in ˜F�w such that the orbit of xw with respect to the left
and the right action of T coincide. Then restriction from ˜F�w to T(xw) is an equivalence
between I × I unipotently monodromic sheaves on ˜F�w and unipotent local systems
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on T(xw). Also for t ∈ T we have t(x) = x(w̄(t)) in the self-explanatory notation. This
implies (a).

The statement about Jλ in (b) for ±λ ∈ �+ follows from (a), this yields the general
case because of compatibility of torus monodromy with convolution.

The statement about Ẑλ in (b) follows from the construction with nearby cycles,
since the action of T2 on ˜F�×GrC0 (where T2 acts trivially on the second factor) extends
to an action on ˜F�C.

Finally, part (c) is a consequence of the following observation. Let R denote the
loop rotation action of Gm on ˜F�. Then for λ ∈ � let hλ : Gm → T be the corresponding
homomorphism (see Section 3.2). Then we have R(s)(xλ) = hλ(s)(xλ). �

4. Construction of functors

4.1. A functor from Db(CohGˇ(g̃ˇ)). — Recall that ̂g̃ˇ denotes the formal completion
of g̃ˇ at Ñ .

In this subsection we construct a monoidal functor �diag : Db(CohGˇ(̂g̃ˇ)) → D̂.
The functor we presently construct is compatible with the equivalence
� : Db(CohGˇ(̂St)) ∼= D̂ that will be established in Section 9 as follows: �diag

∼= � ◦ δ∗,
where δ : ̂g̃ˇ→ ̂St is the diagonal embedding, see Lemma 43(b).

The construction is parallel to that of [1, §3], so we only recall the main ingredients
of the construction referring the reader to [1] for details.

Following the strategy outlined in Section 2.2, we first list compatibilities satisfied
by the functor �diag which characterize it uniquely.

4.1.1. Line bundles and Wakimoto sheaves. — Recall that for λ ∈ � the corresponding
line bundle on B is denoted by OB(λ), while Ôg̃ˇ(λ) is its pull-back to ̂g̃ˇ. The functor
�diag satisfies:

�diag(Ôg̃ˇ(λ)) ∼=Jλ.

This isomorphism is compatible with the monoidal structure on the two categories, i.e. it
provides a tensor isomorphism between the functor � (see Corollary 5) and the compo-
sition of �diag with the tensor functor λ �→Ôg̃ˇ(λ).

4.1.2. Twists by representations and central functors. — We have a tensor functor
Rep(Gˇ) → CohGˇ(̂g̃ˇ) sending a representation V to V ⊗O. Composition of �diag with
this functor is isomorphic to the tensor functor V �→ ẐV (see Section 3.5).

4.1.3. The lowest weight arrow. — We have a familiar morphism of Gˇ-equivariant
vector bundles on B: OB ⊗ Vλ →OB(λ). We can pull it back to ̂g̃ˇ to get a morphism in
CohGˇ(̂g̃ˇ). The functor �diag sends this arrow to the map �λ (notations of Proposition 15).



ON TWO GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 25

4.1.4. Log monodromy endomorphism. — Notice that for x ∈ gˇ, F ∈ CohGˇ(gˇ) the
centralizer of x in Gˇ acts on the fiber Fx of F at x. Differentiating this action one gets
the action of the Lie algebra of the centralizer z(x). In particular, x ∈ z(x) produces a
canonical endomorphism of Fx, it is easy to see that it comes from a uniquely defined
endomorphism of F , which we denote by mF (in [1] we used notation Ntaut

F ). It is clear
that restricting m to sheaves of the form F = V ⊗Ôg̃ˇ one gets a tensor endomorphism
of the tensor functor V �→ V ⊗Ôg̃ˇ.

We require that �diag sends mV⊗O to the monodromy endomorphism mV.

4.1.5. Projection to tˇ2
and torus monodromy. — We have a canonical map g̃ˇ → tˇ,

thus the category Db(CohGˇ(g̃ˇ)) is canonically an O(tˇ)-linear category, i.e. tˇ∗ = t acts
on it by endomorphisms of the identity functor. This induces a pro-nilpotent action of t
on Db(CohGˇ(̂g̃ˇ)).

According to Section 3.5.5, we have two commuting pronilpotent t actions on P̂
and hence on D̂. The functor �diag intertwines the action of t described in the previous
paragraph with either of the two monodromy actions.

4.2. Monoidal functor from sheaves on the diagonal. — We use a version of homogeneous
coordinate ring construction and Serre description of the category of coherent sheaves
on a projective variety.

Let Cg̃ˇ be the preimage of g̃ˇ ⊂ gˇ×B under the morphism gˇ×Gˇ/Uˇ → gˇ×B.
Let Gˇ/Uˇ denote the affine closure of Gˇ/Uˇ. Notice that Gˇ/Uˇ can be realized as a
locally closed subscheme, namely as the orbit of a highest weight vector in the space V
of a representation of G. Moreover, if the representation V is chosen appropriately, the
closure of Gˇ/Uˇ in V is isomorphic to Gˇ/Uˇ. Define the action of the abstract Cartan
tˇ on V such that t ∈ tˇ acts on an irreducible summand with highest weight λ by the
scalar 〈λ, t〉. Then define a closed subscheme8 Cg̃ˇ ⊂ gˇ × tˇ × Gˇ/Uˇ by the equation
x(v) = t(v), x ∈ gˇ, t ∈ tˇ, v ∈ Gˇ/Uˇ ⊂ V. It is easy to see that Cg̃ˇ is an open subscheme
in Cg̃ˇ. More precisely, without loss of generality we can assume that representation V is
multiplicity free, i.e. it is a sum of pairwise non-isomorphic irreducible representations;
then Cg̃ˇ is identified with the intersection of Cg̃ˇ with the open set of vectors which have
a nonzero projection to each irreducible factor.

We leave the proof of the following statement to the reader.

Proposition 17. — (A) The scheme Cg̃ˇ does not depend on the choice of V subject to the above

conditions.

(B) Consider the category of commutative rings over O(tˇ) equipped with a Gˇ action which fixes

the image of O(tˇ).
8 Here notations diverge from that of [1], there “hat” was used to denote the affine cone, while in the present paper

it is used to denote completions.
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The following two functors on that category are canonically isomorphic:

(1) R �→ Hom(Spec(R),Cg̃ˇ) where Hom stands for maps compatible with the Gˇ action

and the map to tˇ.
(2) R �→ {(EV, ιV) | V ∈ Rep(Gˇ)}. Here for V ∈ Rep(Gˇ), EV ∈ EndR(V ⊗ R) and

ιV is a map of R-modules R → V ⊗ R. This data is subject to the requirements:

(a) functoriality in V;

(b) EV⊗W = EV ⊗ IdW + IdV ⊗ EW;

(c) ιV⊗W = ιV ⊗ ιW;

(d) The action of EVλ
on the image of ιVλ

coincides with the action of the element in R
which is the image of λ ∈ tˇ∗ under the map tˇ∗ → R.

4.2.1. Deequivariantization. — (cf. Section 2.2.1(3)) We will make use of the follow-
ing construction. Let C be an additive category linear over the field k, with an action of the
tensor category Rep(H) of (finite dimensional algebraic) representation of H, where H is
a reductive algebraic group over k. (Recall that k is algebraically closed of characteristic
zero; the definition is applicable under less restrictive assumptions.)

We can then define a new category Cdeeq by setting Ob(Cdeeq) = Ob(C),
HomCdeeq

(A,B) = HomInd(C)(A,O(H)(B)), where Ind(C) is the category of Ind-objects
in C and O(H) is the object of Ind(Rep(H)) coming from the module of regular func-
tions on H equipped with the action of H by left translations. Using that H is reductive
over an algebraically closed field of characteristic zero we can write the Ind-object O(H)

as
⊕

V∈IrrRep(H)

V ⊗ V∗, where IrrRep(H) is a set of representatives for isomorphism classes

of irreducible H modules and for a representation V ∈ IrrRep(H) we let V denote the
underlying vector space. Thus we have

Homdeeq(X,Y) =
⊕

V∈IrrRep(H)

Hom(X,V(Y)) ⊗ V∗.

For example, if C = Db(CohH(X)) where X is a scheme equipped with an H action
then for F ,G ∈ C we have Homdeeq(F ,G) = HomDb(Coh(X))(F ,G).

When we need to make the group H explicit in the above definition we write
HomH

deeq instead of Homdeeq.
The category Cdeeq is enriched over H-modules, i.e. every Hom space carries the

structure of an H-module compatible with composition. We refer the reader to [3] for
further details and to [31] for a more general construction (cf. also [1], proof of Proposi-
tion 4).

This formalism comes in handy for deducing the following statement.
Let CohGˇ×Tˇ

fr (Cg̃ˇ) be the full subcategory in CohGˇ×Tˇ(Cg̃ˇ) consisting of objects of
the form V ⊗O, V ∈ Rep(Gˇ× Tˇ). In other words, objects of CohGˇ×Tˇ

fr (Cg̃ˇ) are repre-
sentations of Gˇ×Tˇ and morphisms are given by Hom(V1,V2) = HomCohGˇ×Tˇ (Cg̃ˇ )(V1 ⊗
O,V2 ⊗O). This is a tensor category under the usual tensor product of vector bundles.
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Corollary 18. — Let C be a k-linear additive monoidal category. Suppose we are given

(1) A tensor functor F : Rep(Gˇ× Tˇ) → C.

(2) A tensor endomorphism E of F|Rep(Gˇ), EV1⊗V2 = EV1 ⊗ IdF(V2) + IdF(V1) ⊗ EV2 .

(3) An action of O(tˇ) on F by endomorphisms, so that for f ∈ O(tˇ) we have fV1⊗V2 =
fV1 ⊗ IdF(V2) = IdF(V1) ⊗ fV2 .

(4) A “lowest weight arrow” �λ : F(Vλ) → F(λ) making the following diagrams commutative:

F(Vλ ⊗ Vμ)

�λ⊗C�μ

F(Vλ+μ)

�λ+μ

F(λ) ⊗C F(μ)
∼

F(λ + μ)

F(Vλ)
�λ

EVλ

F(λ)

λ

F(Vλ)
�λ

F(λ)

where the right vertical map is the action of the element λ ∈ t ⊂O(tˇ) coming from (3).

Then the tensor functor F extends uniquely to a tensor functor CohGˇ×Tˇ
fr (Cg̃ˇ) → C, so that

E goes to the tautological endomorphism m (see Section 4.1.4), the action of t comes from the projection

Cg̃ˇ → tˇ and the lowest weight arrow comes from the map described in Section 4.1.3.

Proof. — Extending the functor F to a functor CohGˇ×Tˇ
fr (Cg̃ˇ) → C is equivalent to

providing a Gˇ × Tˇ-equivariant homomorphism O(Cg̃ˇ) → HomGˇ×Tˇ
deeq (1C,1C), where

we used the action of Rep(Gˇ × Tˇ) on C given by V : X �→ F(V)X. We now apply
Proposition 17 to the ring R := HomGˇ×Tˇ

deeq (1C,1C). The action described in (3) provides
it with a structure of a ring over O(tˇ); the tensor endomorphism E from (2) yields the
collection (EV) and the arrows �λ induce the maps ιV as in Proposition 17. The commu-
tative diagrams in part (4) of the corollary imply identities (c,d) in Proposition 17. Thus
existence of a unique functor F with above properties follows from Proposition 17. �

4.2.2. The functor �diag . — We now construct a monoidal functor �
fr

diag :
CohGˇ×Tˇ

fr (Cg̃ˇ) → P̂ (more precisely, a monoidal functor to D̂ taking values in P̂ ).
The functor is provided by Corollary 18: we have a tensor functor from Rep(Gˇ)

to D̂ coming from the central functors (Section 4.1.2), and another commuting one from
Rep(Tˇ) to D̂ coming from Wakimoto sheaves (3.3); the logarithm of monodromy endo-
morphisms (Section 4.1.4) provide endomorphism E while the torus monodromy (Sec-
tion 3.5.5) gives an action of t= tˇ∗ (notice that due to Lemma 16(b) we get the same ac-
tion by using either left or right torus action). The morphisms described in Section 4.1.3



28 ROMAN BEZRUKAVNIKOV

yield arrows �λ. The conditions of Corollary 18 are checked as follows. Condition (2) fol-
lows from Proposition 14(b). Condition (3) is clear from compatibility of the convolution
map with the torus action. The first commutative diagram in condition (4) follows from
Proposition 15(a), while the second one is obtained by comparing Proposition 14(a) with
Lemma 16(c).

4.3. “Coherent” description of the anti-spherical (generalized Whittaker) category. — Con-
sider the composition Ho(CohGˇ×Tˇ

fr (Cg̃ˇ)) → Ho(P̂) → D̂ where Ho denotes the homo-
topy category of complexes of objects in the given additive category and the first arrow is
induced by �

fr

diag ; this composition will be denoted by �Ho
diag .

Let Acycl ⊂ Ho(CohGˇ×Tˇ
fr (Cg̃ˇ)) be the subcategory of complexes whose restric-

tion to the open subscheme Cg̃ˇ is acyclic.

Proposition 19. — The functor �Ho
diag sends the subcategory Acycl of acyclic complexes to zero.

Proof. — Proposition follows from existence of a filtration on Ẑλ with associated
graded being the sum of Wakimoto sheaves (Proposition 15(b)) by an argument parallel
to [1, 3.7]. �

The perfect derived category of modules over a positively graded algebra (by which
we mean a Z-graded algebra with vanishing negative components and component of
degree zero generated by the unit element) over a field of characteristic zero is well known
to be equivalent to the homotopy category of free graded modules, the same applies to
equivariant modules, where an algebra is assumed to be equipped with an action of a
reductive group. Applying this to O(Cg̃ˇ) we see that DGˇ×Tˇ

perf (Cg̃ˇ) ∼= Ho(CohGˇ×Tˇ
fr (Cg̃ˇ)).

Since g̃ˇ is smooth, Db(CohGˇ(g̃ˇ)) = DGˇ
perf (g̃ˇ), thus (8) shows that9

Db(CohGˇ(g̃ˇ)) ∼= Idem(Ho(CohGˇ×Tˇ
fr (Cg̃ˇ))/Acycl).

Thus Proposition 19 yields a functor Db(CohGˇ(g̃ˇ)) → D̂. The log monodromy action
of t on the identity functor of D̂ is pro-unipotent, thus it extends canonically to an action
of the completion of O(tˇ) at the maximal ideal of 0. It is easy to deduce that the functor
factors canonically through a functor Db(CohGˇ(̂g̃ˇ)) → D̂, we denote the latter functor
by �diag .

A closely related functor F : Db(CohGˇ(Ñ )) → DII was constructed in [1, §3].

9 In fact, K0(CohGˇ(g̃ˇ)) = K0(CohBˇ(bˇ)) = K0(CohTˇ(pt)) is generated by the classes of equivariant line bundles,
thus the functor Ho(CohGˇ×Tˇ

fr (Cg̃ˇ)) → Db(CohGˇ(g̃ˇ)) induces a surjection on K0. By a standard argument (see e.g. [44,
Corollary 0.10]) this implies: Db(CohGˇ(g̃ˇ)) ∼= Ho(CohGˇ×Tˇ

fr (Cg̃ˇ))/Acycl.
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Lemma 20. — Let i : Ñ → ̂g̃ˇ be the embedding. The following diagrams commute up to a

natural isomorphism:

Db(CohGˇ(̂g̃ˇ))
�diag

i∗

D̂

π∗

Db(CohGˇ(Ñ ))

ResI
I0

◦F

DI0I

Db(CohGˇ(Ñ ))
F

i∗

DII

ResI
I0

◦π∗[r]

Db(CohGˇ(̂g̃ˇ))
�diag

D̂

where Res stands for restriction of equivariance, and r = rank(g).

Proof. — To check commutativity of the first diagram it suffices to prove the simi-
lar commutativity for functors on the categories of finite complexes in CohGˇ×Tˇ

fr (Cg̃ˇ).
This follows from the isomorphisms π∗(ẐV) ∼= ZV (Proposition 13(d)), π∗(Jλ) ∼= Jλ

(Lemma 6(c)) which are easily seen to be compatible with monodromy endomorphism
and lowest weight arrows.

Now using commutativity of the first diagram we get a natural transformation
between the two compositions in the second diagram due to the isomorphisms:

Hom
(

ResI
I0π

∗(F(F)
)[r],�diag

(

i∗(F)
))

∼= Hom
(

ResI
I0F(F)[r],π∗�diag

(

i∗(F)
))

∼= Hom
(

ResI
I0F(F)[r],ResI

I0F
(

i∗i∗(F)
))

,

which yield the desired arrow since Id[r] is a canonical direct summand in the func-
tor i∗i∗. The constructed arrow is nonzero, hence it is an isomorphism for F = OÑ , as
both compositions are then isomorphic to the skyscraper δe = je! = je∗ and Hom(δe, δe)

is one dimensional. Also it is easy to see that the arrow is compatible with action of the
tensor category CohGˇ×Tˇ

fr (Cg̃ˇ), thus it is an isomorphism for F in a generating set of

Db(CohGˇ(Ñ )), hence it is an isomorphism for all F . �

4.3.1. Equivalences ̂�IW, �I0

IW. — We are now ready to establish (6).
The functor AvIW : DI0I0 → DI0

IW introduced at the end of Section 2.1 extends to a
functor between the completed categories D̂, D̂IW introduced in Section 3.1, we will use
the same notation for this extension.
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Proposition 21. — (a) The functor ̂�IW := AvIW ◦ �diag : Db(CohGˇ(̂g̃ˇ)) → D̂IW is an

equivalence.

(b) The functor ̂� restricts to an equivalence �I0

IW : Db(CohÑ (g̃ˇ)) → DI0

IW.

Proof. — We first show that AvIW ◦ �diag is fully faithful. It suffices to show that

Hom(F ,G)−̃→Hom(AvIW�diag(F),AvIW�diag(G))

when F = i∗(F ′), F ′ ∈ Db(CohGˇ(Ñ )), then the statement follows since the im-
age of i∗ generates Db(CohGˇ

Ñ (g̃ˇ)) under extensions, so we get the isomorphism for
F ,G ∈ Db(CohÑ (g̃ˇ)). Passing to the limit we then get the isomorphism for all F ,G ∈
Db(CohGˇ(̂g̃ˇ)).

Using the parallel statement in the non-monodromic setting proved in [1, §4] and
the first commutative diagram in Lemma 20 (or rather the statement obtained from it by
left–right swap) we get:

Hom
(

i∗
(

F ′),G
) ∼= Hom

(

F ′, i∗G[−r])

∼= HomDI
IW

(I
AvIWF

(

F ′),I AvIWF
(

i∗G
)[−r])

∼= HomDI
IW

(I
AvIWF

(

F ′),
(

AvI
I0

)left

∗ AvIW
(

�diag(G)
)[−r])

∼= HomDI0
IW

((

ResI
I0

)left(I
AvIWF

(

F ′)),AvIW
(

�diag(G)
)[−r])

∼= Hom
(

AvIW�diag(F),AvIW�diag

(

G ′)),

where we used that i∗[−r] is right adjoint to i∗. Here (AvI
I0)

left
∗ is the right adjoint to the

restriction of equivariance functor which can be thought of as a direct image under the
morphism of stacks I0\˜F� → I\˜F� (recall that Av stands for the !-direct image under
that morphism).

This shows that the functor is fully faithful. Again using the parallel statement in
the non-monodromic setting and Lemma 20 we see that the essential image of �diag con-
tains the image of the functor of restricting the equivariance DI

IW → DI0

IW, since DI0

IW is
generated by irreducible perverse sheaves which are I-equivariant, the essential image
contains DI0

IW, this proves part (b). Any object in D̂IW is an inverse limit of objects in DI0

IW,
moreover, its image under the functor between the categories of pro-objects Pro(DI0

IW) →
Pro(DI

IW) induced by the averaging functor lies in DI
IW ⊂ Pro(DI

IW). This shows that
such an object is isomorphic to the image of a pro-object in Db(CohGˇ

Ñ (g̃ˇ)) whose

image under i∗ : Pro(Db(CohGˇ
Ñ (g̃ˇ))) → Pro(Db(CohGˇ(Ñ ))) lies in Db(CohGˇ(Ñ )).

An object in Pro(Db(CohGˇ
Ñ (g̃ˇ))) satisfying the latter property is easily seen to lie in

Db(CohGˇ(̂g̃ˇ)) ⊂ Pro(Db(CohGˇ
Ñ (g̃ˇ))), this implies essential surjectivity in part (a). �
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4.4. D̂ is a category over ̂St/Gˇ, DI0I is a category over St′/Gˇ. — The goal of this
section is to construct an action of the tensor category DGˇ

perf (
̂St) on D̂ and of DGˇ

perf (St′) on
DI0I, both categories are equipped with the tensor structure coming from tensor product
of perfect complexes.

4.4.1. The action of the tensor categories CohGˇ×Tˇ
fr (CSt), CohGˇ×Tˇ

fr (CSt′). — We let CSt

be the preimage of diagonal under the map Cg̃ˇ × Cg̃ˇ → gˇ × gˇ, and let CSt′ be the
preimage of 0 under the second projection to tˇ. We have open subsets CSt ⊂ CSt and
CSt′ ⊂ CSt′ where the action of Tˇ× Tˇ is free and St = CSt/Tˇ2, St′ = CSt′/Tˇ2.

Notation CohGˇ×Tˇ
fr (Cg̃ˇ), was introduced in Section 4.2.1, tensor categories

CohGˇ×Tˇ2

fr (CSt), CohGˇ×Tˇ2

fr (CSt′) etc. are similarly defined as full subcategories in the
categories of equivariant coherent sheaves whose objects are obtained from the structure
sheaf by tensoring with a representation.

We apply Corollary 18 in the following setting: the group Gˇ is replaced by Gˇ2

and C is the category of functors D̂ → D̂ (respectively DI0I → DI0I).
We have two actions of Rep(Tˇ) coming from, respectively, left and right convolu-

tion with Wakimoto sheaves. We consider the action of Rep(Gˇ2
) obtained as composition

of restriction to the diagonal copy of Gˇ and the action by central functors. The nearby
cycles monodromy acting on the cental functor defines a tensor endomorphism E of the
Gˇ2 action, while the torus monodromy defines an action of tˇ2. It is not hard to see that
conditions of Corollary 18 are satisfied. Thus we get an action of CohGˇ2×Tˇ2

fr (C
2
g̃ˇ) on D̂,

DI0I.
The fact that the action of Gˇ2 factors through restriction to diagonal is easily

seen to imply that the action factors canonically through a uniquely defined action of
CohGˇ×Tˇ2

(C
2
g̃ˇ). Furthermore, since the isomorphism between the two actions of Gˇ is

compatible with the tensor endomorphism E, both actions factor through a uniquely
defined action of CohGˇ×Tˇ2

fr (CSt). Finally, since the second (right monodromy) action of

tˇ on DI0I vanishes, the action of CohGˇ×Tˇ2

fr (CSt) factors through CohGˇ×Tˇ2

fr (CSt′). We
denote the two actions by �fr , �′

fr respectively.

4.4.2. Extending the actions to the perfect derived categories. — Our next goal is to extend
the action described in the previous subsection to complexes. We encounter the standard
non-functoriality of cone issue, which we circumvent in the following way.

We use the equivalences Ho(T̂ )−̃→D̂, Ho(T )−̃→DI0I.
Assume given a finite complex F • of objects in CohGˇ×Tˇ2

(CSt), where each term
F i is a trivial vector bundle twisted by a representation Ui of Gˇ× Tˇ2. Pick λ,μ ∈ � so
that for each character (λj,μj) of Tˇ2 appearing in one of the representations Ui we have
λ + λj ∈ (−�+), μ + μj ∈ �+.

In view of Corollary 12 and Lemma 4(d) the functor �fr(F i) ◦ J l
λ ◦ J r

μ sends T̂
to P̂ , where J l

λ : X �→ Jλ ∗ X, J r
μ : X �→ X ∗ Jμ; thus one gets a functor Ho(T̂ ) →
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Ho(P̂) sending a complex T• to the total complex of the bicomplex �fr(F •) ◦ J l
λ ◦

J r
μ(T•).

We now define a functor D̂ → D̂ as the composition:

D̂
J l−λ◦J r−μ

D̂ Ho(T̂ )
∼ �fr(F•)◦J l

λ◦J r
μ

Ho(P̂) → D̂.

We claim that different choices of λ,μ produce canonically isomorphic func-
tors. This follows from existence of a canonical up to homotopy quasi-isomorphism
J−λ ∗ T → T′, T′ → T ∗ Jμ, where T, T′ are finite complexes of objects in T̂ and T′

representing the object in the derived category corresponding to J−λ ∗ T (respectively,
T ∗Jμ), λ,μ ∈ �+.

Thus we get a well defined functor Ho(CohGˇ×Tˇ2

fr (CSt)) → End(D̂). It is not hard
to see from the definition that the last arrow carries a natural monoidal structure.

Let AcyclSt ⊂ Ho(CohGˇ×Tˇ2

fr (CSt)) be the subcategory of complexes whose restric-
tion to CSt is acyclic. As in Proposition 19, the fact that the lowest weight arrow �λ

extends to a filtration by Wakimoto sheaves compatible with convolution implies that
AcyclSt acts on D̂ by zero. In view of (8) we have

Idem(Ho(CohGˇ×Tˇ2

fr (CSt))/Acycl) ∼= DGˇ
perf (St).

Thus we obtain an action of DGˇ
perf (St) on D̂. Finally, since the action of the log mon-

odromy endomorphism is pro-nilpotent, we conclude that the action factors through
DGˇ

perf (
̂St).
A parallel argument (with the last sentence omitted) endows DI0I with an action of

DGˇ
perf (St′).

4.4.3. Compatibility between the two actions. — For future reference we record a com-
patibility between the two actions.

Lemma 22. — For F ∈ DGˇ
perf (

̂St), X ∈ D̂ and Y ∈ DI0I we have canonical isomorphisms

π∗(F(X)) ∼= i∗St(F)(π∗(X)),

π∗(i∗St(F)(Y)) ∼=F(π∗(Y)),

where iSt denotes the closed embedding St′ → ̂St. The isomorphism is functorial in F , X, Y it is also

compatible with the monoidal structure of the action functor.

Proof. — Comparing the procedures of extending the action to the category of
complexes for D̂ and DI0I and using that π∗ sends T̂ into T we see that to get the first
isomorphism it suffices to construct a functorial isomorphism for F ∈ CohGˇ

fr (̂St). This
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follows from π∗(ẐV) = ZV, π∗(Jλ) = Jλ, where the second isomorphism is compatible
with the log monodromy endomorphism and the last two isomorphisms are compati-
ble with the lowest weight arrows. The second isomorphism can be deduced using the
adjunction

Hom(F(X),X′) ∼= Hom(X,F∗(X′))

which holds for both actions; here F∗ = RHom(F ,O). In view of the isomorphism
i∗(F∗) ∼= (i∗(F))∗ the second isomorphism follows from the first one. �

5. The anti-spherical projector

Set �̂ = T̂w0 , � = Tw0 .
Recall that DI0

IW is the derived category of Iwahori-Whittaker sheaves on ˜F�. We
have averaging functors AvIW : DI0I0 → DI0

IW and AvI0

IW : DI0

IW → DI0I0 .

5.1. �̂ and Whittaker averaging.

Proposition 23. — (a) Right convolution with �̂ is isomorphic to AvI0

IW ◦ AvIW.

(b) Convolution with �̂ is isomorphic to its left and right adjoint.

(c) The full subcategory in T̂ consisting of direct sums of copies of �̂ is a subcategory closed

under the convolution product. It is tensor equivalent to the full subcategory in Coh( ̂t∗ ×t∗/Wf
t∗) whose

objects are sheaves isomorphic to O⊕N for some N; here “hat” stands for completion at zero.

(d) Consider the full subcategory P fin

I0I0 ⊂ PI0I0 of sheaves supported on G/U ⊂ ˜F�, and let

P fin

I0I0 be its Serre quotient by the Serre subcategory generated by all irreducible objects except for Le, the

irreducible object supported on the closed cell ˜F�e. Then the endofunctor of P fin

I0I0 induced by the functor

F �→ F ∗ �̂ is isomorphic to the functor O(tˇ) ⊗O(tˇ)Wf F , where O(tˇ)Wf ⊂ O(tˇ) acts on P fin

I0I0

by log monodromy with respect to the right T action.

Proof. — Part (a) follows from [23, Lemma 4.4.11(3)]. To check part (b) we use
part (a) and adjunctions in [23, Lemma 4.4.5], which show that the right adjoint to the
functor AvI0

IW ◦ AvIW is isomorphic to (AvI0

IW)∗ ◦ AvIW; here (AvI0

IW)∗ is the right adjoint to
the pull-back functor defined using the ∗ direct image. The isomorphism AvI0

IW ◦ AvIW ∼=
(AvI0

IW)∗ ◦ AvIW follows from the relation between the two convolutions on DI0I0 explained
in footnote 4 and [23, Corollary 5.4.3].

Part (c) is a consequence of [23, Proposition 4.7.3].
Part (d) follows from parts (b,c) since �̂ is the projective cover of Le in P fin

I0I0 . �
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Remark. — Beilinson-Bernstein Localization Theorem identifies P fin

I0I0 with category
O of modules over the Lie algebra g with a regular integral generalized central charac-
ter λ. It is easy to see that convolution with �̂ is a projective functor isomorphic to the
composition of two translation functors: translation from λ to the singular central char-
acter −ρ followed by translation from −ρ to λ. Properties (b,d) of this functor are well
known and play a central role in Soergel bimodules method.

5.2. Tilting property of �̂ ∗ Zλ.

Proposition 24. — For V ∈ Rep(Gˇ) we have

(a) � ∗ ZV ∈ T .

(b) �̂ ∗ ẐV ∈ T̂ .

Proof. — Recall that PII ⊂ DII is the category of perverse sheaves, let f PII be the
Serre quotient of PII by the Serre subcategory generated by irreducible objects with sup-
port F�w, where w is not the minimal length element in its coset Wf w. Let Z̄V be the
image of ZV in f PII. It follows from [1, Theorem 7] together with [1, Theorem 2] that
Z̄V admits a standard and a costandard filtration. Here a filtration is called (co)standard
if its associated graded is a sum of jw!, (respectively, jw∗), where jw!, jw∗ is the image of jw!,
respectively jw∗, under the projection PII →f PII. It is easy to see (either by combining [1,
Lemma 4(a)] with a “left–right swap” of Proposition 23(a), or directly) that the functor
PII → PI0I, F �→ � ∗ F factors through f PII. It follows that � ∗ ZV admits a filtration
whose subquotients are of the form �∗ jw! and another one with subquotients of the form
� ∗ jw∗. It is also easy to see that � ∗ jw! carries a filtration such that gr(� ∗ jw!) ∼= ⊕

v∈Wf

jvw!

and similarly for � ∗ jw∗. This proves part (a).
Part (b) follows from Proposition 9, compatibility of central functors with direct

image and part (a) of this proposition. �

Remark. — The proof of Proposition 24 is the only place in this article where we
use the results of [1] directly, without applying the “left–right swap”.

Corollary 25. — For T ∈ T , T̂ ∈ T̂ we have

Ext�=0(Jλ ∗ � ∗ Jμ ∗ Zν,T) = 0,

Ext�=0(Jλ ∗ �̂ ∗Jμ ∗ Ẑν, T̂) = 0

provided (−λ), (−μ) ∈ �+, i.e. λ, μ are anti-dominant.

Proof. — We have

Ext•(Jλ ∗ �̂ ∗Jμ ∗ Ẑν, T̂) ∼= Ext•(Jλ ∗ �̂ ∗ Ẑν, T̂ ∗J−μ).
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Comparing Proposition 24 with Corollary 12 we see that Jλ ∗ �̂ ∗ Ẑν admits a free mon-
odromic standard filtration, while T̂ ∗ J−μ admits a free-monodromic costandard filtra-
tion, which implies the second vanishing. The first one is similar. �

5.3. Convolution with �̂ and the Springer map. — We let pSpr denotes the projection
g̃ˇ→ gˇ.

Proposition 26. — The equivalence (6) intertwines the endo-functor F �→ �̂ ∗ F with the

endo-functor p∗
SprpSpr∗.

We start with

Lemma 27. — Recall that ̂�IW denotes the equivalence Db(CohGˇ(̂g̃ˇ)) ∼= D̂IW.

(a) The object ̂�−1
IW(AvIW(�̂)) is canonically isomorphic to O(tˇ) ⊗O(tˇ)Wf O.

(b) The composed functor F �→ �̂ ∗ (̂�IW ◦ p∗
Spr(F)) is isomorphic to the functor F �→

̂�IW(O(tˇ) ⊗O(tˇ/Wf ) p∗
Spr).

(c) For F ∈ D̂IW we have �̂ ∗F = 0 iff (̂�IW)−1(F) ∈ Ker(pSpr∗).

Proof of Lemma 27. — (a) The restriction of the functor AvIW to the category P fin

I0I0

factors through the category P fin

I0I0 (notations of Proposition 23). Thus Proposition 23(d)
shows that AvIW(�̂) ∼= O(tˇ) ⊗O(tˇ)W AvIW(
e). Since AvIW(
e) ∼= ̂�IW(Og̃ˇ), the claim
follows.

(b) The functor ̂�IW ◦ p∗
Spr : Db(CohGˇ(ĝˇ)) → D̂IW comes from the central action of

Db(CohGˇ(ĝ )̌) on D̂. Since this action commutes with the functor of convolution with �̂,
(b) follows from (a).

(c) The kernel of pSpr∗ is the (right) orthogonal to the objects O ⊗ V, V ∈
Rep(Gˇ). So we need to show that �̂ ∗ F = 0 ⇐⇒ HomD̂IW

(AvIW(Ẑλ),F) = 0
for all λ ∈ �+. First, if �̂ ∗ F = 0 then by self-adjointness of convolution with �̂,
Hom(�̂ ∗ AvIW(Ẑλ),F) = 0. We have �̂ ∗ Ẑλ

∼= Ẑλ ∗ �̂ and AvIW(Ẑλ ∗ �̂) admits a
filtration where each subquotient is isomorphic to AvIW(Ẑλ). By a standard argument
(see e.g. [15, Lemma 5]) it follows that HomD̂IW

(AvIW(Ẑλ),F) = 0. Conversely, suppose
that �̂ ∗ F �= 0. We need to show that HomD̂IW

(AvIW(Ẑλ),F) �= 0 for some λ. With-
out loss of generality we can assume that F ∈ P̂IW (recall that convolution with �̂ is
exact). Then, since HomD̂IW

(∇ IW
w , �̂ ∗ F) depends only on the 2-sided coset Wf wWf ,

we see that HomD̂IW
(∇ IW

w , �̂ ∗ F) �= 0 for some w which is maximal in its 2-sided Wf -
coset. Using the tilting property of �̂ ∗ Ẑλ one sees that for such w the object ∇ IW

w is a
quotient of �̂ ∗ AvIW(Ẑλ) if λ ∈ Wf wWf . Thus Hom(�̂ ∗ AvIW(Ẑλ), �̂ ∗ F) �= 0, hence
Hom(AvIW(Ẑλ ∗ �̂),F) �= 0 and Hom(AvIW(Ẑλ),F) �= 0. �
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Proof of Proposition 26. — Set F�̂ :F → ̂�−1
IW(�̂ ∗ ̂�IW(F)). Our goal is to show that

F�̂
∼= FSpr, where FSpr := p∗

SprpSpr∗. Notice that both functors are self-adjoint: for F�̂ this
is Proposition 23(b) and for FSpr this follows from the fact that both g̃ˇ and gˇ have trivial
canonical bundle and their dimensions coincide, which yields an isomorphism p∗

Spr
∼= p!

Spr.
Lemma 27(b) shows that F�̂ ◦ p∗

Spr
∼= FSpr ◦ p∗

Spr (notice that pSpr∗p∗
Spr(F) ∼=

O(tˇ) ⊗O(tˇ)Wf F canonically), which implies F�̂ ◦ FSpr
∼= FSpr ◦ FSpr. Self-adjointness of

FSpr yields the adjunction arrow FSpr ◦ FSpr → Id, thus we get an arrow F�̂ ◦ FSpr → Id.
Applying self-adjointness of F�̂ we get an arrow c : FSpr → F�̂.

Lemma 27(b) provides an isomorphism F�̂ ◦ p∗
Spr

∼= FSpr ◦ p∗
Spr, a diagram chase

shows that this isomorphism coincides with the arrow induced by c. Also, Lemma 27(c)
shows that F�̂|Ker(FSpr) = 0. Thus cF : FSpr(F) → F�̂(F) is an isomorphism when F ∈
Im(FSpr) or F ∈ Ker(FSpr). Again using self-adjointness of FSpr, F�̂ we see that for any
F the object Cone(FSpr(F)

c−→ F�̂(F)) lies in the left orthogonal to both Ker(FSpr)

and Im(FSpr). However, ⊥Im(FSpr) = Ker(FSpr) due to self-adjointness of FSpr; thus
⊥Ker(FSpr) ∩⊥ Im(FSpr) = 0, which shows that FSpr(F)−̃→

c
F�̂(F) for all F . �

6. Properties of �perf

Recall the actions defined in Section 4.4.2 and objects �̂ = T̂w0 , � = Tw0 . We
define ̂�perf : DGˇ

perf (
̂St) → D̂, ̂�perf (F) = F(�̂) and �perf : DGˇ

perf (St′) → DI0I, �perf (F) =
F(�).

6.1. Compatibility of �perf with projection St → g̃ˇ. — We start by recording some of
the compatibilities following directly from the definitions.

Lemma 28. — The following diagrams commute up to a natural isomorphism:

DGˇ
perf (

̂St)
i∗

̂�perf

DGˇ
perf (St′)

�perf

D̂
π∗

D

Db(CohGˇ(̂g̃ˇ))
pr∗Spr,1

̂�IW

DGˇ
perf (

̂St)

̂�perf

D̂IW

Avright

I0

D̂
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Db(CohGˇ(̂g̃ˇ))
(pr′Spr,1)

∗

̂�IW

DGˇ
perf (St′)V

�perf

D̂IW

π∗◦Avright

I0

D

Proof. — Commutativity of the first diagram follows from the corresponding com-
patibility for action (Lemma 22) and the isomorphism π∗(�̂) ∼= � (Proposition 11(b)).
To see commutativity of the second one observe that the functor Avright

I0 of averag-
ing with respect to the right action of I0 commutes with convolution on the left. For
F ∈ Db(CohGˇ(̂g̃ˇ)) the object pr∗

Spr,1(F) ∈ DGˇ
perf (

̂St) acts on D̂ by the left convolution with

�diag(F), thus the required commutativity follows the isomorphism Avright

I0 (
IW
e ) ∼= �̂,

which is a consequence of Proposition 23(a). The third diagram is obtained by concate-
nation of the first two: the left (respectively, right) vertical arrow in the third diagram
coincides with the left (right) arrow in the second (respectively, first) one, the horizontal
arrows are compositions of the corresponding horizontal arrows in the first two. �

The goal of this subsection is the following

Proposition 29. — The functor ̂�perf is compatible with the convolution action of

Db(CohGˇ(̂St)) on Db(CohGˇ(̂g̃ˇ)) and the action of D̂ on D̂IW; i.e. for F ∈ DGˇ
perf (

̂St), G ∈
Db(CohGˇ(̂g̃ˇ)) we have an isomorphism

(14) ̂�IW(F ∗ G) ∼= ̂�perf (F) ∗ ̂�IW(G)

functorial in F , G.

Proof. — When F ∼=O, so that ̂�(F) ∼= �̂, the isomorphism (for any G) is provided
by Proposition 26. Since the functors commute with twist either by a line bundle or by
a representation of Gˇ we get an isomorphism for F of the form O(λ,μ) ⊗ V, V ∈
Rep(Gˇ), this isomorphism is functorial in F , G.

By a standard argument10 (attributed, in particular, to Kontsevich, see also [43],
Theorem 2.1 and Example 1.10) any object in DGˇ

perf (
̂St) is a direct summand in one rep-

resented by a finite complex of sheaves of the form O(λi,μi) ⊗ Vi , where λi,μi are
antidominant, thus we can assume without loss of generality that F is of this form.

10 More generally, for a reductive group H acting linearly on AN+1 and an H-invariant locally closed subscheme
X ⊂ PN every object F in the perfect equivariant derived category DH

perf (X) is a direct summand in an object represented
by a finite complex of equivariant bundles of the form ⊕Vi ⊗ OX(ni), V ∈ Rep(H). To see this one constructs a bounded
above complex F• whose terms are finite sums of bundles Vi ⊗OX(ni) representing F , then denoting by F≥−N the “stupid”
truncation of F• we get for N � 0 a distinguished triangle (15). For large N we have ExtN+1(F,FN) = 0, so the triangle
splits.
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Pick ν ∈ �+ such that μi + ν ∈ �+ for all i. We can choose a finite complex of free-
monodromic tilting objects in P̂IW representing J−ν ∗ ̂�IW(G), then ̂�(G) is represented
by a finite complex of objects Jν ∗ T̂j , where T̂j ∈ P̂IW is free-monodromic tilting.

We claim that

(Jλi
∗ �̂ ∗Jμi

) ∗ (Jν ∗ T̂j) ∈ P̂IW,

̂�−1
IW((Jλi

∗ �̂ ∗Jμi
) ∗ (Jν ∗ T̂j)) ∈ CohGˇ(̂g̃ˇ).

Here the first claim follows from Lemma 4(d) the second one follows from
Lemma 30(a) below.

Now (14) follows by comparing Proposition 7(c) to Corollary 47(c) below. �

Lemma 30. — (a) (̂�IW)−1(�̂ ∗ Jμ ∗ T̂) ∈ CohGˇ(̂g̃ˇ) for μ ∈ �+ and T̂ ∈ P̂IW a

free-monodromic tilting object.

(b) (�I
IW)−1( jIWw∗ ) ∈ CohGˇ(Ñ ) for any w ∈ W/Wf .

(c) (̂�IW)−1(∇ IW
w ) ∈ CohGˇ(̂g̃ˇ) for any w ∈ W/Wf .

(d) �−1
IW :PIW → D≥0(CohGˇ(Ñ )) ∩ D≤dim(Ñ )(CohGˇ(Ñ ));

̂�−1
IW : P̂IW → D≥0(CohGˇ(Ñ )) ∩ D≤dim(g̃ˇ)(CohGˇ(̂g̃ˇ)).

Proof. — (a) An object F ∈ Db(CohGˇ(̂g̃ˇ)) lies in the abelian heart iff for large λ

we have Ri�(F ⊗ O(λ)) = 0 for i �= 0. Since Ri�(F) = HomGˇ
deeq(O,F), it suffices to

show that Homi

P̂IW
(J−ν ∗ AvIW(Ẑλ), �̂ ∗ Jμ ∗ T̂) = 0 for i �= 0 and λ,μ, ν ∈ �+. Using

Propositions 24(b) and 11(c) we see that J−ν ∗ AvIW(Ẑλ) has a free-monodromic standard
filtration, while Jμ∗T̂ and hence �̂∗Jμ∗T̂ has a free-monodromic costandard filtration,
this implies the desired vanishing.

Similarly, the first statement in (b) follows from Exti

DI
IW

(IAvIW(J−λ ∗Zμ), jIWw∗ ) = 0 for

i �= 0, λ ∈ �+. The latter Ext vanishing is clear from the fact that IAvIW(Zμ) is tilting in
P I

IW [1, Theorem 7], hence IAvIW(J−λ ∗ Zμ) admits a costandard filtration. The proof of
(c) is parallel to that of (b), with (co)standard replaced by free monodromic (co)standard.
The inclusion �−1

IW(PIW) ⊂ D≥0(CohGˇ(Ñ )) follows from part (b). To check the other
inclusion we use that �IW(OÑ (λ) ⊗ V) ∈ PIW for all λ ∈ �, V ∈ Rep(Gˇ) thus for
F ∈PIW we have Ext<0

Coh(Ñ )
(�−1

IW(F),OÑ (λ)) = 0. Applying Grothendieck-Serre duality

we conclude that Ext<0
Coh(Ñ )

(O(λ),S(�−1
IW(F))) = 0, where S(G) = RHom(G,O). Thus

S(�−1
IW(F)) ∈ D≥0(CohGˇ(Ñ )), so �−1

IW(F) = S(S(�−1
IW(F))) ∈ D≤dim Ñ . This proves the

first formula in (d), the second one is checked in a similar way. �

6.2. The functors �perf , ̂�perf are fully faithful. — In this subsection we establish full
faithfulness of �perf , ̂�perf . Since Db(CohGˇ

St′ (St)) is a full subcategory in Db(CohGˇ(̂St)),
while DI0I0 is a full subcategory in D̂, it is enough to do so for ̂�perf only.
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It suffices to show that the map

Hom•(V ⊗ÔSt(λ,μ),V′ ⊗ÔSt(λ
′,μ′))

→ Hom•(ẐV ∗Jλ ∗ �̂ ∗Jμ, ẐV′ ∗Jλ′ ∗ �̂ ∗Jμ′)

induced by ̂�perf is an isomorphism.
The functor ̂�perf sends twisting by a line bundle to convolution by Wakimoto

sheaves, and twisting by a representation of Gˇ to the central functor. Since adjoint to
such a twist is twist by the dual representation, and similar adjunction holds for the central
functors and convolution by Wakimoto sheaves, we see that it suffices to consider the case
when λ = 0 = μ′ and V is trivial.

Then we have:

HomD̂(�̂ ∗Jμ,Jλ′ ∗ ẐV′ ∗ �̂)

∼= HomD̂IW

(

AvIW(�̂ ∗Jμ),AvIW(Jλ′ ∗ ẐV′)
)

∼= HomDb(CohGˇ (̂g̃ˇ))
(

p∗
SprpSpr∗

(

Ôg̃ˇ(μ)
)

,Ôg̃ˇ
(

λ′) ⊗ V′)

∼= HomDb(CohGˇ (̂g̃ˇ))
(

pSpr,2∗p∗
Spr,1

(

Ôg̃ˇ(μ)
)

,Ôg̃ˇ
(

λ′) ⊗ V′).

Here the first isomorphism comes from the fact that right convolution with �̂ is
isomorphic to AvI0

IW ◦ AvIW (Proposition 23(a)). The second isomorphism uses the “co-
herent” description of the Iwahori-Whittaker category (6) along with the fact that left
convolution with �̂ corresponds to p∗

SprpSpr∗ on the coherent side (Proposition 26). Finally,
the last isomorphism comes from: p∗

SprpSpr∗ ∼= pSpr,2∗p∗
Spr,1, which follows from base change

for coherent sheaves and the fact that TorO(gˇ)
>0 (Og̃ˇ,Og̃ˇ) = 0.

Using adjointness we get:

HomDb(CohGˇ (g̃ˇ))
(

pr2∗pr∗
1

(

Og̃ˇ(μ)
)

,Og̃ˇ
(

λ′) ⊗ V′)

∼= HomDb(Coh(St))

(

pr∗
1

(

Og̃ˇ(μ)
)

, pr∗
2

(

Og̃ˇ
(

λ′) ⊗ V′)),

where we used that pr∗
2

∼= pr!
2 since the target of pr2 is smooth, while both its source

and target have trivial dualizing complexes (more precisely, in both cases the dualizing
complex is isomorphic to O[d], d = dim(g̃ˇ) = dim(St)).

Since ̂�perf : pr∗
1(Og̃ˇ(μ)) �→Jμ ∗ �̂, ̂�perf :Og̃ˇ(λ′) ⊗ V′ �→Jλ′ ∗ ẐV′ ∗ �̂, we have

constructed an isomorphism between the two Hom spaces. A routine diagram chase
shows that this isomorphism coincides with the map induced by ̂�perf .
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7. Extending an equivalence from the subcategory of perfect complexes

7.1. A criterion for representability. — Let algebraic stack X be given by X = Z/H
where Z is a quasiprojective scheme over an algebraically closed field of characteristic
zero and H is a reductive group. [The results of this section are likely valid in greater
generality but we present the setting needed for our applications]. We fix a H-equivariant
ample line bundle L on Z, such a bundle exists by Sumihiro embedding Theorem (though
in examples considered in this paper Z comes equipped with a supply of such line bun-
dles).

Set D = Db(Coh(X)) and let Dperf (X) ⊂ D be the subcategory of perfect com-
plexes. Set D≤n

perf = D≤n(Coh(X)) ∩ Dperf (X), and let D≥n
perf ⊂ Dperf (X) be the full subcate-

gory of objects represented by complexes of locally free sheaves placed in degree n and
higher, and their direct summands.

Remark 31. — It is obvious that D≥n
perf ⊂ D≥n(Coh(X)) ∩ Dperf (X). Using [45,

Theorem 3.2.6] (“finiteness of finitistic dimension”) one can also show that D≥n
perf (X) ⊃

D≥n−dim(Z) ∩ Dperf . This implies that most of the statements below hold with D≥n
perf replaced

by D≥n(Coh(X)) ∩ Dperf (X). We neither prove nor use this point.

Proposition 32. — (a) The natural functor from Db(Coh(X)) to the category of contravariant

functors from Dperf (X)op to vector spaces is fully faithful.

(b) A cohomological functor F from Dperf (X) to vector spaces is represented by an object of

Db(Coh(X)) if and only if the following conditions hold:

(i) For any n the functor F|D≥n
perf

is represented by an object of Dperf (X) (not necessarily by an

object of D≥n
perf ).

(ii) There exists m such that F|D≤m
perf

= 0.

Proof. — Fix F ,G ∈ Db(Coh(X)) and let φF , φG be the corresponding functors on
Dperf (X). Fix a bounded above complex F • of locally free sheaves representing F . Let
F≥−n = τ bête

≥−n(F •) denote the stupid truncation.
Given a natural transformation φF → φG we get morphisms F≥−n → G, com-

patible with the arrows F≥−n → F≥−(n+1). Choose n such that F ∈ D>−n(Coh(X)).
Then for N > n we have a canonical isomorphism F ∼= τ≥−n(F≥−N). Assuming also that
G ∈ D>−n(Coh(X)), we get an arrow F = τ≥−n(F≥−N) → τ≥−n(G) = G. A standard argu-
ment shows that bounded above complexes representing a given F ∈ Db(Coh(X)) form
a filtered category (i.e. given two such complexes F •

1 , F •
2 , there exists a complex F •

0 with
maps of complexes F •

0 →F •
1 , F •

0 →F •
2 inducing identity maps in the derived category).

This implies that the arrow F → G does not depend on the choice of F •.
Thus we have constructed a map Hom(φF , φG) → Hom(F ,G). It is clear from

the construction that the composition Hom(F ,G) → Hom(φF , φG) → Hom(F ,G) is
the identity map. It remains to see that the map Hom(φF , φG) → Hom(F ,G) is injective.
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Let h ∈ Hom(φF , φG) be a nonzero element. Thus for some P ∈ Dperf (X) and
ϕ :P →F we have 0 �= h(ϕ) :P → G. Fix again a complex F •, for N as above we get a
distinguished triangle

(15) FN[N] →F≥−N →F →FN[N + 1]
for some FN ∈ Coh(X). For large N we have Hom(P,FN[N + 1]) = 0, thus ϕ factors
through an arrow P → F≥−N. It follows that for N � 0 applying h to the tautological
map F≥−N → F we get a nonzero arrow F≥−N → G. Since Hom(FN[N],G) = 0 =
Hom(FN[N + 1],G) for large N, we see that the induced arrow F → G is nonzero. This
proves (a).

We now prove (b). We first check the “only if ” direction. Condition (ii) is clear,
and to check condition (i) let F be the representing object, and choose a bounded
above complex F • representing F ; we can and will choose F • so that its terms
are locally free sheaves. Setting again F≥N = τ bête

≥N (F •) ∈ Dperf (X), we claim that
Hom(G,F)−̃→Hom(G,F≥N) when G ∈ D≥m

perf , N < m − d , where d = dim(Z). This fol-
lows from the fact that Exti(E,K) = 0 for i > d , where E,K ∈ Coh(X) and E is locally
free.

To check the “if ” direction, given a functor F satisfying the conditions take n in
(i) satisfying n < m − d where m is as in (ii) and d = dim(Z). Let F ′ ∈ Dperf (X) be a
representing object for F|D≥n

perf
. We claim that F = τ≥n(F ′) represents F.

First observe that

(16) F ∈ D>m
(

Coh(X)
)

,

to check this we need to see that Hi(F ′) = 0 for i = n, . . . ,m. If Hi(F ′) �= 0 for
such an i, we can find a locally free sheaf E such that Hom(E,Hi(F ′)) �= 0 and
Ext>0(E,Hj(F ′)) = 0 for all j (in fact, we can take E = L⊗N ⊗ V where L is an anti-
ample H-equivariant line bundle on Z and V is a representation of H). Then we get
Hom(E[−i],F ′) = F(E[−i]) �= 0, which contradicts (ii).

We now construct a functorial isomorphism F(G) ∼= Hom(G,F), G ∈ Dperf (X). Fix
such G, and fix a finite complex G• of locally free sheaves representing G. The desired
isomorphism is obtained as the following composition:

Hom(G,F) ∼= Hom(τ bête
≥m (G•),F) ∼= Hom(τ bête

≥m (G•),F ′)

∼= F(τ bête
≥m (G•)) ∼= F(G).

Here the first isomorphism follows from (16), which implies that Hom(τ bête
<m (G•),F) =

0 = Hom(τ bête
<m (G•)[−1],F).

The second isomorphism follows from the distinguished triangle τ<n(F ′) →F ′ →
F → τ<n(F ′)[1] and the fact that Hom(D≥m

perf (Coh(X)),D≤n(Coh(X))) = 0, since m −
n > d and Exti(E,K) = 0 for i > d , where E,K ∈ Coh(X) and E is locally free.
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The third isomorphism is the assumption on F ′, and the last isomorphism follows
from (ii). It is easy to see that the constructed isomorphism is independent on the auxiliary
choices and is functorial. �

Let X = Z/H be as in the previous proposition. We assume that Z admits a projec-
tive H-equivariant morphism Z → Y where Y is affine. Let L be an H-equivariant ample
line bundle on Z. We have the homogeneous coordinate ring Ô(Z) = ⊕

n≥0
�(L⊗n). The

assumptions on Z imply that Ô(Z) is Noetherian.
We now assume that C is a triangulated category with a fixed full triangulated

embedding i : Dperf (X) → C.
For M ∈ C we can form a module for the homogeneous coordinate ring

�̃(M) =
⊕

n≥0,λ

Hom(i(L⊗−n ⊗O(H)λ),M),

where λ runs over the set of dominant weights of H and O(H)λ denotes the correspond-
ing isotypic component of the translation action of H on O(H). A section of L⊗n defines
an element in HomCoh(X)(L⊗m ⊗ O(H)λ,

⊕

μ

L⊗m+n ⊗ O(H)μ) for every λ and m, thus

�̃(M) does carry a natural action of the homogeneous coordinate ring.
Notice that if C is equipped with a Rep(H) action making i a functor of module

categories for Rep(H) then we have: �̃(M) = ⊕

n≥0
HomH

deeq(i(L
⊗−n),M).

We also set: �̃m(M) = ⊕

n≥m,λ

HomH
deeq(i(L

⊗−n ⊗O(H)λ),M).

Proposition 33. — For M ∈ C the following are equivalent.

(a) For any m the functor on D≥m
perf (X), F �→ Hom(i(F),M) is represented by an object of

Dperf (X).

(b) The module �̃(M[n]) is finitely generated for all n and �̃(M[n]) = 0 for n � 0.

(c) We have �̃(M[n]) = 0 for n � 0 and for any n there exists m, such that �̃m(M[n]) is

finitely generated.

The proof of the proposition is based on the following

Lemma 34. — If �̃(M[n]) = 0 for n ≥ s, then Hom(i(F),M) = 0 for F ∈ D>s+d
perf ,

d = dim(Z).

Proof. — We claim that any object in F ∈ D>s+d
perf is isomorphic to a direct summand

in an object represented by a complex placed in degree s and higher, with each term
isomorphic to L⊗i ⊗ V, i ≤ 0, V ∈ Rep(H). This clearly implies the lemma.

It remains to check that claim. Let F ∈ D>s+d
perf . By a standard argument there exists

a bounded above complex F • representing F whose terms are of the form L⊗n ⊗ V,
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n ≤ 0. Then using the fact that Exti from a locally free sheaf to any sheaf vanishes for
i > d , we conclude the argument by a standard trick: consider the distinguished triangle
Fs[s] → τ bête

≥−s(F •) →F and use that Hom(F ,Fs[s + 1]) = 0. �

Proof of Proposition 33. — (a) clearly implies (b), while (b) implies (c). We proceed to
prove that (c) implies (a).

Assume that (c) holds. In view of the lemma, it suffices to find for every m an object
FM,m ∈ Dperf (X) and a morphism cm : i(FM,m) → M so that �̃(Cone(cm)[l]) = 0 for l ≥ m.
Moreover, it suffices to do so after possibly replacing the full embedding i by the functor
i′ :F �→ i ◦ (F ⊗L⊗p) for some p ∈ Z (notice that conclusion of Lemma 34 is not affected
by such a substitution).

Let d0 be the largest integer such that �̃(M[d0]) �= 0. We argue by descend-
ing induction in d0. Using the finite generation condition we find a locally free sheaf
E ∈ Coh(X) and a morphism i(E)[−d0] → M, such that the induced map �̃m(i(E)) →
�̃m(M[d0]) is surjective for some m ∈ Z. Fix m0 ≥ 0 such that R>0�(L⊗i ⊗ E) = 0 for
i ≥ m0. We can assume without loss of generality that m0 ≥ m. Then upon replacing the
embedding i by i′ : F �→ i(F ⊗ L⊗−m0) we get that M′ := Cone(i(E) → M) satisfies:
�̃(M′[i]) = 0 for i ≥ d0. Also it is clear that the finite generation condition is satisfied for
M′, i′. Thus we can assume that the statement is true for M′ by the induction assumption.
Then the statement about M follows from the octahedron axiom. �

7.2. A characterization of Db(Coh(X)) as an ambient category of Dperf (X). — We con-
tinue working under the assumption that i is fully faithful. Assume also that equiva-
lent conditions of Proposition 33 hold, thus the condition of Proposition 32(b)(i) is sat-
isfied. Assume also that assumption (b,ii) holds. In view of Proposition 32 we get a func-
tor � : C → Db(Coh(X)) sending M ∈ C to F ∈ Db(Coh(X)) representing the functor
G �→ Hom(i(G),M) on Dperf (X).

It is not hard to see that � is a triangulated functor.
We now assume that C is equipped with a bounded t-structure τ . Consider the

following properties of the functor � in relation to the t-structures.
(A) The functor � is of bounded amplitude, i.e. there exists d such that � :

Dτ,≤0 → D<d(Coh(X)), � : Dτ,≥0 → D>−d(Coh(X)).
(B) There exists d ∈ Z such that for F ∈ C we have: �(F) ∈ D≤0(Coh(X)) ⇒F ∈

Cτ,≤d .
(C) There exists d > 0 such that for F ∈ C we have: Hi(�(F)) = 0 for i ∈

[−d,d] ⇒ Hτ,0(F) = 0. Here Hi(�(F)) ∈ Coh(X) is the cohomology with respect to
the standard t-structure on Db(Coh(X)).

Proposition 35. — (a) Property (B) implies that � is fully faithful.

(b) Properties (A), (C) imply that � is an equivalence.
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Proof. — (a) To unburden notation we assume without loss of generality that d = 0,
this can be achieved by replacing the t-structure τ with its shift by −d .

Recall that i is assumed to be a full embedding, which implies that � ◦ i ∼= IdDperf (X).
It follows from the definition of � that for F ∈ Dperf (X) we have:

Hom(i(F),M) ∼= Hom(F ,�(M)) ∼= Hom(�i(F),�(M)).

Thus the map Hom(M1,M2) → Hom(�(M1),�(M2)) is an isomorphism when M1 ∈
Im(i).

Fix M1,M2 ∈ C. Fix n such that M2 ∈ Cτ,>n and �(M2) ∈ D>n(Coh(X)). Fix a
bounded above complex F • of locally free sheaves representing F = �(M1), and let
F≥N ∈ Dperf (X) be the naive truncation as above. We have an exact triangle FN[−N] →
F≥N →F for some FN ∈ Coh(X).

Assuming N < n, we get

Hom(�(M1),�(M2)) ∼= Hom(F≥N,�(M2)) ∼= Hom(i(F≥N),M2).

We have a morphism i(F≥N) → M1 whose cone lies in Dτ,≤N−1 in view of condi-
tion (B). [Notice that � sends this cone to FN[−N + 1].] Thus Hom(M1,M2) ∼=
Hom(i(F≥N),M2), so composing the above isomorphisms we get that Hom(M1,M2) ∼=
Hom(�(M1),�(M2)). It is easy to see that this map coincides with the map induced
by � , so (a) is proved.

(b) Property (C) implies (B), thus � is fully faithful by (a), it remains to show that
it is essentially surjective. Fix F ∈ Db(Coh(X)) and a bounded above complex of locally
free sheaves F • representing F . Let n be such that F ∈ D≥n(Coh(X)). Fix N < n and
let A = i(F≥N). We assume as we may that N < n − 2d, then condition (C) implies that
Hτ,m(A) = 0 for m ∈ [N + d + 1, n − d − 1]. Pick such an m and set B = τ≥m(A). We
have an exact triangle A → B → C where A ∈ Cτ,≥n−d and C ∈ Cτ,<N+d. Thus applying
condition (A) we get an exact triangle �(A) → �(B) → �(C), where �(B) ∼= F≥N,
�(A) ∈ D≥n−d−d(Coh(X)) and �(C) ∈ D<N+d+d(Coh(X)). Assuming as we may that
N < n − 2(d+ d), we see that �(A) ∼=F which proves that � is essentially surjective. �

8. Compatibility between the t-structures and construction of the functor
from constructible to coherent category

8.1. Almost exactness of �perf .

Proposition 36. — For some d > 0 the following holds. If F ∈ D is such that

Homi(�perf (O(λ,μ) ⊗ V),F) = 0 for all λ,μ ∈ �, V ∈ Rep(Gˇ) and i ∈ [−d, d], then

Hp,0(F) = 0 ∈P .

The proof of proposition is preceded by some auxiliary results.
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Lemma 37. — For X ∈ DI0I there exists a finite subset S ⊂ W, such that for λ ∈ �+ we have

(17) j !w(X ∗ Jλ) �= 0 ⇒ w ∈ S · (λ) ⊂ W.

Proof. — By the !-support of an object X ∈ D we mean the set of points ix : {x} ↪→
F� such that i!x(X) �= 0. Proper base change shows that the !-support of X ∗ Jλ lies in the
convolution of sets supp(X) and F�λ. This implies (17). �

Lemma 38. — Let F be as in Proposition 36.

For large λ and n ∈ [−d + 2 dim(g̃ˇ), d − 2 dim(g̃ˇ)] we have

(18) Extn( jw!,F ∗ Jλ) = 0

for all w.

Proof. — According to Lemma 37 there exists a finite set S ⊂ W such that for large
λ the left hand side of (18) vanishes for all n unless w ∈ S · (λ). Also for large λ we have
S · (λ) ⊂ Wf · (�+) and each element in this set is the minimal length representative of
its right Wf coset. Hence for all w ∈ W we have

(19)
Extp

D( jw!,F ∗ Jλ) ∼= Extp

D(
w ∗ �,F ∗ Jλ),

or Extp

D( jw!,F ∗ Jλ) = 0,

which follows from the fact that 
w ∗ � admits a filtration with associated graded
⊕

wf ∈Wf

jwwf !, and for wf �= e we have Ext•( jwwf !,F ∗ Jλ) = 0 provided that Ext•( jw!,F ∗
Jλ) �= 0. We can rewrite the right hand side of (19) as

Extp

D̂
(
w ∗ �̂,π∗(F ∗ Jλ)[r]) ∼= Extp(AvIW(
w),AvIW(π∗(F ∗ Jλ)[r])),

r = rank(G), where we used Proposition 23(a) and isomorphisms π∗(�̂) ∼= π!(�̂)[r] ∼= �,
π ! ∼= π∗[2r].

Now �−1
IW(AvIW(
w)) ∈ D≥0(CohGˇ(̂g̃ˇ)) ∩ D≤dim g̃ˇ(CohGˇ(̂g̃ˇ)) by Lemma 30(d),

while the condition of Proposition 36 implies that �−1
IW(π∗(F ∗ Jλ))[r] is concentrated in

homological degrees less than −d and greater than d . Since CohGˇ(̂g̃ˇ) has homological
dimension dim(g̃ˇ), we get the desired vanishing. �

Proof of Proposition 36. — In the assumptions of part (a) Lemma 38(a) implies that for
large λ the object F ∗ Jλ is concentrated in homological degrees less than −d + 2 dim(gˇ)
and greater than d − 2 dim(gˇ).

We finish the proof by invoking a result of Lusztig [36] saying that Lusztig’s
a-function for the affine Weyl group is bounded by dim(G/B), thus convolution of
two object in PII lies in perverse degrees from −dim(G/B) to dim(G/B). Thus F =
(F ∗ Jλ) ∗ J−λ has no cohomology in perverse degree zero provided that d > 2 dim(gˇ) +
dim(G/B). �
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8.2. The functor from constructible to coherent category. — Applying the general con-
struction of Section 7.1 (see notation introduced prior to Proposition 33) in the present
situation: X = St′/Gˇ, C = DI0I, L = O(λ,μ) for strictly dominant weights λ, μ, we get
a functor �̃ from DI0I to Gˇ-equivariant modules over the homogeneous coordinate ring
of St′.

Proposition 39. — For F ∈ PervN(G/B) ⊂P we have �̃(F ∗ Jρ[n]) = 0 for n �= 0.

Proof. — It suffices to check that for F = jw!, jw∗, w ∈ Wf we have �̃(F ∗ Jρ[n]) = 0
for n �= 0. This reduces to showing that for dominant λ,μ, ν with μ strictly dominant
we have Exti(J−λ ∗ � ∗ Zν ∗ J−μ,F) = 0 for i �= 0. We have �(wμ) = �(μ) − �(w),
�(λw) = �(λ) + �(w) for w ∈ Wf . Thus for such w we have

Exti(J−λ ∗ � ∗ Zν ∗ J−μ, jw!) = Exti(J−λ ∗ � ∗ Zν, jw!jμ∗)

= Exti(J−λ ∗ � ∗ Zν, jwμ∗),

Exti(J−λ ∗ � ∗ Zν ∗ J−μ, jw∗) = Exti(� ∗ Zν ∗ J−μ, jλ∗jw∗)

= Exti(� ∗ Zν ∗ J−μ, jλw∗).

Since �∗Zν is tilting, J−λ ∗�∗Zν admits a standard filtration, which shows that the first
Ext group vanishes for i �= 0. Likewise, � ∗ Zν ∗ J−μ admits a standard filtration which
shows vanishing of the second Ext group for i �= 0. �

Proposition 40. — The module �̃(F) is finitely generated for any F ∈ D.

Proof. — For F in the image of �perf this is clear from the fact that �perf is a full
embedding. Every irreducible object in PervN(G/B) is a subquotient of �. Then it fol-
lows from the previous proposition that if L is such an irreducible object, �̃(L ∗ Jρ) is a
subquotient of �̃(� ∗ Jρ), hence it is finitely generated (since the homogeneous coordi-
nate ring of Steinberg variety is Noetherian), while �̃(L ∗ Jρ[n]) = 0 for n �= 0. It follows
that the same is true for any L ∈ PervN(G/B). Now it follows from Proposition 33 that
�̃(Jλ ∗ F ∗ Jμ[n]) is finitely generated for F ∈ PervN(G/B) and any λ, μ ∈ �, n ∈ Z.
Such objects generate D, so the claim follows. �

Proposition 41. — There exists d, such that for all F ∈PI0I0 we have

HomGˇ×Tˇ2

deeq (�̂,F [i]) = 0

for i �∈ [−d,d].
Proof. — We need to check that for some d ∈ Z we have

Exti

D̂
(J−λ ∗ Ẑν ∗ �̂ ∗J−μ,F) = 0,
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for i �∈ [−d,d], F ∈ P . According to a result of Lusztig [36], Lusztig’s a-function for an
affine Weyl group is bounded by dim(G/B), which implies that the convolution of any
two objects in PII is concentrated in perverse degrees from −dim(G/B) to dim(G/B). It
follows that Jλ ∗F ∗Jμ ∈ D≥−2 dim(G/B)(PI0I0) ∩ D≤2 dim(G/B)(PI0I0).

Thus it suffices to show that for some d > 0 we have

Exti
D(Zν ∗ �̂,F) = 0 for i �∈ [−d,d], F ∈PI0I0 .

Using Proposition 23(a) we can rewrite the right hand side11 as

Exti

CohGˇ (̂g̃ˇ)(O ⊗ Vν,̂�
−1
IW(F)).

Now the statement follows from Lemma 30(d). �

9. The equivalences

9.1. Equivalence (3). — We use the criterion of Proposition 32(b) to show that
for F ∈ DI0I the functor M �→ Hom(�perf (F),M) is represented by an object of
Db(CohGˇ(St′)); this object is then defined uniquely up to a unique isomorphism in
view of Proposition 32(a) and we obtain a functor � ′ : DI0I → Db(CohGˇ(St′)) sending
M ∈ DI0I to the corresponding representing object.

We need to check that conditions of Proposition 32(b) are satisfied. Condi-
tion 32(b)(i) (representability of the restriction to D≥n

perf for all n) follows from Proposi-
tions 40 and 41 (finite generation and bounded amplitude) in view of Proposition 33.
Condition 32(b)(ii) (vanishing on D≤m

perf for m � 0) follows from Proposition 41.
Functor � ′ is now defined.
Proposition 35(b) shows it is an equivalence, conditions (A) and (C) are provided

respectively by Proposition 41 and Proposition 36.
For future reference we record another favorable property of � ′ in relation to the

standard t-structures on the triangulated categories involved.

Corollary 42. — (a) For F ∈ PervN(G/B) ⊂P we have � ′(F) ∈ CohGˇ(St′).
(b) � ′( jw∗) ∈ CohGˇ(St′) for w ∈ Wf and � ′( jw!) ∈ CohGˇ(St′) when w ∈ Wf ν,

ν ∈ −�+.

Proof. — (a) follows from the Proposition 39.
(b) follows from (a) since w ∈ Wf can be written as w = w′λ, λ ∈ �+, w′ ∈ Wf ,

so that �(w) = �(w′) + �(λ). Then we get � ′( jw∗) = � ′( jw′∗ ∗ jλ∗) = � ′( jw′∗) ⊗O(0, λ).
Similarly, if w = w′ν, ν ∈ −�+, then �(w) = �(w′) + �(ν). �

11 In fact, the main result of [12] (see [12, Theorem 2], cf. a related statement Theorem 54(b) below) shows that
for an irreducible F this Ext group is an isotypic component in the cohomology of a coherent IC sheaf on the nilpotent
cone N ; in particular, it shows that in this case required vanishing holds with d = 1

2 dimN .
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9.2. Equivalence (2). — We again use the criterion of Proposition 32(b) to show
that the functor F �→ Hom(̂�perf (̂F),M) is represented by an object of Db(CohGˇ

N (St)),
here ̂F denotes pull back of F under the morphism ̂St → St. The representing object
is then defined uniquely up to a unique isomorphism in view of Proposition 32(a) and
we obtain a functor � : DI0I0 → Db(CohGˇ

N (St)) sending M ∈ DI0I0 to the corresponding
representing object.

We need to check that conditions of Proposition 32(b) are satisfied. In view of
Proposition 33 condition 32(b)(i) (representability of the restriction to D≥n

perf for all n) follows
from Propositions 40 and 41 which provide respectively finite generation and bounded
amplitude properties (Proposition 40 states a similar property for an object of D, the case
of DI0I0 follows).

Condition 32(b)(ii) (vanishing on D≤m
perf for m � 0) follows from Proposition 41. Since

the log monodromy endomorphisms act on objects of DI0I0 nilpotently, this object is set
theoretically supported on the preimage of N in St. Thus we get the functor � : DI0I0 →
Db(CohGˇ

N (St)).
It also induces a functor between the subcategories in the categories of pro-objects:

̂� : D̂ → Db(CohGˇ(̂St)). Recall that iSt denotes for the embedding St′ → St.

Lemma 43. — (a) The following diagrams commute:

D̂
̂�

π∗

Db(CohGˇ(̂St))

i∗St

DI0I
� ′

Db(CohGˇ(St′))

DI0I
� ′

π∗

Db(CohGˇ(St′))

iSt∗

DI0I0
�

Db(CohGˇ
N (St))

(b) We have ̂� ◦ �diag
∼= δ∗, where δ : ̂g̃ˇ → ̂St is the diagonal embedding.

Proof. — Lemma 22 implies that both compositions in the first diagram are com-
patible with the action of (DGˇ

perf (
̂St),⊗), i.e. if F1 = i∗St ◦� , F2 = � ′ ◦π∗, then Fi(F(X)) ∼=

i∗(F) ⊗ Fi(X) canonically for F ∈ DGˇ
perf (

̂St), X ∈ D̂. We also have F1(�̂) ∼= O ∼= F2(�̂),
thus we get a functorial isomorphism F1(X) ∼= F2(X) for X in the image of ̂�perf .

Now given any X ∈ D̂, choose a bounded above complex of equivariant locally
free sheaves F • representing the object ̂�(X); then using Proposition 41 and the fact
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that π∗, i∗St have bounded homological dimension we get for N′ � N � 0:

F1(X) ∼= τ bête
≥N

̂�perf (τ
bête
≥N′ (F •)) ∼= F2(X).

It is easy to check that the resulting isomorphism does not depend on the choice of F •

and is functorial in X, thus commutativity of the first diagram is established.
The proof for the second diagram is similar, this proves part (a).
The same observation that all the functors involved commute with the action of

(DGˇ
perf (

̂St),⊗O) reduce (b) to checking that

̂�(
e) ∼= δ∗(Ôg̃ˇ).

To this end it suffices to construct an isomorphism of O(CSt)-modules:

(20)
⊕

λ,μ∈�+
Hom•

deeq(�̂,Jλ ∗ 
e ∗Jμ) ∼=
⊕

λ,μ∈�+
R�

(

̂g̃ˇ,O(λ + μ)
)

compatible with the O(CSt) action; here subscript deeq refers to the Gˇ-deequivariantization
(see Section 4.2.1).

Using 23(a,b) we can rewrite the left hand side of (20) as

⊕

λ,μ∈�∗
Hom•

deeq(AvIW(
e),AvIW(Jλ+μ)).

Since AvIW(
e) = ̂�IW(Ôg̃ˇ), AvIW(Jλ+μ) = ̂�IW(Ôg̃ˇ(λ + μ)), we see that the dis-
played expression is canonically isomorphic to

⊕

λ,μ∈�+
Hom•

Coh(̂g̃ˇ)(Ôg̃ˇ,Ôg̃ˇ(λ + μ)),

which yields (20); compatibility with the OC
̂St

action is clear from the construction. �

We are now ready to prove that � , and hence ̂� is an equivalence. Since we know
that � ′ is an equivalence and the essential image of i∗ : Db(CohGˇ(St′)) → Db(CohGˇ

N (St))
generates the target category, Lemma 43(a) shows that the essential image of � generates
the target category. Thus it suffices to check that � is fully faithful. It is enough to see
that

Hom(A,B)
�

Hom(�(A),�(B))

is an isomorphism when B is obtained from an object B′ ∈ DI0I by forgetting the equiv-
ariance. This follows from the corresponding statement for � ′ and Lemma 43(a).
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9.3. Equivalence (4).

9.3.1. Passing from monodromic to equivariant category by killing monodromy. — Let X be
a scheme with an action of an algebraic torus A. Let Pmon be the category of unipotently
monodromic perverse sheaves on X.

We have an action of a = Lie(A) on Pmon by log monodromy. Let Ka be the Koszul
complex of the vector space a; in other words, Ka is the standard complex for homology
of the abelian algebra a with coefficients in the free module Ua = Sym(a). Thus Ka is a
graded commutative DG-algebra with a⊕a[1] as the space of generators and differential
sending a[1] to a by the identity map. It is clear that Ka is quasi-isomorphic to the base
field k and its degree zero part is the enveloping algebra Ua.

We define a DG-category Peq as the category of complexes of objects in Pmon

equipped with an action of Ka, such that the action of a ⊂ K0
a

coincides with the log
monodromy action. Let D(Peq) = Ho(Peq)/Hoacycl(Peq) be the quotient of the homotopy
category by the subcategory of acyclic complexes.

We will also write D(X/A) for the A-equivariant derived category of constructible
sheaves on X (equivalently, constructible derived category of the stack X/A).

Lemma 44. — (a) We have a natural equivalence D(Peq) ∼= D(X/A) (the equivalence will

be denoted by realeq).

(b) Consider the functors Forg : Peq → Com(Pmon) and IndKa

U(a) : Com(Pmon) → Peq,

where the first one is the functor of forgetting the Ka action and the second one is the functor of induction

from U(a) which acts by log monodromy to Ka.

The induced functors on the derived categories fit into the following diagrams which commute up

to a natural isomorphism:

D(Peq)
Forg

realeq

Db(Pmon)

real

D(X/A)
pr∗

D(X)

D(Peq)

realeq

Db(Pmon)
IndKa

U(a)
[−d]

real

D(X/A) D(X)
pr∗

where pr denotes the projection X → X/A, real denotes Beilinson’s realization functor [6] and d =
dim(a).
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(c) Suppose that F ,G ∈Peq are such that Ext>0
D(X)(F i,G j) = 0 for all i, j . Then

HomHo(Peq)(F ,G)−̃→HomD(X/A)(realeq(F), realeq(G)).

Proof. — (a) Assume first that the action of A on X is free and the quotient Y = X/A
is represented by a scheme. The abelian category Perv(Y) of perverse sheaves on Y ad-
mits a full embedding into the category Pervmon(X) of unipotently monodromic perverse
sheaves on X, and the essential image of the embedding consists of sheaves with zero ac-
tion of log monodromy. Thus we have a natural embedding Com(Perv(Y)) → Com(Peq)

sending a complex of equivariant sheaves to the same complex equipped with zero action
of a and a[1]. We claim that the induced functor Db(Perv(Y)) → D(Peq) is an equiva-
lence.

This claim is readily seen to be local on Y, i.e. it suffices to check it assuming that
X = A × Y where A acts on the first factor by translations. In the latter case the category
Pervmon(X) is readily identified with the tensor product of the abelian category Perv(Y)

and the abelian category of unipotently monodromic local systems of A, the latter is
equivalent to the category of modules over the symmetric algebra U(a) ∼= Sym(a) set-
theoretically supported at zero (see [26, §5] for the notion of tensor product of abelian
categories). Thus the claim is clear in this case.

Let now X be general. Then an object of D(X/A) is by definition (see [11])
a collection of objects in D(Ỹ) given for every A-equivariant smooth map X̃ → X
where the action of A on X̃ is free and Ỹ = X̃/A, subject to certain compatibili-
ties. We have the pull back functor Peq(X) → Peq(X̃), composing it with the functor
Peq(X̃) → Db(Perv(Ỹ)) ∼= D(Ỹ) we get the desired system of objects, the compatibilities
are easy to see.

(b) Commutativity of the first diagram is clear from the proof of (a) and commu-
tativity of the second one follows by passing to adjoint functors (notice that in view of
self-duality of Koszul complex the functor IndKa

U(a)[−d] is right adjoint to the forgetful
functor Forg).

(c) By a standard argument the condition in (c) implies that

HomHo(Pmon)(F ,G) ∼= Hom(Forg(F),Forg(G)).

We have adjoint pairs of functors compatible with the natural functor from the homotopy
category to the derived category:

Ho(Peq)
Forg−→ Ho(Pmon)

Ind−→ Ho(Peq),

D(Peq)
Forg−→ Db(Pmon)

Ind−→ D(Peq).

The composition in each case admits a filtration with associated graded Id ⊗ �(a[1]),
i.e. for F ∈ Ho(Peq) or F ∈ D(Peq) we have
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Ind ◦ Forg(F) ∈ {�d(a) ⊗F [d]} ∗ {�d−1(a) ⊗F [d − 1]}
∗ · · · ∗ {a⊗F [1]} ∗F ,

where we used the notation of [8]: X ∗ Y is the set of objects z such that there exists a
distinguished triangle x → z → y, x ∈ X, y ∈ Y. Since HomHo(Peq)(Ind ◦ Forg(F),G)−̃→
HomD(X/A)(Ind ◦ Forg(F),G), it follows by induction in n that Homn

Ho(Peq)
(F ,G)−̃→

Homn
D(X/A)(F ,G). �

Corollary 45. — Let T̂II denote the DG category whose objects are finite complexes of objects in

T̂ equipped with an action of Kt2 such that the action of K0
t2 = U(t2) coincides with the action induced

by the torus monodromy. Then the homotopy category Ho(T̂II) is naturally equivalent to DII.

Proof. — Lemma 44(c) yields a fully faithful functor Ho(T̂II) → DII. To see that this
functor is essentially surjective, notice that Lemma 44(b) implies that the composition of
the natural functors Ho(T̂II) → Ho(T̂ ) → Ho(T̂II) contains identity functor as a direct
summand (more precisely, this composition is isomorphic to tensoring with H∗(T2) ∈
Db(Vect)). Thus every object of DII is a direct summand in an object which belongs to
the essential image of the full embedding Ho(T̂II). Thus we will be done if we check that
Ho(T̂II) is Karoubian (idempotent complete).

Since a direct summand of a free-monodromic tilting object is again free-
monodromic tilting, the category T̂II is idempotent complete. For T• ∈ T̂II the space
of closed endomorphisms of the complex commuting with the Kt2 action is a pro-finite
dimensional ring whose quotient by its pro-nilpotent radical is finite dimensional. The
subspace of endomorphisms homotopic to zero is a two-sided ideal in this ring. By ele-
mentary algebra an idempotent in a quotient of a finite dimensional algebra by a two-
sided ideal can be lifted to an idempotent in the original ring; thus we see that every
idempotent endomorphism of an object in Ho(T̂II) lifts to an idempotent in the ring of
endomorphisms of the corresponding object in T̂II, this shows that Ho(T̂II) is idempotent
complete. �

We are now ready to establish (4).
Consider the category of finite complexes of objects in CohGˇ(̂St) equipped with

an action of Kt2 extending the action of t2 = (tˇ∗)2 coming from the action of linear func-
tions on tˇ2 pulled back under the natural map St → tˇ2. (It is easy to see that replacing
CohGˇ(̂St) in the previous sentence by CohGˇ(St) one gets definition of an equivalent cat-
egory.) Let CohGˇ

K
t2
(St) denote this category and Ho(CohGˇ

K
t2
(St)) be the corresponding

homotopy category.
It follows from the definition of the derived coherent category of a DG-scheme that

there exists a natural functor

realcoh : Ho(CohGˇ
K
t2
(St)) → DGCohGˇ(St

L×tˇ2{0}) = DGCohGˇ(Ñ
L×gˇÑ ).



ON TWO GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 53

Moreover, given two complexes F •,G• ∈ CohGˇ
K
t2
(St) such that Ext>0

CohGˇ (̂St)
(F i,

G j) = 0 we have

HomHo(CohGˇ
K
t2

(St))(F •,G•)−̃→Hom(realcoh(F •), realcoh(G•)).

Corollary 25 implies that the functor ̂� sends free-monodromic tilting sheaves to
coherent sheaves; thus equivalence �I0I0 and Corollary 45 yield a fully faithful functor

�II : DII → DGCohGˇ(Ñ
L×gˇÑ ). The essential image of �II contains the essential image

of the functor Ind
K
t2

O(tˇ2)
: Db(CohGˇ(̂St)) → DGCohGˇ(Ñ

L×gˇÑ ), since the diagram

D̂
̂�

AvI
I0

◦π∗

Db(CohGˇ(̂St))

Ind
K
t2

O(tˇ2)

DII

�II

DGCohGˇ(Ñ
L×gˇÑ )

is commutative by Lemma 44(b). Since every object of DGCohGˇ(Ñ
L×gˇÑ ) is a direct

summand in an object which lies in the image of Ind
K
t2

O(tˇ2)
and DII has been shown to be

idempotent complete, the functor �II is an equivalence.

10. Monoidal structure

10.1. A DG-model for convolution of coherent sheaves.

Lemma 46. — Let X, Y be two algebraic stacks and F = FK : Db(Coh(X)) →
Db(Coh(Y)) be a functor coming from an object K ∈ Db(Coh(X × Y)), i.e. F : F �→
pr2∗(K⊗L pr∗

1(F)). Let M ∈ Db(Coh(X)) be represented by a complex of sheaves M• such that

F(Mi) ∈ Coh(Y). Then F(M) is canonically isomorphic to the object represented by F(M•).

Proof. — A functor as above lifts to a functor between filtered derived categories
Ffil : DF(Coh(X)) → DF(Coh(Y)). Recall that DF contains the category of bounded
complexes in Coh(X) as a full subcategory, the canonical functor from the filtered de-
rived category to the derived category restricted to this subcategory coincides with the
canonical functor from the category of complexes to the derived category. The condi-
tions of the lemma show that Ffil sends the object corresponding to the complex M• to
the object corresponding to F(M•), which yields the desired statement. �

Recall from Section 1.2.2 and [21] that for a proper map X → Y of smooth va-
rieties convolution yields a monoidal structure on the derived coherent category of the
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DG-scheme X
L×YX. If X → Y is semi-small then TorOY

i (OX,OX) = 0 for i > 0 thus we
get a convolution monoidal structure on Db(Coh(X ×Y X)) and on Db(CohH(X ×Y X))

for an algebraic group H acting compatibly on X, Y. These monoidal categories act
on module categories Db(Coh(X)), Db(CohH(X)) respectively, the action functor is also
denoted by ∗.

Corollary 47. — Let X → Y be a proper semi-small morphism of smooth quasiprojective

varieties equipped with an action of a reductive algebraic group H.

(a) Let F •,G• be finite complexes of H-equivariant coherent sheaves on X ×Y X such that the

convolution F i ∗ G j lies in CohH(X ×Y X) for all i, j . Let F , G be the corresponding objects in the

derived category. Then F ∗ G is canonically isomorphic to the object represented by the total complex of

the bicomplex F i ∗ G j .

(b) Assume that three complexes F •
1 , F •

2 , G• of H-equivariant coherent sheaves on X ×Y X
are such that F i

1 ∗ F j

2, F j

2 ∗ G l and F i
1 ∗ F j

2 ∗ G l lie in CohH(X ×Y X) for all i, j, l. Then the

two isomorphisms provided by part (a) between F1 ∗F2 ∗ G ∈ Db(CohH(X ×Y X)) and the object

represented by the complex Cd = ⊕

i+j+l=d

F i
1 ∗F j

2 ∗ G l coincide.

(c) Let F • be as in (a) and G• be a finite complex of H-equivariant coherent sheaves on X. Then

F ∗ G is canonically isomorphic to the object represented by the total complex of the bicomplex F i ∗ G j

provided that F i ∗ G j ∈ CohH(X).

(d) Let F •
1 ,F •

2 be as in (b) and G as in (c). Assume that F i
1 ∗F j

2 ∈ CohH(X ×Y X), while

F j

2 ∗ G l,F i
1 ∗ F j

2 ∗ G l ∈ CohH(X) for all i, j, l. Then the isomorphism between F1 ∗ F2 ∗ G ∈
Db(CohH(X)) and the object represented by the complex Cd = ⊕

i+j+l=d

F i
1 ∗ F j

2 ∗ G l obtained by

applying part (c) twice coincides with the isomorphism obtained by applying part (a) and part (c).

Proof. — The convolution product comes from a functor

F : Db
(

CohH
(

(X ×Y X)2
)) → Db

(

CohH(X ×Y X)
)

of the type considered in Lemma 46, namely we have F = FK, where K ∈ Db(CohH(X×Y

X)3) is given by K = υ∗δ∗(OX3); here υ stands for the embedding (X ×Y X)3 → (X ×
X)3 = X6 and δ : X3 → X6 is given by (x1, x2, x3) �→ (x3, x1, x1, x2, x2, x3). Thus statement
(a) follows from Lemma 46. Part (b) follows by considering the functor between filtered
derived categories DF(CohH(X ×Y X)3) → DF(CohH(X ×Y X)) corresponding to the
triple convolution. The proof of (c,d) is similar to the proof of (a,b) respectively. �

Lemma 48. — (a) Let X → Y be a semi-small proper morphism of smooth quasi-projective

varieties equipped with an action of a reductive algebraic group H. For F ∈ Db(CohH(X ×Y X)) let

a(F) denote the corresponding functor Db(CohH(X)) → Db(CohH(X)).

For F ∈ CohH(X×Y X), F ′ ∈ Db(CohH(X×Y X)) any isomorphism of functors a(F) ∼=
a(F ′) comes from a unique isomorphism F ∼=F ′.



ON TWO GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA 55

(b) Given an H-invariant closed subvariety Z ⊂ Y, the statement in (a) remains true for

F ,F ′ ∈ CohH(X̂ ×Y X), a(F), a(F ′) ∈ End(Db(CohH(̂X))), where ̂X, X̂ ×Y X denote for-

mal completions at the preimage of Z.

Proof. — In the setting of either part (a) or part (b), an equivariant coherent sheaf
F can be reconstructed from the corresponding module M(F) over the homogeneous
coordinate ring, M(F) = ⊕

n,m≥0
�(F⊗pr∗

1(L
n)⊗pr∗

2(L
m)), where L is an equivariant ample

line bundle on X. Thus lemma follows from the following expression for M(F) in terms
of the functor of convolution by F : M(F) = ⊕

m,n

Homdeeq(L−n,F ∗ Lm). �

10.2. Monoidal structure on �I0I0 .

Lemma 49. — The equivalence ̂� is compatible with the action on Db(CohGˇ(̂g̃ˇ)) ∼= D̂IW

via the equivalence ̂�IW, i.e. we have a functorial isomorphism

̂�IW(F ∗ G) ∼= ̂�(F) ∗ ̂�IW(G)

where F ∈ Db(CohGˇ(̂St)), G ∈ Db(CohGˇ(̂g̃ˇ)).

Proof. — For F ∈ DGˇ
perf (

̂St) this is Proposition 29.
Let now F be general. For any sufficiently large N we can find F ′ ∈ DGˇ

perf (
̂St)

such that F = τ≥−N(F ′). The functor Db(CohGˇ(̂St)) → Db(CohGˇ(̂g̃ˇ)), F �→F ∗G has
bounded homological amplitude; the functor D̂ → D̂IW X �→ X ∗ ̂�IW(G) has bounded
homological amplitude and by Proposition 36 the functor ̂� has homological amplitude
bounded above, i.e. it sends D≤0(CohGˇ(̂St)) to D≤n(P̂) for some n. It follows that for
N � m � 0 and F ′ as above we have

̂�IW(F ∗ G) ∼= ̂�IW

(

τ≥−m

(

F ′ ∗ G)) ∼= τ≥−m
̂�IW

(

F ′ ∗ G)

∼= τ≥−m

(

̂�(F) ∗ ̂�IW(G)
) ∼= ̂�(F) ∗ ̂�IW(G),

which proves the lemma. �

We are now ready to equip ̂� with a monoidal structure. We work with the inverse
equivalence ̂� . We need to construct an isomorphism

(21) ̂�(F ∗ G) ∼= ̂�(F) ∗ ̂�(G)

compatible with the associativity isomorphism.
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Given F ,G ∈ D̂ and M ∈ D̂IW, Lemma 49 provides isomorphisms

̂�(F ∗ G) ∗ ̂�IW(M) ∼= ̂�IW(F ∗ G ∗M) ∼= ̂�(F) ∗ ̂�IW(G ∗M)

∼= ̂�(F) ∗ ̂�(G) ∗ ̂�IW(M),

where ̂�IW is the equivalence inverse to ̂�IW.
Thus we get an isomorphism

a(̂�(F ∗ G)) ∼= a(̂�(F)) ◦ a(̂�(G)) ∼= a(̂�(F) ∗ ̂�(G)),

where we used notations of Lemma 48. This isomorphism is compatible with the asso-
ciativity constraint, since the equivalence ̂�IW sends the corresponding equality to an
equality which holds since monoidal category D̂ acts on D̂IW.

Since ̂� : T̂ → CohGˇ(̂St), Lemma 48(b) yields (21) in the case when F ,G ∈ T̂ ,
which is compatible with the associativity isomorphism for three objects in T̂ . Now
Corollary 47(a) compared to Proposition 7(b) yields (21) in general, while Corollary 47(b)
together with Proposition 7(b) shows that the constructed isomorphism is compatible with
associativity constraint.

10.3. Monoidal structure on �II.

10.3.1. A monoidal structure on Ho(T̂II). — In order to equip �II with a monoidal
structure we describe the monoidal structure on DII in terms of the DG-model T̂II (see
Corollary 45).

Let T̂ (2)

II denote the category of finite complexes of objects in T̂ equipped with
an action of Kt2 ⊗ �(t[1]), and T̂ (3)

II be the category of finite complexes of objects in T̂
equipped with an action of Kt2 ⊗�(t2[1]). In both cases we require that t2 ⊂ Kt2 acts by
logarithm of monodromy.

We have a functor T̂II × T̂II
�−→ T̂ (2)

II sending (T1,T2) to the convolution T1 ∗ T2;
the latter complex is equipped with two actions of Kt coming respectively from the left
action on T1 and the right action on T2. To define the action of �(t[1]) observe that the
right monodromy action on T1 and the left monodromy action on T2 induce the same
action on T1 ∗ T2, the diagonal action of Kt kills the augmentation ideal of K0

t
= Sym(t),

thus it factors through an action of �(t[1]).
Similarly, we have a functor T̂II × T̂II × T̂II

�2−→ T̂ (3)

II sending (T1,T2,T3) to T1 ∗
T2 ∗ T3 where the two actions of Kt come respectively from the left action on T1 and the
right action on T3, and the two actions of �(t[1]) come from the diagonal action of Kt

on the first and the second factor, and the diagonal action of Kt on the second and the
third factor respectively. We use the same notation �, �2 for the corresponding functors
on the homotopy categories.
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Furthermore, we have functors μ : Ho(T̂ (2)

II ) → Ho(T̂II), μ : M �→ M⊗L
�(t[1]) k

and μ(2) : Ho(T̂ (3)

II ) → Ho(T̂II), μ(2) : M �→ M⊗L
�(t2[1]) k.

The following proposition obviously yields a monoidal structure on the equiva-
lence (4).

Proposition 50. — (a) The product (M1,M2) �→ μ(M1 � M2) makes Ho(T̂II) into a

monoidal category, where the associativity constraint comes from the natural isomorphisms

(22) (M1 ⊗ M2) ⊗ M3
∼= μ(2) �2 (M1,M2,M3) ∼= M1 ⊗ (M2 ⊗ M3).

(b) The equivalence realeq : Ho(T̂II) ∼= DII is naturally enhanced to a monoidal functor.

(c) The equivalence Ho(T̂II) ∼= DGCohGˇ(Ñ
L×gˇÑ ) is naturally enhanced to a monoidal

functor.

Proof. — To check (a) and (b) it suffices to provide a bi-functorial isomorphism

realeq(M1 � M2) ∼= realeq(M1) ∗ realeq(M2)

sending the isomorphism (22) to the associativity constraint in DII. This follows from the
next Lemma 51.

(c) follows from the definition of convolution in DGCohGˇ(Ñ
L×gˇÑ ). �

In order to state the next lemma we return to the setting of Section 9.3.1. Let X be
an algebraic variety equipped with an action of an algebraic torus A and let f : X/A → Y
be a map where Y is an algebraic variety and X/A is the stack quotient. Let pr : X → X/A
be the projection and set f̃ = f ◦ pr : X → Y.

Lemma 51. — (a) Let M• ∈ Peq be a complex of monodromic perverse sheaves on X equipped

with a Ka action and let M̄ be the corresponding object in D(X/A) (see Lemma 44).

Assume that f̃∗(Mi) is a perverse sheaf for all i.

We then have a canonical isomorphism

f∗(M̄) ∼= realeq(f̃∗(M•)
L⊗

�(a[1])
k[dim(A)]).

(b) Assume also that a torus A′ acts on X,Y so that f is A′-equivariant and the action on X
commutes with A. Let f̄ be the morphism X/(A × A′) → Y/A′.

Let M• ∈Peq be a complex of monodromic perverse sheaves on X equipped with a Ka⊕a′ action

and let M̄ be the corresponding object in D(X/(A × A′)).
Assume that f̃∗(Mi) is a perverse sheaf for all i.

We then have a canonical isomorphism of objects in D(Y/A′):

f̄∗(M̄) ∼= realeq(f̃∗(M•)
L⊗

�(a[1])
k[dim(A)]).
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Proof. — (a) is a particular case of (b), which we will presently deduce from the
following two statements:

(I) The equivalence of Lemma 44(a) satisfies the following functoriality. Consider
an A-equivariant map of schemes f : X → Y and use Lemma 44(a) to identify DA(X) ∼=
D(Peq(X)), DA(Y) ∼= D(Peq(Y)). Then for F • ∈ Peq(X) such that f∗(F i) ∈ Perv(Y) the
object of Peq(Y) obtained from F • by term-wise application of f∗ corresponds to the
object f∗(F) ∈ DA(Y).

The special case of this functoriality where the group A is trivial is checked in [6],
the general case is similar.

(II) For a subtorus A′ of A the functor ResKa

Ka′ : PA
eq(X) → PA′

eq (X) corresponds un-
der the equivalence of Lemma 44(a) to the restriction of equivariance functor ResA

A′ :
DA(X) → DA′(X), while the functor IndKa

Ka′ [dim A′ − dim A] : PA′
eq (X) → PA

eq(X) corre-
sponds to the functor of direct image under the morphism of stacks X/A′ → X/A.

This is a straightforward generalization of Lemma 44(b).
Now (I) applied to the torus A × A′ acting compatibly on X, Y yields a descrip-

tion of an object in PA×A′
eq (Y) representing f̄∗(M̄): we have f̄∗(M̄) ∼= realeq(f̃∗(M•)), where

f̃∗(M•) is equipped with the action of Ka⊕a′ inherited from the action on M•. How-
ever, f̄∗(M̄) can also be rewritten as the direct image of f∗(M̄) under the morphism
Y/A′ → Y/(A × A′). Using (II) we get an isomorphism

�(a[1]) ⊗k (realA′
eq )−1(f∗(M̄))[−dim(A)] ∼= (realA×A′

eq )−1(f̄∗(M̄)),

where we have adorned realeq with an additional superscript making clear in which equiv-
ariant category it lands. Applying the functor − ⊗�(a[1]) k[dim(A)] to both sides of the
last isomorphism we get the lemma. �

10.4. Compatibility of (3) with the action of categories from (2), (4). — To finish the proof
of Theorem 1 it remains to establish compatibility of equivalence (3) with the structure of
a module category over the monoidal categories appearing in (2) and (4).

To check compatibility with the action of DI0I0 ∼= Db(CohGˇ
N (St)) we pass to the

pro-completions and check compatibility of (3) with the action of D̂ ∼= Db(CohGˇ(̂St)).
We have an action of the monoidal category of free monodromic tilting complexes T̂ on
the category of tilting objects T ⊂ P which induces a structure of a module category for
Ho(T̂ ) on Ho(T ). In view of Proposition 7(c) this module structure is compatible with
one arising from the equivalences Ho(T ) ∼= D, Ho(T̂ ) ∼= D̂. On the other hand, using
Corollary 47(c,d) we see that the equivalence Ho(T ) ∼= Db(CohGˇ(St′)) is compatible
with the action of Ho(T̂ ) ∼= Db(CohGˇ(̂St)). This yields compatibility with the action of
categories in (2).

To check compatibility with the action of DII
∼= DGCohGˇ(Ñ

L×N Ñ ) we use
Lemma 44 to identify DI0I with the homotopy category of complexes in T̂ equipped
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with an action of Kt compatible with the right log monodromy action. This category of
complexes carries a natural action of the monoidal DG-category of complexes in T̂ with
a compatible action of Kt2 . The resulting triangulated module category is module equiv-
alent to both Db(CohGˇ(St′)) and DI0I by an argument parallel to that of Section 10.3.

This establishes the compatibilities thereby completing the proof of Theorem 1.

10.5. Compatibility with projections. — We finish the section by recording another
useful compatibility between equivalences of Theorems 1 and 2.

Proposition 52. — The following diagrams commute

Db(CohGˇ(̂St))
̂�

prSpr,1∗

D̂

AvIW

Db(CohGˇ(g̃ˇ))
̂�IW

D̂IW

Db(CohGˇ(St′))
̂�

pr′Spr,1∗

DI0I

AvIW

Db(CohGˇ(Ñ ))
�IW

DI
IW

Proof. — These diagrams are obtained from the last two diagrams in Lemma 28 by
passing to adjoint functors. Alternatively, the first diagram above follows from compatibil-
ity of the equivalences (9) and �I0

IW with the action of the monoidal category on the mod-
ule category, since prSpr,1∗(F) =F ∗Og̃ˇ and AvIW(G) = G ∗
IW

i for F ∈ Db(CohGˇ(St)),

G ∈ D̂. �

11. Further properties

In this section we mention further properties and possible generalizations of the
constructed equivalences.

11.1. Frobenius compatibility. — As pointed out in the Introduction, our main result
is inspired by different geometric realizations of the affine Hecke algebra. However, the
Grothendieck group of the categories in Theorem 1 is isomorphic to a less interesting ring
Z[W]. A possible “upgrade” of the theorem involving categories whose Grothendieck
group is related to the affine Hecke algebra is an equivalence between Db(CohGˇ×Gm

N (St))
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and an appropriately defined mixed version of DI0I0 . However, for many applications (cf.
[20], [14]) the following simpler version is sufficient.

Fix a finite field Fq and assume that the base field k = Fq. Then the categories in
the left hand side of (2)–(6) carry an automorphism coming from the Frobenius automor-
phism of k.

Let q : St → St be the map given by q : (x,b1,b2) �→ (qx,b1,b2). We use the same
letter to denote the induced automorphisms of St′, ̂St etc.

Proposition 53. — The equivalences in Theorems 1, 2 intertwine Frobenius automorphism with

the functor q∗ acting on the derived categories of coherent sheaves.

The proof is parallel to the proof of [1, Proposition 1].

11.2. Category P and the noncommutative Springer resolution. — Recall that the main
result of [20]12 is a construction of a certain noncommutative O(gˇ) algebra A and its
quotient A0 with derived equivalences Db(A − modfg) ∼= Db(Coh(g̃ˇ)), Db(A0 − modfg) ∼=
Db(Coh(Ñ )), see [20, §1.5.3; Theorem 1.5.1(b)]. The algebras come equipped with a
natural Gˇ action and equivalences admit an equivariant version. Furthermore, applying
a version of [20, Theorem 1.5.1(b)] to the group Gˇ× Gˇ one gets an equivalence

Db(CohGˇ(St′)) ∼= Db(A ⊗O(gˇ) A0 − modGˇ
fg ).

Composing it with equivalence (3) and recalling that DI0I
∼= Db(P) we get an equivalence

(23) Db(P) ∼= Db
(

A ⊗O(gˇ) A0 − modGˇ
fg

)

.

We now describe the relation between the natural t-structures on the two sides
of (23).

For a nilpotent orbit O ⊂ N consider the full subcategory of complexes such that
each cohomology module considered as a module over the center O(N ) ⊂ A ⊗O(gˇ) A0

is set theoretically supported on the closure of O. These subcategories define a filtration
by thick subcategories on the triangulated category Db(A ⊗O(gˇ) A0 − modGˇ

fg ) indexed by
the partially ordered set of nilpotent orbits. We will refer to this filtration as the support
filtration.

For an orbit O ⊂ N we let jO : O → N be the embedding, dO = dim O
2 , d = dimN

2 .
Recall the perverse t-structure of middle perversity on Db(CohGˇ(N )), [4, Example 4.15] and
the minimal extension functor jO!∗ from equivariant perverse coherent sheaves on O to
those on N , [4, §4]. A straightforward generalization of loc. cit. produces a functor on
(a subcategory of) the derived category of Gˇ-equivariant modules over a finite O(N )

algebra equipped with a compatible Gˇ-action.

12 Note the difference of notation: the group denoted here by Gˇ is denoted by G in [20].
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Theorem 54. — (a) The support filtration is compatible with the image of the tautological t-

structure on Db(P) under the equivalence (23). The induced t-structure on the associated graded category

corresponding to the nilpotent orbit O coincides with t-structure coming from the tautological t-structure

on Db(A ⊗O(gˇ) A0 − modGˇ
fg ) shifted by d − dO.

(b) Let F ∈ DI0I
∼= Db(P) be an object and M ∈ Db(A ⊗O(gˇ) A0 − modGˇ

fg ) be its image

under (23). Then the following are equivalent:

(1) F ∈P .

(2) Forg(M)[−d] is a perverse coherent sheaf for the middle perversity. Here Forg : A ⊗O(gˇ)
A0 − modGˇ

fg → CohGˇ(N ) is the forgetful functor.

(c) For F , M as in (b) the following are equivalent:

(1) F is an irreducible object in P .

(2) There exists an orbit O ⊂N and an irreducible object L in the category of Gˇ-equivariant

A ⊗ A0|O-modules, such that M[d] = jO!∗ (L[dO]).
Proof. — Part (c) follows from (b) by a straightforward generalization of [4, Propo-

sition 4.11], while (b) follows from part (a) by comparing it with the definition of the
perverse coherent t-structure in [4]. The proof of part (a) is parallel to the proof of [20,
Theorem 6.2.1] which asserts the similar property of equivalence (5). �

Similar properties hold for the rest of the equivalences (2)–(6).

11.3. Lusztig’s cells. — In order to simplify the statement in this subsection we
assume that G is simply-connected, thus W is a Coxeter group. Recall the notion of a two

sided cell in W. These are certain subsets in W. In [37] Lusztig has established a bijection
between 2-sided cells in W and the set N /Gˇ of nilpotent conjugacy classes in gˇ. The
set of two sided cells is equipped with a partial order. It has been conjectured by Lusztig
and proved in [12] that this order matches the adjacency order on the set of nilpotent
orbits under the bijection between two-sided cells and N /Gˇ. We now present a stronger
statement relating the 2-sided cells to the support filtration introduced in Section 11.2.

Theorem 55. — Let c be a two sided cell in W and Oc ⊂ N be the corresponding nilpotent

orbit.

Let D≤c ⊂ DI0I be the thick subcategory generated by irreducible objects ICw ∈P , w ∈ c′ ≤ c.

Let Db(CohGˇ
Oc

(St′)) be the full subcategory in Db(CohGˇ(St′)) consisting of complexes whose

cohomology is set-theoretically supported on the preimage of the closure of Oc.

Then Db(CohGˇ
Oc

(St′)) is the image of D≤c under the equivalence �I0I.

Proof. — Fix an orbit O and let WO be the set of all w ∈ W such that ICw ∈
�(Db(CohGˇ

O (St′))). Theorem 54(c) implies that �(Db(CohGˇ
O (St′))) is generated as a

triangulated category by ICw, w ∈ WO.
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Thus the theorem follows once we check that WOc
= ⋃

c′≤c

c′, equivalently that for

w ∈ c the closure of the orbit Oc coincides with the image in N of the support of
�I0I(ICw). Let Sw denote that image.

We deduce this from [12, Theorem 4(a)], which provides the similar statement for
the equivalence (5) of Theorem 2. (In fact, loc. cit. deals with the category f P , a quotient
category of the category of Iwahori equivariant perverse sheaves on F�; however, f P is
equivalent to the category in the left hand side of (5) by [1, Theorem 2].) Thus we see
that

(24) �I
IW : Db

(

CohGˇ
Oc

(Ñ )
)−̃→(

DI
IW

)

≤c
,

where (DI
IW)≤c is the image of D≤c under the functor the Whittaker averaging functor

AvIW : DI0I → DIW
I (the same notation was used above for the Whittaker averaging func-

tor DI0I0 → DIW
I0 ).

The second commutative diagram in Proposition 52 yields

(25)
(� I

IW)−1(ICIW
w ) ∼= p′

Spr,2∗(�I0I(ICw)) for w ∈ Wf ,

p′
Spr,2∗(�I0I(ICw)) = 0 for w �∈ Wf ;

here ICw, w ∈ W and ICIW
w , w ∈ Wf are irreducible objects in P and P IW

I respectively.
It is clear that

Sw =
⋃

λ,μ

supp
(

pSpr∗�−1
I0I (ICw)(λ,μ)

)

,(26)

Sw ⊃ supp
(

�−1
I0I (ICw)(M ∗ ICw ∗ N)

)

.(27)

Since D≤c is invariant under both left and right convolution, we see that (26) combined
with (24), (25) shows that Sw ⊆ Oc. Also, for any w1,w2 ∈ c the object ICw1 is a direct
summand in the convolution X∗ ICw2 ∗Y for some X, Y; thus (27) shows that Sw ⊇ Oc. �

11.4. Exactness and Hodge D-modules. — Recall that in view of Corollary 42(a), the
restriction of the functors �I0I, �I0I0 to the subcategory of sheaves supported on the finite
dimensional flag variety G/B ⊂ F� is t-exact, i.e. it sends a perverse sheaf to a coherent
sheaf.

On the other hand, a well known result in representation theory asserts that the
category O for Langlands dual Lie algebras are equivalent, i.e. we have an equivalence
of abelian categories

ϒ : PervUˇ(Gˇ/Bˇ)−̃→PervU(G/B) = PervI0(G/B).

This allows to state a relation between the restriction of our equivalence �I0I to
PervI0(G/B) ⊂PI0I and Hodge D-module theory.
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Notice that the stack St′/Gˇ can be interpreted as the cotangent to the stack
Uˇ\Gˇ/Bˇ. Thus for a Uˇ-equivariant D-module M on Gˇ/Bˇ equipped with a Uˇ-
equivariant good filtration we get gr(M) ∈ CohGˇ(St′).

Let MHUˇ(Gˇ/Bˇ) be the category of mixed Hodge modules on Gˇ/Bˇ equiv-
ariant with respect to Uˇ. We have the forgetful functor Forg : MHUˇ(Gˇ/Bˇ) → D −
modUˇ(Gˇ/Bˇ) ∼= PervUˇ(Gˇ/Bˇ) where the second equivalence is the Riemann-Hilbert
functor. Recall that a part of the data of a mixed Hodge structure on a D-module is a
good filtration, i.e. for M̃ ∈MHUˇ(Gˇ/Bˇ) the D-module M = Forg(M̃) is equipped with
a canonical good filtration. Thus we get a functor gr :MHUˇ(Gˇ/Bˇ) → CohGˇ(St′).

Conjecture 56. — For M̃ ∈MHUˇ(Gˇ/Bˇ) we have a canonical isomorphism

gr(M̃) ⊗O(−ρ) ∼= �I0I(ϒ(M)).

This conjecture can be compared to the results of Ben-Zvi and Nadler [10].

Example 57. — Recall that the finite Weyl group Wf acts on the open subvariety
g̃ˇreg ⊂ g̃ˇ.

For w ∈ Wf let �w ⊂ St be the closure of the graph of w. Let �′
w be the scheme

theoretic intersection �w ∩ St′. One can show that:

�I0I : � �→OSt′,

�I0I : jw∗ �→O�′
w
,

�I0I : jw! �→ ��′
w
,

where ��′
w

is the dualizing sheaf for the Cohen-Macaulay variety �′
w (the Cohen-

Macaulay property is proven in [21]). Parallel results for associated graded of Hodge
D-modules will be shown in [22].

We finish by sketching some generalizations of the equivalences described in the
paper. We expect they can be obtained by similar methods.

11.5. Nonunipotent monodromy. — Consider the category of I2 monodromic sheaves
on ˜F� with a fixed generalized eigenvalues of monodromy. The latter corresponds to
a tame rank one local system on Tˇ2, such local systems are in bijection with elements
of Tˇ2 (or a subset of that in the l-adic setting). For θ1, θ2 ∈ Tˇ let Dθ1,θ2 be the category of
monodromic sheaves on ˜F� with corresponding generalized eigenvalues of monodromy.

Let ˜Gˇ ⊂ Gˇ × Gˇ/Bˇ be the closed subvariety given by ˜Gˇ = {(g, x) | g(x) = x}.
We have a projection ˜Gˇ → Tˇ. Set Stgrp = ˜Gˇ ×Gˇ ˜Gˇ, and for t1, t2 ∈ Tˇ let Stt1,t2

grp be the
preimage of (t1, t2) under the projection Stgrp → Tˇ× Tˇ.
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Conjecture 58. — We have a canonical equivalence of triangulated categories:

Dθ1,θ2
∼= Db(CohGˇ

St
t1,t2
grp

(Stgrp)).

An equivariant isomorphism between the variety of unipotent elements in Gˇ and
N and its extension to the formal neighborhoods in Gˇ (respectively, gˇ) can be used to
identify the category CohGˇ

St1,1
grp

(Stgrp) with CohGˇ
N (St), thus in the special case t1 = t2 = 1

the conjecture amounts to equivalence (2). One can also state similar generalizations
of (3), (4). Appearance of a group rather than a Lie algebra element here agrees with
Langlands duality where the element is interpreted as the image of a topological gener-
ator of the tame ramification subquotient of the Galois group of the local field. On the
other hand, working with the Lie algebra as we did in the present article, makes it easier
to describe a graded version of the category, Koszul duality etc.

11.6. Parabolic-Whittaker categories. — Let P be a parabolic subgroup in G, and let
IP ⊂ GO be the parahoric subgroup which is the preimage of P under the projection
GO → G. Let F�P = GF/IP be the corresponding partial affine flag variety.

Let Q be another parabolic subgroup and let ψQ be an additive character of I0

vanishing on the finite simple roots which are not in the Levi subgroup of Q as well as on
the affine roots and not vanishing on the simple roots in the Levi of Q. Let DIWQ(F�P)

be the corresponding category of partial Whittaker sheaves.
Let Qˇ, Pˇ be the corresponding parabolic subgroups in Gˇ. Define ÑQˇ ⊂ Ñ ′

Qˇ ⊂
g̃ˇQˇ ⊂ Gˇ/Qˇ × gˇ and ÑPˇ ⊂ Gˇ/Pˇ × gˇ by: g̃ˇQˇ = {(q, x) | x ∈ q}, ÑPˇ = {(p, x) | x ∈
rad(p)}, Ñ ′

Qˇ = {(q, x) | x ∈ rad(q) + z(q/rad(q))}, where we used the identification be-
tween Gˇ/Qˇ, respectively Gˇ/Pˇ and the corresponding conjugacy class of parabolic sub-
algebras, rad stands for the nilpotent radical and z denotes the center.

Conjecture 59. — We have canonical equivalences

DIWQ(F�P) ∼= Db
(

CohGˇ(g̃ˇQˇ ×gˇ ÑPˇ)
)

,(28)

DIQ(F�P) ∼= DGCohGˇ(ÑQˇ
L×gˇÑPˇ

)

,(29)

DI′
Q
(F�P) ∼= DGCohGˇ(Ñ ′

Qˇ
L×gˇÑPˇ

)

,(30)

where I′
Q is the derived subgroup of IQ.

There are natural pull-back, push-forward and Iwahori-Whittaker averaging func-
tors between the categories of constructible sheaves which should correspond to the func-
tors between the derived categories of coherent sheaves given by the natural correspon-
dences, Proposition 52 is an example of such a compatibility.
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Example 60. — Some special cases of Conjecture 59 follow from results found in
the literature.

Let P = Q = G. Then the right hand side of (28) is Db(CohGˇ({0})) = Db(Rep(Gˇ)).
In this case (28) is essentially equivalent to the so-called geometric Casselman-Shalika for-
mula established in [27].

The right hand side of (29) for P = Q = G is DGCohGˇ({0} L×gˇ{0}). In view of
Koszul duality, this special case of (29) follows from the second equivalence in [17, The-
orem 5], it is discussed in detail (along with equivalences for various Ind-completions of
the two categories) in [5, §12].

For Q = B and P = G the left hand side in (30) is the derived category of I0 equiv-

ariant sheaves on the affine Grassmannian, while the right hand is DGCohGˇ(g̃ˇ L×gˇ{0}).
This special case of (30) amounts to one of the main results of [2]; again one needs to
apply linear Koszul duality [41] to pass from the coherent side of the equivalence in loc.

cit. to the right hand side of (30); see also [18, §2.4].

Finally, let us mention the Koszul duality functors which give equivalences between
the graded version of DIWQ(F�P) and DIWP(F�Q), see [23]. Under the first equivalence
of Conjecture 59 these should correspond to linear Koszul duality [41]. In the special case
when P = Q = B is a Borel subgroup, this would provide a categorification of the main
result of [42].
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