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ABSTRACT

We construct a representation of the affine W-algebra of gl, on the equivariant homology space of the moduli
space of U,-instantons, and we identify the corresponding module. As a corollary, we give a proof of a version of the AGT
conjecture concerning pure N = 2 gauge theory for the group SU(r).

Our approach uses a deformation of the universal enveloping algebra of W, which acts on the above homology
space and which specializes to W(gl,) for all . This deformation is constructed from a limit, as z tends to 0o, of the spherical
degenerate double affine Hecke algebra of GL,.
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0. Introduction

In their recent study of N = 2 super-symmetric gauge theory in dimension four,
the authors of [1] observed a striking relation with two-dimensional Conformal Field
Theory. More precisely, they observed in some examples and conjectured in many other
an equality between the conformal blocks of Liouville theory associated with a punc-
tured Riemann surface and the group U, on the one hand and the instanton part of the
Nekrasov partition function for a suitable four-dimensional gauge theory associated with
the group U, on the other hand. Numerous partial results in this direction have been ob-
tained in the physics literature, see e.g., [13] and the references therein. In mathematical
terms, the AGT conjecture suggests in particular the existence of a representation of the
affine W-algebra of G on the equivariant intersection cohomology of the moduli space
of G -instantons on R* satisfying some extra properties (relating the fundamental class
and the Whittaker vector), see [7] and [18]. Here G, G" are a pair of complex reductive
groups which are dual to each other in the sense of Langlands. The purpose of this pa-
per is to give for the gauge group G = G = GIL,, a construction of this action which is
inspired by our previous work [33]. It is based on degenerate double affine Hecke alge-
bras. For the same gauge group G = GL,, a construction of this action has been given by
Maulik and Okounkov using ideas from symplectic geometry, see [28].

Let us describe our main result more precisely. Let M, = |—|n>0 M, , be the moduli
space of rank 7 torsion free coherent sheaves on P?, equipped with a framing along P! C
P2 For fixed n, M, is a smooth symplectic variety of dimension 2rx. It is acted upon by
an 7 + 2-dimensional torus D = (C*)? x D where (C*)? acts on P? and D = (C*)" acts
on the framing. When r = 1, the moduli space M, , is isomorphic to the Hilbert scheme
Hilb, of # points on CG?. In the mid 90s, Nakajima constructed a representation of the
rank one Heisenberg algebra on the space

LY = &b H. (Hilb,)

n>0

by geometric methods, which identifies it with the standard level one Fock space, see [29]
and [20]. The case of the equivariant Borel-Moore homology

L = (D HO (Hilb,)

n>0

was considered later in [40]. For 7 > 1 there is still a representation of a rank one Heisen-
berg algebra on the space

L = PHIM,,).

n>0
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but it is neither irreducible nor cyclic, see [3]. A construction of a representation of an
r-dimensional Heisenberg algebra on L has also been given in [24]. Now, let

Rr:C[X’yaelv-"agr‘]’ K?‘:C(xvy9el’---v€7)

be the cohomology ring of the classifying space of D and its fraction field. The space L
is an R,-module. Set Lg) =L ®r, K,. We’ll abbreviate

K:—_))/X, gi:ei/x7 ézl_K’ ie[197]'

Let W (gl,) be the level £ affine W-algebra of gl,. Recall that the cup product in equiv-
ariant cohomology yields a bilinear map

(o,0): LE? X Lg) —- K,

called the intersection pairing. Set e = (ey, ey, ..., ¢), € =¢/xand p = (0, —1, —2,...,1—7).
Here is the main result of this paper.

Theorem. — (a) There ts a representation of W (gl,) of level k =Kk — 7 on Lg), dentyfying 1t
with the Verma module Mg of highest weight B = — (€ + &p) /.

(b) This action is quasi-unitary with respect to the intersection pairing on L.
(c) The Gaiotto state G = Zpo G,, G, =[M,,], 1s a Whttaker vector of Mg.

Parts (a) and (b) are proved in Theorem 8.33 and part (c) is proved in Proposi-
tion 9.4. Note that W;(gl;) is a Heisenberg algebra of rank one. So the above theorem
may be seen as a generalization to higher ranks of the representation of the Heisen-
berg algebra on the equivariant cohomology of the Hilbert scheme. For instance, taking
r =2 we get an action of the Virasoro algebra on the cohomology of the moduli space
of Uy-instantons on R*. The relation with the AGT conjecture for the pure N = 2 su-
persymmetric gauge theory is the following. Recall that Nekrasov’s partition function is
the generating function of the integral of the equivariant cohomology class 1 € H?(M, ),
1.e., we have

2. )= q'(IM,,].[M,,]).
n>0
The element G belongs to the completed Verma module
Mﬂ = l_IMﬁ,n, Mﬂ,n = Hg(Mr,n) ®R, Kr-

n>0

Let (W, ;L€ Z, d €[1,7]} be the set of the Fourier modes of the generating fields of
W, (gl,). Then Mg has a unique bilinear form (e, ®) such that the highest weight vector
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has norm 1 and the adjoint of W, _; is W, for [ > 0 (up to a sign). Then, the element G
is uniquely determined by the Whittaker condition and we have

20,6 =Y ¢ (G, G,).

n>0

Let us now explain the main steps of the proof. Since W-algebras do not possess,
beyond the case of gl;, a presentation by generators and relations, we cannot hope to
construct directly the action of Wy(gl,) on L{ by some correspondences. Our approach
relies instead on an intermediate algebra SH€, defined over the field I = G(x), which
is interesting in its own right, and which does act on L\ by some correspondences. The
actual definition of SH€ is rather involved. Its main properties are summarized below.
Let SH, denote the spherical degenerate double affine Hecke algebra of GL,. Let A =
Flp;; [ > 1]. Let

= (co, by L€ Z)

be the Heisenberg algebra of central charge ¢y/k. The following is proved in Section 1
and Appendix F.

Proposition. — (a) The algebra SHC is Z-graded, N-filtered and has a triangular decomposition
SH°=SH” ® SH*" ® SH~, SH =F[c; [ > 1]®@F[Dy; [ > 1].

Here ¥c;; [ > 1] is a central subalgebra. The Poincaré polynomials of SH= and SH™ are

Pow- (1) =[ [[ [ 7= w, P (1, q) =

r>0 [>0 r<0 >0

(b) Let SH be the specialization of SHE at ¢ = 0 and ¢; = —«k'@' for [ > 1. Forn> 1 there
is a surjective algebra homomorphism Y, : SH — SH, with (), Ker ¥, = {0}.

(c) The part of order < O for the N-filtration i1s SH®[<0] = 5 ® Flc;; [ > 2]. The algebra
SHE s generated by SH[< 0] and Dy ».

(d) Let SH" ) he the specialization of SH® at ¢y = 1 and ¢; = 0 for [ > 1. It has a faithful
representation in A such that 7€ acts in the standard way and Dy o acts as the Laplace-Beltrami (or
Calogero-Sutherland) operator

Dy =k0= —x(l —1) ) (I=Dbbr+ QKQ D (bmrmibibit bbb

>1 1k>1

(€) The specialization of SH'"") at ic = 1 is isomorphic to the universal enveloping algebra of
the Watt algebra W 4.
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We do not give a presentation of SH® by generators and relations. We do not
need it. However, the subalgebras SH” and SH™ have realizations as shuffle algebras,
see Theorem 4.7 and Corollary 6.4. The central subalgebra F[¢;; [ > 0] is not finitely
generated, but only two of the generators are essential, 1.e., the rest may be split off.

A construction of a similar limit SH€ of the spherical double affine Hecke algebras
of GL, as n tends to infinity appears in [32]. The algebra SH® depends on two param-
eters ¢, ¢, and SH® may be obtained by degeneration of SH® as ¢+ 1 and ¢+ | with
t = ¢ *, in much the same way as the trigonometric Cherednik algebra is obtained by
degeneration of the elliptic Cherednik algebra, see Section 7. In [33] it was shown that
SHE acts on the space @,.,K”(M, ), where KP is the equivariant algebraic K-theory.
Adapting the arguments of /oc. ¢it. to the equivariant cohomology setup, we prove the fol-
lowing in Theorem 3.2, Corollary 3.3 and Lemma 8.34. Let SHY be the specialization
of SH*® K, to ¢y =rand ¢; =pi(ey, ..., &).

Theorem A. — There is a faithful representation p of SHY on LY such that LY is generated
by the fundamental class of M, .

This representation is given by convolution with correspondences supported on
the nested instanton spaces. In the proof of Theorem A an important role is played by
the commuting varieties

C, = {. v) € (gl,)% [u, v] = 0}
and the cohomological Hall algebra, which is an associative algebra structure on
¢ =PH"C,). T=(C*)"
n=>0

Let (W, (gl,)) be the current algebra of W;(gl,). We’ll use a quotient % (W;(gl,)) of
U(Wy(gl,)) whose definition is given in Section 8.5. It is a Z-graded, N-filtered, degree-
wise topological associative algebra with 1 which is degreewise complete. Let ﬂ(SHg)) be
the degreewise completion of SH%?, which is defined in Definition 8.8. Our main theorem
is a consequence of the following results, proved in Theorem 8.22 and Corollary 8.29,
and in Theorem 8.33 and Proposition 9.4. Put £ =k — r. First, we have

Theorem B. — There is an embedding of graded and filtered algebras
" : SHY — % (W.(gl))

which extends to a surjective morphism ﬂ(SH;?) —> U (W (gl,)). The map O induces an equiv-
alence between the categories of admissible SH;? and U (W, (gl,)) modules.

This allows us to regard Lg) as a Wi (gl,)-module. Then, we have the following.
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Theorem C.. — The representation LY of W(gl,) is a Verma module. It is quasi-unitary with
respect to the intersection pairing. The element G s a Whattaker vector for Wy(gl,).

Theorem C is proved by some simple explicit calculation. Let us briefly indicate
how we prove Theorem B. Our approach rests upon the following crucial fact proved in
Theorem 7.9.

Proposition. — The algebra SHE is equipped with a topological Hopf algebra structure. The
comultiplication is uniquely determined by the following formulas

Alc)=c®1+1Q®¢c, (>0,
Ab)=b®1+1®by+Ecy® co, Ab)=b@1+1®@b;, [#0,

ADyo) =Dy ®@1+1@Dgo+«é& Zlb, ®b_,.

=1

Using this coproduct, we equip the category of admissible SH-modules with a
monoidal structure. In particular (Lg))@ is equipped with a faithful representation of
SH.. We call it the fiee field realization representation. We then compare this free field
representation of SH%? with the free field representation of Wy(gl,) using some explicit
computations in the cases r = 1, 2, the coassociativity of A and the fundamental result
of Feigin and Frenkel [14, 15] which characterizes W;(gl,) as the intersection of some
screeming operators.

One remark about the Hopf algebra structure on SH€ is in order. It was observed
in [38] that, under Nakajima’s realization of affine quantum groups in terms of equiv-
ariant K-theory of quiver varieties, the coproduct of the quantum groups could be con-
structed geometrically using some fixed subsets of the quiver varieties. In later works, a
geometric construction of tensor products of representations in terms of both cohomol-
ogy and K-theory of some quiver varieties was given in [26, 30]. In this paper, we do
not give a geometric interpretation of our map A. In fact, we obtain it by degenerating a
similar coproduct on the algebra SH€. The existence of a Hopf algebra structure on SH¢,
in equivariant K-theory, is not more natural than on SH®, in equivariant cohomology.
However, since SH€ is identified with a central extension of the Drinfeld double of the
spherical Hall algebra &€ of an elliptic curve over a finite field, see [33], and since this Hall
algebra has a coproduct,' the algebra SH€ is also equipped with a comultiplication. We
do not know, however, of a similar isomorphism involving SH® which would give directly
the comultiplication.

Some of the methods and results of this paper generalize to the case of the mod-
uli spaces of instantons on resolutions of simple Kleinian singularities, equivalently, the

! The correct choice of coproduct on € here is not the standard one, but rather the standard one twisted by a Fourier
transform, see (7.50).
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s| |

Fic. 1. — The partition (5, 4% 2, 1) and a box in it

Nakajima quiver varieties attached to affine Dynkin diagrams. We’ll come back to this
question elsewhere.

To finish, let us say a few words concerning the organization of this paper. The
construction and properties of the algebra SH are given in Section 1. In Sections 2
and 3 we define some convolution algebra acting on the space Lg) and state our first main
result, Theorem 3.2, which claims that this algebra is isomorphic to SH;?. In Section 4 we
introduce the commuting variety and its convolution algebra, the so-called cohomological
Hall algebra. The proof of Theorem 3.2 is given in Sections 5 and 6. Section 7 is devoted
to the construction of the Hopf algebra structure on SH€. Section 8 discusses the free
field realizations of SH%Q and W;(gl,), and compares them (first for r = 1 then r = 2
and then for arbitrary 7). Theorem 8.22 is proved in Section 8.9, and part (a) of our main
Theorem is proved in Section 8.11, see Theorem 8.33. Finally, Section 9 is devoted to the
Whittaker property of the Gaiotto state, with respect to both SHY and W, (gl,). Several
technical lemmas are postponed to the appendices. In particular, the relation with W
1s explained in Appendix F.

0.1. Notation. — We’ll use the continental way of drawing a partition A = (A; >
A9 > --+), with rows going from the bottom up of successive length A;, A9, etc. If s is a
box in the diagram of a partition A, we denote by x(s), y(s), {(s), a(s) the number of boxes
lying strictly to the west, resp. south, resp. north, resp. east, of the box s.

Example 0.1. — For the box s in the partition (5, 4292, 1) depicted below we have
x(s) =3, 9(s) =0, I(s) =2 and a(s) = 1.

When we need to stress the dependance on the partition A we will write g, (s) and
L, (s). This notation extends in an obvious way to boxes s which might lie outside of A (in
which case, @, (s) or [, (s) could be negative). For instance, if . = (5, 4%, 2, 1) as in Figure |
above and x(s) =4, y(s) = 2 then a4, (s) = —1 and /,(s) = —2. We will occasionaly refer to
a box through its coordinates s = (x(s) + 1, »(s) 4+ 1). As usual, the length of a partition A
1s denoted /(A), and the conjugate partition is denoted A'. Finally, if s is a box of a partition
A then we denote by R; and C;, the set of all boxes of A in the same row and same column
respectively, as s, with s excepted. We call r-partition of n an r-tuple of partitions with total
weight 7. Given two r-partitions A = (AD, A ... APy and = (uV, u®, ..., u?) we
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write
rCp = A92cu?, Va
For any commutative ring A we set
(0.1) Aa=A[X,,...,X,]%, Ay =A[X, Xy, ...]%>.

Note that A, i1s the Macdonald algebra of symmetric functions. Let 7, be the obvious
projection

0.2) Tt Ay — Aya.

For any ring A let § be the map A — A ® A given by

0.3) da)=a®1+1Q®a

For r > 11let 8" ' : A — A® be the map obtained by iterating r — 1 times the map §. Let
a=eaX)=a(X, Xy, ...),

0.4) pr=p(X) =pi(Xy, Xy, ...),
my, = my (X) = my, (X, Xy, ...)

be the /th elementary symmetric function, the /th power sum polynomial and the mono-
mial symmetric function in Ay, see e.g., [25, Chap. I]. Let

" =" (X) = a(Xy, ..., X,),
(0.5) §=p" X0 =pXi LX),
m” = m" (X) = m (X1, Xo, ..., X,)
be the corresponding functions in Ay ,. If no confusion is possible we abbreviate
(0.6) ¢ = el("), Y2 :pﬁ”), m; = m;").
We write also
Z;=7°\(0,0),
Ny =N\ (0,0),
(0.7) &E={(e,D;e=-1,0,1, L€ Z,}\ (0,0,
Et={ De&e=0},
& ={(e.) e &€ <0},
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1. The algebra SH*

1.1. The DDAHA. — We define
G =GL,, H=(c)", H*=C", h = Lie(H),
(1.1) CH]=cC[X{",....X]']. C[H']=CX,,....X,],
C[h] =Clxy, ..., x,], Clh*]=Chi, ... 0l

Here (y1,...,9,) is the basis dual to (xi, ..., x,). The symmetric group &, acts on H, b
and h*. Let 51, ..., 5,1 be the standard generators of &,. For i # j let s; be the trans-
position (7). Finally, set I = CG(x) and A = C[«k]. The degenerate double affine Hecke algebra
(=DDAHA) of G is the associative F-algebra H,, generated by F[H], F[h*] and F[&,]
subject to the following set of relations

(1.2) X' =X1s, s€6,,
(1.3) 59 =505 — K{x; — Xi11,9), VE b,
—KXZ'SQ‘ lfl <j,
<1.4> [yi’ ><J] = Xi + K(Zk<i X/:Sik + Zk>iXi5ik) lfl :j,
—Kk X5 ifi>.

Let S = ni, > s, § be the complete idempotent in C[&,]. The spherical DDAHA of G is
(1.5) SH,=S-H,-S.

Let H C H, be the F-subalgebra generated by &, and {y;, X;; ¢ € [1, #]}. This is a defor-
mation of the algebra of polynomial differential operators on H. Similarly, let H C H,
be the subalgebra generated by G, and {y;, Xz-_l; 1€[1,n]}. Write

(1.6) SH =S -H S, SH) =S - F[h*]-S.

Remark 1.1. — Formally setting k = 0 in the relations of H, yields a presentation
of the crossed product Diff(H) x &,, with y; degenerating to X,dx,. The spherical DAHA
is a deformation of the ring Diff(H)®" of symmetric differential operators on the torus H.

1.2. Filtrations on H, and SH,. — We define the order filtration on H, by letting y; be
of order 1 and 5, X3! be of order 0. We define the rank grading on H, by giving to s, y; the
degree 0 and to X;! the degree 1. Let H,[r, <[] be the piece of H, of degree 7 and of
order < /. The piece of degree r and of order < /in SH,, is

(1.7) SH,[r, </[]=S -H,[r, <[] -S=SH,NH,[r, <[].
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Similarly, we set
(1.8) SH'[r,</]=S-H'[r,<]]-S=SH NH,[r, </].

All the constructions given above make sense over the ring A. For instance, let H, , CH,
be the A-subalgebra generated by G, A[h*] and A[H], and put

SHrL,A = S : Hn,A : S = SHn N Hn,A7
<1‘9> Hn,A[rv = Z] = Hﬂ,A N H,L[i’, =< Z],
SH' [r, </]=S-H!,[r,</]-S=SH', NH,[1, <II.

The PBW theorem for H, 5 implies that any element « of H, o has a unique decomposi-
tion of the form

(1.10) u=">Y_ hX)g0)s. g0)€A[b*]. A(X)eAH]

s€S,

Therefore, we have H, » ® F =H,,. Since SH,, 4 is a direct summand of the A-module
H, A, we have also SH, » ®, F = SH,.. A similar argument yields

(1.11) H, Alr, =l @F=H,[r, <[], SH, Alr, <] @ F=SH,[r, <[].

Let E,LA and SH, 5 be the graded A-algebras associated with the order filtrations on
H, » and SH, 4 respectively. Let us state some useful consequences of the PBW theorem.
Whenever this makes sense we may abbreviate ad(z) for the commutator with z.

Proposition 1.2. — () An element u € SH, 4 ts of order < k if and only if
(1.12) ad(z;) o---oad(z)(w) € S-A[H]-S, Vz,...,z €S -A[H]-S.
(b) The obvious maps yield A-algebra isomorphisms
A[Hxp]x6,=H,,, A[Hxb]"-S=S-A[Hxh*]-S=SH, ..

Proof: — Let SH, A[<£] be the space of the elements of order </ in SH, 5. We
have

(1.13) H,\[<k] = {th(x)gs(y)s; deg(g) < £, Vs}.

Let Uy, be the set of elements of SH,, 5 satisfying (1.12). The inclusion SH, A[</] C U,
follows from (1.4). We prove the reverse inclusion by induction. For £ = 0 there is nothing
to prove, so let us assume that U; C SH, A[</] for all / < £. We have ad(p; (X)) (y;)) = X,
for all 7. From this and (1.13) we deduce that

(1.14) {ue H, A;ad(p) (X)) (w) € H,A[<j1} € H, A[</].
In particular, we have U, C H, o[ < £]. We are done. O
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Lemma 1.3. — The F-algebra SH, is generated by S - F[6*] - S and S - F[H] - S. The
F-algebra SH' is generated by S - F[§*] - S and S - F[H*] - S.

Proof. — First, we have an isomorphism

(G] n

n

(1.15) SH, \/(k) ~ C[X]", Xy, ..., X}, X,0x, ]
A similar result holds for SHY , =S - H, - S. Next, the following is well-known.

Claim. — The algebra C[Xy", X,0x,, ..., XE, X,0x, 19" is generated by C[XT', ...,
Xnil]e” and G[X,0x,, ..., X,ZBX”]G”. A simalar result holds for G[X,, X,0x,, ..., X, X,ZBX”]G”.

We now prove the second statement of Lemma 1.3. We have

(1.16) sH', =P | JsH/,[r. <]

r>0 [>0
and SHI Al7, <!] 1s a free A-module of finite rank such that
(1.17) SHZA[r, <] ®AF:SH:[7, <],

because SHY ,[r, </] is a direct summand in the A-module H;, and H;, ®, F = H}.
The claim above implies that SH; ,[r, </]/(x) is linearly spanned by a suitable set of
monomials in the elements Sp;(X)S and Sp,(»)S for / > 0. Thus, by Nakayama’s lemma
and (1.17), we have that SH[r, <[] is linearly spanned over F by the same set of mono-
mials. This proves the second statement in the lemma. The first one is now for instance a
consequence of the fact that any element of SH, belongs to (X; ---X,)~" - SH for [ big
enough. 0

The assignment X; > X!,y >y, s> 57!

extends to an algebra antiautomor-
phism 7w of H, o, as may be directly seen from the defining relations. It restricts to an
algebra antiautomorphism of SH,,  taking SH;/, to SH, ,. Thus SH, , may be identi-

fied with (SHF,)°P.

Remark 1.4. — Let A, be the localization of A at the ideal (k — 1). We define H, 5,
and SH,, 4, in the obvious way. Lemma 1.3 holds true with F replaced by A,. The proof
is similar to the proof of [4, Thm. 4.6]. It suffices to observe that the specialization of

SH, ,, at k = 1 is a simple algebra, because it is a (Ore) localization of a simple spherical
rational DAHA by [36, Prop. 4.1].
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1.3. The polynomial representation. — The tautological representation of Diff(H) x
G, on C[H] can be deformed to a representation of H, » on A[H], see [10]. This repre-
sentation is defined by the following explicit formulas

pu(8) =5,
B
P () = Xi0x, + Kk AZ 0 i;(;/kx + K ;Slk
From now on we’ll write
(1.19) Wa=AHL, V. =W, )%
We’ll abbreviate
(1.20) A = Ay, A, =A,r, W, =W, V.=V,

Theorem 1.5 (Cherednik). — The assignment p, defines an embedding p, : H, n —
End(W, ») which takes SH, 5 into End(V, ).

The representation p, is called the polynomial representation. The space A, 5 is pre-
served by the action of the subalgebra SH, . Let p;f denote the corresponding faithful
representation of SH;, on A, 5. We set

(1.21) DY) =Sp(») S/l (> 1.

The elements D(() ; generate a commutative subalgebra called the algebra of Sekiguchi op-
erators, see [34]. The joint spectrum in A, of the operators D(()’ ; consists of the Jack

polynomials ]\, for A a partition with at most z parts, and their eigenvalues are described
by Lemma 1.6 below. We refer to Section 1.6 for more details on the notation for Jack
polynomials. Consider the generating function

(1.22) A, (0) = Sl_[(u—l—yl)s ZS@ZSu’Z i

=1 =1

Lemma 1.6 (Macdonald). — For [(A) < n we have

n

A -3 =TT+ ri+ (=) I

=1

The above lemma only gives the eigenvalues of the elemen~ts S¢S for:e|l, n], but
this is enough to determine the eigenvalues of all the operators D(()"i In fact, Lemma 1.6
has the following immediate corollary.
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Corollary 1.7. — For f € Cyy, ..., 2,0 and [(\) < n we have

S/S Ji”) = ()\1 +x(n—1), 1 +Kk(n—2), "")\'n) ;n).

Since the joint spectrum of the 138"3 is simple, the Jack polynomials {J} are com-
pletely determined by Lemma 1.6, up to a scalar. Following Stanley [35] we normalize
this scalar by requiring that.

(1.23) e P Fm+ XX,

(M <p=i

For future use, we state here the Pieri rules for Jack polynomials [35, thm 6.1]. For
a pair of partitions p C A with |A| — || = 1 we write

B (s) R Gs)
(1.24) vau= [ ] ;2;(5) [1 1 (s)

SEC)L\M SER}L\M

where C,,, and R;,, are as in Section 0.1, and where for any box s of a partition A, we
have set

(1.25) h(9) =kb(s) + (s () +1), 7)) =«(6()+ 1) + ().

T heorem 1.8 (Stanley). — For [() < n we have

(1.26) 0] =Y vy,
A

where the sum ranges over all partitions X of length at most n with u C A and || = || + 1.

1.4. The normalized Sekiguchi operators. — The eigenvalues of the operators 13823 on
the Jack polynomial Jg") for (L) < n do depend on n. In order to correct this, we will
introduce a new set of diagonalisable operators Dgf}, whose eigenvalues on the J$’s are
independent of n. We may think of these new operators as normalized Sekiguchi opera-
tors. We’ll use the following simple combinatorial lemma. Given a box s in the diagram

of a partition A we’ll write
(1.27) ¢(s) = x(s) — k(s).
Lemma 1.9. — For [ € N there exists a unique element B;'l) eAby, ..., yn]e" such that

B (M — Kk Ay = 2 hy— k) = Y e(), VAL I) <

SEA
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Proof. — There exist polynomials T’ ;(2) € A[z] such that for all /> 0 we have

l

T.()=) (G- -«G-D),

J=I
Then, for {(A) < n, we have
Doy =) T.0) =) T.—«i), T,i2)=T,(z+ri.
SEA =1 =1

The existence of B™ will be proved if we can show that T,,’i(z) — Tw-(z) € Afor any ¢,
(as polynomials in z). For this, it is enough to show that for all 7, j

(1.28) T -T.z-D)=T,;& —T,;z=1).

We hgve T,.,Z»(,zz —T,(z—1)=(z—1—=«(— 1)), since this holds for any z € N. There-
fore T, ;(2) = T, (z — 1) = (¢ — 1 + k)" for any ¢, from which (1.28) is immediate. The
unicity statement is clear. U

Now, we define the operators
(1.29) DY) =SB, (3 — nkc, yy — i, ..., — n6)S, (> 1.
By Corollary 1.7 and Lemma 1.9 we have,

(1.30) DY) -J = e, VAL 1) <

SEA

In particular, we have Dg’l;(l) = 0 and the eigenvalues of Dgf; are independent of 7. It is
easy to see from the proof of Lemma 1.9 that

(1.31) B, =p/l+ q,

with ¢, a symmetric function of degree </ Thus {B{", ..., B} is a system of generators

n—1

of the A-algebra A[yi, ..., 7,]%". Hence, we have the following,
Lemma 1.10. — The A-algebra SHS’ A 15 generated by {D(({l)l; [>1}.

Remark 1.11. — For each partition A set n(A) = Y. Ai(A} — 1)/2, where as usual A’
is the conjugate partition. The formula (1.30) yields

D) -J = (n(V) = kn(0))J5".

Thus, we have Dgf)z = k U,, where U, is the Laplace—Beltrami operator. See e.g., [25,
Chap. VI, Sect. 4, Ex. 3], where [J, is denoted D’;fl.
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1.5. The algebras SH and SH, . — Our aim is to construct some limit of the al-
gebra SH,, and of the representation p, as n tends to infinity. The algebras SH, do not
seem to form a nice projective system. Instead, our method is as follows

e first we define limits SH* for the subalgebras SH,
e then we define SH as some amalgamated product of SH* with SH™.

To implement the second point, we first need to understand some relations between SH
and SH " inside SH,,. This is what we do in the present paragraph. For /> 1 we set

Dy} =18,
DY), =Sp” (XF, ..., XS,
(1.32) () () ()
Dl,z = [D0,1+1’ DI,O]’
D(jl)l,l = [D(—n)l,()’ DgfﬂJ-
By Lemma 1.3, the F-algebra SH is generated by {D((f}, Di‘}o; [>1}.

Definition 1.12. — Let SH be the ¥-subalgebra of SH" generated by {Dﬁ'f}; > 0}. We
define the ¥-subalgebra SH~ of SH ™ in a similar way.

Example 1.13. — The following identities hold
DY) = s(Z XJZ)S —k(n— 1DV} /2,

1.33 . - ’
(1.33) D<_>1’1:s<§ X 1)S—x<n— DY /2,

(m) ™7 _ my® () m 1 _ mw
[Dl,l’ Dz,o] =Dy, o, [D—z,o’ Dfl,l] =ID% 1 (=0,
The following is immediate.

Proposition 1.14. — For [ > 0 the following hold
(2) Dy € SH> and D), € SH: for { # 0,
(b) for (1) < n we have

(1.34) DI -J0 = e\ Y J;”
Y
where the sum ranges over all partitions . with (X)) <n, u C A and |A| = ||+ 1.

Note that (1.34) and (1.30) imply that (1.32) holds also for / = 0. The next result
describes some of the relations between the three algebras SH”, SH” and SH~. As we

n >
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will see in Proposition 1.26 below, these relations (which, thanks to the introduction of
Df{%, do not depend on 7) are the only ones which survive in the limit n — oo. For [/ > 0
we write

§=1-—«,
Go(s) = —log(s),
(1.35) Gi(s) = (s = 1)/1, [#0,
i)=Y (Gl =g)—Gi(1+g).
¢=1,-&,—«

Proposition 1.15. — The following relations hold in SH,

(1.36) [D5) DY) =Dilhscr
(1.37) [Dg,l;v D(:l)l,k] = _D(fn)l,lJr/cfl’
(1.38) [P D] = B2,
where the elements Efﬁ , are determined through the formula
1+& Z E{"” s =K(r, D}, 5) exp <Z Dy, (pz(s)),

(1.39) =0 =0

1 1

Kk, . 5) = (14 E&s5)( +Ka)5)'
14+ &s+ kws

Progf: — The first two relations are easily deduced from (1.30) and (1.34), and from
the faithfulness of the polynomial representation A,. The third relation is the result of a
direct computation, see Appendix B. 0J

From now on we’ll abbreviate ® = ®p (the tensor product of F-vector spaces).

Proposition 1.16. — The multiplication map induces isomorphisms
SH> @ SH' — SH, SH'® SH — SH_ .

Proof. — By Lemma 1.3, the algebra SH is generated by the pair of subalgebras
SH”, SHS. Next, (1.36) implies that [Dgf;, SH~] C SH* for /> 0. Thus we have SHS .
SH> = SH - SH'. The surjectivity of the multiplication map

(1.40) m:SH, ® SH)—SH

follows. To show that m is injective, we may use a degeneration argument similar to the
one in Lemma 1.3. We leave the details to the reader. U
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Corollary 1.17. — The multiplication map induces a surjective map SH> @ SH? @ SH~ —
SH,.

Progf: — By Proposition 1.16 and Lemma 1.3, the F-algebra SH, is generated
by the triplet of subalgebras SH>, SH’, SH>, hence by the collection of genera-
tors {D(l'f;, Dgf}, D(f)l J. We must check that any monomial in these generators may be
‘straightened’ into a linear combination of monomials in which the generators {D(lni,

D((f)/, D(_")l ;} appear in that fixed order. It is not difficult to see that relations (1.36)—(1.38)
enable one to do this. U

1.6. The algebra SHT. — Let us now address the problem of constructing a limit
SH* of SH. The following result is well-known, see e.g., [35, Prop. 2.5].

Lemma 1.18. — For [(X) < n and for any positive integer m < n we have

) (X X 0 0) = WX, X I <m,
A Iy eees my oy o ooy 0 \Zfl()\‘)>m.

This lemma allows one to define the limit of the symmetric polynomials J/(\") as

n tends to infinity. We will write J, = J,(X) for this limit. It is called the wtegral form of
Jack’s symmetric _function associated with the parameter = 1/k. It 1s denoted by the symbol
(79 in [25, Chap. VI, (10.22-3)]. The family {J;; A € IT} forms an F-basis of A, see [25,

Chap. VI]. The map 7, : A — A, is given by m,(J,) =]\ if I(A) < n and 7,(J,) =0
otherwise. The operators D;fg, for [ € N, being the multiplication in A, by symmetric

functions, obviously stabilize in the limit A, since A is a ring. For instance D% is given
by the Pieri formula (1.26), whose coeflicients are independent of z. In other words, we
have

(1.41) T, 0 DIV =DV oy,
where we have denoted by
(1.42) Tt N1 = A,

the projection maps. The kernels of the maps m,,, are linearly spanned by Jack poly-
nomials, and the operators Df{’; are diagonalisable on the basis of Jack polynomials with
eigenvalues independent of . This implies that for all #, [ > 1 we have

+1
(1.43) Tus1, 0 DYTY =D 0 7,0,

Since the polynomial representation is faithful and since the F-algebra SH is generated
by

(1.44) {Dy), DYy 1> 1},
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we deduce that the assignement

145 DYV oD DG oD

extends to a well-defined and surjective F-algebra homomorphism
(1.46) ®,41,: SHY,, — SH'.

This allows us to consider the following algebra.

Definition 1.19. — We define SH* 1o be the ¥-subalgebra of [],., SH; generated by the
Samilies Dy, = (D)) and Do = (DY) with [ > 1.

By construction, there are surjective maps
(1.47) ®, :SH" —» SH", Dy, D), D, D, [>1,
such that (1), Ker(®,) = {0}. Further, we have the following,.

Proposition 1.20. — There is a faithful representation p* of SH™ on A such that, for [ > 1,

P Do) J) = ¢ J. T (Do) = multiplication by p.

SEA

The map v, intertwines the representation p™ with the representation p+ of SH' on A,,.
1Y P, n

Observe that {Dg; [ > 1} generate a free commutative algebra which is isomor-
phic to A. The same holds for {D;; [ > 1}. We define an N-grading on SH*, called the
rank grading, by putting D, o in degree [/ and D ; in degree 0. We define a N-filtration on
SH™, called the order filtration, such that an element u is of order < £ if

(1.48) ad(z1) o ---oad(z)(w) € F[D,p; [€N], Vzi,...,2 €F[D,y; 1 eNI].

Let SH'[r, <[] the piece of degree r and order < /. Note that any element of SH* has
indeed a finite order. Consider the Poincaré polynomial

(1.49) Psy+ (1, 9) = Z dim(S—H+[r, n)tq, SH [r, ] = SH'[r, <[]/SH"[r, <].

r, (>0

Lemma 1.21. — The Poincaré polynomial of SH™ is given by

Pou (4, 9) =] | (r,1) € N2,

ol
7’/1 t'q
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Proof. — By Proposition 1.2(b), the F-vector space
(1.50) SH [r, /] =SH'[r, <1]/SH'[r, <[]
is isomorphic to the subspace of polynomials in
(1.51) FIX, s Xt ooy 0]
of degree r in the X;’s and of degree / in the »;’s. By Proposition 1.2(a) we have
(1.52) ®,(SH*[r, <I]) = SH/[r, <I].
Thus ®, induces a surjective map

153 ®,:SH —>SH, Dy "0 ....00/0
EZ,()HPE’Z)(XM--',XVI), 12 1

Thus S_H+[7, [] 1s identified with the space of symmetric polynomials in infinitely many
variables

(1.54) FIX,, Xo, ..oy 1500, ...15%

of degree r in the X;’s and degree / in the y;’s. By Weyl’s theorem [41] the F-algebra (1.54)
1s freely generated by the invariants 2121 X,’Cy,lC for r,/ > 0 and (1, [) #% (0, 0). The result
easily follows. U

Remark 1.22. — The order filtration on SH™ is not the same as the filtration given
by putting D, of order 0 and Dy ; of order </ (see however Proposition 1.39).

Remark 1.23. — We have p* (Dg ) = « [, where [J is the Laplace-Beltrami oper-
ator in infinitely many variables, i.c., =% = lim¥ ' in Macdonald’s notations, see

Remark 1.11.

Remark 1.24. — There is a unique F-algebra homomorphism ¢* : SH* — F such
that ¥ (Dy,;) = 67(Dy,0) =0 for / > 1. Indeed, the sum of P,., SH*[r] and of the aug-
mentation ideal of F[Dy ;; /> 1] is a two-sided ideal of SH*.

1.7. The algebra SH. — Our next objective is the construction of the limit of the
whole algebra SH,. We construct SH by ‘gluing’ together two copies of SH*, denoted
SH™ and SH™, with SH™ = (SH")°", along the subalgebra

(1.55) SH’ =F[D, ;[ > 0].
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The extra generator Dy, which accounts for the limit of the Dg%’s, may be considered
as a formal parameter. We'll write w = D . For /> 1 let D_;; € SH™ be the element
mapping to D(_"?,O for any n. Consider the elements

(1.56) D, ;= [Dg,41,Diol, D_,,;=[D_0,Do11l, (=0.

Let SH” be the F-subalgebra of SH* generated by {D, ;; / > 0}. This is the limit of SH>
as n tends to infinity. Now put SH= = (SH”)°P. We may view SH™ and SH~= as the limits
of SH = and SH respectively. Note that SH= is the F-subalgebra of SH™ generated by
{D_,.;; { = 0}. We define

(1.57) SH™ [r, </]=SH” NSH*[r, <[], SH™ [r, </]=SH” NSH"[r, </].

Definition 1.25. — Let SH be the ¥-algebra generated by SH>, SH® and SH= modulo the
Jollowing set of relations

( ) =Dy s central,

( ) [Do.;s Diil=Dipps—1, =1,
(1.60) (Do, Dol = =Dy igr—r, (=1,
(1.61) [Do1s Did=Ep, L E=0,

where the elements Yy, are determined through the formula

(1.62) 14+&) Es™ =K 0,5 exp (Z Do,;+1§0/(5))~

120 120
By Proposition 1.13, there are surjective maps

(1.63) ®,:SH—SH,, Dy, D{), DyorDy),, oS, [>1.

As above, for each [ > 0 we write Dy; and D4, for the families (Dgf;) and (D(ﬁo) in
[1,-; SH,. The definition of SH is justified by the following result.

Proposition 1.26. — (a) The multiplication map induces isomorphisms

SH” ® SH’ ~ SH' ® Flw], SH’ ® SH* ~ SH™ ® Flw],
SH> @ SH’ ® SH- ~ SH.

(b) The map | |
and Dy o with [ > 0.

O, identifies SH with the ¥F-subalgebra of | ] ., SH, generated by Dy

n>1 n>1
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Proof. — The surjectivity statements in (a) are proved as in Proposition 1.16 and
Corollary 1.17. To prove (a) it thus remains to show that the multiplication map

m:SH” ® SH’ ® SH* — SH

1s injective. Consider the following commutative diagram

SH* @ SH' ® SH* — ~ SH
(1.64) o8 l l o,
SH> ® SH' ® SH= — > SH,.

Let u € Ker(m) and assume that u # 0. There exist positive integers 7y, 13, {1, lo, l5 such
that

ue SH™[<rn, <4] ®@ SH'[<)] ® SH[<73, <Is].

By Definition 1.19 we have

(1.65) SH” C[[SH;, SH C][SH; SH' C [ [ SH!.

n’

n>1 n>1 n>1
Since we have
SH)=F[D{):(>1],  SH"=F[Dy;!>0],

we have also an inclusion SH’ C [T SH" which identifies the element w = Dy with
the family (zS). Thus, for n>> 0 we have ®®?(u) # 0. By passing to the associated graded
and using the PBW theorem, we see that the restriction to

SH, [<r, <4] ® SH)[<h] ® SH [<r;, <Is]

of the map m is injective for n > 0. But then &, o m(u) # 0, a contradiction. This
shows that Ker(m) = {0}. Our argument also implies that [, Ker(®, o m) = {0}. Hence
), Ker(®,) = {0} because m is surjective. This implies the part (b). UJ

As a direct consequence of Lemma 1.21 and Proposition 1.26(a) we have the fol-
lowing.

Corollary 1.27. — The Poincaré polynomials of SH> and SH= are respectively given by

PSH>(t7 Q):Hnl—;ﬁql’ PSH<(t’ q):l_[r[ 1 _ltrql'

r>0 [>0 r<0 (>0
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For a future use, let us mention also the following basic facts.

Proposition 1.28. — (a) The F-algebra SH is generated by the elements @, D) o, D1 o, Do o.
(b) There is a unique anti-involution 7w of SH such that w (D4, ;) = D4y, m (D) =Dy

Progf. — From (1.59)—(1.60) we see that D, 1s an iterated commutator of D4 o
and Dy . From (1.61) we see that SH is generated by the commutators [D_; ;, Dy ] for
k, 1> 0. This proves (a). Part (b) is obvious. UJ

Remark 1.29. — Note that {D,; [ € Z} generates a commutative subalgebra of SH
(use Proposition 1.26(b) and the commutativity of the elements D%, leZ,in SH,).

Remark 1.30. — In Corollary 6.4 we’ll give an explicit description of the subalgebra
SH~ of SH*, as a certain shuffle algebra.

1.8. The algebra SH®. — Now, we define a central extension SH® of SH. To do

this, we introduce a new family ¢ = (¢, ¢y, ...) of formal parameters, and for / > 0 we
set
(1.66) d1(5) = 5'G,(1 + &), SH®" = F°[D,; [ > 0], F¢=F[c; [>0].

Definition 1.31. — Let SHE be the F¢-algebra generated by SH>, SH*®, SH= modulo the
Jollowing set of relations

(1.67) (Do, D1l =Dy s, (21,
(1.68) (Do, Doy yl=—-D_ypym1, =1,
(1.69) (Do, Dyl=Ey, LEk>=0,

where Dy o = 0 and the elements ¥y, are determuned through the formula

(1.70) 1+¢& ZEI st = CXP(Z(—I)MCKPZ(S)) CXP(Z Do,i11 ‘Pz(&“))-
120 120 120
Example 1.32. — A direct computation yields, sce Section A,
Ey = cg, Ei =—c; + ¢coey — 1)€/2,
Ey=¢y+¢i(1 — cp)§ + co(eo — 1) (g — 2)§°/6 + 2Dy ;.
For [ > 2 we have also
(1.71) E,=I(/ — 1)kDy,_; mod SH*’[<[— 2]

where SH®[</ — 2] is the space of elements of SH®? of order at most [ — 2.
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Remark 1.33. — Given a family ¢ = (¢, ¢;,...) of elements in an extension of
the field F, let SH* be the specialization of SH® at ¢ = ¢. The specialization at ¢ =0 is
canonically isomorphic to the specialization of SH at @ = 0. Next, a direct computation
shows that

K(k, w,5) = exp(Z(— D (810 — K/a)l)qﬁ[(s)).

=0

Therefore, taking ¢o = 0 and ¢, = —k'®' in F(w) for [ > 1, we get an F(w)-algebra iso-

morphism SH — SH such that Dy ;> D, ;and D_; ;= D_, ; for each [ > 0.

Remark 1.34. — We abbreviate SH®! for the algebra associated with the family of
parameters (co, ¢, 0, ...). By Appendix A, Remark A.1 there 1s an algebra isomorphism
SH¢ — SH*® ® F[c;; [ > 2] such that Dy ;> Dy ,;and D_; ;> D_;, for each / > 0. In
other words, the algebra SH® depends only on the parameters ¢, ¢; up to isomorphisms.

Proposition 1.35. — (a) The F°-algebra SH€ 15 generated by ¢;, Dy o, D_1.0, Do 9.
(b) There is a unique anti-involution 7 of SHE such that 7w (c;) = ¢;, 1 (D, ;) =Dz, and
7 (Do) = Do,

Proof: — Parts (a), (b) are proved as Proposition 1.28. U
The following specialization of the algebra SH® will be important for us.

Defination 1.36. — For a field extension ¥ C K and an integer r > 0 let K, = K(ey, ..., €,),
where €1, ..., &, are new formal variables. Consider the algebra homomorphism ¥¢ — K,, ¢; = ¢; =
piErs .., &) Wedefine the K, -algebra SHY = SH® ®pe K. Wewrite also SHY"™ = SH” ® K,
and SH!" = = SH* ® K,.

Like SH, the algebra SH® has a triangular decomposition. More precisely,

Proposition 1.37. — The multiplication map SH> @ SH*" @ SH< — SHC is an isomor-
phism.

Proof. — The injectivity follows from Corollary D.2 and the commutativity of the
diagram

SH{"” ® SH{" @ SHY"~
(1.72) T
(SH> @ SH*' @ SH*) K, — SH°® K,

SHY/
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for all 7. The vertical maps are given by the specialization and the horizontal ones by the
multiplication. The proof of the surjectivity is similar to the proof of Corollary 1.17. Since
SH* is generated by SH>, SH®" and SH~, and since these subalgebras are respectively
generated by {D, ;> 1}, {Do;; /> 0} and {D_, ;; [ > 0}, it suffices to prove that any

monomial Dy, ---D, may be expressed as a linear combination of monomials in which
the generators D, ;, Do, D_;,; appear in that fixed order. The relations (1.67)(1.69)
allow one to do that. UJ

Remark 1.38. — There is a unique F-algebra homomorphism ¢ : SH® — F such
that &|sg+ = €7, ¢|lsug- = ¢ o and e(¢;) = 0 for each [ € N. Use Remark 1.24 and
Definition 1.31.

1.9. The order filtration on SH. — In this section we extend the order filtration on
SH™ to SH®. Let SH[s, </] be the image by the multiplication map of the F-vector
space

(1.73) > SH[s5, <4]® SH'[<h] ® SH[s5;, <h].

s1,53,01,00,03

The sum 1s over all tuples such that s; — s3 = s and /; + l, 4+ /3 = [. The F-subspaces
SH~ [s,, </;] and SH=[s3, </3] are as in (1.57), and SH®[</] is the F°-subalgebra of
SH*’ spanned by the polynomials in the elements Dy, of order < /. By Proposition 1.37,
the F-algebra SH€ carries a Z-grading and an N-filtration

SH® — EB SHC[s], SH® = U SH°[</],

seZ leN

(1.74)
SH¢[s] = U SHe[s, </], SH[</] = EB SH<[s, </].

leN s€ZL

We will prove that SH®, with this filtration, is a filtered algebra. This will imply that the
associated graded SH' is an algebra. Following (1.33), we define inductively the element
D,y € SHC so that D_, o, D ¢ are as above and

(1.75) [Dy,1, Dol = D10, [D_jo,D_y 1 1=D_m10, (=0.
In addition, for /, r > 1, we set
(1.76) D, ;= [Do,i+1, D, ol, D_,,=[D_,0,Dg 1]

This notation is compatible with the previous definition of D4, ;. The elements D, ; satisfy
the following properties, see Lemma E.3,

(1.77) D,, e SH™, D_,, e SH", 7 (Do) =D_y, [Do,1, Dol = Dy.
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Proposition 1.39. — (@) The element D, ; 1s of order d, 1.e., we have
D,,e SH™[<d]\ SH™[<d], D_,,e SH[<d]\SH™[<d], r>1.

The symbols of the elements D, 4 with (r, d) € N3 fieely generate SH .
(b) The order filtration on SHC is determined by assigning to D, 4, ¢, the orders d and zero.
(c) For Iy, [y > 0 we have SHE[<[,] - SH[< L] € SH[< [, + L].

Proof. — Tt is known that D{”, is of order d in SH" for any n hence Dy, is of order d
in SH™. Similarly, D, 4 is of order zero. It follows that D, s 1s of order at most d. Let ﬁir,d,
(resp. Eil: ,) be the symbol of the element D, ; (resp. D(ini ,) in the associated graded SH
(resp. S_Hni) A direct computation shows that

(1.78) (”j_c,dst ‘SeSH, ¢ eF.

This means that D,("()l, hence also D, 4, is of order d. Equation (1.78) also shows that the set

{D(ﬂ)

Comparing graded dimensions we get that these same generators freely generate SH'.
This proves (a) for SH. The same proof works for SH™.

We now turn to part (b). Let SH¢[</] temporarily denote the degree at most / piece
of SH with respect to the filtration defined by (b). By (a) we have SH*[</] = SH¥[</]
for any /, and the same holds for SH>, SH®’ and SH=. From the definition (1.73) we
immediately have SH[</] € SH°[</]. By construction, we have

€ N2} generates SHZ , and therefore that {Dy; x € N:} likewise generates SH

(1.79) SH[< ) = {uus - u;u; € SHYZL], €, € {>,0, <}, [ +---+ =1}
Thus, in order to show the inclusion SH*[</] € SH*[</], it is enough to prove that
(1.80) SH®[</]- SH*[<h] € SH[< /i + b],

which reduces to

(1.81) ad(D,,,) (SH[</]) C SH[<[+d].

Rather than using the elements D, ; we introduce a more convenient set of elements. For
d>0andr=-1,0,1wesetY,,=D,, and we define inductively, for r > 2,

Yy = D11, Ym0l ifr—17#4d
e Do, Y—1041] ifr—1=d,
(1.82)
[D_i1, Y-, 4] ifr—1+#4d
—rd — .
[D_10, Yi—ygp1] ifr—1=d.
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We have Y, , € SH” and Y_, ; € SH™. One shows by arguments similar to those used in

(a) above that Y, 4 is of order exactly d and that the symbols Y, freely generate SH . We
will now prove that

(1.83) ad(Y, ,)(SHe[<[]) C SH°[<[ + d].

Since ad(Y,,) is an iterated commutator of operators ad(Dy;), ad(Di ),
ad(D4 ), it is enough to prove (1.83) for each of those. For Dy, this comes from the
fact that SH* are filtered algebras. For the others it is enough to show that

(1.84)  ad(Di;1)(Ys,) € SH[</], ad(D10)(Ys,) € SH[<I] 7>0, (>0,

(1.85)  ad(Dxy)(Y+.) € SHF[</],  ad(Dii0)(Y+.) € SHF[<I] r>0, (>0.

Both (1.84) and (1.85) easily follow from the inductive definition of Y, ; and from the
relations

[D_,, D] =E,, [D_i1,Diol=[D_1,0,D1 1] =E,.

Statement (c) was proved on the way. U

1.10. Wilson operators on SH>. — Recall that SH” = F[Dy;; / > 1]. By (1.67) the
commutator with Dy ; preserves SH” and the operators ad(Dy ;) commute with each
other. This extends uniquely to an action of the algebra SH’ on SH” satisfying

(1.86) Do,eu=1[Dy;,ul, ueSH™, [>0.
Recall that A carries a comultiplication given by
(1.87) Ap)=p@1+1®p, (=1

We’ll use Sweedler’s notation A(x) = > x; ® xo. We identify SH’ and A via Do, > p;.
We hence have an action

(1.88) o:A®SH — SH”,

which we call the action by Wilson operators. For a field extension I C K let @ denote again
the corresponding action of Ag on SHy. The following lemma is left to the reader.

Lemma 1.40. — (a) The action of A on SH™ preserves each graded piece of SH™,
(b) the action of A on the degree n part of SH” factors through A,
(c) the Walson operators are compatible with the coproduct, namely

xe (uv) = Z(xl eu)(xo0v), xe€A, u,veSH".
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1.11. The Hesenberg and Virasoro subalgebras. — For [ > 1 we define the following

elements
by =K_ZD—1,0, b_; =Dy, by=E,/k,

(1.89) Hy=«x"'D_1/l+ (1 = Deoby/2, H_,=D;,/l+ (1 = Dcogb_/2,
Ho=[H,, H_,]/2.

These elements will be important to define a Virasoro subalgebra in a completion of

SH{” in Section 8.11. In Appendix E we prove the following.

Proposition 1.41. — For k, [ € Z we have

(1.90) (b1, -] =18k €o/K,
(1.91) (H_y, bl =16y, (Hi, o] = —1by1.

Let 7 be the Heisenberg subalgebra of SH® generated by {4;; [ € Z} and ¢,.

2. Equivariant cohomology of the Hilbert scheme

In this section, we recall briefly the structure of the Hilbert scheme of points on
the complex plane C?, and we define a convolution algebra acting on its (equivariant,
Borel-Moore) homology groups. This is essentially a homology version of the K-theoretic
construction given in [33], to which we refer the reader for a more detailed treatment. All
the geometric properties of the Hilbert scheme which we use below may be found in [12,
40].

2.1. Egquwariant cohomology and Borel-Moore homology. — Let G be a complex, con-
nected, linear algebraic group and let X be a G-variety, that is an algebraic variety
equipped with a rational G action. By a variety we always mean a complex quasi-
projective variety. Let H,(X) and HY(X) be the equivariant cohomology group and
the equivariant Borel-Moore homology group of X, with G coefficients. We write

(2.1) Ho(X) = PHL(X),  HX) =PHX.

Both of these spaces are graded modules over the graded ring Rg = Hg(e), where o
is a point with a trivial G-action. Recall that H¥(X) = Hg'(X, D) where D is the G-
equivariant dualizing complex, see [5, Def. 3.5.1] or [19, Sect. 5.8]. Recall that

(2.2) HI'G(X) = Hipodimp—2dimc (X Xg E),

where E — E/G 1s a principal G-bundle such that H@E) =0 fory=1,2,...,2. The
cup product endows Hg (X) with the structure of a graded commutative R-algebra. We
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denote by [Y] € H®(X) the fundamental class of a G-stable subvariety Y C X. If Y is
pure of dimension d then the class [Y] has the degree 24. Let us now assume that X is
smooth and connected. Then the map o — « - [X], where - denotes the cap product,
defines a Poincaré duality isomorphism

(2.3) H,(X) — HS, « (X).

This allows us to define a product on H%(X), dual to the cup product on Hg(X). If E is
a G-equivariant vector bundle over X then we write

C(B) e HEX), () =c'(B) - [X]e€Hyy,x 0(X)

for the equivariant Chern classes of E. We write eu(E) = ¢,(E) where 7 is the rank of E.
We call eu(E) the Euler class of E.. We have

G(EGE)=c(B)+c(E), eu(E®E)=-eu(E) eu(E).

Fix a morphism / : X — Y of complex G-varieties. If / is a proper map there is a direct
image homomorphism

(2.4) o HE(X) — HE(Y).

If / 1s a fibration or if X, Y are smooth complex G-varieties there is an inverse image
homomorphism (given, in the second case, by the Poincaré duality isomorphism and the
pull-back in equivariant cohomology)

(2.5) SPHE(Y) > HY (X)), d=dimX—dimY.

Note that if Y is smooth and Z C Y is closed then H®(Z) = Hg (Y, Y\ Z). So, if X, Y are
both smooth and Z C Y is closed then the pull-back in equivariant cohomology gives a
map

(2.6) H®(Z) =Ha(Y, Y\ Z) - Ho(X, X\ /~'(2)) =H*(F ().

These maps fit into the commutative square

H%(Z) —= H°(/'(2))

2.7) l l

HE(Y) HE(X).

Further, given a Cartesian square of smooth complex G-varieties

(2.8) Y <— X

‘| f |

Y — X,
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where ¢, ¢" are proper, we have the base change identity /*¢, = 7,¢*. If Y', X' are no longer
smooth but ¢, 7’ are closed embeddings then the inverse morphism g* is still well-defined
and the base change identity above holds.

Example 2.1. — Assume that T is a torus and that X is a point. Then Ry = S(t*),
where t is the Lie algebra of T. Let E be a finite dimensional representation of T. Write
it as a sum of characters E= x; & --- ® x, with x,: T — C*. Then we have ¢;,(E) =
e(dxy, ...,dx,) where dy, € t* is the differential of x,. In particular,

(2.9) c(B)=>) dx,eR},  eu®) =]]dx. eR}.

Note that, since the Euler class is multiplicative, we may consider the element eu(E) in
Kr, the fraction field of Ry, for an arbitrary virtual T-module E. For any characters yx,
x' of T, we may abbreviate x* = x ' and x ® x' = x x'. If T = (C*)* we get

<2.10> RT:C[x,y],
where x = ¢,(¢) = dg, y = ¢, (t) = dt and ¢, t are the characters of T given by

(2.11) 9(z1,22) =27, Wz, 20) =25

2.2, Correspondences. — We can now define the convolution product in equivariant ho-
mology. Let X, Xy, X3 be smooth connected algebraic G-varieties. Let us denote by
i 2 X x Xy X X3 — X; x X, the projection along the factor not named. If X, Xy, X3
are proper, there is a map

*x: HY(X, x Xo) @ HE (X, x X3) > HE (X, x X»),
0 ® ,3 = 7713!(771*2(05) : nékg(ﬁ))

If X; = X, = X3 = X then the map * equips H®(X x X) with the structure of an associa-
tive Rg-algebra. If X; = Xy = X and X; = e then we obtain an action of the Rs-algebra
H¢(X x X) on the Rg-module H®(X). If X, Xy, X3 are not proper but there is a smooth
closed G-subvariety Z C X, x Xy such that the projection Z — X, is proper then any
clement z € HY(Z) defines an Rg-linear operator

(2.12)

(2.13) H%(X,) —» HY (X)), a> zxa=m(z- 75 ().

If the projection Z — X is not proper but i : Z* — Z is the inclusion of a smooth closed
G-subvariety such that 77, o7 is proper, then any element z* € H®(Z°) defines an Rg-linear
operator

(2.14) H®(X,) - H%(X)), a> e =7 (2 15 (@), nl=m, 01,

and the projection formula implies that 2 * o = 2,(2°) * .
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Remark 2.2. — The Rg-modules H(X;), H(Xy) are graded by the homological
and cohomological degrees, for which HY (X,) has the degree ¢ and 2 dim X, — i respectively.
Let deg denote the homological degree and cdeg the cohomological degree. Then, if
z € H¥(Z) then the convolution by z is a homogeneous operator for the (co-)homological
degrees, and we have

(2.15) deg(z* @) =1 — 2dim X, cdeg(zx o) =2dimX; — 1.

2.3. The Hilbert scheme. — Let Hilb, denote the Hilbert scheme parametrizing
length n subschemes of G?. By Fogarty’s theorem it is a smooth irreducible variety of
dimension 2n. By associating to a closed point of Hilb, its ideal sheaf we obtain a bijec-
tion (at the level of points)

Hilb,(C) = {I C C[X, Y]; Iis an ideal of codimension n}

Let us denote by S = G[X, Y] the ring of regular functions on G?. The tangent space
THilb, at a closed point I € Hilb,(C) is canonically isomorphic to the vector space
Homg(1, S/T).

2.4. The torus action on Hilb,. — Consider the torus T = (C*)2. The torus T acts
on A? via (21, 29) * (4, v) = (z14, 29v). There is an induced action on S given by (z1, z9) -
P(X,Y) =P(z'X, 2,'Y) and one on Hilb, such that

(2.16) (z21,2) - 1={P(2'X, 5, 'Y); P(X, Y) €I}, VI€Hilb,(C).

This action has a finite number of isolated fixed points, indexed by the set of partitions of
the integer n. To such a partition A = n corresponds the fixed point I, where

(2.17) L= cxyo.
SEL

When I =1, is a T-fixed point, there is an induced T-action on TiHilb,. In order to
describe this action, we fix a few notations concerning T'. Consider the characters ¢, ¢ as
in Example 2.1. For V a T-module let [V] be its class in the Grothendieck group of T.
We abbreviate T, = [T}, Hilb,]. It is given by

(2.18) T, = Z(tl(s) q—a(.s)—l + t—l(s)—lqa(:)).

SEA

We set eu,, = eu(15).
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2.5. The Hecke correspondence Hilb,, ,,;. — Let £ > 0. The nested Hilbert scheme
Hilb,, 4 is the reduced closed subscheme of Hilb, x Hilb,;; parametrizing pairs of ideals
(I, J) where J C I. One defines the nested Hilbert scheme Hilb,,, , in a similar fashion. Of
course Hilb, , is simply the diagonal of Hilb, x Hilb,. The schemes Hilb, ,; are smooth
if k=0 or k=1, see [9]. The tangent space at a point (I, ]) € Hilb, . is the kernel of
the obvious map

(2.19) ¥ : Homs(1, S/1) & Homs(J, S/J) — Homs(], S/1).

When £ =1 the map ¥ is surjective. The diagonal T-action on Hilb, x Hilb,, preserves
Hilb, . The fixed points contained in Hilb, ,.; are those pairs I, , = (I, I) for which
n C A. The character of the fiber at I, , of the normal bundle to Hilb, 4, in Hilb, X
Hilb,, is

(2.20) Ny,= Z(tlu(s) q—a}h(«r)—l + L‘_b‘(‘g)_lqaﬂ(‘y))_

SEN

Of course, similar formulas hold for the nested Hilbert scheme Hilb, | ,,.

2.6. The tautological bundles. — Let ®, C Hilb, x A? be the universal family and let
/- Hilb, x A> — Hilb, be the projection. The tautological bundle of Hilb,, is the locally free
sheaf 7, = p.(Og,). The fiber of 7, at a point I € Hilb,(C) is S/I. The character of the
T-action on its fiber at the fixed point I, is

(2.21) T, = Z PO qx(s)_

SEA

Next, let y, 7y be the projections of Hilb, x Hilb,;, to Hilb, and Hilb,;, respectively.
Over Hilb, ,1, there is a surjective map 7, (7,41) — 7 (7,). Over the point (I, ]) it spe-
cializes to the map S/J — S/I. The kernel sheaf is a line bundle, which we call the tau-
tological bundle of Hilb, 4, and which we denote by 7, 4. Over a T-fixed point I, ; its
character is

(2.22) T = PVg0

where s = A\ is the unique box of A not contained in . Finally, let 77,, 79 be the
projections of Hilb, x Hilb, to Hilb,. Over Hilb,, we have the vector bundle t,, =
5 (t,) = 7 (7,). We call it the tautological bundle of Hilb, ,. Over a T-fixed point I ; its
character is 7, ; = 75.

2.7. The algebra ﬁ;” and the ﬁg)—module iﬁ’ — Recall that

(2.23) Rr=Clx,y], x=dq, y=dt.
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Consider the fraction field
(2.24) K1 =Frac(Ry) = C(x, ).
If no confusion is possible we abbreviate
(2.25) R =Ry, K =K.

By the Atiyah-Bott localization theorem, the direct image by the inclusion Hilb! C Hilb,
yields a canonical isomorphism

(2.26) DKL) = H"(Hilb,) ®x K.

Abn

Similarly, there is an isomorphism

(2.27) @D KIL.,.1=H"(Hilb, x Hilb,) ® K, L, = (I, L.

An
ubm

So, we may define a K-algebra structure on

(2.28) EY =P [ [H" Hilb,, x Hilb,) ® K,

k€eZ n

together with an action on the K-vector space

2.29 LY =LY = AP H"Hilb,) @k K.
K n, K

n

In (2.28), the product ranges over all values of n > 0 such that n + & > 0. The integer £
provides a Z-grading on Eg), and the N-grading on Lg) turns it into a faithful graded
Eg)—module.

2.8. The algebra fjﬁ’ . — Let ¢: Hilb,;,, — Hilb,;; x Hilb, be the closed embed-
ding. For notational convenience, the pushforward ¢, ¢,(7,1,,) of the Chern class of the
line bundle 7,4, , on Hilb,;, , will simply be denoted by c¢,(7,+1,). We will use similar
notation for the tautological bundlgs T,..+1 on Hilb, ,1; and 7,, on Hilb, ,. For [ > 0 we
consider the following elements in E{

<2‘30) ﬁ,l = HCI(Tn—H,n)[? f—l,l - 1_[ Cl(rn,n—H)l’ 30,1 == Hcl(rn,n)-

n>0 n>0 n>0

We used the convention that ¢q(t,,) = n[Hilb,,]. Let ﬁg) be the K-subalgebra of Eg)
generated by

=0 e L= 0}
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Observe that since the ¢y /’s are supported on the diagonal of the Hilbert scheme, their
convolution product is given by the cup product in the equivariant cohomology groups of
the Hilbert scheme. Therefore, the subalgebra of ﬁg) generated by {¢y ;; { > 0} is commu-
tative. Let us introduce another set of elements {f; ;; { > 0} defined through the following
formula

(2.31) D fhusTh==dlog(e(s). e =1+ (=Dieus’.  foo=t00-

>1 k>1

Under restriction, the canonical representation of Eg) on Lg) yields a faithful represen-
tation of U;il) on L;{]). We call it the canonical representation of Ug) on LE).

Remark 2.3. — Given a splitting into a sum of line bundles 7, , = ¢, ® - - - © ¢, we

get
Jour= 1_[131(051, cna),  ar=c(e), (=0.
n>0
2.9. From ﬁg) lo SAIJ'IE) — Consider the inclusion
(2.32) F— K, K> —y/x.

Let SAI:IE) be the specialization of SH® ® K at ¢ = (1,0, ...). It can be viewed as a
specialization of the K, -algebra SHE) at &; = 0. We set

(2.33) ho 141 = xflﬁ),z, by = xlflj’fl,z, hoy = Xﬁ/f—l,z» [>0.

We can now state our first result, compare [33, Thm. 3.1]. The proof’is given in Section 5.
Recall the definition of & in (0.7).

Theorem 2.4. — There 1s a K-algebra isomorphism \V : ST—IE{I) — ﬁg) such that Dy v hy
Jorxeé&.

We identify LY with Ag by the K-linear map
(2.34) Ax—> LY, I L]

Corollary 2.5. — Under the map \V, the representation of ﬁg) on INJE) guves a_faithful repre-
sentation pV 0f§ﬁ§> on Ag.

Proposition 2.6. — We have
(@) PV (b_;) = multiplication by p, and pV (b)) = I ™" Oy for 1 >1,
(b) 5(1)(])0,1) = Zi X;0x, and 5(1)(1)0,2) =« [,
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Progf.— The representation " extends the representation p™ in Proposition 1.20,
see the proof of Proposition 5.1 for details. Thus, for / > 1, the operators p'"(b_)),
p(Dg,1) and p(Dy.») are as in the proposition above by Remark 1.23. Next, we have
oM (b) -1 =0 and the map

(2.35) Klo_;;i>1]1— Ax, urpPw) -1

is an isomorphism. Further, by Proposition 1.41 the elements &, [ € Z, generate a Heisen-
berg algebra of central charge «~'. This forces p"(4;) to be given by the formula
above. U

The representation p'" extends both the representation p™ of SHT in Proposi-
tion 1.20 and the standard Fock space of the Heisenberg algebra. We’ll call it the Fock

space of ST-IE) .

3. Equivariant cohomology of the moduli space of torsion free sheaves

The Hilbert scheme of C? is isomorphic to the moduli space of framed torsion free
rank one coherent sheaves on P?. We now generalize the considerations above to higher
ranks.

3.1. The moduli space of torsion free sheaves. — Fix integers r > 0, n> 0. Let M, , be
the moduli space of framed torsion-free sheaves on P? with rank r and second Chern
class n. More precisely, G-points of M, , are isomorphism classes of pairs (£, @) where £
is a torsion-free sheaf which is locally free in a neighborhood of £y, and @ : &, — O
is a framing at infinity. Here €+, = {[x : y : 0] € P?} is the line at infinity. Recall that M, , is
a smooth variety of dimension 277 which admits the following alternative description. Let
E be an n-dimensional vector space. We have M, , = M . /GLg where M} , = N} . "M, g,
with

Ni,E = {(aa ba (pa U) € Nr’E; (a, b, (p, U) iS Stable},
3.1 M,’E:{(a, b,p,v) € N, g; la, b]+vo<p:0},
N, = g% X Hom(E, C') X Hom(Cr, E)

The GLg-action is given by g(a, b, ¢, v) = (gag™', ghs™", wg~', gv). The tuple (a, b, ¢, v)
is stable iff there is no proper subspace E; C E which is preserved by «, b and contains
v(C"). From now on we may abbreviate G = GLg and g = gg.

~ 3.2. The torus action on M, ,. — Put D = (C*)" and T = (C*)?. We abbreviate
D =D xT. Set also x =c,(¢g), y=c;(¢) and ¢, = ¢, (x,) for a € [1, 7]. We have

3.2) R, =Ry =Clx,0,¢e,...,¢], K, =Ky =C,9,¢,...,¢).
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The characters ¢ = x., t = x, and x, = x., of D are given by

3.3) bz, )=z thza.2)=2" xzaz)=kK'" h=0,h,.. k).
We equip the variety N,  with the D-action given by

(3.4) (h, 21, 29) - (a, b, @, v) = (210, 206, 212000, VE").

This action preserves M] j;, descends to M, ,, on which it has a finite number of isolated
fixed points which are indexed by the set of r-partitions of n. To the r-partition A corre-
sponds a fixed point I, such that the character T’ of the D-module T, M, , is given by
[31, Thm. 2.11]

3.5) T, = Z Z X Xb—l o0 g h0O-1 4 Z Z X Xb_lt—zﬂa) O=1 460

a,b=1 5e1@ ab=1 s

3.3. The Hecke correspondence M, , 1. — Now, we assume that dim(E) =+ 1. The
Hecke correspondence is the geometric quotient M, ,, .41 = Z; /G, where Z , is the variety
of all tuples (a, b, ¢, v, E1) where (a, b, ¢, v) € M; ; and E; C Ker ¢ is a line preserved
by a, b. We define also

(3.6) M, =@ b, 0,0, E) €7 aly, = bly, =0}/G.

roun+1 T

Write Ey = E/E; and consider the induced linear maps
(3.7) v=mov, abegy  ¢€Hom(Ey,C).
Let 7, 9 be the projections of M, , X M, .+ to M, ,, M, ,.+1. The following is well-known.

Proposition 3.1. — (a) The variety 7., ;, is a G-torsor over M, , 11
(b) The variety M, , .1 ts a smooth variety of dimension 2rn +r + 1.
(c) The closed subvariety M , | is also smooth.

(d) The map (a, b, p,v) — (a,b,¢,v), (a,b,,v) is a closed immersion M, ,, 11 C
M, , X M, 1. The restriction of 7t9 to M, , 11 is proper. The restriction of 7ty to M, .| is proper.

The pair I, , = (I, I,) belongs to M, , .+ if and only if & C A and the r-partitions
W, A have weight n, n + 1 respectively. Let N, ; be the character of the fiber at I, , of the
normal bundle (in M, , x M, ,+1) of M, ,, ,+1. We set also N; , = N,, ;. Finally, we define

(3.9 ew, = eu(T}), euy , = euy eu, .
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3.4. The tautological bundles. — "The tautological bundle of M, , is the ]S—equivariant
bundle 7, = M; . X¢ E. The character of the D-module 7,];, is given by [31, Thm. 2.11],
[37, Lemma 6]

3.9 =33 0 g,
a se)r

Set v = (gt)~'. The characters T, and t; are related by the following equation
(3.10) Ti=—(1-¢")(1-t")u®+n. W+ ®@W,

where W = b4 X! is the tautological representation of D. For & C A we have
also

No=—(1-¢)1-")0. 7+, @W +ury @ W — v,
3.11) Nua =) ) sty 10 q o007 £ 3N " gy 0O g0 — g,

ab sep@ a,b sep

Over M, , ,+1 there is a surjective map 75 (7,41) — 7, (7,). The kernel sheaf is a
line bundle called the tautological bundle of M, ,, ,+, which we denote by 7, ,41. Over I, , its
character is

(3.12) T =x VY, pcCa.

Here s = A\ u'@ is the unique box of A not contained in w. We define the Hecke cor-
respondence M, 1, and the tautological bundle 7, , over it in the obvious way, so that
we get Ty, = Tya-

3.5. The algebra Eg) and the Eg) -module Lg). — Consider the graded R,-modules
LLT) = Hf) (Mmz), L(r) = @ L(T)

(3.13) )
ELV) = l_[ HD (Mr,n-l-k X Mr,/c)’ E(r) = @ES),
k

neZ

where the product ranges over all integers £ > 0 with n 4 £ > 0. They are known to be
torsion free. We abbreviate

Hﬁ (Mr,n X Mr,m)K = Hfj (Mr,n X Mr,m) ®R, Kr’

14 E =[[H° M. x Mk, EY =EDE'X
. k

neZ

Lx=L"®x K, L=@PL}

n>0
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The variety M, , is not proper but it has a finite number of fixed points by the ﬁ—actiog. By
the Atiyah-Bott localization theorem, the direct image by the obvious inclusion M?n —
M, ,, provides us with canonical isomorphisms

(3.15) Lx=PKILl. Ex=]][PKIL..
s kA

where A, i run over the set of r-partitions of n+ £, £ respectively. This allows us to define,
by convolution, an associative multiplication on Eg) and an action of E{ on LY.

3.6. The algebras UY and SHY. — Consider the inclusion F C K in (2.32). For
[ > 0 we define the following elements in E{

(3.16) Ji= HCI(Tn+1,n)/a Jo= HCI(Tn,n+l)la 0,0 = l_[ ci(Tyn)-

n=0 n>0 n>0

We define also the element f; ; through the relations (2.31). We abbreviate

(3.17) ho, 141 :X_Zﬁ),/, hl,/=X1_[))f1,z, hoyy = (D"l

From (3.9) and the formulas above we get the following identity, compare (C.6),
(3.18) Su(LD) =) e Ll ) =) x () — e
a  ser@

Recall the field K, = K(g, ..., &,) from Definition 1.36. Write
3.19) &, =¢,/x, ae[l,r].

We consider the K,-subalgebras of E{ given by

U%? is generated by {/"1, €1, f1.1; { > 0},

UE?’JF by {eo.s, /1.;; { > 0} and UI(Q’7 by {f-1.1, @0.; { = 0},
UV by {f_1.; 1> 0} and UY"” by {fi ;: [ > 0},

U by {fo.13 1= 0},

Theorem 3.2. — The assignment Dy > hy for x € & extends to a K, -algebra isomorphism
W : SHY — Uy which takes SHY"™, SH™", SH"™ into U™, U, U~

Corollary 3.3. — Under the map \V, the representation of Ug) on Lg) guwes a_faithful repre-
sentation p© : SHY —> End(LY).

Progf. — The theorem is proved in Section 6. The faithfulness of p is proved in
Section D.2. O
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Remark 3.4. — We have p"(Dgo) = x7'fy;. Therefore, comparing Proposi-
tion 1.20 with (3.18) we get the following formula o (D) + &, 0" (Dy.1) = « .

Remark 3.5. — Since L is torsion free as an R,-module, we can view it as an
R,-submodule of L;?. Since the projection 7 : M, .41, = M, 4+ 1s proper, we have
f(LY) LY. Since

wer (T € m{HP (M, L) — HP (M.,
we have also xp /1 ;,(L”) C L. Finally, we have f; (L") C L. Therefore, the operators
(3.20) p”(x"H™'Dy), P (x*yD_y ), p”(¥Dos1), =0,
preserve the lattice L. More generally, using (1.76), we get that the operators
(3.21) HTp0M), AT PO, 120
preserve also the lattice L.

Remark 3.6. — The R,-module L is bi-graded: it is first graded by the ¢, for
which the degree n piece is L,(g{, and then by the (co-)homological degree, for which
H?(MM) has the degree 4 — 2i or 2i respectively. The operator p(D,) is homoge-
neous for the (co-)homological degrees. For x € & with x = (¢, d) we have

(3.22) cdeg(p”(Dy)) = 2¢(r + 1).

More generally, using (1.76), the formula (3.22) is again true for any € € Z.

3.7. The pairing on Lg). — The cup product equips the K,-vector space Lg) with a
K,-bilinear form (e, @) such that for all -partitions A, it we have

(3.23) (11, [L]) =6, . euy. .

Let /* denote the adjoint of a K,-linear operator / on LY with respect to this pairing.
Using this anti-involution, we can prove the following.

Proposition 3.7. — The assignment hy ; +— h_y; and hy, > ho, for { > O extends to an
algebra anti-involution U;?’Jr — Ul(é)ﬁ which takes UI(Q’> onto Ug)’<.

Proof. — By (7.85), for any r-partitions A, 7 such that A C 7w and |A| = || — 1, we
have

(3.24) (L1 AG]) = e (T eu(N ) = (frlLe], [1]).
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Thus, we get the following

(3.25) Fo=fan B =D b,

Clearly, we have also

(3.26) ho. = ho.i-

The proposition follows. O
Proposition 3.8. — For (1, d) € Ng we have (D )* = (=1 Dixy! pO(D_; ).

Progof- — Yor (1, d) € & this is (3.25), (8.26). The claim follows by applying (1.75),
(1.76). O

~ Remark 3.9. — The cup-product in cohomology gives a K-bilinear form (e, ®) on
Lg) such that

(3.27) (I, [10) = 8., (=DM J(xals) = »(165) + 1)) (x(als) + 1) = »i(5)).

SEA

Under the map (2.34) this pairing is taken to @nzo(—yg)”(o, ®) /. Here (o, @), is the in-
ner product which has Jack polynomials as an orthogonal basis of Ak. See [25, Chap. VI,
Sect. 10] for details.

3.8. Walson operators on Ui?’> and Lg). — The product of the R,-algebra homo-

morphisms
(3.28) Rg—> HsM,). 4" c(r). n=0

gives an R,-algebra homomorphism

(3.29) A, = [[H5OM),  p po) = (p(z).

Composing it with the cup product, we get a Ak, -module structure e on Lg) which pre-
serves the direct summand L'k for each n. The Ag,-action on L factors through a

A, x -action via the map 7,. We define an action of A on End(L{) by setting
(3.30) prou=[p(v), ul, ueEnd(LY), (>1.

This action preserves each graded component of End(Lg)). Note that the K,-subalgebra
U~ of End(LY) carries an induced N-grading with £, being of degree one for all /.
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Example 3.10. — The restriction of the Wilson operator p; to Lflr)K is the cup prod-
uct with

(3'31) p[(fn) :PZ(CI(/OI), ~~~,C1(,0n)),

ift,=p; + -+ p, is a sum of invertible ﬁ-equivariant bundles. Thus p, e f; ; is repre-
sented by the correspondence

1_[ C1 (Tn,n+l)k(p/(.[n+l) - pl(fn)) = l—[ C] (Tn,n+1)kpl(.cn,n+l) = 1_[ Ci (Tn,n+l)l+k

n=0 n>0 n>0

from which we get

<3.32) l)[ .ﬁ,k :‘ﬁ’[_;’_k.
For r-partitions A, u with u C A and for any p € Ak, we write also
(3.33) T =T — Ty, P(Tp) ZP(Cl(Pl), S Cl(Pn)),

if T, =p +---+ p,1s a sum of D-characters.

The following lemma is left to the reader. We’ll use Sweedler’s notation A(a) =

Zd] ®d2.

Lemma 3.11. — (a) The action of Ax, on End(Ly) preserves Uy,
(b) the action of Ax, on the degree n part of Ug) Jactors through A, x,,
() forae Ax , u,u € U™ and v € LY we have

aou(v):Z(al ou)(ayev), aouu/:Z(al ou)(aQQu/),

(d) the K ,-algebra isomorphism W : SHY"™ — U intertwines the A -actions.
For an element u € ng and for r-partitions A, w let (A; u; u) be the coefficient
of [I] in u([1,]). This coefficient is zero unless u C A. For p € Ag, we have

(3.34) (Aspous ) = p(Tu ) (A; us ().

We will say an element p € Frac(A, x,) 18 regular if it is regular at 7, ; for any A, u with
|[A\w| = n. If p 1s regular then its action on ng is well-defined. Indeed, it 1s well-defined
on any operator y € End(Lg)) satisfying

Ayspu) #0=pn CA.

We now provide an explicit description of the action of some element of Ug) "~ on
LE) in terms of Wilson operators. For this we define a surjective K,-linear map

. (), [ by
<3°35) L 'KV[zlv'-'vzn]_)Ulé >7 /31] '..Zn = 1,4 ...ﬁ,ln
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and a twisted symmetrization map

<3 36) w, . { Kr[zl, ctto 5;1] - KT(zls ey Zn)G" - Fl‘aC(A,l’Kr)

P(zi, ..., 2) = SYM,(¢g(z1, ..., 2)P(z1, ..., 20)

where SYM,, is the standard symmetrization map

(3.37) SYM,: K.(z1,...,2) — K.(z1,...,2)%", P> ZO-P,
oe®,
and where
(z+x)(z+p)
3.38 e ) = = 2), ==
(3.38) @ m=[lea-a. g ="—1 -

i<y

For n > 1 consider the element y, in Efl')K given by

(3.39) Vo= 1_[ y p CU,II[IA,M],
HCA
(3.40) g =cu((l = —0(1),9n) -1, ®W—m""),

where the product ranges over all r-partitions A, p such that u C A, [A| = || 4+ n. This
element gives rise to an operator of degree 7 in End(Lg)). Let y, denote also this operator.
It does not belong to Ug)? unless n =1 (then it is the product of the fundamental classes
of the correspondences M, 4 ;4 for £ > 0).

Lemma 3.12. — For P € K, [z, ..., z,] the element @, (P) is regular and 1(P) = @, (P) @
¥, in End(L).

Proof. — See Appendix D.3. O
Proposition 3.13. — The action of A, x, on the degree n part of Ug)’> us lorsion free.
Progf: — By Lemma 3.12, it is enough to show that the map

(3.41) Ak, — End(LY),  pr>pey,

1s injective. Now, an element p € A, x, annihilates y, if and only if

(3.42) wCA, [A\p| =n, a4, #0 = p(r.,)=0.

We claim that in fact g, ;, 7 0 for any pair satisfying u© C A and |A\u| = n. This indeed
implies that any p which annihilates y, must be zero because the collection of possible
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values of (c;(p1),...,c1(p,)) is Zariski dense in K. To prove the claim we must check
that the trivial representation does not appear in

(3.43) I—pU—=0(t),®90)—1,, ®W.

Recall that

3.44) T S S AT

a=1 sep@\y@

The multiplicity of the trivial representation in (3.43) is a sum of contributions from each
box s € A\p. It is easy to check using (3.44) that this contribution is precisely zero for
each box. We are done. U

4. Equivariant cohomology of the commuting variety

In this section we introduce an algebra SCo in the equivariant cohomology of the
commuting variety. Then we provide a description of SCo in terms of shuffle algebras. In
Section 6 we will construct an action of SCo on L and we’ll compare SCo with SH>.

4.1. Correspondences in equivariant Borel-Moore homology. — Let G be a complex linear
algebraic group. Let P C G a parabolic subgroup and M C P a Levi subgroup. Fix an M-
variety Y. The group P acts on Y through the obvious group homomorphism P — M.
Let X = G xp Y be the induced G-variety. Now assume that Y is smooth. For any smooth
subvariety O C Y let T{)Y be the conormal bundle to O. It is well-known that the induced
M-action on T*Y is Hamiltonian and that the zero set of the moment map is the closed
M-subvariety

T;Y =] |ToY.
O

where O runs over the set of M-orbits. See e.g., [11, Prop. 1.4.8]. Further we have [33]
(4.1) T"X=T3(G xY)/P, T X =G xp T, Y.

So the induction yields a canonical isomorphism

(4.2) HY (T3, Y) = H*(TEX).

We’ll call fibration a smooth morphism which is locally trivial in the analytic topology. Let
X' be a smooth G-variety and V be a smooth M-variety. Fix M-equivariant homomor-
phisms

(4.3) Y ~——V — X
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with p a fibration and ¢ a closed embedding. Set W = G Xp V and consider the following
maps

J g
X%WHX/v

/:(g,v) mod P (g, p(v)) mod P,
g:(g,v) mod P gg(v).

(4.4)

Note that V, W, X, X" are smooth. Further, the map f is a G-equivariant fibration, the

map g is a G-equivariant proper morphism, and the map / X g is a closed embedding
W C X xX'. See [33] for details. We’ll identify W with its image in X x X'. The G-variety

(4.5) Z=T(XxX)

1s again smooth and the obvious projections yield G-equivariant maps

(4.6) TX ~— 7 T
We define the G-variety

(4.7) Zo=7N(TEX x TEX).
The following is immediate.

Lemma 4.1. — (2) The map \r is proper, the varieties T*X, 7. and T*X" are smooth.
(b) We have ¢~ (T, X) = Zg and Y (Z) C TEX'.

We’ll abbreviate ¢ = ¢z, and ¥ = ¥|z,. We have the following diagram of

singular varieties

¢ [Z¢€
4.8) TEX < 7 — TEX .

Since the map ¥ is proper the direct image yields maps

(4.9) V..t HY(Zg) - H(TEX)).

Since Z, T*X are smooth and ¢~ (T X) = Zg, the pull-back by ¢ yields a map
(4.10) ¢, HO(TEX) = HY(Zo).

Composing ¥ . and ¢, we get a map

(4.11) Y. 0 ¢ HO(TEX) = HY(TEX).
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By (4.1) the induction yields also an isomorphism
(4.12) HY(T3,Y) = HY(TEX).
Composing it by ¥ . o ¢, we obtain a map

(4.13) HY(T3,Y) — HE(T:X)).

4.2. The commuting variety. — We’ll apply the general construction above to the
commuting variety. First, we fix some notation. Let E be a finite dimensional G-vector
space. Write

(4.14) gt = End(E), Cr = {(a, b) € g x gg; [a, ] =0}.

We may abbreviate G = GLg, g = gg and C = C; = Cg. Put G=TxGwithT = (C*)2.
The group G acts on C: the subgroup G acts diagonally by the adjoint action on g, while
T acts by (e, f) - (a, b) = (ea, fb). We set Coyp = HS(C). Let Kg be the fraction field of
Rg. Let 7, be the groupoid formed by all n-dimensional vector spaces with their isomor-
phisms and set ¥ = €D,., #,. An isomorphism E — E’ yields an R-module isomorphism
Co|, — Col,. Let Co’ be the colimit of the system (Co},) where E varies in 7. It is an
N-graded vector space. The piece Go/, of degree n is the colimit over the groupoid .

4.3. The cohomological Hall algebra. — Fix a flag of finite dimensional vector spaces

(4.15) 0 E, E E, 0.

Set G = GLg, M = GLg, x GLg, and P = {g € G; g(E,) = E;}. Let g, m and p be the
corresponding Lie algebras. Put Y =m, V=p, and X' = g. The G-action on X" and the
M-action on Y are the adjoint ones. Put

Co=(mxm)NC,  Cy=(pxp)NCq,

(4.16) ~
Cw={(d,a,b) €p x m x m; d = [a, 6]},

where p:p — m, a+> ay is the canonical projection. We apply the general construction
in Section 4.1 to the diagram (4.3) equal to

V4 q
(4.17) m-——p—>g

where ¢ is the obvious inclusion. The P-actions on p X p and on p x m x m are the
obvious ones. Further we identify g* = g and m* = m via the trace.



258 OLIVIER SCHIFFMANN, ERIC VASSEROT

Lemma 4.2. — (a) There are isomorphisms of G-varieties
T*X =G xp C, Z=G xp(pxDp), X' =g x g.
(b) For a, b € p we have
(l)((g, a, b) mod P) = (g, [a, b], am, bm) mod P,
W((g, a, b) mod P) = (gag_l,gbg_l).
(¢) There are isomorphisms of G-varieties
TX =G xp Gy, Zc =G xp C,, TeX =C,.
(d) The maps ¢, ¥, ¢, Y in the following diagram are the obvious ones

G [4¢
G xpCpn ~—— GxpCy —> C,

~

¢ Y
GxpCp =— Gxp(pxp) —= gXxg.

We define as in (4.13) an R-linear map
(4.18) HY(C,) - HO(Cy).
By the Kunneth formula, it can be viewed as a map
(4.19) Coy, ®x Coy, — Coy,.
The following is proved as in [33, Prop. 7.5].
Proposition 4.3. — The map (4.19) equips Co’ with the structure of an R-algebra with 1.

We call the N-graded R-algebra Co’ the cohomological Hall algebra. Let SCo’ be
the R-subalgebra of Co’ generated by Co/. We’ll abbreviate SCo, = Co/, N SCo’ and
G = GL,. The direct image by the obvious inclusion Cy C g X g, which is a proper map,
yields an Rg-module homomorphism

(4.20) Co. — HC(g x g).

We conjecture that (4.20) is an injective map. Since the kernel of (4.20) is the torsion
submodule Co,”" of Co/, by the localization theorem, this conjecture is equivalent to the
following one.

Conjecture 4.4. — The Rg-module Co), is torsion-free.
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Let Co,, SCo, be the image of Co/, SCo/ by (4.20) and set

(4.21) Co=(PCo,,  SCo=(PSCo,.

n>0 n=>0

We call SCo the spherical subalgebra of Co.

Proposition 4.5. — The map (4.20) yields surjective R-algebra homomorphisms Co” — Co
and SCo’ — SCo.

Progf. — For E € ¥ let Coy, be the quotient of Goy, by its torsion Ry, -submodule
Coy". Given E,, Eo, E as in (4.15), we must check that the map (4.19) fits into a commu-
tative square

CO%] ®R CO;;A2 —_— Co;
(4.22) l

COE1 ®R COEQ — COE.

Recall that Coy, is identified with the image by the obvious map
(4.23) H%(C,) — HS(g x g).

Similarly, since Cy, is isomorphic to u x m x m as an M-module, where u is the nilpotent
radical of p, we can identify Cog, ®r Cog, with the image of the direct image by the
obvious inclusion

(4.24) 1 c,) — HY(C,,).
So the proposition follows from the commutativity of the diagram

~ ¢Ek, ~ YG.x ~
HE(G xp Cyy) HE(G xp C,) HE(C,)

(4.25) l ¢ l w l

*

HE(G xp Cy) — HE(G xp (p x p)) — HO(g x g).

For any commutative ring extension R C L we abbreviate

(4.26) Co; =Co' ®r L, SCo; = SCo' ®r L, SCo; =SCo®r L, et
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4.4. The shuffle algebra. — Fix E € ¥,. Let G = GL, and let D C G be a maximal
torus. The Poincaré duality and the inverse image by the obvious inclusion {0} — g x g
yield an isomorphism H%(g x g) = Rg. Composing it with (4.20) we get an Rg-linear
map

(4.27) Ye : Co, — Rg.

Taking the tensor power over R, we define an Rj-linear map

QQn

(4.28) Yo = (yc)®": (Co}) ™" — Rp.

Recall that there are obvious isomorphisms
<4'29) Rﬁ:R[Zl’ ZQ»---,Zn], Ra:R['Zl’ 'ZQs"'»Zﬂ]G”'
Let K55, Kg be the fraction fields and SYM,, : Ky = Kg be the symmetrization operator.

Proposition 4.6. — We have the commutative diagram

Ha
(Go))® —— Co!

m l l o

Vn
Rp Rz,

where [, is the multiplication in Go' and v, is given by

Un(P(Zlv ceey Zn)) = SYMrz(k(zla Ry e ey zn)P(zla K2y e ey Zn))»
k2)=7"'(x+r+2x—20—2),
ki 2o, 2) = [ Gz — 2).

i<y

(4.30)

_ Progf. — Let 0 be the Lie algebra of D. Since Gy is a vector space, the R-module
HP(C,) is spanned by the set

(4.31) {27 [Col;me N, =" m= (my, my, ...m,) € N".

Here [C;] is the fundamental class and - is the Rg-module structure on P (Cy). Note
that

(4.32) o (2" [Col) = 2"
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Let B C G be a Borel subgroup containing T'. Let b = Lie(B) and let n be its nilpotent
radical. We have

T, X =G x5 Cy, T'X =G xp (nx Cy),
(4.33)
Co=0x0, 7 =G x5 (b xb).
Let Ind denote the induction
(4.34) HP(e) = HP (o) — HE(G x3 @).
Consider the elements in H® (TEX) given by
(4.35) o, = Ind(zm . [CD]), m > 0.

For a future use, we consider also the following commutative diagram

TEX TEX =C,
; l l
¢ 14
(4.36) X Z T"X'=gxg
T 1 T h
G/B — {0}.

The vertical maps are the obvious inclusions. The multiplication (4.19) gives
(4.37) v(2") = K Y (@)
Now, we compute the right hand side of (4.37). We have
(4.38) Je(a,) = Ind(zm eu(vu*) -[n x CD]).
Therefore we have also
(4.39) ¢*j.(et,) = Ind (2" eu(vn*) - [b x b]).
Tensoring by Kg, the maps ., :* become invertible by the localization theorem. We have
(4.40)  v,(2") =K Ind(2" eu(vn) eu(g~' 0" + 7'6%) - [G/B]),
= hhm, Ind(z”’ eu(vn*) f:u(q_1 b* + ¢! b*)_l . [G/B]),
= eu(q_lg* + t_lg*) F T Ind(z’” eu(vn*) eu(q_lb* + zf_lb”‘)_1 . [G/B]),
= 7, Ind(2" eu(vn* 4+ ¢ 'n+ ¢ 'n) - [G/B]).
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Thus the integration over the set (G/ B)13 yields the formula
(4.41) v,(2") = SYM, (k(z1, 20, - .., 2) Z"). O

Now, we equip the R-module

(4.42) Sh=(Psh, Sh,=R[z,...,2]"

n>0

with the shuffle multiplication given by

<4.43) (P . Q)(Zl’ ey zm-i-n)
1
= W SYM71+m<(l_[ k(ZZ — Z;))P(Z], ey zn)Q(zn-i-l’ ceey zn—i-m)) .
3y

The product runs over all 7,j with 1 <i<n<j <n+m. FordimE =1 and /> 0 let
(4.44) 6, =2 -[Cgl.
The following direct consequence of Proposition 4.6 is the first main result of this chapter.

Theorem 4.7. — There is a unique R-algebra embedding SCo C Sh such that 6, — (z,)',
where 7, s viewed as an element in Shy.

We state one useful consequence.

Corollary 4.8. — For u € C the assignment 6; — Zﬁ:o (f) ul™'0; extends to an algebra auto-
morphism T, of SCo. We have T, 0 T, = T,y for u, v € G.

Progf: — Under the embedding SCo C Sh the map 7, is the restriction of the auto-

morphism induced by the substitution z; = z; + u. Observe that £(zy, . .., z,) is invariant
under this substitution. ]
4.5. Wilson operators on G and SCo. — The canonical Rgj, -module structure on

Co), gives a graded A-algebra structure on Co’ and Co, which we will denote by e.

Lemma 4.9. — (a) The action of A on Co, Co' preserves the spherical subalgebras SCo’,
SCo.

(b) The A-action on Co/,, Co,_factors through A,

(c) Forp€ A and u, v € Co' (or Co) we have p ® (wv) =Y _(p; ® u)(ps @ V).
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Proof. — Statement (b) is clear. Observe that p; @ 6, = 6,4, hence (c) implies (a).
Finally (c) is a consequence of the commutativity of the following diagram

Tn+m

Ax
(4.45) A l l

T &

AK ®K AK — An,K ®K Am,K

A, K ———— RGVLH,“

Ryi

where M C GL,4,, 1s the standard parabolic with Levi GL,, x GL,,, and where the right-

most arrow 1is the restriction map. U

5. Proof of Theorem 2.4

~ 3.1. Part I: the positwe and negative halves. — We define subalgebras fjl({l)‘i, 6§)’>,
Ug)’< and Ug)’o of Eg) in a way entirely similar to that used for the subalgebras
Ug)’i, UE)’Z UI(Q’< and UI(Q’O of Eg) in Section 3.6. Our first task is to construct an iso-
morphism UV — SH. For this, we will use the canonical representation of U
on Ll(é). It is the restriction of the canonical representation of Ug) on Lg) considered in
Section 2.8.

Proposition 5.1. — (a) The map Dy > hy _for x € & yields an algebra isomorphism W+ :
STIEH — fjﬁ)’* which takes SAI:IE)’> onto fj;{l)»'

(b) The map (2.34) intertwines p™ with the canonical representation of ﬁ%wf on f.ﬁ)

Proof: — First, we compare the action of D, on Ax with the action of 4, on ig),
under the isomorphism (2.34). These actions are described by the formulas (1.30) and
(1.34) for Dy, and by the formulas (C.6) and (C.4) for /. These formulas coincide, because
Vi = Ly Since p* is a faithful representation, see Proposition 1.20, this yields the
isomorphism W above. O

Remark 5.2. — By Propositions 1.35 and 3.7, the K-algebras S’\Iilg)ﬁ and ﬁg)’f

are isomorphic to the opposite K-algebras of SAI:IE)’Jr and fjg) " respectively. Thus, by
Proposition 5.1, the assignment Dy > £, for x € &~ extends to an algebra isomorphism

L&D =2(1),—
v-:SH,  — U,

5.2. Part 2: glueing the positive and negative halves. — We must prove that the two alge-
bra isomorphisms W+, W~ glue together to an algebra homomorphism

(5.1) v SH, — U,
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It suffices to check (1.69). The proof of this relation follows from Appendix D by set-
ting » = | and ¢, = 0O there. To finish the proof of Theorem 2.4, it remains to show that
the map W is an isomorphism. Since it is clearly surjective, we only have to check that
it is injective. Our argument is based on the existence of triangular decompositions for

SAI:IE) and fjg) First, let us quote the following proposition whose proof is given in Ap-
pendix C.2.

Proposition 3.3. — The multiplication gives an isomorphism

m: U @ U @k U~ — U

.o _ 3y(Ds (1.0 xa(D:
Let W>, W0 W= be the restrictions of W, W~ to SH ”, SH,  and SH b

We have the following commutative diagram

S D0 e VTevIerT

SHY” @ SHY @ SH' U7 @k U @k U

(5.2) . l l .

~ v ~
SH, Uy

Further, we have the following isomorphisms

(5.3) SH,"=K[Dy;(>1], OP°=Klh, (> 1].

Thus, by Proposition 5.1 and Proposition 5.3, the top arrow and the right one are iso-
morphisms. The left arrow is surjective by Proposition 1.37. Thus the left arrow and the
bottom one are both isomorphisms. Theorem 2.4 is proved.

6. Proof of Theorem 3.2

6.1. Puart 1: the positive and negative halves. — Given Eq, E € ¥ with E; C E, we write

E, =E/E,, M = GLg, x GLg,, P={g€G;gE) =E},

6.1
o1 X'=gxHom(C,E), Y=mxHom(C',E), V=pxHom(CE).

Here p, m are the Lie algebras of P, M. Consider the obvious maps

(6.2) 7 :E— Eo, p:V—=>Y, q:V—>X.
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For x € p let xy, be its projection in m, modulo the nilpotent radical u of p. Let X, W, Z,
ZG, @, ¥ be as in Section 4.1 and M, i, N,  be as in (3.1). Define

N = (gr,)* x N, 5, = m” x Hom(E, C") x Hom(C’, E),

M, = Cg, x M, 5, = {(a, b, ¢, v) € Nu; 0= [, b] + v o ¢},
(6.3) N, =p® x Hom(E,, C') x Hom(C’, E),

M, =N, "M, ={(a, b, ¢,v) €N,; 0=[a, b] + v o ¢},

N, = {(c,a,b,0,v) €p X N e =la, 0] + vo g} = u x N,
We have the following technical lemma [33, Lem. 8.2].

Lemma 6.1. — (a) We have canonical isomorphisms of G-varieties

~

T*X=G xpNp, Z=GxpN,, TX =N,
TeX =G xpMpy, Ze=GxpM,, TX' =M.

(b) The maps ¢ : 2. — T*X and  : Z — T*X in (4.6) are given, for (a, b, ¢, v) € Ny,
by

(l)((g, a, b, ¢, v) mod P) = (g, la, b] +v o, ayn, bm, @, T o0 v) mod P,
lﬁ((g, a, b, ¢, v) mod P) = (gag_l,gbg_l, (po n)g_l,gv).

(¢) The wnclusion TEX C T*X w5 induced by the inclusion My, — N, (a, b, @, V) >
(0, a, b, @, v). The inclusion Z; C Z. 1s induced by the obvious inclusion My, C Ny. The inclusion
TEX C T*X s the obvious one.

Using this lemma, we can now prove the following;

Proposition 6.2. — There is a representation 1’ of Go' on L such that n'(0)) =_f1.; for
[ eN.

Proof: — To define " we consider the closed embeddings
(6.4) N, CN, g, M, CM,, (a,b,9,v) = (a,b,p om,v).
Then, we set
(6.5) N, =N NN, M, =M, . NM,, 7' =G xpNy, Zi=GxpM;.

Note that Ny, My, Z°, Z; are open in Ny, My, Z and Z¢. Next, the proper map ¢ : Z —
T*X' restricts to a proper map ¥, : Z' — NJ . because Z' =Z N ¢~ (N} ). Finally, we
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have ¥,(Z;) C M, i, because Z, = Zg N 7. Thus, taking the direct image by v/, we get

the commutative diagram

~ w&*
HO(Zy) — HOQOL,)

(6.6) l l

/o
HC(z) —— HON: ).

Now, set NJ, = (g,)? x Nop, , My, = Cp, x Mo, , N =Ny 0 (p x NY,) and
T"X =G xp N,  TEX =G xp M.

For (a, b, p,v) € N}, we have (aw, bm, ¢, m o v) € N;.. Thus the map ¢ : Z — T*X re-
stricts to a map @, : Z' — T*X°. The varieties Z* and T*X"* are both smooth and we have
¢ N (TEXY) =7 NZg = Z,. Hence the pull-back by ¢, gives the commutative diagram

%

HO(T%X) —— HO(Zy)

(6.7) l l

(P*
HE(T*X) — HE(Z)).

Set n; = dimE;, ny = dimEy and n = n; + ny. Since M} By is a GLg,-torsor over
M, ,,, by descent we have an isomorphism

(6.8) L =HO (M, ).

Here we used the symbol GLE2 = GLg, x T following the notation G in Section 4.2.
We have also L(’) = HG(M‘ ). Finally, the induction and the Kunneth formula yield an
isomorphism

(6.9) Ind: Co/, ®x LY = HY(C;, x M7, ) = H(T;X).
Thus, composing (6.9) with (6.6) and (6.7), we get a map
(6.10) Vi« @) Ind: Co), ®r L,(Z;) — LY.

The same argument as in the proof of [33, Prop. 7.9] implies that (6.10) defines an R-
linear representation of Co’” on L. Details are left to the reader. Let ' denote this
representation.
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Now, we compute the image of the element 6, € Co) by the map 7. To do so, we
change slightly the notation. Assume that E; € %] and E € ¥,,,. Fix x € L and let y be
the image of 6, ® x by the map
(6.11) Co, ®x L — L

n+1

given in (6.10). We must check that y is equal to the element
<6.12) Ci (T71+1,n)l CX =TT % (Cl (sz+l,n)[ 7'[2*()6))

By definition of (6.10) we have
(6.13) =v,.¢"Ind(6, ® x).

The variety Z;, is the set of all pairs ((a, b, ¢, v), E;) where (a, b, ¢, v) € MjF, a,beyp
and ¢(E;) = 0. It is a smooth G-torsor over M, ,1;,. Hence, by descent we have an
isomorphism

(6.14) HE(Z) — HY (M, 4,)-
So we have the commutative diagram

1/’.&,*

HE(Z:, HO (M )
(6.15) l l

s

H'M,,11,) — H' (M, ;1)

where both vertical maps are given by descent. Comparing (6.12), (6.13) and (6.15),
we see that it is enough to observe that the isomorphism (6.14) takes ¢ Ind(6; ® x) to
Cl(Tn+1,n)17T2*(x)- O

We can now prove the following,

Theorem 6.3. — The map 0’ factors to a K, -algebra isomorphism
(6.16) n:8Cox, —UY”,  6,—fi,, [eN
which commutes with the action of Ax, .

Proof. — Since the representation of U;? on Lg) is faithful, the map n" gives a
surjective K,-algebra homomorphism

(6.17) n':8Cox —UY”, 6> f, [eN.
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First, we claim that n” commutes with Wilson operators. It is enough to check it on gen-
erators by Lemma 3.11(c) and Lemma 4.9(c). Example 3.10 gives

(6.18) N pe6) =00 =fimi=pofis=poen ), [>1, k>0,

proving the claim. Next, by Proposition 3.13 the action of A, on UL [x] is torsion
free. Hence the map 7’ factors to a surjective K,-algebra homomorphism

(6.19) n:8Cox — UYL~

taking 6, to f; ;. It remains to show that 1 is injective. Let x € SCo, k, and assume that
n(x) = 0. If x # 0 then, by the localization theorem, for any y € 8Co, x, there exists
b, P € A, x, such that p e x =’ @ y. But, then, we have

(6.20) Penm=n(p ey)=n(pex)=pen(x)=0.

It follows that n(y) is torsion, hence n(y) = 0 by Proposition 3.13. This contradicts the
surjectivity of n. We deduce that x = 0, i.e., that 7 is injective. ([l

Proposition 5.1 and Theorem 6.3 (for » = 1) yield the following,
Corollary 6.4. — There 1s a K-algebra isomorphism SCox — SHE, 6, — XDy .

Remark 6.5. — Proposition 3.7 and Theorem 6.3 give a K,-algebra homomor-
phism

(6.21) N : (SCok)* = U™, 0> [
Proposition 1.35 and Corollary 6.4 give a K-algebra isomorphism
(6.22) (SCOK)OP — SH<, 91 = XZD_L[.

We define U and U”"= to be the images of SCog,, (SCog, ) by the maps  and n°.
We have R,-algebra isomorphisms

(6.23) SCog, — U™, (SCog)™ — U"~.

6.2. Part 2: glueing the positive and negative halves. — Theorem 6.3, Corollary 6.4 and
Remark 6.5 give K,-algebra isomorphisms

(6.24) WISHY” > U, wTiSHY T - U

such that W= (D, ;) =/, and W=(D_, ;) = A_; ;. Next, Appendix D gives the following.
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Proposition 6.6. — The class [h_1 , hy ;] 15 supported on the diagonal of M, ,, X M, , and it
coincides, as an element of U, with the operator By, on LY given by

1+$E:EMH“=@m(E:G4Y“m®0®@064<§:%ﬁ4w60-

=0 =0 >0

We can now prove Theorem 3.2. First, note that we have a K,-algebra homomor-
phism

(6.25) v :SHY — UY, Dyt by,  x€&.

Indeed, relation (1.69) follows from Proposition 6.6 and (1.67), (1.68) from Remark 2.3.
Thus, we are reduced to check that the representation p is faithful. A proof is given in
Section D.2.

7. The comultiplication

So far, we have defined an algebra SH® and we have constructed a representation
p® of SHE in LY. In order to compare SH® with W-algebras, it is important to equip
it with a Hopf algebra structure. We do not know how to construct the (topological)
coproduct on SH€ in an elementary algebraic way. Our argument uses our previous
work [33]. First, we prove that SH® can be regarded as a degeneration of the elliptic Hall
algebras which was studied there. This is Theorem 7.7. Next, using this result, we prove
that the coproduct of the elliptic Hall algebra degenerates and induces a coproduct on
SHE¢. This is Theorem 7.9.

7.1. The DAHA. — We’ll abbreviate A = C[¢*!/?, #1/%], K = C(¢"/?, {"/?) and
v!/? = (¢©)7"*. Fix an integer n > 1. The double affine Hecke algebra (=DAHA) of GL, is
the associative K-algebra H, generated by

(7.1) XEL XL YL YT, T

subject to the following relations [10, Sect. 1.4.3]

(7.2) TXTi =X, T T =Yg,

(7.3) TX,=XT., TY,=YT. j#ii+l,

(7.4) (T; 4+ ¢7*)(T; = ') =0, T, T T =T T,

(7.5) TT,=T/T,, j#i—1,4:1+1,

(7.6) PX; =X, P, PX, = ¢ 'X,P, P=Y{'"T,---T,.1, i#n
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Let ﬁj be the K-subalgebra generated by

(7.7) Xp, o X YT YT, T,
and let S be the complete idempotent. We set

7.8 S, S8 SH —SH'S

For x € Z2 we define an element P of SH, as in [32, Sect. 2.2]. For [ > 1 we have

7.9 P =¢Sp(Xy,.... XS, PY =Sp(X7h .. XS,
PY) =Sp(Y1,...,Y,)S, P, =¢Sp (YT ..., Y, )S.

There is a unique K-algebra automorphism [32, Sect. 3.1], [10, Sect. 3.2.2],
(7.10) o:SH, > SH,,  P”—P"  o(i.))=(,—0.

o(x)°’

Let ﬁﬂ,A be the A-subalgebra of H, generated by (7.1) and set ST'I,,A = gﬁﬂ, AS. Note
that

(7.11) H=H,o:.K  SH,=SH,, K

We have an A-basis of H, 5 given by [10]

(7.12) (XY'T,;a€Z' BeZ' we,}

Consider the following K-vector spaces, see (1.19),

(7.13) W,=W,x, V,=V,k

The K-algebra H, is equipped with a faithful representation [32, Sect. 4.1]
(7.14) ¢, : H, > End(W,)

called the polynomial representation. The subalgebras SH, and ST-I: act faithfully on the

subspaces WnG" and A, k. For a partition A with at most n parts let J; (X; ¢, ) be the
integral form of the Macdonald polynomial P, (X; ¢, "), see [25, Chap. VI, (8.3)]. We
abbreviate

(7.15) g ) =0(Xs e X g 7).
This yields the following K-basis of A, x

(7.16) U2 (g, 71 1) < nl.



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 271

Finally, for x € Z(Q) we define new elements ui”), Q(u,(‘")) of ST-I” as follows. First, we set
(7.17) a=(-1)(-1), (=1

Next, for x = (7,7) and [ = ged(x), we set

(7.18) PO = (f — 1), () = £ s (6 — 1)/

We have the following formula [33, Cor. 1.5]

<7.19) e(ugf;) . §Lﬂ) (q’ lﬁl) — quX(j)tb)(J)J;n) (q’ lfil), ZZ 1.

SEA

By [32], [33, Sect. 1.3] we have also

(7.20) [, w) ] = £sgn(D )
where
(7.21) segn(l) =1, sgn(—=(—1)=—-1, [>0.

To unburden the notation, let SH, denote also the smash product

(7.22) K[| ®« SH,,
where '} is a new formal variable and the commutator with ) is the K-derivation

(7.23) [y, u)] = i

i

The element ]} acts on V, as the grading operator. We’ll set 0 (uy) = u).

7.2. The degeneration o ﬁn — Our aim is to construct a degeneration from ﬁn to
H,. The degenerations of H, have been extensively studied, see e.g., [39]. Here we only
need a very particular one introduced for the first time by Cherednik. We set

(7.24) A =F(m), o =FH]

We refer to [23] for a reminder on topological .&7-modules (for the £-adic topology). Let
® denote the flopological tensor product of o7 -modules. An o7 -module is lopologically free if it
1s isomorphic to V[[A]] for an F-vector space V. Let F(X) be the free F-algebra on X.
For a future use, recall that a complete separated o7 -algebra B is topologically generated by
a subset X if the obvious continuous map F(X)[[/4]] — B is surjective.

First, consider the algebra embedding A C &7 given by

(7.25) 7"+ exp(h/2), "% > exp(—kh/2).
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Let I be the ideal of A given by I = (2) NA. Let B, C H, be the A-subalgebra generated
by H, 4 and the elements (Y; — 1)/(¢ — 1) with ¢ € [1, n]. We set

(7.26) H,.r =1im(B,/I'B,).

k

By (7.12) the A-algebra B, is topologically linearly spanned by the elements of the form
Xf(Y)T, where ¢ €e Z", w € G, and f(Y) € A[Yfl, Y:— ¢ /(g— D] for i € [1,n]
and k, [ € Z. Consider the element y; in 'H,, ., given by

(7.27) yi=) DY =Dk

=1

We have faithful representations, see Section 1.3,

(7.28) ¢,:H,—> End(W,),  p,:H, > End(W,).
From (7.25) we get inclusions

(7.29) W,CW,(()),  End(W,) C End(W,)((%).
We abbreviate

(7.30) O =hHyer,  Hy=Huw/lH, s, [EN.

Lemma 7.1. — The o/ -module H,, o7 ts topologically free. As a topological <f -algebra it is
generated by the set {'1;, X;tl,yl-; tel,n],jell,n)}. Wehave

(7.31) Xl:-tl e O(), T, € O(1), Y, =1+0(0), ;= ;= 1)/h+O().
The map @, yields a continuous embedding ¢, : H,, o — End(W,)[[%]].

Progf: — The o/-module 'H,, s is topologically free because it is separated, com-
plete and torsion free. The other statements are easy and are left to the reader. U

Finally, we set
(7.32) Hotr =Hoor Quy K .

By base change, the map ¢, yields a continuous embedding
(7.33) @, Hyr = End(W,)((B).

The following is standard. The proofis left to the reader.



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 273

Proposition 1.2. — (a) We have H,, .y = {x € H, »; ¢.(x) € End(W,)[[/]]}.
(b) The map @, factors to an ijection ¢, : H, — End(W,).
(¢) There is a unique ¥-algebra isomorphism ¢, - H, — H,, such that

d)n(XJil) X,:lt_il —j ¢n(){]) =Int1— — (T’l - 1)K/Q’ d)n(Tz) = Sn—i-
(d) We have ¢, = p., o @,, where p, = wop,wy and wy € Aut(W,) s given by X; —
Xn+l—i-

7.3. The degeneration of SH,. — We now turn our attention to the spherical subal-
gebras. Set

(7.34) SHyy =S Hoor S,  SH,=8H,.s/hSH, .
The map ¢/ factors to an injective map
(7.35) ¢, :SH, — End(V,).

For [ > 1 we consider the following elements

-1

Qt(fz =h Z (1 ; 1) (=D)'6 (“g’f?—l—k)’

(7.36)
() __ [p(n) (n) (n) (m) (m)
Qo= DZKIPZ,Ov 10 =P 4= [ L1 Q,o]’
Proposition 1.3. — (a) For [ > 1 the elements QY) 1o and QE)") belong to SH,, o .
(b) The map @, restricts to an ¥-algebra isomorphism SH,, — SH, such that we have PY) tr0 >

DY), and Q)+ DY) for [ > 1.
(c) The algebra SH,, o7 s topologically generated by Pil)l’o and (")2

Progf. — We first prove (a). We have Pﬁ,o € SH,.r- We consider the inclusions
V., V, CV, » associated with the obvious inclusion F C J# and with the embedding
K C JZ in (7.25). We have [25, Chap. VI, (10.23)]

(7.37) (1= )9 (g, 1) =] mod AV, .
By (7.19), for {(A) < n, we have

<7.38) Qﬂﬂ) (n) g, == IZ Z( ) l)kq(l—l—k)y(s)‘];n) (q, L‘_l),

ser k=0

qc(s) -1 - n -
=Z( p ) D),
seL
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By Proposition 7.2 the o7 -algebra SH,, . is the subalgebra of
(7.39) SH,x =SH, o Qu H

which preserves the subspace V, o of V, . It entails that (”) 1 € SH, oz as wanted. We
now deal with (b) and (c). Note that

WH, oy N SH, oy = hSH, ..

~

Therefore the natural map gives an injection SH, — H,. Since SH, o, =S - H, s - S
the map ¢, in Proposition 7.2 restricts to an injection

(7.40) ¢, : SH, — SH,.

The equality ¢,Z(Q0" (()"3 is a consequence of (1.30), (7.37) and (7.38). The equality

¢,(P}) ) = DY), follows from (1.32) and (7.9). The map ¢, in (7.40) is surjective because,

by Lemma 1.3, the F-algebra SH, is generated by {D(ﬁo, Dgf;; [>1}. Claim (c) is a

consequence of Nakayama’s lemma together with the fact that SH,, is generated by D(()'f?z
(n)

and D) ;. 0J

Let SH; ,, SH_, and SH, , be the closed «7-subalgebras of SH,, . topologi-

cally generated respectively by the sets {Q}"); { > 0}, {Q") ;; /> 0} and {Q}}; [ > 0}. We
abbreviate

SH;— - hSH: . SH:=S8H:,,/hSH:,,,

(7.41) '
SHﬂ n, d/h SHn of

Using Proposition 7.3, we get the following.
Corollary 7.4. — The map ¢, gives ¥-algebra isomorphisms
SH>—-SH, SH:—SH:, SH'—SH’
such that > DY), Qur > Dayy and Q) > DY) for [ > 1.

Proof. — Let SH; ,, be the closed % -subalgebra of SH, » generated by
{Q"); > 0}. We have

(7.42) SH>£¢ CcSH %mSHndv
and the map ¢, yields an isomorphism

(7.43) SH; » NSH,or/M(SH, ,, N\SH, r) > SH..



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 275

Since the induced map SH. , — SH is surjective, we deduce that

(7.44) SH, ,=SH, ,NSH, .

In particular, we have also

(7.45) SH, ,NhSH, o =8H, , hSH,s=htSH, .

This shows the existence of an F-algebra isomorphism

(7.46) SH; —SH;,  Pjj—Djg.  [Qf,, Pi]~ DY)

Since SH, is N-graded, there exists an automorphism of SH>, sending P{’) to Q"
This proves the corollary for SH. The other cases are similar. 0

7.4. The algebra SH’. — Consider the K-algebra £in [33, Sect. 1] associated with
the parameters

<7.47) O_I/qu—l/Q’ 61/2:t—1/2.

It is generated by elements u, ky with x € Z?, satisfying the relations in [33, Sect. 1.1].
For gcd(x) =1 and /> 1, we set

a=(1-¢)1-£)(1-v)/L

(7.48) P, = (qz _ 1) i Zglx = exp (Z O Uy sl>.

1>0 =1

Since & is an extended Hall algebra in Ringel’s sense, see e.g., [22, Sect. 1.6], it admits a
topological coproduct A, which 1s given by the following formula, compare [8, Sect. 7],

A(ky) = kx ® Ky,
Alup) =up @ 1 +k0, Qupy, [F#0,
Aluy) =u,; @1+ ZKLH{@M Qui iy, (€L

k=0

(7.49)

"The expression “topological coproduct” means that A maps into some completion of the
tensor square of &, see [8, Sect. 2] for details. By [8, Sect. 5], there is a unique K-algebra
automorphism

(7.50) o :g —> /g\, Kx > Ko(x)) Uy > Us(x)-
Compare (7.10). We define a new topological coproduct on £ by the formula

(7.51) A = ((7_1 ®0_1) oAoo.
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Now, we fix a family of formal parameters ¢; with / € Z and we set
(7.52) K =Kl¢c;leZ][¢,'], A°=Alc;leZ][¢;']

Let £ be the specialization of € g K€ at k1 o = ¢p and k.| = 1. Let 4y o be a new formal
variable, and consider the smash product

(7.53) SH' = K[u,o] ®x £°,
where the commutator with g g is the K°-derivation on £€ such that
(7.54) [uo’o, uill-] = l.ul'_J', (l,]) € Z(Q)

The Ke-algebra SH® is Z?-graded with deg(u,) = x. It is equipped with the topological
coproduct

“A(eg) = ¢y ® ¢y,
‘Ae)=8(c)  iflF#0,
(7.55) Au) = u ®@ 1+ & ® ug,

TA(w) =w,) ®1+ éé Qw1 + ZéﬁH@—k,o @ Upi,1-

=
Let ST-I>, SH"" and SH™ be the K-subalgebras generated respectively by
(7.56) {wy ;s L€ Z}, KU {u ;[ €Z), {u_y 3 L€ Z).

The following holds.
_ Lemma1.5. — (a) The multiplication yields an isomorphism SH ®x SH"" ®x SH —
SH'. .

(b) We have SH™ ™ = K°[uy ;| € Z].

Progf.: — Part (a) follows from [33, Sect. 1.1], which is proved using the formulas
[33, Sect. 1.2]

[Uo,z, u:i:l,k] = jISglfl(l) UL f+1s

(7.57) = sen(k+ 1) & 0y /oy ifk+1#£0,
B R else,

where sgn(/) is as in (7.20). Part (b) is [8, Sect. 4]. 0J
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Next, we consider the A®-subalgebra ST-IZ generated by the elements u, with x €
Z’. We have

(7.58) SH® = SH, ®, K°.

Finally, let Sﬂi:In> and ST-I; be the subalgebras of SH, generated by

(7.59) [ 1ez}, [ ;1eZ).

By [32, Thm. 3.1], [33, Sect. 1.4] there is a unique surjective algebra homomorphism
(7.60) W,:SH —SH, w5 60(u).

The map ¥ =[], ¥, is an embedding of SH ™ into I, ﬁl: by [32, Thm. 4.6].

7.5. The degeneration of SH'. — For x = (i, j) in Z2 and [ > 1 we define

c __ c __
Uy o = U005 Uy = Uy + 8;0 ¢/ aj,

-1
[—1
:/Zlfl < )(_l)kuc -
<7.61) «OJJ kX_O: k 0,l—1—k

Qo= (—l)lKle,o, Q_0=P_y,
Q1. =1Qp.141, Q.0 Q1= —[Q.141,Q 10l
We have an inclusion of F-algebras A® C 7€, where o7¢ = F°[[/]], which is given by

g""* > exp(h/2), 1" > exp(—kh/2), co > exp(€hey/2),
c > sgn(l) Y (=i er/kl, 150

k>0

(7.62)

Consider the ideal I = (k) N A® in A®. Let B C SH® be the A°-subalgebra generated by
{Q10, Qp; { > 1}. We define an o7 °-algebra by setting

(7.63) SH, =lim(B*/I"B°).
k

Let SHZ, and SH, be the closed o7°-subalgebras of SH¢S, generated by the sets
{Q;.;5 >0} and {Q_, ;; [ > 0}. We write

(7.64) SH™ =SH>,/hSH>,,  SH =SH/ASHS,,  SH°=SH:,/hSH,.

Proposition 7.6. — (a) The &/ -modules SH?, and SH?, are topologically free.
(b) There are ¥-algebra isomorphisms ¢ : SH> — SH” and ¢ : SH~ — SH= such that

we have ¢ (Q0) =Dy and ¢(Qxy) =Dy for [ > 1.
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Proof- — Part (a) is obvious, because SH?, and SH;, are separated, complete and

torsion free. Now we prove (b). First, consider the map W,. For [ # 0 we have Q(u(") = 5"3

by (7.18). Thus, by (7.18), (7.36), (7.48), (7.60) and (7.61) we have also

(7.65) W,(Q0) =Q%.
Next, for /[ > 1, the formulas (7.48), (7.57),(7.60) and (7.61) give

[
(7.66) W(Qy) = k(1 — ™ Z(,i)<_1)ke(uggk),
k=0

and by (7.18), (7.20) and (7.36) we have also

(7.67) Q) =k (l — gk ZZ( ) —Do(a).

Therefore, by (7.65), (7.67) the map W, gives rise to a continuous &7 -algebra homomor-
phism

(7.68) W, SH, > SH .  V(Q)=0Qf  v.@Q)=Q, [>L.

The map W is a closed embedding SH, — [, SH; . By Proposition 1.15 and Corol-
lary 7.4, composing W and [ ] ¢, we get a map

(7.69) ¢ SHMHSHH, ¢ (o) =),  ¢'@Q.)= (D).

By definition of SH”, there is an inclusion of F-algebras

(7.70) i:SH” - [[sH;,  iD,)=(Di7), D)= (D).

Thus, we have a surjective F-algebra homomorphism ¢ which is given by
(7.71) p=i"'o¢:SH — SH".

We must prove that it is injective. We consider the partial order on Z* given by
(7.72) (rnd) < (¥.d) < r</andd<d.

The Z2-grading on SH° yields a filtration on SH>, such that the piece SHZ,[<x] con-
sists of the elements whose Z*-degree is < x. The «/-module SH>,[<x] has a finite rank
and we have

SHZ,[<x]1NhSH>, = hSH,[<x],

(7.73) SH [<x1/hSH: [<x] C SH” = | JSH, [<x1/hSH [<x].
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We define SHZ z[<x] in an identical fashion. From Corollary 7.4, we get

(7.74) SH, J=<x]/hSH, ,[<x] C SH] .

Next, given x, for n large enough the map W, in (7.68) yields an isomorphism

(7.75) SH [=x]— SH, ,[=x].

Thus it factors to an isomorphism

(7.76) SH[=x]/hSH_[<x] - SH, ,[<x]/hSH, ,[<x].

Composing (7.76) with (7.74) we obtain an inclusion, for n large enough,

(7.77) SH [<x]/hSH_[<x] C SH] .

We conclude that ¢’ is injective. Hence ¢ is also injective. U

Let SHYS be the closed «7°-subalgebra of SHS, topologically generated by
{Qy.;; [ > 1}. By Lemma 7.6(b) we have an isomorphism

(7.78) SHYS =F[Qg 1 { = O][[A]].

As above, we abbreviate SH*¢ = SH' /ASH'. We can now prove the following theo-

rem.
Theorem 1.77. — (a) There is an ¥-algebra isomorphism ¢ : SH® — SHE such that

#(Qy,1) =Dy, #(Q10) =Duso, $(Qx1.) =Dury, (=1
(b) The algebra SHS, is topologically generated by Q_y o, Q0 and Qg o.

Proof: — By Proposition 1.35 the F-algebra SH€ is generated by the elements ¢,
D4, and Dy . Thus, part (b) follows from (a). Now, we prove (a). We’ll identify the ring

(7.79) A=Z[¢" x0T

with the Grothendieck ring of the group D asin (3.3). Let Li? be the localized Grothendieck
w20 My e The word localized
means that the ring of scalars is extended from the ring A, to the field

(7'80) K'):K(Xh 9X7’)

The set of fixed points {I,} of M, , for the D-action gives bases in L and LY. Set

group of the category of D-equivariant coherent sheaves on |_]

(7.81) A =K(0). @ =K][n]
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We have an embedding K, C %, given by the following formulas, compare (7.62),

=exp(h), t=exp(—«h), Xo = exp(eh),
(7.82) q p p p

K = —y/x, £, = ¢,/x.

Identifying the bases above, we get inclusions of LE? =@, K, [I,] and L;? =@, K [L]
into the JZ-vector space

(7.83) LY =P (L.
A

Now, a representation of £ @k K, in LY is constructed in [33, Sect. 8]. It can be
upgraded to a representation of SH® ®g %, on L in which u acts as the grading
operator. We have

o=v""  eg=px") forl#0,  uf,=sen(D)f,

w,=v ' (g— D', u_r ;= (=1)""detW) ey (g — D7'x 'y,
(7.84) £[L]=> "t/ AN, —T:) L], £ 0L1=) 7 AN, —T;) (L],
ACT ogCA

fo’[[:[)\] — Z Xll_lqh(&)tb(x) [I)L].

Here /> 0 and A is the Koszul complex and det(W) = (x1x2...x,)"'. On the other
hand, the representation p is given by the following formulas, see Section 3.6 and Ap-
pendix D,
c[ :pl(gll)9
D1,1=x1_1yf1,1, D_,,= (—1)’_196_{][—1,1, Do 141 ZX_%,Z,
full]= i@ eu(N; , = T5) [L],
(7.85) rem
Sulll=)"ci(ton) eu(N;, = T2) [L,],

oCA

ol = Eeoc ) )

a,s

The above formulas allow us to compare the action of Q4,;, Qp; and of Dy, ,
Dy,;. Write

(7.86) or)=Pr 1), (e
A
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Using (7.61), (7.84) and (7.85), we get
(7.87) Qo [1:] =Dy L1+ O, [=1.
Next, for 0 C A C 7 such that |[A| =|o|+ 1= 7| — 1 we have
(7.88) dim(Ny , = T,)=—r—1, dim(N,,; —T,)=r—1.
Therefore, we have the following estimates in J#;

A(N; , —T:) = (/W) eu(Ny , —T7%),
T AN T = N, )
modulo lower terms for the /-adic topology. Finally, (7.61), (7.84), (7.85) and (7.89) give
(7.90) Q. 0[L] =Dy o[L]+ O, Q1oL =Dy o]+ O).
By (1.67), (1.68) and (7.61) we have

Dy, = [Do,i41, D1l D_y ;= —[Do,i1,D-1,0],

Q. =1[Qp51, Quols Q-10=—=[Qo.1+1, Q-1.0]-
Thus (7.87) and (7.90) imply that

(7.91)

(7.92) Q. [L1=Dy L1+ O, Q-1 /L] =D_ L]+ OW).

Now, the algebra homomorphism F¢ — K, in Definition 1.36 yields an algebra homo-
morphism .&7/° — &7, Consider the algebras

(7.93) SHY) =SH, @ue o,  SH” =SHV/ASHY).
Note that the composed map A® — &/° — K, is given by
(7.94) c=v""  eu=+p(x7).

We define SH”->, SH®-< and SH”" in the same way, using SH>,, SHZ, and SH";.
Formulas (7.87) and (7.92) imply that the A®-subalgebra B¢ C SH" preserves the lattice
O(1). This yields a representation of SH¢, on L which preserves also O(1) and which
factors to a representation of SH" on O(1)/O(h) = Lg). Since p is faithful, this yields
also an algebra homomorphism

(7.95) SH" — SHY.

It is surjective, because SHY is generated by the elements Dy 41, D_,; and Dy, with
[>0.
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Now, the .o -algebra embeddings of SH>,, SHZ, and SHS into SHE, give obvi-

ous maps
(7.96) SH">, SH?, SH" = — SH".
Composing them with (7.95) we get K,-algebra homomorphisms

(7.97) SH”> - SHY”,  SHY"—SHY™",  SH" - SHY”,

which give the commutative square

SHP> @ SHO @c SH< " SH®
(7.98) l l

SHY~ ®k, SHY" @k, SHY"~ —— SHY.

Here m is the multiplication map.
Now, by Proposition 7.6 there are K,-algebra isomorphisms

), (), > (), (r,<
SH" — SHY™,  SH"<— SHY,

Q10 Do, Q1> Dayy
Further, by (1.66) and (7.78), we have a K,-algebra isomorphism

(7.100) SH?" — SHY, Qg1+ Doy

(7.99)

Thus the left vertical map in (7.98) 1s invertible. The bottom horizontal map is invertible
by Proposition 1.37. Thus the upper map m is injective. Therefore, to prove that the right
map is invertible it is enough to check the following;

Lemma 7.8. — The multiplication gives a surjective map
m:SH”” @k, SH™ @k, SH”'= — SH".
Progf: — It 1s enough to prove that
(7.101) [Qy,. Q] € SH", [Q-1.1, Qp il € SH" ™, [Q. 1., Qi) e SHPY,
The first two relations follow from a simple computation, since (7.57) implies that

(7.102) [Qo.1, Qi k] = Qyis-1, [Q-1.0, Qo] = Qi1

For the third one, we must check that [Q)_, ;, Q, ;] belongs to SH?Z’;. First, by (7.57) we
have

(7.103) [Q 1, Qi eSHY @y K.
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Next, one can check that [Q_, ;, Q, 4] lies indeed in SHY by looking at its image by p.
The details are left to the reader. U

We have proved that the assignment Qg ,; = Dy, Q40+ Dy extends to an
isomorphism of K,-algebras SH” = SHY for any 7. The theorem follows. O

7.6. The coproduct of SH®. — The F-algebra SH€ carries a Z-grading SH® =
D, SHe[s]. We consider the topological tensor product SH® ® SHEC over F defined by

SH*® SH* = (P l(ir_n(@(SHC[s -11® SH“[t])) /Ixlsl,
<7.104> s¢Z N Niez
Ils] = @D (SH°[s — 1] © SH[1]).

(>N

We can now prove the following.

Theorem 1.9. — (a) The map °A factors to an F-algebra homomorphism A : SH® —
SH® ® SHE which is uniquely determined by the following formulas

A(c)) =d(c)) for [ >0,

A(Dyp) =8(Dy0) for [ #0,

A(Dy,1) =38(Do,),

A(Dg9) =8Dg,) +§& 2131 Ik''D_;0 ® Dy,

AMD, ) =8MD1)+&cy @D, gand A(D_, ;) =6(D_;) +ED_1 R co.

(b) The algebra homomorphism & : SH® — ¥ in Remark 1.38 is a counit for A.

For [ € Z we abbreviate O (k') = i'SH.,. First, let us quote the following formulas.

Lemma 7.10. — The following hold

(@) oy = k&R + O(hY),

() 00 = o + OR°) = k&|U|R*Pro + O(1®) for [ # 0,
() Py =P o+ O for [ #0.

Proof- — Part (a) follows from (7.48). Note that P, € O(1) by definition of SH¢,.
Thus, (b) follows from (7.48), which gives the following formulas for / > 1

<7.105> Pil,() = (gl — 1) U0, Z 0[’() SZ = CXp(Z (07] Ui o Sl> .

=0 =1

Finally, for /> 1, using (7.50), (7.57) we get

<7°106> Ut = i[uo,l, u:l:l,O]~
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From (7.61) we get also
(7.107) o, = (¢ — 1)Qyo +up0 — ¢ /(g— (¢t —1).
Thus, part (c) follows from the following computation
(7.108) Py =(g— Dugi
=+(g— Dluo1. Parol/ (¢ — 1)
==£(— 1’[Qq2. Piol/(¢' — 1) + ig — DPwo/(¢' — 1)
=Py + O). O

We can now turn to the proof of the theorem.

Proof: — We must prove that A preserves the lattice SH ., and we must compute
the image of the elements Q, o, Qg and Qg . By (7.55) we have “A(P, o) = 6 (P,) for all
[ € Z. Thus, we have also A(D;) = 8(D,). Next, using (7.55) and (7.61), we get

Qo,l = Up,0, OA(QO,I):S(QD,I)~
This implies that A(Dg ;) = §(Dy,1). Finally, using (7.55) and (7.61) again, we get
Qo =(¢— 1)_1(118,1 - uo,o),
"AQo2) =8(Qu) +(g— D7D 0 ®@u.

k>1

(7.109)

Thus, by Lemma 7.10 we have

(7.110) TA(Qo2) = 8(Qya) +khE Y P10 ® Pro+ O(R).

k>1

This implies that

(7.111) A(Dy2) =8(Dg2) +& Y k"D ® Dy -
>1

For future use, let us mention the following fact. For [ > 0 we put

(7.112) SH [<—/(|=EDSH [-s].  SH'[>/]=D SH"[s]

s>1 s>

where the grading is the rank mentioned above.

Lemma 7.11. — For [ > 1 we have A(Dy;) = 8§(Dy,;) modulo SH™[< —11®
SH[>1].
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Proof. — A simple computation shows that, modulo SH™[<—1] QSH[> 2], we
have

(7.113) AD, ) = A(ad(DO,Q)Z(Dl,O))

!
= ad<5(Do,2) +& Z k' "D ® D/,o) (5 (DO,l))
11
=3d(D1.1)
!

+£Y ad(8(Dy2)" 0ad(D_1,0® D1 o) 0ad(8(Dp2) " (8(D1.0))

k=1

/
=6(D;,) +§ ZEZ—k ® Dy 1.

k=1

Applying the commutator with A(D_; o), we get, modulo SH™[<—1] QSH*[> 1],

[
(7.114) AE)=8E)+&> E ®E,.

k=1

It follows in particular that
(7.115) A(Dy,;) € SH*’ ® SH*" + SH[<—1]® SH'[>1].

Using (1.71), modulo the ideal SH™[<—1] QR SH*[> 1], we deduce from (7.114) the de-
sired estimate on A(Dy ). O

8. Relation to W, (gl,)

8.1. Vertex algebras. — Fix a field k containing G. By a vertex algebra we’ll always
mean a Z-graded vertex k-algebra, 1.e., a Z-graded k-vector space V with a vacuum
vector |0) and fields Y (v, 2) = Znez v(,l),z_”_l in (EndV)[[z, z7']] satisfying the usual
axioms, see [2, 16]. We’ll call the v,’s the Fourier coefficients of the field Y (v, z) (or, equiva-
lently, of v) and we call v, its residue. As usual, the symbol : : will denote the normal ordering
(from right to left).

Let (V) be the current algebra of V, see [2, Sect. 3.11]. It is a degreewise complete
topological k-algebra. This means that it is a Z-graded k-algebra U(V) = @, U(V)[s]
which is equipped with a degreewise linear topology such that the multiplication HU(V)[s] x
UV)[5] = U(V)[s + 5] is continuous, and that each piece U(V)[s] is complete. We call
the degree with respect to this grading the conformal degree, and we call this degreewise
linear topology the standard degreewise topology. See [27, Sect. 1] and [2, Sect. A.2] for the
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terminology. The k-algebra (V) is equipped with a degreewise dense family of elements
{vis v eV, neZ}, see [2, Sect. 3.9, Prop. 3.11.1].

We define a V-module to be a 4(V)-module. A V-module is admissible if it is a
Z-graded Y(V)-module M = @SEZ M[s] such that M[s] =0 for s > 0. If M is an admis-
sible V-module the action U(V)[s] x M[s'] = M[s 4+ s'] is continuous with respect to the
topology on $(V)[s] and the discrete topology on M.

8.2. The vertex algebra Wi (gl,). — Fix an integer » > 0 and an element £ € k. Let
Wi.(sl,)x be the W-algebra over k at level k associated with s(,. We may abbreviate W(sl,) =
Wk(ﬁb)k- Recgll that W, (sl,) is a Z-graded vertex algebra with quasi-primary vectors
Wy, Wi, ..., W, of conformal weight 2, 3, ..., r. The corresponding fields are

(8.1) Wi =YW,z W, eEnd(Wysl)).

leZ
The vacuum [0) of W;.(s [,) has the degree zero, andy\'fl-, ; 1s an operator of degree —/. We
abbreviate W; ) = W, ,_;11, so that we have W; =W, _,]|0). Then W,(gl,) is spanned,
as a k-vector space, by the elements

(8.2) Wi Wi Wiscpl0),  4=1, 0.

The vertex algebra W, (s[,) admits a strict filtration, in the sense of [2, Sects. 3.4, 3.8], such
that the subspace W, (s[,)[<d] is spanned by the elements (8.2) with 7, &9, ..., % > 2 and

(8.3) Wi 4+ <d+t

We’ll call it the order filtration. 'This filtration differs from the standard filtration on any con-
formal vertex algebra [2, Sect. 3.5, Rem. 4.11.3]. The associated graded W, (sl,) is a
Commutgtive vertex algebra. Let WZ-, ; denote the symbol of W;; in End(W,(sl,)). The
vectors Wy, ..., W, generate a PBW-basis of W,(sl,), see [2, Sect. 3.6, Prop. 4.12.1]. This
means that the map

(8.4) k[w,pii€l2,7], (= 1] > Wisl),  flwicp) = (Wi ))|0)

1s invertible.

Let Wi (gl,) be the W-algebra over k at level k associated with gl,. It is the tensor prod-
uct of W, (s[,) with the vertex algebra associated with a free bosonic field of conformal
weight |

(8.3) Wl(Z) = ZWL/Z_Z_I.
leZ

The results above generalize immediately to Wy (gl,). In particular W, (gl,) admits a
strict filtration such that the subspace W;(gl,)[<d] is spanned by the elements (8.2) with
0,12, ..., > 1asin (8.3). Finally, recall that W, is a conformal vector of central charge

(8.6) Cr=0—1—=r(r=1)k+r—1*/k+1).
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In other words, the Fourier modes of the field Wg (2) satisfy the relations
(8.7) [Wo i, Wo il = (L = (YW i+ (8 = 1) 8, Cy/12.

8.3. The current algebra of W;(gl,). — Let W(Wi(gl,)) be the current algebra of
W (gl,). We’ll abbreviate \TVZ-J = (Wi){g+i_1}. Thus Wi,g may be viewed both as a lin-
ear operator on W, (gl,) and as an element of 4(W,(gl,)) of conformal degree —/. We
hope that this will not create any confusion. Note that the elements Wi], I \7\7,-2, L 'Wi,, I
with ¢, 2, ...,4>1and {, + & + --- 4+ [, = s span a dense subset of U(W,(gl,))[s]. Now,
the order filtration on W;(gl,) induces a filtration on Y(W,(gl,)), called again the order
Sfiltration. The element Wi,, has order : — 1. Let Wi,[ denote its symbol in the piece [2,
Thm. 3.13.3]

(8.8) U(Wi(gl)) [l = (Wi(gl)) [<il/L(Wi(gl)) [<il.

The conformal weight yields a Z-grading on i_l(Wk(g [,))[¢] such that Wi, ; has (conformal)
degree —/. Note that E(Wk(g[,)) is also a degreewise complete topological k-algebra. It
1s isomorphic to the standard degreewise completion of the algebra k[w; ;1 € [1,7], [ € Z] as
a degreewise topological k-vector space. Here w;; is given the degree —/.

8.4. The W, (gl,)-modules. — Now, let b be the Cartan subalgebra of gl,. For g € b,
the Verma module with the highest weight B is an admissible module Mg with basis elements

8.9 Wi oo Wiy Wi LilB), =1, t>0.

Here |B) 1s the highest weight vector, see [2, Sect. 5.1]. We have the following relations
(8.10) WiolB)y=a(B)IB).  Wulp)=0, 1=1,

where ¢,(8) is the evaluation of the ith elementary symmetric function at .

Remark 8.1. — The order filtration on W,(gl,) induces a filtration on Mg such that
Mpg[<d] is spanned by the elements

(8'11) Wil;*llWiQs*[Z o 'Witx*lt|ﬁ>’ Zi Z 17 t Z 0,

with 7, 29, .. ., 7 satisfying (8.3). By [2, Prop. 5.1.1], the associated graded is a i_l(Wk(g[,.))—
module M. The conformal weight yields a Z-grading on M. As a graded vector space
Mﬁ is 1Isomorphic to the polynomial ring k[w; ;2 € [1,7], [ > 1], where w; _; is given
the degree /.
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8.5. The quantum Miura transform for Wy(gl,). — Let by, by, ..., b, be a basis of b
and let 5, 5@, ..., 5" be the dual basis. Let (e, ®) denote both the canonical pairing
h* x h — k and the pairing h* x h* — k such that (b?) is orthonormal. Fix ¥ € k* and
fix » commuting boson fields 6" (z), 8 (2), ..., 6 (z) of level k~'. Thus, we have

(8.12) [0, 07 ) = 18,80/, B0 =) 4"

leZ

Let £ be the Heisenberg algebra generated by the elements bgi) with 7 € [1, 7] and
[ € Z. Yor B € hlet T4 be the #’-module generated by the vector |8) with the relations

(8.13) bP1B) = 8.0(6”, B)IB), (= 0.

To avoid confusions we may write 75 = 7 . Consider the fields

(8.14) bR =) @b, k=) (hb)b ), ke,

1 1

We call m, the Fock space. It has the structure of a conformal vertex algebra such that
Y(b@1|0>,z) = b?7(z). As a vertex algebra m, is isomorphic to the rth tensor power
W, _1(gl;)®. The Virasoro field has central charge r — 12(k, k) /k and is given by
gzi:b(i) (2)% + 0.A(2). For each B the module mg has the structure of a module over
Wi (gh)®.

Now, let £V, A ..., i) be the weights of the first fundamental representation of
sl,. Letalso a;, w;, withi =1, ..., 7r— 1, be the simple roots and the fundamental weights
of sl,, and p be the sum of the fundamental weights. Given Q) € k we define the fields
Wi(2), Wa(2), ..., W,(2) in End(my)[[z, 2]] by the following formula

(8.15) —:[ [(Qa. + £2(2): =Y Wa(2) (Qa) ™.
=1 d=0
Note that

r—1
Z/l(i)zo, _Zh(i)®}l(j):Zai®wi:Zb(D®b(ﬁ_%J@J,
=1

i=1 i i=1

J=) .
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Therefore, we have

Wox) =1,
Wi(z) =0,
Wa(2) = =« Y _:hP(2) hP(2): + kQ0.p(2)

i<y

(8.16) o
= 5 D (Do) + £Q.p(2)
=1

_ % > ()% — %J(Z)Qz +1Q0:p(2).

i=1
For » > 2 the field Wy (2) 1s a Virasoro field of central charge [21, Prop. 4.10]
(8.17) Co=0—1D—r("-1)kQ"
Although this notation is not compatible with (8.16), we’ll write
(8.18) W) =J() =) 7.

i=1

Comparing (8.6) and (8.17) we get C; = Cq if
(8.19) Q=—-¢&/k, k=k+r.

Recall that we put § =1 — «, see (1.35). We'll always assume that (8.19) holds. Then, the
fields Wi (2), ..., W,(z) generate a vertex subalgebra of W, _; (gl;)®” which is isomorphic
to W,_,(gl,), see [16, Sect. 5.4.11]. In other words, there is a faithful representation of
W,_,(gl,) in 7y which is given by the fields W, (2), ..., W,(2). An explicit expression of
the field W, (2) yields complicated formulas. The following is enough for our purpose.

Proposition 8.2. — For d # 1, modulo lower terms in the order filtration of {(W,._; (gl ))@,
d
_ s—d[ T — S . d—sp(i1) (22) (7) .
W) = =« Xoj(—r) ( _ d) DI CRAOUORAOS
s= 1] <tg <+ <ls

Progf. — Obvious because, modulo lower terms, we have

(8.20) W,(2) = —k Z :h(il)(z) h@)(z) .. '/Z(i”)(z):.

1] <ip<-+<iyg
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Since 74 is a module over the vertex algebra o = W,_; (gl;)®’, it is also a module
over W,_,(gl,). Let Z (W,_,(gl,)) denote the image of (W, _,(gl,)) in End(ms). This
image may depend on the choice of 8. We hope this will not create any confusion. We
have the following, see, e.g, [6].

Proposition 8.3. — The representation of W_,(gl,) on 1wg 15 such that
WaolB) = wa(B)IB), WulB)=0, (=1,

r

wi(B) =) (b7, ),

=1

d
wiB)=—x Y J(r".B)+@—-0&/k), d=2.

1] <tg<--<ig t=1

8.6. The freefield representation of SHE). — A composition v of ris a tuple (vy, Vo, ..., V)
of positive integers summing to r. For each composition, we set

sH = @SHY. L= QLY.
8.21) = -
SHY = SH{" @, K, L =L{" &K

Here, the symbol ) denotes the tensor product over K, and ) is the topological tensor
product over K, as in Section 7.6. For instance, for d = 2, we have

SHy = (DSH}[s].  SHy[s]= l(lr_n( P Qs [si]) /ANl

(8.22) ez N Ny 4so=s5i=1,2
Axlsl =P ) SHY [s1].
s9>Ni=1,2

Taking only the terms in SHgf) [s;] or SH%)[S [;] in the definition of SHj,, we get the
subspaces

(8.23) SHY[s1,...,5,  SHY[<l,...,<l].

For future use, let us quote the following easy fact.
Proposition 8.4. — The map A" factors to an algebra embedding A" : SHY) — SH; and
AY(SHY[s]) € EB SHY 51, .... 5.,

.....

A'(SHY[<[]) C @ SHY[</,...,<l).

,,,,,
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Here the sums run over all tuples summing to s and [ respectively.

Progf. — Since the coproduct A admits a counit ¢, the map A’"! is an injection
(8.24) SH® — (SH)”",

because A" (x) = 0 implies that x = (8‘@([[71)@ id)(A“~!(x)) = 0. Here, the tensor prod-
uct 1s taken over the field F. Composing this map with the base change o ®p K, and
the obvious inclusion K,, C K, for : € [1, v;], we get an F-linear map SH® — SHy such

that ¢; = p,(e, ..., ¢,) for each [ > 0, because A(c;) = 8(c;). Therefore, by construc-
tion of the map IF® — K, in Definition 1.36, it factors to a K,-algebra homomorphism
A’:SHY — SH. . This map is again injective. U

Definition 8.5. — We define a representation p* of SH%? on Ly by composing AV with the
representation of SHy, on Ly in Corollary 3.3.

Corollary 8.6. — The representation p° is_faithful.

Progf: — Use Proposition 8.4 and Theorem 3.2. O
Remark 8.7. — We will mostly be interested in the case v = (1"), where we abbre-
viate (1) = (1, 1, ..., 1). In this case, we have
(8.25) Ly = (L))" =Ly’ @ L’ ® - ®x Ly,

and the K,-vector space structure is given by
(8.26) £E=101Q - ®1®Q1I®---®1, 1€[l,r],

where ¢ is at the zth spot.

8.7. The degreewise completion of SHY . — We refer to [27, Sects. 1.1-1.4] for the
terminology concerning degreewise topological algebras. The K,-algebra SH;? carries a
Z-grading and an N-filtration inherited from SHE, see Section 1.8.

Definition 8.8. — The standard degreewise topology of SHY is the degreewise topol-
ogy defined by the sequence

(8.27) I =P xlsl. Ixlsl =Y SH [ — s|SHY[—1].

seZ >N

The standard degreewise completion of SHI(Q is the Z-graded algebra given by

(8.28) U(SHY) = DUSHY)[s).  U(SHY)[s] = lim SHY[s]/_7xls).
N

se€Z

The standard degreewise topology on il(SHE)) i the projective limat degreewise topology.
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The standard degreewise topologies on SHY and U(SH) are linear. They equip
U(SHY) with the structure of a degreewise complete topological algebra and the canon-
ical map SHY — $(SHY)) is a morphism of degreewise topological algebras with a
degreewise dense image.

Definition 8.9. — A module M over SHY or S((SHY) is admissible i/ M = @,_, M[s]
s Z-graded and M[s] = 0 for s large enough.

By an embedding of degreewise topological algebras we mean an injective mor-
phism of degreewise topological algebras. The following is an immediate consequence of
Corollary 8.6.

Proposition 8.10. — (a) The map p" is a faithful admissible representation of SHY on Lg)
which extends to an admissible representation of W(SH).
(b) The canonical map SH%? — L[(SH;?) is an embedding of degreewise topological algebras.

Remark 8.11. — If M is admissible then the actions
(8.29) SH[s] x M[s'] > M[s++],  $(SHY)[s] x M[s'] — M[s + 5]

are continuous with respect to the standard topology on SHEQ [s], il(SHg))[s] and the
discrete topology on M[s'], M[s 4 s'].

Remark 8.12. — The order filtration on SHY induces a filtration on ${(SHY)
called again the order filtration. By Proposition 1.39 it is determined by putting D, ; in
degree d for any 7, d.

8.8. From SHE) to Wi(gly). — In this section we set k = K; and k = £+ 1. Recall
that W,_;(gl;) = mo, the vertex algebra associated with the Heisenberg algebra 7.
We abbreviate

(8.30) Wi@=b=) bz

leZ

Thus W,_;(gl;) is spanned, as a vector space, by elements
(8.31) by -+-b_4]0), L>1,t>0.

Defination 8.13. — The subspace W, (gl;)[<d] of standard order at most d is the shan
of the elements in (8.31) with t < d.

The standard filtration on W, _; (gl;) should not be confused with the order filtration.
The associated graded of W, _;(gl;) with respect to the standard filtration is a commu-
tative vertex algebra. The current algebra $(W,_,(gl;)) has a standard filtration as well,
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for which the elements &; are of standard order 1. Now, we consider the 5#"-module
(8.32) = T, B=—¢e/k.

Recall that % (W, _i(gl})) is the image of ${(W,_(gl;)) in End(x"). By Proposi-
tion 1.41 there is a unique isomorphism K -vector space Lg) — W such that [I5] — |B)
which intertwines the operator p"(5_;) = p" (y'D;) on LE) with the operator 4_; on
7D, Following (2.34), we identify 7" with A, in the usual way. This yields an isomor-
phism

(8.33) L) =7 = Ag,.
Our next result describes the action of the element H; introduced in (1.89).

Proposition 8.14. — We have the following relation in End (7 V)

K
,O(l)(Hl) = § Z p(l)(:bg_hbh:), leZ.

heZ

Progf. — To unburden the notation we omit the symbol p"

prove that

(8.34) Ho=k Y bb+xbi/2,  Hi=kY b b/2. k#0.

>1 leZ

everywhere. We must

Recall that b_; acts on Ak, by multiplication by p, and that 4, acts by the operator k ~'(3,,.
Next, the computation in the proof of [35, Thm. 3.1] implies that

A—1

1 1
(8.35) Op) =k ~"En(X)p, + 9 Z Ay 5 b+ 5 Z Z M i, it

r#s ro =l
So we have the following formula
(8.36) U=¢ Z(l — Db_sb/2 +« Z(b,,,kb,bk +b_ib_ibii) /2.
=1 Lk=1

Now, Remark 3.4 yields

(8.37) Dyo+&1Dg =« L.

Further, a direct computation (left to the reader) using (1.89), (6.36) and (8.37) gives
(8.38) (Hy, b1 = —lbiy, (H_, 0] =—ly, [€Z, k>1.

This implies the formula for H; and £ # 0. Next, a direct computation using (1.89) yields
(8.39) Hy =Dy, + kb /2.



294 OLIVIER SCHIFFMANN, ERIC VASSEROT

Further, by Lemma E.3 we have [Dy 1, D, o] = /D, and by (3.18) we have Dq ; ([15]) = 0.
This yields the following formula for Dy ;, which implies the formula for H,

(8.40) Doy =k Y _b_iby.

>1

O

Equations (8.36), (8.37) and (8.40) give the expression for the action of Dj; and
Dy, on 7. Since SHY is generated by {Dy.o, by; [ € Z}, the proof above also gives the
following.

Proposition 8.15. — There is an embedding OV : SHE) — U W,_1(gh)), b — b
which intertwines the representations of SHI({]) and % (W_,(ghy)) on 7.

Remark 8.16. — From (8.36), (8.37), (8.40) we get pM(Dy ) =V k£ ", 2,
where V' =y, for some element u € W,_;(gl;) of degree 3. Note that the infinite sum

>t 2 belongs to % (W, (gl)).

Thanks to Proposition 8.15, we may speak of the standard order of an element of
SH\.
Proposition 8.17. — For d > 1 we have

d
8.41 OMy,)= — Dby by -+ by o).
< ) P O,d) d(d—i—l)lz P 01 Zd)

0seeesld

The sum runs over all tuples of integers with sum 0. The symbol = means that the equality holds modulo
the action of terms of standard order < d — 1.

Progf. — To unburden the notation we omit the symbol p" everywhere. Further,

for any integers my, ..., m; we abbreviate

(8.42) b,....n, = ad(b,,) o ad(b,,) o---oad(b,,).

Recall that :4,, - - - b,,: 1s the monomial obtained from b, - - - 4,, by moving all 4,,, m; <0,
to the left of all b with m; > 0. First, we prove that for any mj, ..., m; we have

(8.43) b Do) = (d = D! (mimy - m) by m=my 4+ my.

We proceed by induction on ¢. Note that (8.36)—(8.40) imply that

2
K K
<8.44) DO,] = 5 Z:blobll s DO,Q = 6 Z :blobll b[z:,

lo, 11 lo, 11,
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where the /s are integers which sum to 0. This implies the claim for d = 1, 2. Assume
that (8.43) is proved for d. Applying ad(D, ;) to (8.43), the formula (1.91) gives

This implies the formula

(8-45) brm m,[(Dl,d) =d\(mymy -+ -my)by_1.

.....

Similarly, we have

(8.46) b

.....

Next, we compute

(8.47) by Br2) = by gy ([D=1,2, D1 4])
= Z[bm,"m,‘ (Dfl,Q)a bml ,...,ﬁi,...,ﬁ/,...,md+1 (Dl,d)]
i<y

+ Z[bmi (D—I,Q)v bml,...,;ﬁi,...,md_,.l (Dl,a’)]’

where the symbol m; means that the index m; is omitted. Write m™ = m + my, ;. The first
sum on the right hand side of (8.47) is equal to

§ 2K Zilj'bnl,;+rrg7'+l,n11,4..,/m\i,4..,/rﬁ7',..4,md+1 (Dl,d)

i<y

= 2ucd\(my -+ mas1) Y (mi 4 mi+ )by

i<y
= 2ucd\(m; - - mgp) (dm* + d(d +1)/2)b,+

while the second sum evaluates to

—d! Z(ml o ';n\i e md+1)bm'*'fm,'fl,mi(Dfl,Q)

= 2cd!(m; -+ - mgp)) (—dm* + (d+ 1)) b+
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We obtain
(8.48) by ....mgss (Bago) = 6 (d + 2)1(my - - - gy 1) byt .

By (1.71) we have E 0 = k(d + 2)(d 4+ 1)Dg 441 + u where u« is a polynomial in
Do.1, ..., Do of order < d. Thus, we have

<8°49) bm1,...,md+1(Ed+2) = K(d+ 2)(d+ 1)bm] ..... m,/+1(DO,d+])'
From this we finally deduce relation (8.43) for 4+ 1. We are done.

Now, relation (8.41) follows from (8.43). Indeed, given integers , [, ..., [, we have

m

(8.50) ad(b,) (by by <+ by) = Z; by« by bi, by,
where the sum is over all 2’s with ; = —m. Thus, if §, [, ..., {; sum to 0 we have
<8°51) bm1,‘..,md(:blobl| e bl,j:) = Cbma
for some constant ¢ which is zero unless &, /,, ..., l; are equal to m, —m;, —my, ..., —my,
up to a permutation, and which, in this case, is equal to (m, - --m,)/k? times the num-
ber ¢, .., of permutations o of {0, 1,...,d} such that /o = m and /) = —m, for
s=1,2,...,d. In other words, if ly, [}, ..., l; are equal to m, —m;, —my, ..., —my up to a

permutation, then we have

k% (d —1)!
(8.52) buy.mg| Doy — —————1byyby, -+ - b;,: ) =0.
Cly,....ly
Therefore, for any integers my, my, ..., m; we have
!
8.53 by | Doy — ————— by -+ b0 ) =0.
( ) Tseees d( 0,d d(d+ 1) ZOX:ZI 10 11 1{1 >

The sum runs over all tuples of integers summing to 0. To conclude, we use the following
lemma.

Lemma 8.18. — Let u € U(W,_,(gly)) be anmhilated by b, . ., for any integers
miy, ..., my. Then u s of standard order < d — 1.

Progf- — We may express « as an infinite sum

(8.54) u=Y Y ay.iby by

s>0 1,..., 2
Now observe that
(8.55) s<t = by .mCby---b:)=0, Dy oo oy =+ 012) = Cony o
where ¢, ., #0ifandonlyif/, ...,/ are equal, up to a permutation, to —my, ..., —m.

The lemma follows easily. O
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8.9. From SHg) to Wi(gly). — We are interested in higher rank analogues of the
inclusion ®. In this section we deal with the case r = 2. We set k = K, and k = £ + 2.
We write

(8.56) 7 =m0, B)=—eific+ (= DE/K, i=1,2.
Recall that Z (W,_2(gls)) is the image of (W, _»(gly)) in End(n“Q)). The isomorphism

(8.33) yields an 1somorphism LEQ) = A%. Composing it with the isomorphism A% =

719 such that 1 ® 1 — |B) which intertwines the operators /_; ® 1, 1 ® b_, on A% with

2 . .
the operators b(_ll), b(_Ql) on 1), we get an isomorphism

(8.57) L) =71 =AY

which identifies [I5]®%, |8) and 1®2. Using (8.57) together with Propositions 8.3 and 8.10
we get inclusions of % (W, _s(gly)) and SHY into End(1?).

Proposition 8.19. — The representation p" ytelds an embedding of degreewise topological
Ky -algebras @@ : SHY — % (W, _(gly)).

Proof. — Itis enough to check that p (b)) and p (Dy.5) belong to Z(W,_s(gly)).
For b,, this follows from the easily checked relation

(8.58) P () =J). =) b eSH[[z.27']):
leZ
For Dy 9, this is a consequence of the lemma below. UJ

Lemma 8.20. — There 1s a constant ¢ such that

2
: K K
P(lz)(Do,Q) = 9 Z:Wl,leQ,/: + Y Ziwl‘fkfxwl,kwl,/i

leZ k,leZ

+ % Z(m - 1):W1,—ZW1,1: + SWQ,() +c.

leZ

Progf: — First, note that (8.36), (8.37), (8.40) and Theorem 7.9 imply that

2
K
8.59)  p"I(Dy,) = 5 D ()b A+ 6B 4 6 P B+ 6605
k,[>1

k& 9 (8 9 1 (5
+5 D U=D N8 +5057) =1 (8168 + £26%)57)

>1 >1

+ g > b,

>1
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Using &) = —« bél) and g9 =& — Kb(()Q), we can rewrite (8.59) in the following way

(8.60) p(lg)(Do’Q)_ Z b(l) b(l)b(l)+b(2) b(Q)b(Q)

k,leZ

K&
+ 7 2 (1= 200" + 6557 +

leZ

+rE Y BN + o

>1

for some constant ¢;. Next, recall that

Wi (2) = bV (2) + 6@ (2),

K&
+ 7 e —

leZ

(8.61) . .
Wo(2) = Eib(”(z)2 0% = W) — £0:0(2).

This implies that

@62)  War=—g > bt D 4 o+ é(z+ D" —b?).

keZ /ceZ

Further, we have the following formulas

(8.63) 3 W W W =3 Y ) B0 4 b8 P p0:

k,leZ k,leZ

4+ Z b(l) b(l)b(1)+b(2) b(Q)b(Q)

k,(eZ
(8.64) D MWW =2 (06D 07+ Y 166 + 6257
leZ leZ leZ
(8.65) D Wi Wa = —2 Z )b 4+ b2 P b
leZ /c leZ

K ) ).
i - Z b(_l;z Zb“’b“) +b‘2 b<2>b(2

k,leZ

f§ Z BB D5, S&-ZZ B

leZ
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Therefore, we get

9
K K
(8.66) P(lz)(Do,Q) - = Z:WI,—ZWQ,Z: - — Z:WI,—k—IWI,le,Z:
2 leZ 24 k,leZ
K&
- T Z [[:W W 2
leZ
K ‘
= Y
leZ

Next, observe that

K K S
Wao= =5 D000+ 5 D 08 + 0007+ (8 — oY),
(8.67) leZ leZ
DTS ST I

leZ leZ leZ
Therefore, we have
K& o) (¢ K& £?2 ,
(8.68) 5 DB 00 = T D W W+ EWa o — (8 = 0).
leZ leZ

The lemma follows, the constant ¢ being given by
(8.69) ¢ = p3(8)/6kc + pa(8)§ /4K — pr(E)E* 2k + &7/ 12k. O

Remark 8.21. — Lemma 8.20 yields o (Dy») = VO + k& 3 IW, W, /2
where VU s a linear combination of Fourier coefficients of fields of the vertex algebra
W, _2(gly). An easy computation using Theorem 7.9 yields

VO =VO VO e Y 1605 /2,

leZ

where V@ denotes the operator V" in Remark 8.16 acting on the ith spot of 71 =
7P @aW. So, we have V) = V(o) for some element v € W, _y(gly) of degree 3. Finally,
note that the infinite sum 2121 [W; /W, /2 belongs to % (W,_s(gly)).

8.10. From SHI(Q to Wi(gl,). — Now 7 is arbitrary. We set k =K, and k =k 4+ 7.
We write

(8.70) =g (B9, B)=—ei/k+G— DE/k, i€[l,r].
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Recall that % (W,_,(gl,)) is the image of 4(W,_,(gl,)) in End(mw"). We construct as in
(8.57) a K,-linear isomorphism

(8.71) Ly =n"" =AY
which identifies [I5]®", |8) and 1®" and which intertwines the operator b(f)l on ") with
(8.72) 1®---®1®_, 1@ ---®1 (b, 1s at the ¢th spot)

on AY’ and with the operator on L{" given by

(8.73) 1@ 010 "D,)1Q--- 1.

Propositions 8.3, 8.10 then provide inclusions of % (W,_,(gl,)) and SHE) into End( 1").
We equip SH% , L[(SH;Q) and % (W,._,(gl,)) with the standard degreewise topologies.

Theorem 8.22. — The representation p" yields an embedding of degreewise topological K, -
algebras @0 : SHE) — U (W,_,(gl,)) with a degreewise dense image. The morphism @ is com-
patible with the order filtrations.

The theorem is a direct consequence of Lemmas 8.23, 8.26 below. Note that the
map O is homogeneous of degree zero relatively to the rank degree on SH%? and the
conformal degree on % (W,_,(gl,)).

Lemma 8.23. — (a) We have p"” (Do) = VI + k&>, W, W, /2, where V)
is a Fourier coefficient of a field of W, (gl,). -

(b) The representation p” yields an embedding of degreewise topological K,-algebras @1
SHY — % (W,_,(g).

Proof: — Part (b) is a consequence of (a), because SHI(? is generated by the elements
Do.o, b, [ € Z, because the infinite sum 2121 [W, _/W,,/2 belongs to Z (W,_,(gl,)) and

because p!” takes the formal series b(z) € SHI@[[z_l, z]] to W1 (2), viewed as a field in
(End7 ") [[z7, 2]1.

Let us concentrate on part (a). The cases » = 1, 2 have been considered in Re-
marks 8.16, 8.21. So, we may assume that » > 2. Theorem 7.9 yields

P (Dog) =) Dy +wE Y > 1808,
i=1 i<j =1

where D(()Z)Z is the operator p™"(Dy ) acting on the ith spot of 71" = (rV)®". Let Vfi) €
End(r ") denote the operator V" in Remark 8.16 acting on the ith spot of 7! =
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71)®" Then, a short computation vields
) p y

P Dy 2) =V k€Y IWL L W/2,
>1

(8.74)

v — Zv(Z) + K& Z Z lb(]) b(l)/Q

i<j leZ

Recall that under the quantum Miura transform we can view W,_,(gl,) as a vertex
subalgebra of W,_(gl))®. Set Wi =W,_;(gl))®"" @ W,_o(gly) ® W,_1(gl)®" .
We have the following classical result due to Feigin and Frenkel.”

Theorem 8.24. — We have the equality W, _,(gl,) = ﬂ:;ll WU i W1 (gl)®".

This is a direct corollary of the characterization of W, _,(gl,) as the intersection
of screening operators associated with the simple roots of gl,, see [15, Thm. 4.6.9]. The
above formulation appears in [16, Sect. 15.4.15].

Therefore, the part (a) is a consequence of the decomposition (8.74) and of the
following.

Claim. — There is an element w € (), W such that V') = wy.

Note that
(8.75) Vv = ZV(” gy Y 1 /2
i<j leZ

Using this expression and Remark 8.16 it is easy to see that there exists an element w €
W,_1(gl))® such that V") = W(g). This element is uniquely determined and admits a
unique expression of the form w = p|0) where p € C[b(_l)k; k>0, 17€[l,r]]. We must
check that w € ) iW[i]. For each ¢ we can write V") = A, + B, with

A=V 4 N gy z(Z b6 + b)) (69 +6477) b,@) /2.

JiL i1 leZ  Nitl<j j<i
(8.76) , ,
Bi= > VO k&Y Y 16902,
J#ELi+] leZ <k
Jokii1

where V@ denotes the operator V(" in Remark 8.21 acting on the (z, 7+ 1)th spot.
Note that 87,10) + 67"10) € Wl Thus, we have A; = v + 3 . (¥)@ where

? Feigin-Frenkel’s theorem is also used in the approach by A. Okounkov and D. Maulik, see [28, Sect. 19.2].
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the element vV is the element v from Remark 8.21 at the (z' ¢+ 1)th spot and x; €
W1 (19 @ W (gl) 1. Similarly, we have Bi =37, oy 4y + 20,0y isiin (5.0
where the element #® is the element « from Remark 8.16 and X € W,_i(gl)? ®
W,_1(gl))®. Therefore we have w € W, O

Remark 8.25. — Now, for each i € [1,7) we consider the composition w; =
(1,...,1,2,1,..., 1) of » where 2 is at the ith spot. Let Al SH%Q — SH}' be the
K,-algebra homomorphism given by the iterated coproduct. We can identify 7! with
the tensor product 1 =7V ® ... @ 7V ® 7 @rM®-.- @7 in the obvious way.
Let p! be the representation of SHy on 7" given by p! = pV @ - @ pV ® P ®

PV ® - ® p. The coassociativity of the coproduct 1mphes that ,0(1 ) = pllo AlY, By
Proposmons 8.15, 8.19 the representations p" and ™ give inclusions

(8.77) SHY c % (We_i(gl),  SHY C % (W._a(gh)).

Therefore, for each ¢, the decomposition p!"”? = pl o AlY gives an inclusion SH;? cwuh
where

8.78) U = U (W, (g1) ™

1)A

& (Wea(gl)) 8% (Werr (@)™ "

Theorem 8.24 gives an inclusion 2 (W,_,(gl,)) C ﬂ:;ll ', We do not know if this
inclusion is an equality. So, we can not deduce that SHI(? C % (W,_,(gl,)) from this.
This explains the need for the more precise computations in the proof above.

Lemma 8.26. — The inclusion © gives a surjective morphism of degreewise topological K, -
algebras il(SHg)) — U (W,_,(gl,)) which is compatible with the order filtrations.

Progf: — By the universal property of completions, the inclusion SH%)[S] —
U (W,_,(gl,))[s], which is a continuous map, extends uniquely to a continuous map
H(SHE))[S] — % (W,._,(g1))[s], for each integer s. Taking the sum over all s we get a

map
(8.79) O 1 {U(SHY) — % (W,_(gl,)).

It is a morphism of degreewise topological K, -algebras. We must prove that it is surjective.
We have already seen that @ (b(z)) = W;(z). We now consider the fields W,(z) with
d > 1. The quantum Miura transform yields an embedding

(8.80) U (We_(gl)) € % (Wi (gl)®

By Propositions 8.10, 8.15, the representation o) yields a map L[(SH;Q) —
U (W,._1(gl)®". Let @/(SH%) be its image. The standard filtration on % (W,_1(gl,))
introduced in Section 8.8 induces the standard filtrations

8.81) % (SHY)=| % (SHY)[=xdl, % (W.-(l)) U% W, (al))[5d].
d
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Proposition 8.2 yields the following;

Claim 8.27. — For d # 1, under the inclusion (8.80) we have

d
W) = Z(—r)“lc - fz) )G AV R
s=0

1] <t <-+-<iy

modulo terms of standard order < d — 1 in A(W,._; (gtl))®"[[z, 2.
Recall the elements Y, ; defined in (1.82).

Claim 8.28. — For [, d with d = O there is a constant ¢({, d) # O such that

(8.82) " (Y10) = e(l, d) Z Z :bZ? e bg):.

=1 ly,....ly
The sum runs over all tuples of integers with sum —I. The symbol = means that the equality holds
modulo terms of standard order < d in W(W_1 (g11)®"[[2, 27 '11.

Progf: — First, we prove the following estimate
8.83) PV, =8 (00 (Y,0))-

Equation (8.83) is clear from the definition of the coproduct on SH€ for d =0, 1 or for
[ =0, d =2. Next, the operator ad(p''”?(Dy)) increases the standard order by at most
one, see e.g., formula (8.59) in the case r = 2. Hence using relations

(8.84) ad(D(),Q)d(Dl,O) =Dy 4, ad(Do,Q)d(D_l,o) = (—1)dD_1,d

we deduce (8.83) for / = £1. Likewise, the operator ad(p"(Dx1)) preserves the stan-
dard filtration and the operator ad(p'” (D, ¢)) decreases the standard filtration by one.
This implies that (8.83) holds for [ # 0. Thus we have also

(8.85) pEH =8 (p"(ED).

This implies that (8.83) also holds for Dy 4 for any d.
Next, combining (8.83) and Proposition 8.17 yields (8.82) for / = 0 with

d

dd+1)

(8.86) ¢(0,d) =

Finally, acting by

ad(,O(V)(D:I:I,l)) = ad(é’_l (p(l)(D:tl,l))),

(8.87) " W
ad(p"”(D11,0)) =ad(6™" (0 (D+1.0)))
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now yields (8.82) for all values of /, d. We are done. Note that, since (1.91) implies that

(8-83) [, Dl,l] =[b_,, [, Dfl,l] =«lbiy,
we get
(8.89) (1, d)y=k"/(d+1), o(=1,d) = -k )(d+1). O

By Lemma 8.23, we have Im(©©) € % (W, _,(gl,)). Using Claims 8.27 and 8.28
we see that the associated graded of Im(©") and % (W, _,(gl,)) with respect to the
standard filtration are equal. This implies that

(8.90) Im(0?) = % (W,_.(gl,)).

To finish, we prove the compatibility of ®” with the order filtration 2 (W,_,(gl,))[< ]
defined in Section 8.3. Recall the filtration % (W, _,(gl,))[< d] defined in (8.81). By
Claims 8.27 and 8.28, there exists for any /, 4 an explicit element

<8'91) Uqa € %(WK—T(g[I))[Sd]
such that
(8.92) O(Dyg) — u,g € % (Wi (gl)[=54].

But from the definition of the filtrations, we have
(8.93) U (We_(al))[=d] € % (W,_,(gl))[<d].

By Remark 8.12, the order filtration on Ll(SHEQ) is determined by putting D, ; (or equiv-
alently Y, ;) in degree d for any (7, ). Thus Lemma 8.26 is proved. UJ

Theorem 8.22 has the following consequence.

Corollary 8.29. — The pull-back by the morphism O : SHY — % (W,_,(gl,)) is an
equivalence from the category of admissible 2 (W, (gl,))-modules to the category of admissible SHI(Q -
modules. This equivalence takes 7" to p1".

Progf- — Since the image of SHg) in % (W,._,(gl,)) is degreewise dense, this functor
1s fully faithful. Thus, it is enough to check that it is essentially surjective. To do that, let M
be an admissible SHY -module. View SHY as a degreewise dense degreewise topological
subalgebra of % (W,_,(gl,)). Then, for any s, s’ the action map

(8.94) SH{[s] x M[s'] = M[s+ ]

extends uniquely to a continuous map

(8.95) U (W (g1))[s] x M[s'] = M[s+ 5]

This yields an admissible % (W,_,(gl,))-module structure on M. The corollary follows. [
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8.11. The Virasoro field. — We set k = K, and « = &k + r. Now, we describe the
preimage under the map ® in Theorem 8.22 of the Virasoro field Wy (z). We keep all
the conventions of the previous section. We have introduced in (1.89) some elements &,
H,. Consider the ficlds in SHY[[z, z~'1] given by

(8.96) H=) Hz' b= hs'"

leZ leZ
Recall the field p(z) in End(r ") [[z7!, 2]] given by
(8.97) P = (1/2—i+1/2)b"(2).

=1

Proposition 8.30. — We have the following equalities

P0R)=J0. P (HE) =5 YR - 0.

1

Progf. — The first claim is obvious. Note, indeed, that we have

r

(8.98) p (b =—pi(er,....e) i +r(r— DE 2 = (b7, B).

=1

Let us concentrate on the second one. For £ > 1 we set
H,=H;+ (r— (k- 1)&b/2, H  =H_,+0—1D&—-1DEb_,/2.

We must prove the following formulas

Py =k Y3800+ S (Y 2+ v,

i =1 i

(8.99) pUOHL) =k YD 80 0072 — (k= DEp_i+ (r— D)k — DEJ /2.
1 [
pUOH) =k DS 02 5012+ (k+ DEp+ (7 — 1Dk — DEJ/2.
) [

Write
(8.100) H' =119 01 "H)®1® -®1, ic[l],
where Hy, is at the ¢th spot. We have

(8.101) H, =« *D_i 1 /k+ (1 —kEb/2,  H =Dy /k+ (1 —kEb /2.
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Thus, Theorem 7.9 yields

p(H.,) = ZH@A + kE Z(i — 167,
(l ) H/ ZH(Z) +/€$ Z(r Z)b(l)

Proposition 8.14 now yields

p ML) =k > D B0 b2+ (—e+ k(i — DE)BY,

i I£0,—k
=k Y Y B 24 (= DE Y = DY,
il :
=« ZZbﬂ_zbﬁ“m — (k= DEp_s+ (r— Dk — DEJ_1/2,

(8.103) P (H —KZZW <”/2+Z —&:+ k(r— DE)b,

i 1£0,k
_KZZW B /24+€) ((k=De—1)
+ (k+ D(r—2i+ 1))y /2,
— K ZZW b /2 4+ (k+ DEpy + (r — 1)k — DEJ/2.

(8.102)

We have [H”, 0] = —lb/(;)rz

8.104)  pH) =Y HY+£Y (- DH00]2-63 ¢ —o[H, 6]/2

Therefore, we get

+SQZ(r—i)(i— D[6?,69]/2
—ZH“) (r— 1)528/2K+s Z(r—z)(z— 1)/2¢
_KZZWW + Z g — (i— DE)(e; — (r — D) /2

[
=k > > 0~ Zb(” & — (r—0§)/2
[
_KZZWWHZ () /2+st@(r 2+ 1)/2
i I>1

=k > 00 +KZ (6)° /2 + £po.

=1 O
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The fields W, (z) and Wy(z) give two fields in End(z")[[z7, z]]. Let us denote
them again by W, (z) and Wy (z). Consider the field L(z) in Ll(SH%?)[[z‘l, z]] given by

(8.105) L(z) =H(z) — %zb(z)Q:.
Proposition 8.30 and (8.16) imply that
(8.106) P (b)) =Wi(a), " (L) =W(2).

Therefore, by definition of the map ®, we have the following,
Corollary 8.31. — We have O (b(2)) = W, (2) and OV (1.(z)) = Wy ().

8.12. The representation 1@ of Wi(gl,) on LY. — We set k =K, and k =k + 7. Let
B be as in (8.70). The representation p of SHE) on LEQ is admissible.

Definition 8.32. — Let T be the unique admissible representation of W,_,(gl,) which is
taken to p by the equivalence of categories in Corollary 8.29.

By Corollary 8.31 we have
(8.107) PV (b)) =70 (Wi(2)., (LK) =7"(Wa(2)).

Write |0) for the element [I4] of Lg). Write |B) for the rth tensor power of the element
[15] in Lg). We view |B) as an element of Lg ). The following is one of the main results
of this paper.

Theorem 8.33. — The representation 7 of W,._,(gl,) on Lg) is 1somorphic to the Verma
module whose highest weight is given by the following rules

77 (Wy0)10) = w,0), 7 P(W,)[0) =0, [>1,

r

d
we=) 00 B)  wi=—e ) [I(A7 B+ @ —ng/c). dz2

=1 1] <ig<--<ig t=1
T las Verma module 1s irreducible. Further, for | > 0 and d € [2, r] we have
(8.108) A W)= (—1)7[77(7) (W10, 7 Wy_)* = (—I)Hdﬂ(') (Wa).

Proof. — The homomorphism ©© : SHY — % (W,_,(gl,)) is compatible with the
Z-gradings. Therefore Lg) is an N-graded % (W,_,(gl,))-module. Thus |0) is a highest
weight vector of Lg), because it has the degree 0. Next, we must prove that |0) is a
generator of Li? over % (W,_,(gl,)). Since Lg) 1s admissible and SH;? is degreewise
dense in % (W,_,(gl,)), it is enough to prove the following.
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Lemma 8.34. — We have Lg) = p(")(SHg)NO)-

Progf: — We must check that [I,] belongs to the right hand side for each A. We
proceed by induction on the weight |A| of the r-partition A. Assume that |A| =7 and that
[I,] belongs to p(")(SHg) )|0) whenever || < n. The formulas from Section D imply that
there is an r-partition y of n — 1 such that the coefficient of [I;] in p (D1, )([1,.]) is non
zero (in K,) for some / € N. Next, we have

(8.109) PO Do) (L) = Y3 (cas)/x) L], (20,

a  ser

We can regard [I, ] as the set
(8.110) {e®)/xia=1,...,r, s€2}.

Then, the action of Dy 4, on [I;] is simply the evaluation of the /th power sum poly-
nomial on the K,-point [I,] of (K,)"/&,. Since all these points are distinct, by Hilbert’s
Nullstellensatz, for each A there is a polynomial / in the Dy ;1,’s such that /([I]) = 1 and
S ([1,]) = 0 for any r-partition o of n different from A. This finishes the proof. O

Next, the graded dimension of LE) is given by the number of r-partitions. There-
fore, the previous arguments imply that L{’ is a Verma module with highest weight vector
|0). Now, let us compute the weight of |0). We claim that it is the same as the weight of
the element |B) in LE’). The later has been computed in Proposition 8.3 because Lg’)
is isomorphic to 7" as a W,_,(gl,)-module by Corollary 8.29. So the claim implies the
first part of the theorem. To prove the claim observe first that we have

Lemma 8.35. — () We have p (D) [0) =0 forx € &~
(b) We have p1) (D)|0) =0 forx € &~

Progf: — Part (a) follows from (3.18), and (b) from (a) and Lemma 7.11. U

Now, for each d > 1, we fix an element W/, ; in L((SH;Q) which is taken to W, o by
the map ® in Lemma 8.26. We must prove that it acts in the same way on the vacua of
L and L\ . By Proposition 1.37 the element W, is an infinite sum of monomials

<8°111> Dk[,l] D/CQ,[Q e Dk,,l,v (kw ZJ) € éa» kl + k? +-+ kr = 07

where the Dy ;s and the D_; ;s are on the right. Thus the claim follows from
Lemma 8.35.

Now, we must check that p is irreducible. It is enough to check that Lg) is irre-
ducible as an SHI(Q—module. The bilinear form (e, @) on L;? is nondegenerate, because
the elements [I; ] form an orthogonal basis. Further, by Lemmas 8.34 and 8.35, we have

(8.112) LY =K,|0) ® p” (SH"7)|0).
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Thus, by Proposition 3.8, any element in LY which is killed by p@ (SH{"~) is propor-
tional to |0). This implies that Lg does not contain any proper SHg)—submodule.
Finally, we must prove (8.108). By Proposition 1.35 there is a unique anti-involution

(8.113) w:SHY — SHY D (=D VD, d,1>0.

Further, by Proposition 3.8 we have

(8.114) p”wW* = p”(w(w), ueSHY.

Next, recall that Ly’ = (Lg")®" and that Ly is equipped with the pairing in (3.23). Thus

we can equip Ll(g) with the unique K,-bilinear form such that
(8.115) W® QU v, ® @) = (w,v) (4, v), u,v; €LY

Let /* denote the adjoint of a K,-linear operator / on Lg) with respect to this pairing.
Note that we used the same symbol for the adjoint with respect to the pairing on Ly in
Section 3.7. We claim that

(8.116) P =p" (@ W), ueSHY,
where @ is the anti-involution
(8.117) w:SHY - SH?, D, x)D_,,, d,1>0.

Indeed, it is enough to prove (8.116) for u =D, , Dy 9. Then, it follows from the formulas

P D) =) PV (D10,
(8.118) T -
P Do) =) p Do)+ D ik p P D10) 0 (D10)
=1

21 i<j
which are proved in Theorem 7.9, and from the formulas
(8.119) P D) = pVMDoye).  pP Do) =p" (Do),
which in turn follow from (8.114). On the other hand, there is a unique anti-involution
@ U(We, (gl) = LW, (al)),

(8.120)
W, (—I)Hdwd,z, W, (_l)lwl,h d>2,1>0.

By (8.71) we have LI({V) =71, Let 7" denote also the map {(W,_,(gl,)) — End(z ).
An easy computation using (8.15) yields

(8.121) 7w =" (ww),  ueUd(W._(gl)).
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Finally, by Corollary 8.29 we have
(8.122) p =71 o@”, o =7"00",

and ©®© is compatible with the rank grading on SH{ and the conformal grading on
U(W,_,(gl,)). Therefore, comparing (8.114), (8.116) and (8.121), we get (8.108). 0J

9. The Gaiotto state

9.1. The definition of the element G. — Let [M, ] denote the fundamental class of
M, . It is characterized, up to a scalar, by the fact that it lies in L and has the co-
homological degree zero. Further, we have the following formula, consequence of the
Atiyah-Bott localization theorem

9.1) M, 1= eu'[L],
a
where the sum runs over all 7-partitions of size n. We define an element in LY = [T.0 L
by
(9'2> G = Z[Mr,n]
n=>0

Proposition 9.1. — The element G satisfies the following properties
(9.3) P )(G) =0, [=1.de[0,r—2],
9.4 PO, )G =x7'G,  p?(D, )G =0, [=2,
9.5) P (D_1,)(G)=—x"y! (Z&') “

Progf: — See Appendix G. O

Remark 9.2. — It is not true that G is an eigenvector for the operators p”(D_; ;)
with [ > 7.

9.2. The Whittaker condition for G. — Now, we give a characterization of G us-
ing only the representation 7 of W, _,(gl,). Let x be a character of the subalgebra
of U(W,_,(gl,)) generated by W, , for /> 1 and d € [1, 7].
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Defination 9.3. — An element v of /I:%) is a Whattaker vector for W, _,(gl,) associated with
Xy

(9.6) TP Wi pv=xWz)v, dell,r], [>1.

Proposition 9.4. — The element G s a Whittaker vector for W_,(gl,) associated with the
character x given by

(9.7) AW, ) =y"x"  x(We)=0 ifd#rod=r1#1.
1t 15 characterized, up to a scalar, by this property.

Proof. — We will work in the representation Lg) and omit to write the symbol p
to unburden the notations. Equation (9.3) implies that

(9.8) U(SHY)[<r—2]- G =0.

By Lemma 8.26 the map ©" gives a surjective morphism of degreewise topological K, -
algebras @ : M(SH?) — % (W,_,(gl,)) which is compatible with the order filtrations.
This implies that

(9.9) YW, (gl))[<r—2]- G =0.
Since W, ; has order d — 1 by (8.3), this implies that
(9.10) W, -G=0, d<r.

Let us now assume that d = . It will be convenient to use the elements Y, , from Sec-
tion 1.9. We have

(9.11) SH [/, <n] =SH[/, <n] ®K,Y_,,
withY,,=D,,for[=—1,0,1 and

Do, Y, ifl—1=n,

<9.12) Y—l,n _ [ 1,00 X1—, +1] 1 n
(D11, Yios.] if[—1#n

Assume first that r = 2. Then

<9.13) Y_Q,l . G == [D—I,O’ D_I,Q] . G == 0

More generally, we have

(9.14) Yo -G=[D_ Y. )]-G=0
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for any / > 2. Next, let us assume that r > 2. Then

Y., G=[D_;;,D_;,]-G=0,
(9.15)
Yo, 1-G=[D_;;,D_y,]-G=0
and, acting by ad(D_, ;),
(9.16) Y ;,-G=Y_,,.1-G=0, 2<(<r2<n<r-—1.
Therefore we have

9.17) Y., 1-G=[D_,Y,]1-G=0

from which we deduce, by acting by ad(D_, ;) again, that Y_,,_; - G =0 for [/ > r. We
have thus proved that U(SH®)[—/, <r—1]- G =0 for / > 1, and hence that

(9.18) YW, (gL, <r—11-G=0, [>1.

In particular, we have W, ;- G = 0 for / > 1. To prove that G is a Whittaker vector, it now
remains to compute W, | - G. We will do this by expressing W, | in terms of the elements
D, up to terms of order < r — 1. We will use the representation o1 of SH”. Let us

first introduce some notation. If /' = f(z1, ..., 2) = ), a:2) -++Z" is a polynomial then
we write
(9.19) f(é) — Z ag:b(l)(z)il L b(?’)(z)i,.:.

1

Further, if u(z) =) . w2z~ is a field of conformal dimension  then we write (x(2)); = ;.
By Claim 8.27 we have, up to terms of order < r — 1 in the order filtration on

(W, (gl))®

9.20) W) ==, Y (=) "D e (2):
s=0

while by Claim 8.28 and (8.89) we have, again up to order <7 —1,

W et W d+1
9.21 D)=—"—" D, Do) =—7——: ),
( ) p (Do) +1 (ﬁd+1(§) ),1 - (Do,q) Jd+ D (ﬁd+1(§) )0
Combining (9.20) and (9.21) and using the identity
9.22) (b p70e) =8, (= 1)1

from the theory of symmetric functions we deduce that, up to terms of order < r — 1,

(9.23) W, D) =D (Do) +u



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 313

where u is a linear combination of monomials ,0(1’)(D0,d1 «-Dg 4Dy ) withd <7 —1.
Acting on G and using Proposition 9.1 we obtain

9.24) W, -G=y"x"'G.

To finish the proof of Proposition 9.4, we now show that there is, up to a scalar, at most
one Whittaker vector of W,_,(gl,) in L;? associated with the character x. So, assume
that v=Y",_,v, is a Whittaker vector, with v, € L'} for all #. Assume also that we have
proved that for some ny > 1 we have v, = [M, ,] for all n < ny. Then Equation (9.7) for G
and v gives the following identities in Lfl:))_ .k forany />1

(9.25) TOWy) (v — M, 1) =0, de[l,r].

Since L is irreducible as a W,._,(gl,)-module, this implies that v,, = [M,.,,]. The propo-
sition follows easily. UJ
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Appendix A: Some useful formulas

In this section we gathered a few formulas concerning the functions G;, ¢, and ¢, which
are used throughout the paper. Recall that, for [ > 0, we have

A.1) Go(s) = —log(s),  Gus)=(s'=1)/L, [#0,

(A.2) 0,(5) =5'Gi(1 = ) +5'Gy(1 + k5) +5'G,(1 +E5) — 5'Gy(1 +5)
—5'Gy(1 — ks) — 5'G,(1 — E),

(A.3) #:1(5) = 5'Gy(1 + &5).
In particular, we have
@i(s) = I+ 2+ Dis'™ + O,

A.4
& ¢i(s) = =&+ (L+ DEX™? /2 = (U + 2+ DES™ /6 + O(s™).
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Note also that for each a, b we have

(A.5) log(1+s(a+5) =Y (=D a+5'/1=Y (=1)d s Gi(1 + bs).

=1 (=0

Remark A.1. — Note that for each / € N there is a non-zero constant a € F such
that ¢4 0 — ag; 1s a formal series in @1, @19, .. ..

Appendix B: Proof of Proposition 1.15

B.1 The reduction. — We begin with the proof of the relation (1.38). We will use the
polynomial representation p, of SH, in V,, in order to compute the expression (B.2) below.
However, because the theory of Jack polynomials is only well-behaved for symmetric
polynomials (as opposed to symmetric Laurent polynomials), we will need to somehow
restrict ourselves to the subspace A,. For this we will use the inner automorphism

o =Ad(e,) € Aut(SH,), ¢, =X;X; - X,.
Note that V, = A,[(e,) ']

LemmaB.1. — Let U C SH, be a finite dimensional subspace which is stable under o and let
ue U. Ifu((e,)*A,) = {0} for some integer k then u = 0.

Proof. — Yor k € Z let Z; C SH, be the annihilator of (¢,)*A,. We have Z; C Z,,,
and 0 (Z;) = Z4,. Further, since p, is faithful we have also ) +Zi = {0}. Thus, since U is
finite dimensional, there exists [ € Z such that UNZ, ={0}. Buto(UNZy) =UNZ;,
for all £. Thus, we have UN Z;, = {0} for all £. ]

For £ > 0 let A(k) be the subspace of elements of F[D{", ..., D{}] of degree £.
Here Dgg 1s in degree /. Consider the following finite-dimensional subspace of SH,

B(k) = [DY) ,, [AGK), DI}]] + Ak).
We claim that

(B.1) [D% . D] =[DY,, [DF)

Ol D] ViLE=0.

To see this, first observe that [D(_")LO, D(l’%] = 0. Applying ad(D((f)Hl) and using (1.36),
(1.37) we get

B.2) [D" . D3] =[D" . D]
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We now prove (B.1) by induction on [ + £. Fix r > 0 and assume that (B.1) holds for all
pairs (/, k) with [ + & < r. Applying ad(D((f?z) to the series of equalities

(B.3) [DY . D ]=[DY . DY) =---=[D% _,, D]
yields

1,7

(D%, D] = [0, D ] == D%, . D] - [D,. D3]

Denote by « this common value. Adding all the above equalities together and using (B.2)
we get

=D, D] - [0, D] =0
hence u = 0. This implies that (B.3) holds with 7 in place of r — 1. The induction step is

completed and (B.1) is proved.
By (B.1) both sides of (1.38) belong to B(k + /). One checks that

o) =y —1, U(Dg?l,o) = Dg,m

from which we see that the subspace B(k 4 /) is stable under o. By Lemma B.1 it is hence
enough to check (1.38) in (¢,)*A, for some £ € Z. This is what we will do in the next
paragraphs.

B.2 The Pieri formula for e_,. — We state here a Pieri formula for the multiplication
of Jack polynomials by the elementary symmetric Laurent polynomial

(B.4) e =X+ + XN

Since the product e_; - i") may not be a polynomial, we need to restrict the range of
application. For A = (A4, ..., A,) we write

(B.5) A—(1")=Gi—1,...,4,—1), (1 =(,1,....,D.

We’ll use the following result [35, Sect. 5]. Recall the definitions of #* and A, from (1.25).

Lemma B.2. — Let A be a partition of length n. We have

W =6 e 0. o) =]]FG6D.
=1

Thus, we have ¢,A, = P, FJ\”, where the sum runs over the partitions of length n.
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Proposition B.3. — Let A be a partition of length n. We have

(n) Z ¢ J(n)
KT
where the sum ranges over all ;) C A with || = |A| — 1 and where

_1R(1Ly) *(s) () .
¢A\u—;hu(l’j) sel(;[\ h“() l_[ ()’ \]_))()\'\:u)‘kl

s€Ru\
Progf- — We have
(B.6) e ] = 0.(0) eor 6,J5” 1y = 6.(6) 61 J5 -

This allows us to use the Pieri formulas for the multiplication by ¢, given in [35,
Thm. 6.1], using the duality [35, Thm. 3.3]. Note that the inner product in [35] is given,
in our notation, by the following formula

0 J0) = 8 [l A

SEA

We leave the details to the reader. O

B.3 Proof of Proposition 1.15. — For a linear operator f on A, we define (u; f; A)
by

FO7) =D s I

Using the explicit expressions of the Pieri rules for ¢{") it is easy to check that
(B.7) (13 [D21,0, [Df7, DYa ] 2) = 0

for any p # A with /(L) = n, compare [33, App. A]. In the remainder of this paragraph,
we compute precisely the coeflicient arising in (B.7) for © = A. We will use the following
notation introduced by Garsia and Tesler (Figure 2). Label the removable boxes of A by
By, By, ..., B, from left to right, and the addable boxes Ay, ..., A, also from left to right.
SetI={0,...,7},J={1,...,r} and

(B.8) a; = c(A)), b=1cB)), 1€l €]
where ¢(s) 1s defined in (1.27). Observe that we have

2(Ag) =y(A) =0, (A =xB)+1,  yA)=rB)+ 1, je].



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 317

Ao
B1 51:—44(
A by=1-—2k
L bg:?)
BQ (l():—5K
Ay a=1-—3k
a=2—«
Bs ASE a2—4
_____ 3 =

FiG. 2. — Garsia and Tesler’s variables

Example B.4. — Here is an example with A = (4, 2, 1%)

Let us begin by rewriting the expressions appearing in the Pieri rules in terms of
Garsia and Tesler’s notation. Let A be a fixed partition and let B;, A;, a;, b; be associated
with A as above. A direct computation yields

Lemma B.3>. — Fori €1, € J we have

. (s) - (s)
Hﬁx(;l_[h”(i):n(“f_ - [1 __ak, o=r+A,
SERAZ. jeJ

s€Cy,; € kel\{i}
i h 1

1_[ V(S) 1_[ A(S):__l_[(di_ _b) 1_[ b U:)\,—Bj

seC 7 (s) seRp, (s o i€l kE\{} b=

Set I =1\ {0}. The above lemma yields the following.

Corollary B.6. — If A has length n then, for | > 0, we have

B.9) s [0, DO D A= T “’“*H“Z —

el kel*\{i} i

az+§ b/c é:
—be]_[ — 4 1_[ bi— b

JjeJ el ke\G)

Note that in (B.9) the variable qy never appears. In fact, we have ay = —nk since
[(A) = n. Let us now form the generating series

X0 =) (x:[DY,, [DF), DY]]; 4) ¢

=0
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By (B.9) we have
1 a—a+§ a; — b —
X(”) t — 1 1 ]
® Z —al 1_[ i — i l—[ a4 —
ielx kel \ {7} JeJ
_Z 1 Hl?/—ai‘i‘él—[bj_bk_s
- 1 — jt : bj — . bj - bk ’
JeJ iel” kNG
Lemma B.7. — Guen two disjoint sets of commutative formal variables {a;;1 € 1™} and
{bs) €]} we have
t§ G —ag+Erra—b—F§
Z — ajt l_[ a4 — & l_[ a; — b
ielx keI*\ {1} el
Y s
1—WZIX b—a o b
1_[ — t(a; — l—ll—t(bﬂrS)_
1 — ta; : 1 — tbj
ielx el

Proof: — Both sides of the equality are rational functions in ¢ of degree 0, with at
most simple poles. One checks that the poles and residues are the same. This implies
the equality, up to a possible constant. But both sides vanish at £ = 0. So this constant is

Zero. -
The above lemma implies the equality
1 —t(a; — &) 1 —b+§)
14 X" (1) = :
R ) i
— x x !
= CXP(Z(P;(%‘) —pila; — &) + pi(b;) — pi(bj + 5))1/‘ /Z>,
121

where

@) =) d,  pla—6 =) (-8 p)=) b, et

elx elx €]

The last step is to identify the expression above with the eigenvalue of an element in SH'
on the Jack polynomial J; (X, ..., X,). From (1.30) we get

(s DEJs )= e

SEU
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We’ll use the following notation
_ !
pl (ai) - al' 9
el

pla;—E)=Y (a;—§),

1€l

o) =G+ D) —G=D'+@+e-D—@x—E+D'+(x—8"'—(x+8).

Lemma B.8. — We have

(B.10) @) = pila; — &) + pi(ly) — pu(by + &) = (—=D'E + D " 01(e(s)).

SEA

Proof. — The proof'is by induction on [A|. If [A| = 0 then r = 0 and @y = 0. Assume
that (B.10) holds for all partitions of size at most m — 1 and let A be a partition of size m.

Let o C A be a subpartition of A of size m — 1, and set s = A\ . Let 7, b;, a; and 7/, b]/-, a.be

associated with A and u respectively. Note that we may have ¥ = 7,7 =r—1or7 =r+1.
One checks that

pia;) — piCa; — &) + pi(by) — pu(b; + &)

= 11(@) = p(@ = §) +pu(8) = (8 + §) + 01(e().
which closes the induction step. We leave the details to the reader. UJ
Using Lemma B.8 and the fact that for /() = n we have

ay = —nic = —k Dy},

we get that the formal series 1 + ££X®(¢) is equal to

exp(Z(—l)f“s "/ l) exp<2(—1)l((€ +1Dfy) — (KDE{%)Z)zZ/z)

>1 =1

X exp <Z > oi(e(s)) /1) :

[>1 ser

Now, from (A.5) we get

1 4+ at _ Ny
(B.11) —1+at+ét_eXp(§( l)a(,b;(t)).
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Using this, we may finally write

1+ EX" () = K(K, D(%, t) exp (Z Z c(s)! (p;(t)),

>0 sel

=(1+§0) exp(Z(—l)ZK[a)l@(t)).

=0

K(c. 0, 1) = (1 +ED)(1 + kwb)
S R Y

Therefore, by (1.30), we see that (1.39) holds when applied to J;. Since this is true for all
A of length n, the identity (1.39) holds when applied to any v in ¢,V by Lemma B.2. But
then, by Lemma B.1, (1.39) holds unconditionally. This concludes the proof of Proposi-
tion 1.15.

Appendix C: Complements on Section 5

C.1 The canonical representation of Ug)’+ on LY. — In this section we describe the
canonical representation of Uy " on LY explicitly. The following lemma is well-known.

Lemma CG.1. — (a) The convolution product gives [IAM][I,,] =0, eu,[I].
(b) For a 'T-equivariant vector bundle V' over Hilb,, of rank r we have

aW) =) eu ' o(VIIL], el

Abn

From the above lemma we obtain the formulas

(C.1) 1 (Tunt) = Z () eu(N%, ) eu (1,51
MCA
(C.2) () =Y ci(m) eu(N; ) eu; ) [T,]
HCA
(C'3> CZ(Tn,n) = Z CZ(T;L,;L) eu;l[lu,ﬂ],
ukn

where the first two sums range over all pairs w, A with u C A and pu=n, AFn+ 1.
Combining the above (C.1)~(C.3) with the explicit expressions deduced from (2.18) and
(2.20)

eu, = l_[(l(s)y — (a(s) + l)x) (—(l(s) + l)y + a(s)x)

SEA

eu(N; ) =eu(Ns,) = [(4() = (a:(5) + 1)x) (= (5() + 1)y + a4 (5)x)

SEN
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we get the following formulas

(C.4) () = o> e\ Ly (x.) [T,
ADu
(C.5) Soa(IL) = e\ Lo (x,9) L],
HCA
(C.6) Su(L]) =D e L]
SEA

Here ¢(s) is defined in (1.27), we have

L (s)y — (@, (s) + Dx l—[ (L () + 1)y — a, (9)x

Lya(x, ) = l_[ (4u(5) + 1)y = (@ (s) + Dx (b () + 1)y — (a,(s) + Dx

s€Conp €R i\,

and the sum in (C.4) ranges over all A containing p satisfying |A| = || 4+ 1. We set also

(L) + 1)y — a,(s)x l—[ L(s)y — (@ (s) + Dx

Lx,u(x’)’) = l_[ Z)L(S)}) — a, (s)x Z)L(S))) —ap(s)x

s€Chp SER \p

and the sum in (C.5) ranges over all u which are contained in A and satisfy || = |A| — 1.

C.2 The triangular decomposition of ﬁg) — We begin with the following lemma.

Lemma C..2. — There are one parameter subgroups t=: G — Aut(ﬁg)’i) defined by
(1 (1
+ =T, = [= i + = = » 1=0.
T, (fo.0) = @ (fo.0) ; (z)u 0, T, (fe1.0) ; <l>u Y, =

Progf. — Tt is enough to deal with . By Theorem 6.3 there is an algebra isomor-
phism

n:8Cox — UY”,  6,>f, (>0.

By Corollary 4.8, the assignment 6, Zf:o (f)ul_iel- extends to an automorphism of
SCox. This shows that 7" is well-defined on Uy””. Next, since U’ = K[f; [ > 1],
the map 7." is well-defined on U’ as well. To finish the proof; it remains to observe that
we have

(C.7) U =0 x U
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with respect to the adjoint action [fo /, f1.,] = /1,144, and that

Y y
EN(BIEDSY <l> (j) d o i fig)

=0 j=0

l+n

[+n 3
= Z ( )uH" kfl,k = Tu+ L) -
=0 k O

We now turn to the proof of Proposition 5.3. It is adapted from the proof of [33,
Prop. 4.8]. The same argument as for SH implies that the multiplication map is surjective

m: Ug)’> Rk ngo Rk U%UK — Ug)

We only have to prove its injectivity. We argue by contradiction. Letx=) . P,® R; ® Q;
be a nonzero homogeneous element in Ker(m). We may assume that the elements R;
are linearly independent polynomials in the fj ,’s and that P;, Q; # 0. Multiplying by an
element of ﬁﬁ” or ﬁgk if necessary, we may also assume that x is of degree zero. For
all partition A we have

(C.8) > "P;oR;0 Q([L;]) =0.

We’ll apply (C.8) to certain partitions. Given partitions A;, Ag, ..., A; and given an in-
teger n > |A], ..., |A], let the symbol A} ® --- ® A; denote the following partition

(2n, kn — 2n)

Note that A} ® - - - ® A, 1s well-defined as soon as n > sup,(/(%,), [(A))). Put
(C.9) t = sup;(deg(Py)) = sup;(— deg(Q))).
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For an operator f on IN_.E) we denote by (u; f; A) the coefficient of [I,,] in f([I,]). For
large enough we consider the coefficients

(M ® Ao ® Ag; PRIQjs Ay ® A ® A3), Ay CAp, Az CAs, A \A | = [As\As| = 2.

Since Q); is an annihilation operator and P; is a creation operator, by (G.9) the only way
to obtain A} ® Ay ® Ag fro_m Al ® Ao ® As 1s to use all of Q; to reduce A; to A; and to use
all of P; to increase Ag to As. Therefore we have

(C.10) (A1 @ Ay ® Ag; PRIQjI A @ 4y ® As)
=M@ @A P A @A ®Ag) (A ® Ao ®Ag; Riz Ay ® Ao ® Ag)
X (A ® Ay ® Ags Q3 A ® Ay ® As3).

Note that (C.10) is zero unless deg(P;) = —deg(Q),) = ¢.

_ Lemma C.3. — There are non-zero ¢,d € K such that, for P € ﬁg)’>[t] and Q) €
U -,

(C.11) (M @Ay ® A3 Q3 A1 @Ay ® Ag) = 6(5»12 75,,(Q); }»1>,
(C.12) (A1 ® dg ® g3 Py Ay ® Ao ® As) = d(Rs; 755 (P); As).

Proof. — We prove (C.11). The proof of (C.12) is identical. If Q = f=, -+ -f21 4,
then

t
(C-13) ()_w ® Ao ® As; Q M @Ay B Ag) = Z HC(Si)ki Lui®x2®x3,m+1®x2®xg (x,y)-
i=1

In (C.13) the sum runs over all sequences
M= e D P = A

and we have set s; = t;\ i1+ For partitions o O B with |a| = |B] 4+ 1 we have

(la(s) + 1)y — aa(5)x 1—[ la ($)y — (ag(s) + Dx

La,ﬂ(x’y) = 1_[ la(s)y _ Cla(S)X Za(f)x - (la(S)J’

s€Ca\g s€R\p

Next, in (C.13) again, for a box s in u; we have x(s) = x;, (s) and y(s) =y, (s) + 2n, where
%, and y;, denote the coordinate values when we place the origin at the bottom left
corner of A, 1.e., at the point (0, 2n), as opposed to the point (0, 0) which is the origin of
A1 ® Ay ® As. Similarly, we have

R(s) =R, (5), C(s) =Gy, (s5) L C'(s),
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C'(s5) = {(x(5),0), ..., (x(s), 20— 1) }.

Finally, observe that the armlength a(s) or the leglength /(s) are the same whether we
consider s as belonging to p; or to (; ® Ay ® As. Now, write 0; = ; ® g ® A3 and
0 =X ® Ao ® As. From the above formulae we deduce that

() = ¢, () + 2ny,

t
1_[ LM{@M @3, Uir1 ®LoBAs (XJ))

=1

1—[ (l; () + 1)y — aq,(5)x

t
=TT, .
H iy it1 (X _y) lgi (S))) _ aGi (S)X

s€C/(s5;)

Note also that the quantity

ﬁ l—[ (G () + Dy — @, (5)x _ l—[ 1—[ 0(s) =) + 1)y — a5 (W
i (8)y = @y, (5)x () —p(u)y — a5 (w)x

=1 5eC/(s;) ser\A; 4€C/ ()

is independent of the choice of the chain of subdiagrams (u;), and that

3 T (e 60+ 2) L, () = (A3 75, (Q)s ).
=1

The lemma is proved. O
Using (C.10) and Lemma C.3, the linear relation (C.8) gives

(C.14) Z(i:%; 5 (P); As) (A ® Ao ® As; Ri Ay @ Ay @ As) (A T5,,(Q)); M)=0

1

for all A, Ay, Ao, )\.3,_)_\,3 as abovg and all large enough . Since P;, Q; # 0, by Corollary 2.5
we may choose A3, A3 and A}, A; such that

(5\32 75 (P); )»3>, ()_\1; 75, (Q)); Al) #0

for some 7. Fix the integer n and let us vary the partition A,. We abbreviate A = ® ¥ & @.
By (C.6) the matrix coefficient (A} ® Ay ® A3; fo.1; A1 ® Ay ® A3) 1s equal to

(A3 o (.03 A1) A (A3 T (6,005 Aa) + (Ass Tom (6.3 As) + (A3 fos A)-

Recall that R; = R;(f5.1,/0.2 - - -) 1s @ polynomial in the operators _f; ;. Set

Ri = (hs; 750, (P)); Ag) (M1 75, (Q)5 At) Ri((Tuny (fo1) + @1, Ty (for2) + 0, - )
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where

= (Ai; Top (.0 M) + (Ass Ton (6.5 As) + (s fos M), (> 1.

We may rewrite (C.14) as

(C.15) > (ra: Rl a)=0.

1

Since this holds for all Ay with [(Xy), [(A}) < n and 7 is large enough, we deduce that
> .Ri=0. Remember that the R;’s were chosen to be linearly independent. Then the
R’’s are also linearly independent and we arrive at a contradiction. This concludes the
proof of Proposition 5.3. O

Appendix D: Complements on Sections 3 and 6

D.1 Proof of Proposition 6.6. — The proofis adapted from the computations in [37,
Sect. 4.5]. First, we have the following formulas, compare (C.1), (C.2) and (C.3),

(D.1) (@) =) (o) eu(N;,) ew) 1,1,
oCA

<D'2) Cl(rn+1,n)l = Z Cl(rn,k)l eu(N;)L) eu;,l)h [IH,A]’
ACT

(D'3) C[(Tﬂ,ﬂ) = ZCZ(TA) eu)Tl [IA,A]~

A

Here o, A and 7 are r-partitions of n — 1, n and n + 1 respectively. Now, assume that
A, @ are r-partitions of n and that o, 7 are r-partitions of n — 1, n+ 1 respectively, with
0 CA,u Cm and A # p. Then, the r-partitions o, m are completely determined by A,
w and (3.9) gives the following identity

O+ T, =T, + Tr.
Therefore, using the identities from Sections 3.4, 3.3, a short computation gives
(D.4) N, o+Nyo—Ts =Ny +Ny, —Tx.
Therefore, using (D.1), (D.2) and (3.12), (D.4) we get

(D.5) it o ([5]) = 6 [
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for some constant ¢, 4, which remains to be computed. To do so, observe first that

Loashia(L]) =) et eu(N;, + N, ) eu; | (L],

ACT

S ([I]) = an (to.) T eu(Ny , + N2, ) eu; L [L],

oCh
modulo [I,,]’s with u # A. Next, set H, = (1 — ¢)(1 — )T, — W. For A C 7 we have
H,=H;, - (1 -9 —-0tx,
Noz = Th=—vr Hy—v
(D.6) =—vr, Ho+1—¢ ' =1,
Ney—Tr=10,.H —v
= ,H +1—¢'—1"

Now, we consider the following sums

(D.7) Bi=) Tor. A=) Tiax

oCh acn
The proof of the following lemma is left to the reader, compare [37, Lem. 7].
Lemma D.1. — For each r-partition A of n we have the equality of characters
H,=v'B;, — A,.
Thus, we get
Ny N, =T —Th=v (A + 1, B — 1) — (B + 1) A — 1) —g— 4,
N, 4+ N, =T =T =v (to,Af + 75,8y — 1) — (touBf + 75, A, — 1) —g— &
We get

eu(v A+ v A B — v
cu(zl, Ar + 70,8, — 1)

(=D e =) ()"

oCA
Z (5t eu(v 't A+ vty B —v )
- c1(Ta, .
i eu(ty Ay + T .Bf — 1)

ACT

Consider the formal series

C@) = Z ok st

k=0
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For u = x 4y, we have

C(S)Z—Zl lb l—[b]-—al-—i—u 1—[ bj-—bkb:u

Tl g e gy b
1 a; — ap + u a;—b—u
2 1l
iel Poreng L% g i =Y

with
{hrjeli={aliocrl,  Haiell={ca(n.)irCm}.

Thus, by Lemma B.7, we get the following equality

1—s(ai—u)1—[1—s(bj+u)

I—SLZZ'

1 4+ usC(s) = 1_[

el
_l_[ 1 —sc(v't,,) /1—[ 1l —sci(thz)
_oo\ 1 —sci(v'1,,) + su e I —sci(thq) +su

Now, fix splitting sums of one-dimensional characters

T;:¢k,1+"'+¢x,n, W*:X1+"'+Xr-

Set f,.; = eu(¢, ;) and ¢, = eu(x,). Then, by Lemma D.1, we have

H, = Zv_lt,,,k — ZTA,N = Z(l -l =05, — ZX:

oCA ACT 7

Therefore, we get

n

1 + usC(s) = 1_[

=1

r

l+s(h+x) 1+s(h,+») L 4+s(h:—w 1—[l+s(e,l+u)
L+s5(fhi—x) 1+s(fi—») 1+s(fhi+w 1 +se,

a=1

Recall that u = x§. Using (A.5) and (A.2), we finally get

A 1 .
T+EY o™ =]] It tk exp (Z(— D0 x—fgo,(s)>.

1 + se
k>0 a=1 + s¢ >0

Now, Remark 2.3 gives

ho1 (L] = (=1)'x"'p(5.0) [L].
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Thus, we obtain

— 1456, +
(1 +£ Zcx,ks’f“> [L]= ]} %Sss exp<Z ho 141 <pz(s)) (L],

k=0 =0

= CXP(Z(—UHII?J(«;)(PZ(S)) CXP<Z Do, 141 901(5)) (1]

=0 =0

where p;(§) =Y, ¢!. Comparing this expression with (D.5), we get the proposition.

D.2 Proof of Corollary 3.3. — Now, we prove that the representation p of SHY
on Lg) is faithful. For an operator / on Lg) and r-partitions A, u we denote by (u; f; L)
the coefficient of [I,,] in f([I,]). Given partitions A, Ay, ..., A; and given an integer n >
|A1], ..., [Agl, let the symbol A} ® --- ® A; denote the r-partition whose first part is the
partition A} ® - - - ® A, from Section C.2 and the r — 1 other partitions are empty. Given
a finite family of elements

P,eSH!”, R,eSH’, Q, e SHY ",

we set x = ) . P;R,Q;. Assume that 0" (x) = 0. We may also assume that P;Q,R; is ho-
mogeneous of degree 0 (for the rank grading) for each :. Then

> (s o (BRQ): 1) =0

1

for each r-partitions A, . For n large enough we consider the coefficients
(A1 ® 1o ® As; pV PRQ):; Ay ® Ao @ A3), Ay C Ay, Az C As,

D.8) -
A \A L = [As\As| = ¢

with ¢ = sup,(deg(P;)) = sup,(— deg(Q);)). Since Q); is an annihilation operator and P; is
a creation operator, the coefficient

(D.9) (A1 ® 1o ® As; 0 (PRIQ); At ® Ay @ As)

factorizes as in (C.10), and it is zero unless deg(P;) = —deg(Q;) = ¢. We claim that

(C.11), (C.12) hold again for some non-zero ¢, d € K,. Then (C.14) hold again for all

Ay A1y Ao, As, Mg as above and all large enough 7. If x # 0 we may assume that the ele-

ments R; are linearly independent polynomials in the f; ;’s and that P;, Q); # 0. Then the

same argument as in Section C.2 yields a contradiction. The proof of the claim is the

same as the proof of Lemma C.3. It is left to the reader. 0J
The proof above has the following corollary.

Corollary D.2. — The multiplication map SHE?’> ® SH!' ® SHEQ’< — SHY is injec-
lwe.
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D.3 Proof of Lemma 3.12. — Fix r-multipartitions @, A such that © C A and
|A\u| =n. Letl, ..., [, be integers > 0. We need to prove that

(D.10) M fin s fis w) = w'n(zlll e "Zf?)(":u,)») A, €Uy

Let s, ..., 5, be the boxes of A\ . We have

(D.11) i Sy = D (A% S A1) (A7 A A7)

oe’,

where A% = X and A% = MSoys -+ o) fori=1,..., n. We set (A“’i_l;flyh; A% =0
it A% or A% is not a multipartition. We say that o is admussible if AL " are all
multipartitions. If n =1 then we have

(D.12) (Aifrn i) = cr(tu) eu(Nf, = T5) = c1 () @

Hence, if o is admissible then

n

n
=1, L0\ l ln
H()\.Ol laﬁ,l[a )"J l) - Cl (IJ‘G(I)) beos CI(IA’J(”)) CU(Z Nia,z’fl’)\o,i - T:o,il) .
=1

=1

Now let 0 € G, be arbitrary. Using (3.10), (3.11), we get after a straightforward compu-
tation

n

(D.13) Y (Niiisor = Tho) = (M= = 0)(r), ®7) — 71, @W —m0™")

=1

— A=A =DD T i1 ® Tyt

i>]
We have already seen in the proof of Proposition 3.13 that
g=cu((l—U—-0(t,®n)—1,, @W—m"")
1s nonzero and well-defined. A similar reasoning shows that
(D.14) eu<—(1 — =D Thies ® fmﬁ,j_)
1>

1s well-defined and vanishes if o 1s not admissible. Now note that

(D.15) eu(—(l - =1 Z t;G,i’)LO,i—l X Txfw',)ﬁ‘i—‘) :g(cl(fsn(l))’ R Cl(t&‘a(w))'

i>]
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It follows that

Z Cl(Tso(l))ll e Cl (ng(n))ln €u<_(1 - Q)(l - t) Z T:a,ifl\)ha,i ® .E)\O',j—l\}"d,j)

0e6, i>]

I A
= Z Cl(rs(r(l)) Teoe C] (Tsa(n)) "g(cl (Ts,,(l))v ey C (T.Yg(ﬂ)))

oe’,
l L,
= wn(zll e »Zn )(TM,)»)'

Lemma 3.12 is an easy consequence.

Appendix E: The Heisenberg subalgebra

In this section we prove the formula in Section 1.11.
Lemma E.1. — For k, [ > 0 we have [D, o, Dy.ol = [D—_s0, D_s0] = 0.
Proof. — Follows from Remark 1.29. U
LemmaE.2. — For [ > 0 we have [Dyo, D_) 0] = —E 8,1 and [D, o, D_; 0] = —E¢d;,.

Progf: — The proof'is by induction on /. From (1.69) we have [D, o, D_; o] = —E.
Next, we have

(E.1) [D1.1, Dol = Disr o, [D_1.1, Dol = =MD
Thus, using the induction hypothesis and (1.69), we get
(E.2) [[Dy41,0, D10l = [[DI,I»D/,O]a Dfl,O] = —[Dz,o, [Dl,l,Dfl,O]] = [Dy,0, Eq].
Now, by definition, E; is a central element. Thus, we have
[Dyg,D_10]=0, [(>2.
The second identity follows from the first one by applying the anti-involution 7. 0J

Lemma E.3. — For [ € Z we have [Dy 1, Dy o] = (D,0.

Progf. — From the faithful representation of SH" in the Fock space, see Proposi-
tion 1.20, we get

[Do,i, Dol =Dy, [(=1.

Now apply the anti-automorphism 7. O
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Lemma E.4. — For [ > 2 we have [D]y],D_[’O] = _KlDl_Z’O and [D_I,I,D[’O] =
KlD[,LU.

Progf. — The second relation follows from the first one and the anti-involution 7
of SH®. Let us concentrate on the first relation. The proof is by induction on /. By (1.69)
and the induction hypothesis we have

[Dy,1, D0l =[Dy.1, [D_y,1, Di_yol]/(A = D)
= [[D1,1, D_i.], lez,o]/(l -0+ [Dfl,la [Dy.1, lez,o]]/(l —1)
= —[Ea, D1—y0l/(1 =) + k[D-11, Doy 0]

Now, using (A.4), we get that the element Ey — 2k Dy ; is central. Therefore, by (E.1) and
Lemma E.3, we have

[Dl,l,Dfl,O] = —QK[DO,I, D17/,0]/(1 —D)+Kk@— Z)lez,o

=—2cD_ 0+ k(2 —=0)Dy_;p
= —KZlel‘o. U

We now prove the formula (1.90), which is equivalent to (I, ) below
(Ti.x) (Do, Dol =AE S, A=—lk"", kI>1.

For k=1 or /=1 thisis Lemma E.2. Let us prove the formula (I, ), assuming that we
have already proved (I, ;) and (I 4,) for I <. Using (I;;) and Lemma E.4 we get

[Di41.0, Dgol = [[D1.1, Dol D_go]/!
= —[Dy0, [Dy11, Do)/
= Kkk[Dy0, Di-0l/!
=k ([ + DAES;1,/!L.

We deduce that A,y = k([ + 1)A;/l. Since A; = —1 this shows that A; = —ik/~! as
wanted. ]

Appendix F: Relation to Wy,

Let W1 be the universal central extension of the Lie algebra, over G, of regular dif-
ferential operators on the circle. To unburden the notation we’ll abbreviate 20 = W/ .
The aim of this section is to prove that the specialization at kK = 1 of SH€ is isomorphic
to the enveloping algebra of 2U.



332 OLIVIER SCHIFFMANN, ERIC VASSEROT

E.1 The ntegral form of SH®. — Let SHY be the A-subalgebra of SH® generated by
the set {c;, D119, Do; { > 0}. From (1.33) and (1.56) it follows that SH{ contains the ele-
ments D; o, Dy, forany /> 0. Let SHY, SHS" and SH? be the A-subalgebras generated
by {D, ;[ >0}, {c;, Do s; { > 0} and {D_, ;; [ > 0} respectively. Recall (see Remark 1.4)
that we denoted by A the localization of A at the ideal (k — 1). Replacing everywhere A
by A; we obtain the A-algebras SHY , SHX?, SH and SHy,.

Proposition F.1. — (a) The A, -module SHY, s free and we have SHY ®x, F = SH®.
(b) We have a triangular decomposition SHY = SHY ®a, SHZ’I0 ®a, SHY .
Progf. — We claim that SHY , SHR:J and SH, are free over Ay, and that
SH; ®, F=SH", SH;’ ®,, F = SH*", SH; ®, F=SH".
Thus, we have an isomorphism
(SH; ®a, SHY' ®,, SH} ) ®,, F=SH” @ SH*' @ SH".
Therefore, the multiplication map
SH; ®,, SHY' ®,, SH; — SHY ,

being the restriction of a similar map over F, it is injective by Proposition 1.37. We only
need to show its surjectivity. The proof is the same as for SH® in Proposition 1.37. It is
based on the fact that D_; ;, Dy, € SHY for /> 0. Then, using the triangular decompo-
sition, we get that SHY  is free as an Aj-module and that

SHS, ®,, F=SH®.

Now, we prove the claim. It is clear for SHZ’IO. The remaining two cases are similar,
we only deal with the first one. Recall that SH> carries an N-grading and an N-filtration,
with finite-dimensional pieces SH” [r, </]. Consider the A;-module

SHY [r, </]=SH} NSH"[r, </].
Since the tensor product commutes with direct limits, it is enough to check that
(F.1) SHY [r, </]®a, F=SH"[r, </]
and that the inclusion of A;-modules
(F.2) SH [r, </] C SH [r, <]
is a direct summand. Now, for n large enough the map ®, yields an isomorphism

SH™ [r, <{] = SH[r, <!].
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By Remark 1.4, this map restricts to an isomorphism of A;-modules
SH [r, </]— SH_, [r, <I].

In particular, the left hand side is finitely generated and torsion free. Hence it is free.
Further, (F.1) holds by (1.11). Finally, to prove (F.2) it is enough to check that the inclusion
of A;-modules

SH”

n,Aj

[r, <{ICSH,, [r, <[]

is a direct summand. This follows from the fact that the inclusions of A;-modules
H, [, <l CH, [r, <, SH,, [, <lICH, [r,<]]

are direct summands, by the PBW theorem and formula

SHZ, [r,<[]=S-HZ, [r,<[]-S. 0

F.2 The Lie algebra W1 1. — The Lie algebra 20 has the basis {C, w;;; [ € Z, k €
N} and, given formal variables ¢, B, the relations are given by

w; ;= 1'D,
E3) [£ exp(a@D), ¢ exp(BD) ] = (exp(kar) — exp(iB)) " exp(aD + BD)
—la) — —k
+8;,_keXp( ) —exp(=Fp)
I —exp(a + B)
Example F.2. — The elements b, = w;, with [ € Z satisfy the relations of the

Heisenberg algebra with central charge C, i.e., we have [b, b_;] = [5,,C. Let S be
this Lie subalgebra.

Example F.3. — Yor B € G, the elements Lf = —w;; — B[+ 1)b, with [ € Z satisty
the relations of the Virasoro algebra, i.e., we have

P—1
[L), L] = (- kL), + 5 8+Cp Cp= (—128%+ 128 - 2) C.

In particular {Lll/ *leZ) generates a Virasoro algebra of central charge C such that

(L2, 5] = — b

Example F.4. — We have the following formulas

k—1

k
[wo.9, Wil = 20w 41 + Pwyy, (b1, wi ] =— Z (/z) Wit + 6,-16,0C.

h=0

In particular, we have [wy o, b;] = —QZLZI/2 — {b,.
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Let 207, 207, 20° C 20 be the Lie subalgebras spanned by
{Cowyl,keN},  {wysl=1, keN}l, {G wg; (= 0}

We define 20~ and 20~ in a similar fashion. The enveloping algebra U(20) carries a
Z-grading, called the rank grading, in which w; is placed in degree [ and C is placed in
degree zero, and an N-filtration, called the order filtration, in which w, is placed in degree
< k. The order filtration may alternatively be described as follows: an element « is of
order < £ if

ad(py) o---oad(p)(w) € CIC, wy0; L €EZ], Ypy,...,p € UI).

Let UQ0)[r, <k] stands for the piece of degree r and order < k. The graded pieces
U0~)[r, <k] and U(Q0~)[r, <k] are finite-dimensional and the Poincaré polynomials
of U(QU~) and U(20~) with respect to this grading and filtration are given by

(F.4) Po-(.=[[]] 1—;@ Py-t.=]]]] : _1Mk.

r>0 k>0 r<0 k>0

The proof of the following result is left to the reader.

Lemma F.5. — The following holds
(a) 20 s generated by b_,, by and wy o,
(b) W6~ , W= are generated by {w, ;; [ > 0}, {w_, ;5 [ > 0} respectively.

F.3 The Fock space representation of W 1o0. — For ¢, d € G we set
Uet(W) =UQ) /(C—c, by —d), U a() = U(H) [ (C—c, by—d).

Let S, ; be the irreducible vacuum module with level (¢, d), see [17, Sect. 1]. It is the top of the
Verma module

M., = Ind}y. (C.,),
where C, , is the one-dimensional 20" -module given by

w0, Lk>0, ([,k)#(0,0), Cr o, by d.
We will mainly be interested in the pair n given by (¢, d) = (1, —1/2).

Proposition F.6. — (a) The restriction of S, to F€ is the level one Fock space of I .
(b) The action of U, (20) on S, is faithful.

Proof. — See [17, Thm. 5.1] for (a). Now, we prove part (b). Let I C U, (20) be
the annihilator of S,. Since U, () acts faithfully on S, we have IN U, () = {0}. The
proposition is a consequence of the following lemma.
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Lemma V7. — Let 1 be an ideal of U(20) such that 1N U() = {0}. Then I = {0}.

Progf. — Let I be as above, and let Iy £ I, € - - - be the filtration on I induced from
the order filtration on U(20). Assuming that I # {0}, let z be minimal such that I, # {0}.
Since o = 1N U(57) = {0}, we have n > 1. Moreover, since

ad(b) (U@D)[<n]) C UQD)[ <1,
we have [L, U(#£)] = 0. This contradicts the following claim.
Claim. — The centralizer of £ in U(20) is CC @ Cby.
Proof. — Tor [ € Z we consider the map
oy =ad(b) : U [=<n]/UQD)[<n] — UQD)[<n— 1]/UQD)[<n — 1].

The space U(0)[<n]/U(20)[<n] 1s identified with the degree (e, 7) part of the polyno-
mial ring G[w), ;; &, k]. One checks from the definition of 20 that o; acts as the derivation
satisfying

—klWippp— k=1

oWt =1 iE=0

From this it is easy to check that (), Ker(o;) = {0} if n > 1. This implies that the central-
izer of 7 in U(2Y) is contained into U(W)[<0] = U(H). The claim now follows from
the fact that the center of U(7) is CC @ Cby. O

This finishes the proof of the lemma and of the proposition. UJ

Lemma ¥.8. — The element wy o/2 acts in S, as the Laplace-Beltrami operator specialized at
k=1, t.e., we have

p(wos) =200 = " (boibibrss + borsbiby),

k(>0

where p : U, (20) — End(S,)) = End(C[4;; [ < 0]) us the Fock representation.

Proof. — The free field formula for (0! is obtained by setting k = 1 in Propo-
sition 8.14. Because S, is cyclic over U(J¢), the action of wyo on S, is completely
determined by the commutation relations of w9 with {;; [ € Z} and by the equation
wo.9 - 1 = 0. Hence it is enough to check that [p(wq9), 6,1/2 = [(J}, ;] for all /, because
[O'.1 = 0. Likewise, the actions of the Virasoro operators L,l/ ® on S, are fully determined
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by their commutation relations with the Heisenberg operators. More precisely, from the
relations, see Example F.3,

[Lll/29 bk] = _kbl+k’ L(l)/Q 1= 1/4
1t follows that

p(L) =Y bb oL =Y bihy2, 10,

k=0 keZ

Now, one checks by a direct computation using Example F'4 that

[ (wo2), b:]/2 = p([wo 2, bi1)/2 = —lp(L," + bi/2)

= —l(Z bi—kby + bz)/2 = [Dl’ bl]

kel

(recall that by = —1/2). The lemma is proved. 0J

F.4 The isomorphism at the level 1. — Let SHXI) be the specialization of SHY at
c=(1,0,0,...). Recall the representation p : SHXI) — End(Ay,). We set
(E.5) SH|” = SH{ ®,, C, A=Ay ®4, C
where A; acts on G via k > 1. We identify S, and A via the assignment
(F.6) by by Y pyeeopr -1, by 0> 1.

This identification intertwines the actions of the Heisenberg generators 4, in U, (20)
with the Heisenberg generators D_, o in SH!" for / € Z. It intertwines also the action
of wy /2 with that of Dy s by Lemma F.8 and Remark 1.23, see also Proposition 2.6.
Since, by Lemma E5 and Proposition 1.35, the algebras U, (20) and SHgl) are respec-
tively generated by {b_;, wg 9, b1} and {D_, o, Do, D1 o}, and since by Proposition F.6
the representation on S, is faithful we obtain in this way a canonical surjective algebra
homomorphism

(E.7) e':sH\" - U, ), D_, o b, Doo > woo/2, [€Z.
Proposition £.9. — The map ©" is an algebra isomorphism.

Progf. — Set SH(II)’O = SH? /(c — ¢). We first show that ®! restricts to an isomor-
phism

(F.8) SH{ — U, (20°).
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By (1.67) we have D, = ad(Dy)'(D, o) for [ > 0. So, a direct computation proves that

-1
(E.9) ©'(Dy) =2 "ad(wo )" (b_1) € (=D'w_1, &® P Cw_4. 1>0.

k=0

Thus, since E; =[D_, o, Dy /], we get
-2

(F.10) ©'(E) =[b1,0' D] € (=D lwo 1 @ EB Cwy;®C, [>0.
k=1

Next, from (1.69) and (E.1), we have the following formula in SH!"

(F.11) E,€l(l—1)Dg;-1 +C[Dy;,...,Dgi—0l, [>2.

It follows that

(F.12) ®'(Dy,) € (—1)/11)0,1/1 +Clwo,1, ..., wo 1], (=1

Thus ®X restricts to an isomorphism SH)I(’O — U, (20°). Next, observe that

(F.13) ©'(SH7) cU(W"),  O'(SHy)cU(Ww).

Moreover, since

SH\" = SH> ® SH!""’ @ SH,

I U, (20) = U(W~) ® U, (W°) ® U(207),

by Proposition 1.37. and the PBW theorem, and since ®' is surjective we deduce that

(F.15) ®':SH; - U(W"), ©':SH; - U(W")

are surjective as well. It only remains to prove that they are isomorphisms. Both SHY
and U(20~) carry a Z-grading and an N-filtration. The map ©' is compatible with these
gradings and filtrations, i.e., we have

(F.16) ©'(SH{[r, <{1) = U(20)[—r, <.
But by Corollary 1.27 and (F.4) these spaces have the same dimension. It follows that
(F.17) ®': SH; — U(W~)

is an isomorphism. The same holds for SH;". We are done. U
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E.5 Thewsomorphism for a general level. — Now we construct a Z-algebra isomorphism

(F.18) O:SHf - U ®Z, Z=Clc;l(>1].
The construction of ® is inspired by ®'. Recall that (1.67), (1.68) yield
(E19) D ;= ad(Dg2)' (D1 ), D_; = (=D'adDg)'(D-1p), [=0.
Thus, by Proposition E9, the assignments
(F.20) Dy > 2 'ad(wo,0)' (b-1), D_i ;> (=2)"ad(wo)' (b)), (>0
extend to algebra isomorphisms
(F.21) ®:SH; - U(W"), ©:SHf - U(W").
They coincide with the restrictions of ®'. Next, we lift the map
(F.22) e': SH"’ - U, (Ww°)
to a Z-algebra isomorphism
(F.23) ®: SH' — U(W’) ® Z.
For [ > 2 we have
E, € l(l—1)Dy;—1 +Z[cy, Do1, ..., Do 0],
(F.24) 2
(b1, ad(wo.2)'(b-1)] € —(=2)"two,—; & €D Cwy . ® CC @ Ch.
k=1

In particular, we have SHS" = Z[c,, E;; { > 1]. Thus, there is a unique Z-algebra isomor-
phism ® as in (F23) such that

(F.25) Ole)=C.  O(E) =2 (b adwn)(b-)], 1=2.
We claim that the maps (F.21), (F.23) glue together into a Z-algebra isomorphism
(F.26) ®: SHf - U(W) @ Z.

By the triangular decomposition argument, it is enough to prove that ® is an algebra
morphism, 1.e., that relations (1.67)—(1.69) hold in U(20) ® Z. This is clear for (1.67),
(1.68), because @' is an algebra morphism and © is a lift of ®!. The relation (1.69) holds
by construction, because

O([D_10, D1 1) =OE) =[b, 0D, )], (=2,
(F.27) ®([D71,0,D1,0]) =0O(c)) =C=1[by, b1],
O([D_1,0,Dy11]) =O(—¢)) = by +C/2 = [[91, LI_/IQ + 5—1/2] = [[71, ®(D1,1)]-

Therefore, we have proved the following,
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Theorem F.10. — There is a unique Z.-algebra isomorphism ® : SH — U(W) ® Z satis-
Lying

(F.28) O(cy) =C, OM_,0) =1b, Oy =wps/2, [#0.

Appendix G: Complements on Section 9

We freely use the notations of Appendices B, C and D. We begin by explicitly computing
J-1.4(G). By definition, we have f~; ;[M, ] = ¢[M, -] if and only if the quantity

(G-1) Go=Y eugeu; (wif1 sk
ADu
P\rl=1
1s equal to ¢ for any r-partition . Using (D.1) and (D.6) we have
(G.2) euyeu; (s fora M) = a(t,) eu(N; , —T)
=) 'a(t.w) eu(ry Hy +1).

Furthermore, by Lemma D.1,

* _ * *
(G.3) T, Hy+1=q E Ty Ton — E T Tl
oCu Ao
N £

where in first sum |u\o| = 1 while in the second [A"\u| = 1. Setting @, = ¢,(7; ,) and
by = ¢1(Ty,0) + x + we obtain

G.4) =" Y L

#(aw - ) '

Lemma G.1. — Let m> O0,n=m~+7r and d > 0. Let 21, ..., 2,915 -, Y be formal
variables. Then

0 gfd<r—1
(G.5) sz% =4 (D! fd=r—1
i o bt D" o=z ifd=r.

Progf: — Let P,(z, ) be the left hand side of the above expression. It is a rational
function of degree d — r + 1 with at most simple poles along the divisors z; = z;. It is easy
to see that the residue of P,;(z, ») along each of these divisors is in fact equal to zero, so that
P,(z, ) is a homogeneous polynomial of degree d — r 4 1. This proves that P,(z,») =0
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if d < r— 1. To compute the scalar P,_;(z, ) we may set y, = 0 for all £ and let z; — o0.
To compute P,(z, y) we may likewise consider the limits P,(z, »)/z;, P,(z, ) [y as z; = 00
and y; — 00 respectively. UJ

Using Lemma G.1 together with the fact that for a given r-partition u,
(G.6) Y b= ==+ te)
o A

we deduce

0 ifd<r—1
(G.7) =13 (=)' fd=r—1
(=D (e;+---+4e¢) ifd=r

and thus that, ford <r—1,

Sra(G) =0,  [1,1(G)=—1)" (G,

So1,(G) = (—1)’(2 el-) (9)"'G.

1

(G.8)

This proves (9.3) for [ = 1, the first part of (9.4) and (9.5). Relation (9.3) for [ > 1
and the second part of (9.4) follow since D_;, i1s obtained from D_; , and D_, 44, by
iterated commutators with D_; o or D_, ;. Proposition 9.1 is proved. ]

Remark G.2. — The operator p (x'~'"2)'D_, ;) preserves the lattice L by Re-
mark 3.5, and it has the cohomological degree 2(2/ — 7l + d — 1) by Remark 3.6. Thus
for [ > 1 and r > 2 we may deduce directly that

<G'9> IOO) (D—Z,d) ([Mr,n]) = O’ IO(O (D—l,r—l) ([Mr,n]) € KT’ [Mr,n—l]v d <r—1
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