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ABSTRACT

We prove a conjecture of Colmez concerning the reduction modulo p of invariant lattices in irreducible admissible

unitary p-adic Banach space representations of GLy(Q,) with p > 5. This enables us to restate nicely the p-adic local
Langlands correspondence for GL,(Q ;) and deduce a conjecture of Breuil on irreducible admissible unitary completions
of locally algebraic representations.
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1. Introduction

In this paper we study p-adic and mod-p representation theory of G := GLy(Q ).
Our results complement the work of Berger, Breuil and Colmez on the p-adic and mod-
p Langlands correspondence for GLy(Q ), see [5] for an overview. Let L be a finite
extension of Q , with a ring of integers O, uniformizer @ and residue field £.

Theorem 1.1. — Assume p > 5 and let T1 be a unitary admussible absolutely irreducible 1
Banach space representation of G with a central character and let © be an open bounded G-invariant
lattice in T1. Then © Qo k is of finite length. Moreover, one of the following holds:

1) O Qo k s absolutely irreducible supersingular;
(i) (ORek)" < (Indg’ X1 xow "D (Indg’ Xo ® x1w~ ") for some smooth characters
X1s X2 - Q; — k™, where w(x) = x|x| (mod p).

Further, the inclusion wn (11) s not an wsomorphism if and only if T is ordinary.

We say that IT is ordinary if it 1s a subquotient of a parabolic induction of a unitary
character, so that IT is either a unitary character IT = 5 o det, a twist of the univer-
sal unitary completion of the smooth Steinberg representation by a unitary character
In= gi) ® n odet or IT is a unitary parabolic induction of a unitary character. An irre-
ducible smooth £-representation is supersingular if it is not a subquotient of any principal
series representation. The theorem answers affirmatively for p > 5 a question of Colmez
denoted (Q3) in [23].

Let Z be the centre of G, we fix a continuous character ¢ : Z — O*. Let Mod' (O)
be the category of O-torsion modules with a continuous G-action for the discrete topol-
ogy on the module, let Mod{", (O) be the full subcategory of Mod"(O), consisting of
representations on which the centre 7Z acts by (the image of) ¢, and let Modgj (O)
be the full subcategory of Mod', (O), consisting of representations, which are of fi-
nite length as O[G]-modules. In his Montreal lecture Colmez has defined an exact co-
variant O-linear functor V : Modg, (O) = Modg, , (O) to the category of O-modules
with a continuous action of Gg ,, the absolute Galois group of Q ,. Given IT as in The-
orem 1.1 one may choose an open bounded G-invariant lattice ® in Il and define
VD) :=L® lgn V(O /"®). Since all open bounded lattices in IT are commensurable

the definition does not depend on the choice of ®.

Corollary 1.2. — Let I1 be a unitary admissible absolutely irreducible 1.-Banach space repre-
sentation of G with a central character then dimy, V(IT) < 2. Moreover, dimy, V(IT) < 2 if and only
o T1 us ordinary.



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 3

Once one has this, the results of Berger-Breuil [7], Colmez [23] and Kisin [41]
imply:

Theorem 1.3. — Assume p > 5, the functor V induces a bijection between isomorphism classes
o

(1) absolutely irreducible admissible unitary non-ordinary L-Banach space representations of G
with the central character' ¢, and

(ii) absolutely irreducible 2-dimensional continuous L-representations of Gg , with determinant
equal to C €,

where € 1s the cyclotomic character, and we view ¢ as a character of G , via class field theory.”

In [23] Colmez has also defined a characteristic 0 construction, which to every
2-dimensional continuous L-representation of Gg, associates an admissible unitary L-
Banach space representation IT(V) of G, such that V(IT(V)) = V. Colmez has calcu-
lated” locally algebraic vectors in IT(V) in terms of p-adic Hodge theoretic data attached
to V. As a consequence of Theorem 1.3 we know that for every II in (1) there exists
a unique V such that IT = I1(V). Using this in Section 12 we determine admissible
absolutely irreducible completions of absolutely irreducible locally algebraic representa-
tions. In particular, we show that Sp ®|det|** ® Symk L? admits precisely P'(L) non-
isomorphic absolutely irreducible admissible unitary completions, where £ is a positive
integer and Sp is the smooth Steinberg representation of G over L. This confirms a con-
jecture of Breuil. However, our main result can be summed up as:

1.1. The correspondence is an equivalence of categories. — Let Baniﬁ?(L) be the cate-
gory of unitary admissible L-Banach space representations of G with central character
¢ and let Ban?f?ﬂ(L) be the full subcategory consisting of objects of finite length. Let
Modlé‘?{ (O) be the full subcategory of Modsc’f; (O) consisting of those objects which are
locally of finite length, that is (7, V) is an object of Modlgfl; (O) if and only if for every
v € V the O[G]-module O[G]v is of finite length. We obtain Bernstein-centre-like* re-
sults for the categories Modlg‘} (O) and Bani{f‘;'ﬂ(L). That is we decompose them into a
direct product of subcategories and show that each subcategory is naturally equivalent
to the category of modules over the rings related to deformation theory of 2-dimensional
Go ) -representations.

! Dospinescu and Schraen have shown recently in [27] that every absolutely irreducible unitary admissible L-
Banach representation of a p-adic Lie group admits a central character.

2 We normalize it the same way as Colmez in [23], see Section 5, so that the uniformizers correspond to geometric
Frobenii.

% In [23] some cases are conditional on the results of Emerton, which have now appeared in [32, §7.4].

* Since we work in the category of locally finite representations, our rings are analogous to the completions of the
rings in Bernstein’s theory [8] at maximal ideals.
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To fix ideas let IT be as in Theorem 1.3(1) so that V := V(II) is an absolutely irre-
ducible 2-dimensional continuous L-representation of Gg , with determinant ¢e. Let R{
be the deformation ring representing the deformation problem of V with determinant
¢ e to local artinian L-algebras, and let V" be the universal deformation of V with the
determinant Ze. Let Banadmﬂ(L)n be the full subcategory of Banadmﬂ
the representations with all 1rredu01ble subquotients isomorphic to H

(L) consisting of

Theorem 1.4. — The category Banadm YLy is a direct summand of the category BanTdm (L)
and 1t s naturally equivalent to the category ty‘ RS’ -modules of finite length.

The first assertion in Theorem 1.4 means that any finite length admissible unitary
L-Banach space representation I, of G with a central character ¢ can be canonically
decomposed I1; = ITy, @ I3, such that all the irreducible subquotients of IT, are iso-
morphic to IT and none of the irreducible subquotients of I1s are isomorphic to IT. The
equivalence of categories in Theorem 1.4 is realized as follows: to each B in Banadm Ly

we let m(B) = HomgQ vy, V(B)), where V(B) =V(B)*(e¢), and then show in Theo-

rem 11.7 that V(B) m(B) ®R;: V. So at least in some sense we may describe what kind
of representations of Gg , lie in the i image of V, which explains the title of our paper.

We will discuss now what happens with Modlé . (0) and recall that we assume
p > 5. We may define an equivalence relation on the set of (isomorphism classes of) ir-
reducible objects of Modlgz (O), where t ~ 7 if and only if there exists a sequence of
irreducible representations T = 7, T, ..., T, = 7 such that 7, = 74, Exté (i, Tiy1) £ 0
or Exté(tiﬂ, 7;,) # 0 for each ¢. An equivalence class is called a block. To a block B
we associate T =P, s T, Tp L)J% an injective envelope of g in Mod]rm (0) and
E% = Endg(Jss). One may show that E:B 1s naturally a pseudo-compact ring, see Sec-
tion 2. By a general result of Gabriel on locally finite categories [35, §IV] we have a
decomposition of categories:

Modg’, (0) = [ [Mod,(0)%,
B

where the product is taken over all the blocks B and Modlcri“( (O)® denotes a full subcat-
egory of Mod1rm (O) consisting of those representations, such that all the irreducible sub-
quotients lie in ’B Moreover, the functor 7 = Homg (7, Js) 1nduces an anti-equivalence
of categories between Modléng (O)® and the category of compact Eos-modules. In this
paper we explicitly work out the rings Eos.

We are going to describe the blocks. Since we are working over a coefficient field
which is not algebraically closed, not every irreducible £-representation t of G is abso-
lutely irreducible. However, we show that given a block ‘B there exists a finite extension /
of k such that for all T € B, v ®, [ is isomorphic to a finite direct sum of absolutely irre-
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ducible representations. The blocks containing an absolutely irreducible representation
are given by:

i) B
(1)
(i11)

(iv)

To prove this, one has to compute all the Ext' groups between irreducible representations
of G, which have been classified by Barthel-Livne [1] and Breuil [16]. In many cases
these computations have been dealt with by Breuil and the author [20], Colmez [23]
and Emerton [31] by different methods, and the computation was completed in [56]. To
each B we may associate a 2-dimensional semi-simple k-representation p of Gg, using
the semi-simple mod-p correspondence of Breuil, [16], [17]: (1) p := V() 1is absolutely
irreducible; (1) p = x; @ xo; (1) p = x D x; (V) p :=1n D nw. Let Rf)r,f be the universal
deformation ring representing the deformation problem of 2-dimensional pseudocharac-
ters with determinant ¢ ¢ lifting the trace of p, see Section A for a definition.

={m}, supersmgular
B = {Indy, 1 ® xo ', Indy o ® 10 '}, xixs ' #1, 0*
B ={Indy x ® xo'};
B = {n odet, Sp®n odet, (Indi v ® @™") ® 1 o det].

Theorem 1.5. — Let *B be as above then the centre of Eos and hence the centre of the category
Mo dlﬁn (O)® is naturally isomorphic to Rf’fp{g.

Recall that the centre of an abelian category is the ring of endomorphisms of the
identity functor. In particular, it acts naturally on every object in the category. We also
show that Fgs is finitely generated as a module over its centre and after localizing away
from the reducible locus it is isomorphic to a matrix algebra. In cases (i), (i) we have a
nice characterization of Eg in terms of the Galois side. We may extend V to the category
Mo dlg gu((’)) since every object is a union of subobjects of finite length. If B = {7} with
7 supersingular then Jg is simply an injective envelope of 7. Let p = V (1), RS’ be the
deformation ring representing the deformation problem of p with determinant equal to
Ce and let p" be the universal deformation with determinant ¢e€.

Theorem 1.6. — If B = {7} with w supersingular then V(J)" ({€) = p™ and Eg =
RE?, where \/ denotes the Pontryagin dual.

Thus to every 7 in Modlﬁn (O0)® we may assoclate a compact E% -module m(t) :=
Homg (7, Jx) and then V(7)" ({8) m(‘L’)(X)E%,Oun

In the generic reducible case (i1), Exthp (x1, x2) and Extngﬁ( X2, X1) are both 1-
dimensional. Thus there exists unique up to isomorphism non-split extension p; of x;
by xo and py of x9 by xi. Since x; # xo the deformation problems of p;, and p,; with
determinant equal to ¢ & are represented by R¢® and RS’ respectively. Let o™ and p3" be
the universal deformation of p; and py with determinant ¢ ¢, respectively.
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Theorem 1.7. — If B w5 as i (i) then V(J)"(Ce) = pi" & ps" and E% =
Endgg, (01" @ py"), where \/ denotes the Pontryagin dual.

Again one may describe the image of Modl(fj“{ (O)® under V as follows: to every

T in N[odlhn (O)® we may associate a compact E% -module m(7) := Homg(7, Jos) and
then V(7)V ({8) = rn(t)®F% (" @ py"). For non-generic cases, (iii) and (iv) see the intro-
ductions to Section 9 and Section 10.

adm

Proposition 1.8. — The category Bang ;' (L) decomposes into a direct sum of calegories:

Ban("(L) = @ Bani™ (L)%,

where objects of Bani™ (L)% are those I in Banddm (L) such that for every open bounded G-invariant
lattice © in IT the zrreduczble subquotients of © ®0 k lie in *B.

Let Ban“dmﬂ(L)% be the full subcategory of Banadm(L)SB consisting of objects of
finite length.

Corollary 1.9. — Suppose that B contains an absolutely irreducible representation. We have a
natural equivalence of categories

Banadm ﬂ(L)‘B ~ @ Banadm ﬂ(L)%

neMaxSpec R?:'p{e [1/p]

The category Banaclm L) is anti-equivalent to the category of modules of finite length over the n-adic
completion of Eo[1 / pl.

To explain the last equivalence let IT be an object of Banadmﬂ(L)% and choose
an open bounded lattice ® in II. For each n > 1, ® /w"® is an object of Modlﬁn (O).
Since R}, p; 1s naturally isomorphic to the centre of the category Modg’f{ (0), it acts on

O/@"0®. By passing to the limit and inverting p we obtain an action of Rfrs;fg[l /p] on
I1. By definition IT is an object of Banadmﬂ(L)% if and only if it is killed by a power of
the maximal ideal n. The corollary is essentlally an application of the Chinese remainder
theorem. If n corresponds to the trace of an absolutely irreducible representation, defined
over the residue field of n, then one may show that the n-adic completion of EsB[l /pl s
isomorphic to a matrix algebra over the n-adic completion of R{f;fs[l /p]. We obtain:

Theorem 1.10. — Let v be a maximal ideal of Rﬁspgs[l /p) with residue field 1. and suppose
that the corresponding pseudocharacter Uy s the trace of an absolutely vrreducible representation 'V,
defined over L. Then the category Banadmﬂ(LYB us naturally equivalent to the category of modules of
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Sfinate length over the w-adic completion of R{f}fs[l/ pl. In particular it contains only one irreductble
object I1y,. The Banach space representation I1,, is non-ordinary, and is the unique irreducible admissible
unitary Li-Banach space representation of G with a central character satisfying V(I1,) =V

Theorem 1.11. — Let v be a maximal ideal of R{’:}f‘g[l /p] with residue field 1. and sup—
pose that the corresponding pseudocharacter is equal to Yy + Yy, where Y, ¥y : Gg, — L a
continuous group homomorphisms. Then the vrreducible objects of Banadmﬂ(L)% are subquotients of

(Indg’ Y1 @ Yoe ™) o and (Indg Yo @ V18" > where we consider Yy, Yy as characters of Q »
via the class field theory and € (x) := x|x|, for all x € Q';

1.2. A sketch of proof. — Let G be any p-adic analytic group. Let Mod;' (O) be the
category of smooth representations of G on O-torsion modules and let Mod{}"(O) be the
full subcategory of Mod{y'(O) consisting of locally finite representations. Let Mody, (O)
be a full subcategory of Mod"(O) closed under arbitrary direct sums and subquo-
tients in Mod@" (). An example of such category Mod,(O) can be Mod{*(O) itself,
or Mod{(k) the full subcategory consisting of objects killed by @, or Modlgz (O) the
full subcategory consisting of objects on which Z, the centre of G, acts by a fixed char-
acter ¢, but there are lots of such categories. It follows from [35, §II] that every object in
Mod, (O) has an injective envelope.

Instead of working with torsion modules we prefer to work dually with compact
modules. Let H be a compact open subgroup of G and let Mody,""*(O) be the cat-
egory of profinite O[[H]]-modules with an action of O[G] such that the two actions
are the same when restricted to O[H]. This category has been introduced by Emerton
in [30]. Sending 7 to its Pontryagin dual 7", see Section 2, induces an anti-equivalence
of categories between Mod}'(O) and Mod{;"***(0). Let €(O) be the full subcategory
of Mod},"***(0) anti-equivalent to Mod, (O) via Pontryagin duality and let €(k) be the
full subcategory consisting of objects killed by z. Since an anti-equivalence reverses the
arrows every object in €(0) has a projective envelope

Let 7 be an irreducible object of Mod .(0) such that Endg () = k. Let S:=7"
and P— S a projective envelope of S in C((’)) We assume the existence of an object Q.
in €(k) of finite length, satisfying the following hypotheses:

(H1) Home) (Q,S) =0, VS € Irr(&(k)), S ZE S';
(H2) S occurs as a subquotient in Q) with multiplicity 1;

(H3) Extlg(k)(g S)=0,VS elrr(E(k)), SES;

(H4) Ext}c(k)(Q, S) 1s finite dimensional;

(H5) Exté(k) (Q, R) =0, where R =rad Q) is the maximal proper subobject of Q;
(HO) HOI’H@(/C) (P[w], R) = 0,

WhCI"E Irr(€(k)) denotes the set of irreducible objects in €(k) (equivalently in €(Q0)),
and P[@] denotes the kernel of multiplication by @ . We encourage the reader for the
sake of this introduction to assume that ) = S then the only real hypotheses are (H3)
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and (H4). As an example one could take G a pro-p group and 7 the trivial representation,
or G= Q_; and 1t a continuous character from G to £* and Modg 0) = Modlgn (O).

The ring E:= End¢ o) (P) can be naturally equipped with a topology with respect
to which it is a pseudo-compact ring. It can be shown, see Section 2, that E is a local
(possibly non-commutative) ring with residue field Ende ) (S) = £. Since £ is assumed to
be finite E is in fact compact. In Proposition 3.8 and its Corollaries we show:

Proposition 1.12. — If the hypotheses are satusfied then the natural topology on E coincides with
the topology defined by the maximal ideal; Pisa Slat E-module and k &5 P = Q.

Remark 1.13. — Let us comment on the rigidity of the setup. There always exists
an object of €(Q) satistying (H1), (H2) and ( H~> Moreover, 1t 1s uniquely determined
up to isomorphism and is isomorphic to k®g P, which is the maximal quotient of p
containing S with multiplicity one. So once we impose (H1), (H2) and (H3) we have no
flexibility about (H4) and (H5), moreover k ®s P need not be of finite length in general. If
either (H4) or (H5) is not satisfied, one might try and replace €(Q) by a different category,
for example a full subcategory or, as we do in Section 10, by a quotient category and hope
that the hypotheses hold there.

Using Proposition 1.12 one can do deformation theory with non-commutative
coefficients. Let 2 be the category of finite local (possibly non-commutative) artinian
augmented O-algebras with residue field 4. The ring Eisa pro-object in this category.
A deformation of Q to A is a pair (M, &), where M is an object of €(O) together with
the map of O-algebras A — End¢)(M), which makes M into a flat A-module and
o k®yM = Q is an isomorphism in €(k). Let Def : 2l — Sets be the functor associ-
ating to A the set of isomorphism classes of deformations of Q) to A. We show in Theo-
rem 3.26 that:

Theorem 1.14. — If the hypotheses are satisfied then the map which sends ¢ : E—>Auw
A ®E 0 P induces a byection between A -conjugacy classes of Homg (E, A) and Defg (A).

If we restrict the functor Defq, to 2, the full subcategory of 2 consisting of com-
mutative algebras, then we recover the usual deformation theory with commutative coef-
ficients.

Corollary 1.15. — Def“Qb(A) = Hom@(ﬁ“b, A), where E% is the maximal commutative
quotient of E.

Let IT be an admissible unitary Banach space representation of G in the sense
of Schneider-Teitelbaum [61] and let ® be an open bounded G-invariant lattice in IT.
We denote by @7 its Schikhof dual, ®¢ := Homp(®, O) equipped with the topology
of pointwise convergence. We have shown in [57] that there exists a natural topological
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isomorphism ®7 = lim (© /@ "®)". Thus @ is an object of Mody,"**(O). Let Bana&%)
denote the full subcategory of the category of admissible Banach space representations
of G, such that for some (equivalently every) open bounded G-invariant lattice ®, @¢
is an object of €(Q). One may show that, since €(0) is assumed to be closed under
subquotients in Mod"**#(0), the category Banuo) is abelian. The idea is instead of

studying Banach space representations study E-modules Homg o) (P, ®%) and m(I1) :=
H0m¢(@) (P @ ) ®(’) L.

Lemma 1.16. — The (possibly infinite) dimension of m(I1) s equal to the multiplicity with
which T occurs in © Qo k.

This is the ¢de-triangle of Serre, see §15 of [63].

Proposition 1.17. — Suppose that the centre Z of E is noetherian and E is a Sfinately generated
Z-module. If T1 in Ban¢(o) us wrreducible then m(I1) s finite dimensional.

Let Ban}d(“é? denote the full subcategory of Banc(o) consisting of objects of finite
length. Let Kerm be the full subcategory of Banagd(%) consisting of those IT such that
m(IT) = 0. It follows from Lemma 1.16 that IT is an object of Kerm if and only if 7 does
not appear as a subquotient of the reduction of ® modulo @ . Since Pis projective one
may show that the functor m is exact and so Kerm is a thick subcategory. We denote the

quotient category by Banﬁ%‘? / Kerm.

Theorem 1.18. — Suppose that the hypotheses (HO)—(HD3) hold and Q) is a finitely generated
Ol[H]]-module for an open compact subgroup H of G. Assume further that the centre of E. is noetherian
and E is a Sfinately generated module over its centre. Then the functor m induces an anti-equivalence of
categories between Banzf(“(;)ﬂ / Kerm and the category of finite dimensional L-vector spaces with a right

E[ 1/pl-action.

Corollary 1.19. — Under the assumptions of Theorem 1.18 the functor m induces a byection
between 1somorphism classes of:

(1) wrreducible right E[l / pl-modules, finite dimensional over L;
(i1) erreductble T1 in Bana&lg) such that 7t occurs as a subquotient of ® /@ ® for some open
bounded G-invariant lattice © n IT.

Moreover, T1 is absolutely vrreducible if and only if m(I1) us absolutely irreducible as E[1/ pl-module.

The inverse functor to m in Theorem 1.18 is constructed as follows. Let m be a
finite dimensional E[1 /pl-module. Let m° be any finitely generated E-submodule of m,
which contains an L-basis of m. Our assumptions imply that E is compact and noethe-
rian, thus m” is an open bounded | O-lattice in m. Since P is a flat E-module by Propo-
sition 1.12 we deduce that m° ®z P is O-torsion free. Let I1(m) := Hom"(m" Sk P L)
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with the topology induced by the supremum norm. One may show that the natural map
IT — IT(m(IT)) in Ban;é(?g;q is an isomorphism in the quotient category. If IT is irre-
ducible and m(IT) # 0 we deduce that the natural map IT — IT(m(IT)) is an injection.
Let m be the multiplicity with which 7 occurs as a subquotient of ® /7w ®. Lemma 1.16
says that dim;, m(IT) = m and thus m" is a free O-module of rank m and so m°’ ®o £ is
an m-dimensional £-vector space. It follows from the Proposition 1.12 that the semisim-
plification of (m" @)E ?) Ro k= (Mm@ k) @g Pis isomorphic to the semisimplification of
Q®". Using this we obtain:

Corollary 1.20. — Suppose the assumptions of Theorem 1.18 are satisfied. Let T1 in Ban*&(}%)
be trreducible and suppose that 7w occurs as a subquotient of ® /o © then

m V' §§
< (™))
where T1 denotes the semi-simplification of © /@ @ and m the multiplicity with which 7t occurs in TI.

From the hypotheses one may deduce that ExtQ(k)(Q, Q) 1s finite dimensional and

so Corollary 1.15 implies that the tangent space of E is finite dimensional. Thus if E
is commutative then it is noetherian. The irreducible modules of E[1 /p] correspond to
the maximal ideals and the absolutely irreducible modules correspond to the maximal
ideals of E[1/ p] with residue field L. In particular, the absolutely irreducible modules are
1-dimensional. Hence, we obtain:

Corollary 1.21. — Suppose that the hypotheses (HO)~(HD5) hold and Q). is a finutely generated
OI[H]1-module for an open compact subgroup H of G and E is commutative. Then for every absolutely
urreducible T1 in Bang(o) such that 1 is a subquotient in © /@ © we have I1 C (QY)*.

In Theorem 3.39 we devise a criterion for commutativity of E.

Theorem 1.22. — Let d := dim Extlc(k)(Q Q) and r = Lg]. Suppose that the hypotheses
(HO)—~(H5) are satisfied and there exists a surjection £ — O[[xy, ..., x41]. Further, suppose that for

every exact sequence
1) 0-Q¥Y—->T—->0Q—0
with dim Home ) (T, S) = 1 we have dim Extlg(k) (T,S) < % +d then Ex Ollxy, ..., %411

Recall that up to now G was an arbitrary p-adic analytic group and the cate-
gory Modg,(O) was any full subcategory of Mod{"(O) closed under arbitrary direct
sums and subquotients in Modlgn((’)). Now we apply the formalism to G = GL,(Q)
and Mod? L(0) = Modl(ﬁng (O), where ¢ is a fixed central character. We show in Propo-

sition 5.16 that injective objects in Modlﬁn (O) are also injective in Mod' (O) and this
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implies that they are p-divisible and hence projective objects in €(QO) are O-torsion free.
Thus P[@] = 0 and so the hypothesis (HO) is satisfied. Results of Breuil [16] and Barthel-
Livne [1] imply that any object of finite length in Modg’, (O) is admissible, dually this
means that every object of finite length in €(0) is a finitely generated O[[H]]-module,
where H is any open compact subgroup of G. Thus to make the formalism work we only
need to find Q) and be able to compute Ext-groups.

One has to consider four separate cases corresponding to the shape of the block B
described in Section 1.1. In the generic cases (1) and (i1), le the Pontryagin dual of what
Colmez calls atome automorphe, that is in case (i) Q =S =", in case (ii) Q = «" where «
is the unique non-split extension between the two distinct principal series representations
which lie in the block B and S is the cosocle of Q. In Section 6 and Section 8 we verify
that the hypotheses (H1)-(H5) are satisfied. Thus by Theorem 1.14 the endomorphism
ring Eofa projective envelope P of S in €(0) represents a deformation problem of ()
with non-commutative coefficients. Using the results of Kisin [41] we show that the func-
tor V: €(0) — Rengp (0), M = V(M")"(¢e) induces a morphism of deformation

X e b & e -
functors of Q and V(Q) and a surjection E* — Ry )’ where Ry Q B the ring repre-

senting a deformation problem of V(Q) with commutative coefficients and determinant
equal to €¢. This argument uses the density of crystalline points in the deformation space
and essentially 1s the same as in [41], except that Kisin deforms objects in Modlgf’g (0)
and we deform objects in the dual category €(0). In the generic cases the ring Rivf( @ 18
formally smooth and thus a further Ext computation enables us to deduce from Theo-
rem 1.22 that V induces an isomorphism E= KI . In particular, E is commutative and
Corollary 1.21 applies.

The non-generic cases are much more involved. Let m = Indg X xw
case (iti), B = {7} and we show in Section 9 that the hypotheses (Hl)f(H5) are satis-
fied with Q =S =7". One may further show that the dimension of Exte(k)(Q, Q) is 2

and there exists a surjection E — Ollx, 211, but the last condition in Theorem 1.22 fails.

I In

However, we can still compute E using the fact that V induces a morphism of deforma-
tion functors. Let Rpjfg be the universal deformation ring parameterising 2-dimensional

pseudocharacters of Ggo , with determinant ¢ lifting x + x and let T': Go , = Rg;’{g be

the universal pseudocharacter. We show that Eis naturally isomorphic to Rg;’“ [[Go p]] VAR
where J is a closed two-sided ideal generated by g — T(g)g + ¢ (g) for all g € Gg,. This
time we use in an essential way that we allow the coefficients in our deformation theory
to be non-commutative. We then show that the absolutely irreducible modules of E[1/ pl
are at most 2-dimensional, thus using Lemma 1.16 and Corollaries 1.19, 1.20 we obtain
that if IT 1s absolutely irreducible and T1 contains 7 then I1 € 792, The idea to look for
E of this shape was inspired by [10].

The last case when the block contains 3 distinct irreducible representations is the
hardest one. The new feature here is that we need to pass to a certain quotient category
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for the formalism to work. This reflects that the deformation ring on the Galois side is
not formally smooth. We invite the reader to look at the introduction to Section 10 for
more details.

If ® is an open bounded G-invariant lattice in an admissible unitary L-Banach
space representation IT of G with a central character ¢ then ® /@ ® is an admissible -
representation of G and thus contains an irreducible subquotient. After replacing L with
a finite extension we may assume that the subquotient is absolutely irreducible and thus
lies in one of the blocks considered above.

A large part of this paper is devoted to calculations of Ext groups between smooth
k-representations of GLy(Q ;). These calculations enable us to apply a general formalism
developed in Section 3 and Section 4. This is the technical heart of the paper and where
the restrictions on the residual characteristic appear. We also use in an essential way
that the group is GLy(Q ). There are two Ey-spectral sequences at our disposal. One is
obtained from the work of Ollivier [51] and Vignéras [67] on the functor of invariants of
the pro-p Iwahori subgroup of G, see Section 5.4. The other is due to Emerton [31] and
1s induced by his functor of ordinary parts, see Section 7.1.

1.3. Organization. — The paper essentially consists of two parts: in Sections 2, 3
and 4 we develop a theory which works for any p-adic analytic group G provided certain
conditions are satisfied; in the rest of the paper we show that these conditions are satisfied
when G = GLy(Q,) and p > 5. The appendix contains some results on deformation
theory of 2-dimensional QQ ) -representations.

We will now review the sections in more detail. In Section 2 we introduce and
recall some facts about locally finite categories. In Section 3 we set up a formalism with
which we do deformation theory with non-commutative coefficients in Section 3.1. In
Section 3.3 we devise a criterion with the help of which one may show that the deforma-
tion rings we obtain in Section 3.1 are in fact commutative. This criterion will be applied
in the generic cases when G = GL,(Q ), that is when the deformation ring on the Ga-
lois side is formally smooth. In Section 4 we work out a theory of blocks for admissible
unitary Banach space representations of a p-adic analytic group G. Using the work of
Schneider-Teitelbaum [61] (and Lazard [45]) one can forget all the functional analytic
problems and the theory works essentially the same way as if G was a finite group. This
section up to Section 4.1 1s independent of Section 3 and the results are somewhat more
general than outlined in Section 1.2. In Section 4.1 we establish a relationship between
Banach space representations and the generic fibre of a (possibly non-commutative) ring
E representing a deformation problem of Section 3.1. In the applications the ring E turns
out to be a finitely generated module over its centre and the centre is a noetherian ring
We show in Section 4 that when these conditions are satisfied we obtain nice finiteness
conditions on Banach space representations. Starting from Section 5, G = GLy(Q ;) and
p > 5. The Sections 6, 7, 9, 10 correspond to ‘B being as in the cases (i), (i1), (ii1) and (iv)
of Section 1.1. The argument in the generic cases is outlined in Section 5.8.
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1.4. A speculation. — It is known, see for example [20], [37], [57], that if G #
GLy(Q,,) then there are too many representations of G to have a correspondence with
Galois representations. One possible purely speculative scenario to remedy this, would be
that a global setting, for example a Shimura curve, cuts out a full subcategory Mod,, (O)
of Modlgn(O), closed under direct sums and subquotients and for this subcategory results
similar to those described in Section 1.1 hold. Moreover, different global settings with the
same group G at p would give rise to different subcategories Modg, (O). For this reason
we have taken great care in Section 3 and Section 4 to work with an arbitrary p-adic
analytic group G and arbitrary full subcategory Modé (O) of Modlgn(O), closed under
direct sums and subquotients.

2. Notation and preliminaries

Let L be a finite extension of Q ,, with the ring of integers O, uniformizer @, and
k= 0O/ O. Let G be a topological group which is locally pro-p. Later on we will assume
that G is p-adic analytic and the main application will be to G = GLy(Q ;) with p > 5.

Let (A, m) be a complete local noetherian O-algebra with residue field £. We de-
note by Modg(A) the category of A[G]-modules, Mod;"(A) the full subcategory with
objects V such that

V= JV'[m],
H,n

where the union is taken over all open subgroups of G and integers n > 1 and V[m”]
denotes elements of V killed by all elements of m”. We will call such representations smooth.
Let Modgln (A) be a full subcategory of Mod,"(A) with objects smooth G-representation
which are locally of finite length, this means for every v € 7 the smallest A[G]-submodule of
7 containing v is of finite length. These categories are abelian and are closed under direct
sums, direct limits and subquotients in Modg(A), that is if we have an exact sequence
0 — m = my = w5 — 0 in Modg(A) with 79 an object of Modl(?n(A) then m; and 75
are objects of Moleﬁn (A). It is useful to observe:

Lemma 2.1, — Let T be an object of Mod{™(A) and Hom e (rr, T) = 0 for all irreducible
T n 1\/Iod1£n (A) then T 15 zero.

We note that the lemma fails in Mod;' (%), for example C—Indgiiigﬂﬁ)l does not
contain any irreducible subrepresentations. In practice, we will work with a variant of the
above categories by fixing a central character. Let Z be the centre of G and ¢ : Z — A*
a continuous character. We will denote by Mod&v ¢(A) the full subcategory of Modz}(A)
consisting of those objects on which Z acts by a character ¢. If we have a subgroup H of
G then the subscript ¢ in Mod;L ¢ (A) will indicate that Mod;{’ ¢(A) is a full subcategory
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of Mod?H (A) with objects precisely those 7 such that zv = ¢(z)v for all z € ZN H and all
veT.

We recall some standard facts about injective and projective envelopes, see [35,
§IL.5]. Let A be an abelian category. A monomorphism ¢ : N < M is essential if for
every non-zero subobject M" of M we have ((N) N M’ is non-zero. An injective envelope
of an object M in A is an essential monomorphism ¢ : M < I with I an injective object
of A. An epimorphism ¢: M — N in A is essential if for every morphism s: P — M in
A the assertion “gs is an epimorphism” implies that s is an epimorphism. A projective
envelope of an object N of A is an essential epimorphism ¢ : P — N with P a projective
object in A. If an injective or projective envelope exists then it is unique up to (non-
unique) isomorphism. So by abuse of language we will forget the morphism and just say
I is an injective envelope of M or P is a projective envelope of M.

Lemma 2.2. — The categories Mody' (A), Modg', (A), Mod{"(A), Mod", (A) have
generators and exact inductive limats.

Proof. — Let X:= Py, c-Ind$A/m”, where the sum is taken over all open pro-p
groups of G and positive integers n then for V in Mod;"(A) we have

Homyg(c-Ind$A/m”, V) = VP [m"].

Hence, Homug (X, V) = Hp’n VP[m"]. Since V is a smooth representation the above
isomorphism implies that X is a generator for Modg; (A).

Let ¢ : Z — A* be a continuous character and let ¢, : Z — (A/@"A)* be the
reduction of ¢ modulo m”. Since ¢ is continuous given an open pro-p group P of G we
may find an open subgroup P’ of P such that ¢, is trivial on P’ N Z. In this case it makes
sense to consider £, as a character of ZP'. Let X, := @P,n C—Indgpg where the sum is
taken over all » > 1 and all open pro-p groups P of G such that £, is trivial on P N Z.
Then the same argument as above gives that X, is a generator in Modg", (A).

Let F (resp. F;) be the set of quotients of X (resp. X,) of finite length. Then F
(resp. JF;) is a set of generators in Mod"(A), (resp. Modléifz (A)).

It is clear that all the categories have inductive limits. The exactness of inductive
limits follows from [35] Proposition 1.6(b). O

Corollary 2.3. — The categories in Lemma 2.2 have injective envelopes.

Progf: — Every object in a category with generators and exact inductive limits has
an injective envelope, see Theorem 2 in [35, §11.6]. UJ

Lemma 2.4. — The categories l\/[odlgn (A) and Modlgfl{ (A) are locally finte.

Progf: — Both categories have a set of generators which are of finite length, namely
F and F; constructed in the proof of Lemma 2.2. Hence they are locally finite, see
Section II.4 in [35] for details. 0J
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An object V of Mod{(A) is called admissible if VH[m'] is a finitely generated A-
module for every open subgroup H of G and every ¢ > 1; V is called locally admissible
if for every v € V the smallest A[G]-submodule of V containing v is admissible. Let
Mod@*™(A) be a full subcategory of Mod{y'(A) consisting of locally admissible represen-
tations. Emerton in [30] shows that if G is p-adic analytic then Mod@?™(A) is abelian.
Moreover, it follows from [30, Thm. 2.3.8] that if G = GLy(Q,) or G is a torus then
Mod{", (A) = Mod{{" (A). If the conjecture [30, 2.3.7] holds then we would obtain this
result in general.

Let H be a compact open subgroup of G and A[[H]] the completed group al-
gebra of H. Let Mod(,"**(A) be the category of profinite linearly topological A[[H]]-
modules with an action of A[G] such that the two actions are the same when restricted to
A[H] with morphisms G-equivariant continuous homomorphisms of topological A[[H]]-
modules. Since any two compact open subgroups of G are commensurable the definition
does not depend on the choice of H. Taking Pontryagin duals induces an anti-equivalence
of categories between Mod{l'(A) and Modg,""*(A), see Lemma 2.2.7 in [30]. By Pon-
tryagin dual we mean

MY := Hom@"(M, L/O),

where L/O carries discrete topology and MY is equipped with compact open topology.
We have a canonical isomorphism M"" = M.

We note that the duality reverses the arrows, and so if Modé(A) is a full abelian
subcategory of Mod"(A) then we may define a full subcategory €(A) of Mody,"**(A)
by taking the objects to be all M isomorphic to 7" for some object 7 of Mody,(A).
The category €(A) is abelian and if Mod?G (A) has exact inductive limits and injective
envelopes then €(A) has exact projective limits and projective envelopes.

Let Mod,(A) be a full subcategory of Mod{"(A) closed under arbitrary direct
sums and subquotients in Modléin (A). Since Modl(fjn (A) has exact inductive limits so does
Mod, (A). Moreover, Mod,,(A) has a set of generators of finite length, one may just take
a subset of F constructed in the proof of Lemma 2.2 consisting of objects that lie in
Modé(A). Hence, Modé(A) is locally finite and has injective envelopes. We may define
a full subcategory €(A) of Modl:"**(A) by taking the objects to be all M isomorphic to
7" for some object w of Modé (A). The category €(A) is anti-equivalent to ModE(A).
In particular, it 1s abelian, has exact projective limits and projective envelopes.

Let m,, ..., m, be irreducible, pairwise non-isomorphic objects in Modé (A) and
let ¢ : 7; < J; be an injective envelope of 7; in Mod?G(A). Let S, :==m’, P,:=] and
k := (" then k : P; — S; is a projective envelope of S; in €(A). We put 7 := P"_, m;
then J := €"_, J; is an injective envelope of 7 and P :=]J" is a projective envelope of

S:=n"=@._,S; in E€A). Let

E .= Endq;(A) (P)
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Each quotient ¢ : P — M defines a right ideal of E:
(2) tM) :={peE:qgo¢p=0}

We define the natural topology on E by taking t(M) with M of finite length to be a basis
of open neighbourhoods of 0 in E. With respect to the natural topology E is a pseudo-
compact ring, see Proposition 13 in [35, §IV.4]. Moreover, m := t(S) is the Jacobson
radical of E and

(3) E/m = Ende (S) = [ [ Endeq (S),

=1

see Proposition 12 in [35, §IV.4] for the first isomorphism; the second holds since 7; are
irreducible and distinct. Since 7; is irreducible Ende)(S;) is a skew field over £. We
assume for simplicity that Endg(7;) 1s finite dimensional for 1 < < n. This holds if 7;
are admissible. Since £ is a finite field, £; := Endg)(S;) 1s a finite field extension of £.
Hence, E/m 1s a finite dimensional £-vector space and, since £ is assumed to be finite, E
1s a compact ring. Thus all the pseudo-compact modules of E will be in fact compact.

Corollary 2.5. — If'S is irreducible then every o € E., ¢ & mv 15 a unit in E.

Progf: — Since S is irreducible, it follows from (3) that m is maximal. On the other
hand, m is also the Jacobson radical of E by Proposition 12 in [35, §IV.4]. Hence, E is a
local ring. U

Corollary 2.6. — If'S is wrreducible then the centre Z of ¥ s a local ring with residue field a
finate extension of k.

Proof. — Let m be the maximal ideal of E. Let a € Z such that a ¢ m. It follows
from Lemma 2.5 that « is a unit in E. However, this implies that « is a unit in Z as for
any ¢ € E we have

-1 -1 -1 1\, -1 -1
a ¢—ca =(a c—ca )aa =(—ca =0,

as a lies in the centre of E. Hence (Z, ZNm) is a local ring. The last assertion follows since
Endga)(S) is a finite extension of £ and we have injections O/w O — Z/(Z Nm) —
E/m. U

Lemma 2.77. — P s a lefi pseudo-compact E-module.

Progf: — We will show that there exists a basis of open neighbourhoods of 0 in P
consisting of left E-submodules, such that the quotient is an E-module of finite length.
Now P is a pseudo-compact A-module, since it is a Pontryagin dual of a discrete A-
module, thus it is enough to show that every open A-submodule M of P contains an open
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left E-submodule. Since M is open, the quotient P/M is an A-module of finite length,
and hence

= A[G]. (P/M)" C PV

1s a smooth representation of G of finite length. Dualizing back, we obtain a factorisation
P — t¥ — P/M. Then t(r") is an open right ideal in E for the natural topology.

Since E with the natural topology is a pseudo-compact ring, E/t(t") is a right
E-module of finite length. Since E modulo its Jacobson radical is a finite dimen-
sional k-vector space by assumption, we may choose ¢, ..., ¢, € E such that ¢, +
t(TY), ..., ¢, + (") generate E/v(r") as an A-module. We may assume that ¢, is the
identity map. We claim that

4) {veP:¢(v)eM,Vq&eE}:ﬂqﬁ;l(M).
=1

The left hand side of (4) is equal to [ ek, ¢~ (M) and so is contained in the right hand
side. Since P — P/M factors through ¢ : P — tV the kernel of ¢ is contained in M. Hence
for all ¥ € v(r") and all v € P we have ¥ (v) € M. Since M is an A-module and every
¢ € E may be written as ¢ =Y | A;¢; + ¥, where A; € A and ¥ € t("), we get the
opposite inclusion.

The right hand side of (4) is an open A-submodule of M and the left hand side is a
left E-module. Hence, P is a pseudo-compact E-module. UJ

Let m be a right pseudo-compact E-module, for definition and properties see §1V.3
of [35]. Let {m;},c1 be a basis of open neighbourhoods of 0 in m consisting of right E-
modules and let {P;};c; be a basis of open neighbourhoods of 0 in P consisting of left
E-modules. We define the completed tensor product

5) m ®; P = lim (m/m;) @ (P/P)),

where the limit is taken over I x J. Since m/m; and P/P; are E-modules of finite length and
E modulo its Jacobson radical is a finite dimensional £-vector space, m/m; and P/P; are
A-modules of finite length and hence the limit exists in the category of pseudo-compact
A-modules. By the universality of tensor product we have a natural map m ®g P —
m ®g, P, and we denote the image of m ® v by m® v.

Lemma 2.8. — m g, P is an object of €(A).

Proof: — It follows directly from (5) that mQgP is a pseudo-compact A[[H]]-
module. Since G acts on P by continuous E-linear homomorphisms, it follows from the
universal property of the completed tensor product, see [21, §2], that for each pseudo-
compact right E-module m we obtain an action of G on m &g, P by continuous, A-linear
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homomorphisms. Moreover, the action of A[G] and A[[H]] induce the same action of
A[H]. Hence, m ®g Pis an object of Mod%maug(A).

If m=FE then E®p P = P and so m®; P is an object of €(A). The functor Q5P
1s right exact and commutes with direct products see [26, Exp. VIIg], [21, Lem. A.4].
Hence, if m =[], E for some set I then m RpP = [1.c; P Since direct products exist in
¢(A) we deduce that m ®g, P is an object of €(A). In general, we have an exact sequence
of E-modules [ [, ,;E — l_LeJ E — m — 0 for some sets I and J. Since ®y, P is right exact
we deduce that m®g P is the cokernel of [],, P — H P and hence is an object of
C(A). 0J

Since P — S is essential we have Homg ) (P, S’) = 0 for all irreducible objects of
€(A) not isomorphic to S; for 1 <¢<n, and

HOI’I]Q‘(A) (P, S) = El’ldQ‘(A)(S) = l_[ kz'-
=1

Thus if M is an object of €(A) of finite length then Homg ) (P, M) is a right E-module
of finite length. If M is any object of €(A) then we may write M = limM; with M, of

finite length, and Homg ) (P, M) = lim Homg ) (P, M,) is a pseudo-compact E-module.

Let us also note that, since E ®; P =P = E ®;, P, for any finitely presented right pseudo-
compact E-module m we have an isomorphism m @ P =m ®x P.

Lemma 2.9. — If m is a pseudo-compact right Ei-module then
Homgs) (P, m @h P)=m

Proof. — If m =[] E for some set I then m P = [I,c; P and hence

HOI’I’I@(A) (P, m ®E P) HOHI@(/\) < l_[ ) 1_[ E=m.

1€l el

In general, we have an exact sequence of E-modules [[,_E — ]_LEJE — m — 0 for
some sets I and J. Applying ®, P and then Homg s, (P, *) to it we get the assertion.  [J

Lemma 2.10. — If M s in €(A) such that Home ) (M, S') = 0 for all wrreducible S not
wsomorphic to S; for 1 < 1 < n, then the natural map

(6) Homg s (P, M) @, P — M

us surjective.
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Proof. — Let C be the cokernel. Lemma 2.9 and the projectivity of P implies that
Homg ) (P, C) = 0. The exactness of Homg ) (P, *) implies that Home ) (C, S) = 0.
Since C is a quotient of M this implies that Homg s, (C, S") = 0 for all irreducible objects
of €(A). This implies C = 0 by Lemma 2.1. OJ

Lemma 2.11. — Let €(O /@ " Q) be the full subcategory of €(O) consisting of objects killed
by @", let M be an object of €(O /" O) and let g : P — M be a projective envelope of M in €(O),
then P/w”P — M is a projective envelope of M in €(O /" O).

Remark 2.12. — We note that Pontryagin duality identifies €(O/@"O) with the
full subcategory of Modg,(O) consisting of objects killed by "

Progf: — Let g, : P — M be a projective envelope of M in €(O/@"0O). Since Pis
projective and ¢, 1s essential there exists ¢ : P — P such that q=¢,0¢. Since " kills P,
¢ factors through P/ w”P which lies in (’:((9 /@ "). Since P'i is projective in this category,
the surjection splits and we have P/ @ P=P@N. Let ¥ : P— N be the natural map,
then the composition Ker yy — P—Mis surjective. As ¢ 1s essential we get Keryr = p
and hence N = 0, which gives the claim. U

3. The formalism

Let € be a full abelian subcategory of Mody; “*(O) closed under direct products
and subquotients in Mod{;"“*#(QO). Note that this implies that € is closed under projective
limits. We further assume that every object M of € can be written as M = lim M;, where

the limit is taken over all the quotients of finite length. In the sequel € will be either the
category €(O) or its full subcategory €(k), introduced in Section 2.

Dually this means that M is an object of Modlcﬁn((’)). We denote by Irr(€) the set
of equivalence classes of irreducible objects in € and note that the last assumption implies
that if M is an object of € and Homg(M, S') =0 for all §’ € Irr(€) then M is zero. We
denote by rad M the intersection of all maximal proper subobjects of M.

Let S be an irreducible object of € with End¢(S) = £. We assume the existence of
an object Q in € of finite length, satisfying the following hypotheses:

(H1) Home(Q, S") =0, VS € Irr(€), SZ S';

(H2) S occurs as a subquotient in Q) with multiplicity 1;

(H3) Exty(Q,S) =0,VS €lrr(€), SES';

(H4) Exté (Q, S) is finite dimensional;

(H5) Extz(Q,R) =0, where R = rad Q is the maximal proper subobject of Q,

We note that we will introduce an additional hypothesis (HO) in Proposition 3.17
below. Hypotheses (H1) and (H2) imply that Home (Q), S) is one dimensional and that Q.
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has a unique maximal subobject and if we choose a non-zero ¢ : ) — S then we obtain
an exact sequence:

(7) 0>R—>Q5S—0.

We note that ¢ is essential. Since if we have ¥ : A — Q) such that ¢ o ¥ is surjective, then
Homg (Coker ¢, S) = 0 for all S’ € Irr(€) and so Coker ¢y = 0.

Lemma 3.1. — Equation (7) induces an isomorphism

(8) Exty (Q, Q) = Exty(Q, S)
and an injection
9) Exty(Q, Q) > Extg(Q, S).

Progf- — We apply Homg (Q), *) to (7). The injectivity of (9) and surjectivity of (8)
follows from (H5). To show the injectivity of (8) it is enough to show that Exty(Q, R) = 0.
However, a more general statement follows from (H3). Namely, if R’ is of finite length
and S is not a subquotient of R” then Exty(Q, R’) = 0. One argues by induction on the
number of irreducible subquotients of R'. 0J

Lemma 3.2. — Let'T" € € be of finite length and suppose that ' has a filtration by subobjects
T, such that T° =T and T /T = Q®", for i > 0. Then (7) induces an isomorphism:

(10) Exty (T, Q) = Exty (T, S).
Moreover, ExtlE (T,S")=0forall S" € Irr(€), S’ ZS.

Progf. — By devissage and (H3) we have Exty(T,S) =0 for all S’ € Irr(€),
S"Z S. Since (H2) implies that S is not a subquotient of R, we deduce by devissage that
Exty (T, R) = 0. Further, devissage and (H5) imply that Ext} (T, R) = 0. Thus applying
Homg (T, *) to (7) we obtain the isomorphism (10). 0J

Let P S be a projective envelope of S in €. Note that since « is essential we
have Homg (P, S) =0 for all S’ € Irr(€), S' Z S, and dim Home (P, S) = 1. Since P is
projective the functor Home (P, *) is exact, and thus we get:

Lemma 3.3. — Let 'T' € € be of finite length. Then the length of Home (P, 'T) as an O-
module is equal to the multiplicity, with which S occurs as a subquotient of T

We note that since QQ/rad Q = S is irreducible and S occurs in Q with multiplicity
1, every non-zero ¢ € Home(Q), Q) is an isomorphism. This implies that Q) is killed by
w . It follows from Lemma 3.3 that (H2) could be reformulated as
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(H2) dimHome(P, Q) = 1.

Since ¢ : Q — S is surjective and P is projective, there exists 6 : P — Q) such that
@ o0 = k. Moreover, since ¢ is essential, 6 is surjective.

Lemma 3.4. — There exists a unique decreasing filtration of P by subobjects P such that
P ="P° P/PT = Q% where n; > 1, for all i > 0, and every ¢ : P' — Q_factors through
Pi/Pi-H )

Progf. — If such filtration exists then it is unique as P’ = P and P*' = [, Ker g,
where the intersection is taken over all ¢ € Home (P', Q). Since Homg (P, Q) is 1-dimen-
sional we get that P! := Ker# satisfies the conditions. Suppose that we have defined P,
for 0 < <n. Consider the exact sequence:

(11) 0—P —-P—>P/P— 0.

Let S € Irr(€), we apply Homg(x, S) to (11) to get an isomorphism Home (P", S') =
Exty (P/P", S'). Since P is projective Exty (P, *) = 0. We may apply Lemma 3.2 to T =
P/P" and T' = P'/P". We get

(12) Home (P, 8') =0, VS elrr(€), S’ ZS.
Moreover, (H4) implies that d := dim Hom¢ (P", S) = dim Extl€ (P/P", S) is finite. Hence,
(13) P"/rad P" = S®7,

We define ¢, : P* — P"/rad P* — S, where the last map is projection to the i-th compo-
nent. So ¢, form a basis of Home (P?, S). We apply Home (%, Q) and Home (%, S) to (11)
to get a commutative diagram

Home (P", Q)—= Exth (P/P", Q)

a0 | =
Home (P", S)— Exts (P/P", S).

The second vertical arrow 1s an isomorphism by Lemma 3.2. Hence the first vertical
arrow 1s an isomorphism. Hence there exists ¥; € Home (P, Q), such that ¢ o ¥; =
¢;. Then v; form a basis of Homg(P", Q). Let 6, : P" — Q%! be the map v —
W1 (v), ..., ¥, (v)). We have a commutative diagram:

Q@d

O
Dd

P*—=P"/rad P".
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Since the vertical arrow is essential, we get that 6, is surjective, and define P"*' := Ker9),.
Then
(14:) Pn/Pn+1 o~ Q@d

where d = dim Exté(P/ P, S). Moreover, we have

d
P =(Keryi= (| Kery,

i=1 ¥ eHome (P",Q)

since V¥; form a basis of Home (P", Q). O

Lemma 3.5. — The natural map P — lim P/P" is an isomorphism.

Proof. — Let F be a set of quotients of P in € of finite length. Since P is an object
of €, we have P = lim N, where the limit is taken over all N € F. Since P/P" are of finite

—
length, it is enough to show that for every quotient ¢ : P — N of finite length there exists
n such that P" is contained in the kernel of ¢. Let N be a counterexample of minimal
length m. If N is irreducible then, as k : P — S is essential, we get that N =S and ¢ = Ak
for some A € k. But then P! is contained in the kernel of ¢. Hence, m > 1 and we may
consider an exact sequence 0 — S’ — N — N’ — 0, with S’ irreducible and N’ non-zero.
The minimality of m implies that there exists z such that P" is contained in the kernel of
¢ : P— N — N'. Since by assumption P" is not contained in the kernel of ¢, we obtain a
non-zero map ¢ : P — S'. Since S is irreducible, rad P” is contained in the kernel. As by
construction P"*! is contained in rad P we obtain a contradiction. O

Definition 3.6. — Let P % Sbea projective envelope of S in €. We let
E :=End¢(P), m:={pek:ko¢p=0}.

A priori m 1s only a right ideal of E. Since P is projective we get a surjection
Homg (P, P) — Home (P, S). Now dim Home (P, S) = 1, and hence any ¢ € E may be
written as ¢ = A + ¥, where A € O and ¥ € m. Since the image of O lies in the centre
of E, this implies that m is a two-sided ideal and E/m = End¢(S) = 4.

Lemma 3.7. — We have m"P C P" for n > 0 and mP = P!, 50 that P/mP = Q,

Progf: — Recall that k : P — S factors through 6 : P — Q. If ¢ € m then 0 o ¢ maps
P to R =rad Q. Since Hom¢ (P, R) = 0, we obtain 6 o ¢ = 0. Thus

(15) m={pecE:0o0¢p=0).

Hence, mP C P! = kerf. We fix n > 1 and we claim that if ¢ < 2 then for all ¥ €
Hom¢ (P, P/P’) and ¢ € m" we have ¥ o ¢ = 0. The claim applied to the natural map
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P — P/P" implies m"P € P". We argue by induction on 7. If i = 1 then P/P' = Q,
Homg¢ (P, Q) 1s 1-dimensional, spanned by 6, and so the claim follows from (15). In gen-
eral we have an exact sequence:

(16) 0— Horn@(P, Pi_l/Pi) — HomQ(P, P/Pi) — Homg(P, P/Pi_l) — 0.

Let ¢ € Homg (P, P/P), ¢, € m"~!' and ¢, € m. The image of ¥ o, in Homg (P, P/P1)
is zero by the induction hypothesis. Hence, ¥ o ¢, induces a map from P to P~ /P’ =
Q% Hence, ¥ o ¢ 0 ¢y = 0, as ¢ € m. Now any ¢ € m" can be written as a linear
combination of ¢; o ¢, with ¢; € m"~! and ¢, € m. Hence, ¥ o ¢ = 0.

We know, see (13), that P!/rad P! = S®¢. Hence, there exists a surjection P! —»
P'. For I <i<dlet X;:P— P® — P' < P denote the composition, where the first

map is inclusion to the ¢-th component. Then X; € E and k o X; = 0. So X; € m and
P'=Y" XPCmP. O

Proposition 3.8. — For n > 0 we have:

(1) m"P="P"

(1) the natural map m" — Home (P, m"P) is an wsomorphism;
(iii) dimm"*!/m"? = dim Homg (P"*!, S) = dim Ext, (P/P"*!, S);
(V) the natural map w" /m"*' @ P — m"P/m"'P is an isomorphism.

Proof. — We prove (1) and (ii) by induction on 7, and obtain (ii1) and (iv) as by-
products of the proof. We note (1) and (ii) hold trivially for » = 0. Suppose that (i) and
(i) hold for n. Let d := dim Homg (P”, S) then P*/rad P" = S%?, see (13). Since m"P = P”
we get a surjection P®! — m"P. For 1 < <d let

X.:P—>P¥ 5> m"P— P

denote the composition, where the first map is the inclusion to the i-th component. Then
X; € E and (ii) implies that X; € m". Suppose that ¢ € m then X; o ¢ € m"™! so the
surjection P® — m"P — m"P/m"*!P factors through

(17) Q% = (P/mP)® — m"P/m""'P

where the first isomorphism follows from Lemma 3.7. On the other hand Lemma 3.7
gives m"™'P C P! and since m"P = P" we have a surjection

<18> mnP/mrH-lP s Pn/Pn+l ~ Q@d

where the last isomorphism is (14). Since Q) is of finite length the composition of (17)
and (18) is an isomorphism. Thus m"P/m"™'P = P"/P""!' and since m"P = P" we get
mn+lP — Pn+1 .
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It remains to show that the map m""' — Homg (P, m"™'P) is an isomorphism. We
apply Homg (P, %) to the surjection P®/ — m"P to obtain a surjection:

(19) E® — Home (P, m'P) = ',

where (¢1, ..., ¢;) Zle X; 0 ¢;. So every ¥ € m" may be written as ¢ = Zle X, 0
¢;, with ¢; € E. Let X; be the image of ¢; in E/m = £k, then ¢; — A; € m and so ¥ €
S0 AX; + m*t! Hence, dimm”/m" < d. We apply Hom¢ (P, %) to the surjection
m"P — m"P/m""!P to obtain a surjection:

(20) m" — Homg (P, mnP) — Homg (P’ m?lp/mfz+lP) .

Now m"P/m""'P = Q% and so dimHomg (P, m"P/m""'P) = d. The composition
in (20) factors through m”"/m"*' — Homg (P, m"P/m"*'P). So dimm"/m"*! > 4. Hence,
dimm”/m""! = 4 and the surjection is an isomorphism. The commutative diagram with
exact Tows:

0 mn+1 m” m” /anrl 0

~ ~

0—— Hom(P, m"*'P)—— Hom(P, m"P) —— Hom(P, m"P/m"*'P)——=0

implies that m"*! — Homg (P, m"*'P) is an isomorphism. We have shown that the image
of {Xi,...,X,} in m"/m""! is a basis of m"/m"*! as a k-vector space. Thus (17) may be

interpreted as an isomorphism m"/m"*! @y, P S m"P/m"*'P, which proves (iv). O
Corollary 3.9. — The ideals m" are finitely generated right E-modules.
Progf: — This follows from (19). UJ

Corollary 3.10. — We have an isomorphism of O-modules:
(21) Home (P/m"P, P/m"P) = Home (P, P/m"P)
and an isomorphism of rings:
(22) E/m" = Endc (P/m"P).

Proof: — Application of Home (P, %) and Home (%, P/m"P) to 0 - m"P — P —
P/m"P — 0 gives exact sequences

(23) 0 — Homg (P, m”P) — Homg (P, P) — Hom¢(P, P/m"P) —-0

(24) 0 — Home (P/m"P, P/m"P) — Home (P, P/m"P) — Home (m"P, P/m"P).
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Let ¢ € Home (P, P/m"P). We may lift it to ¢ € E using (23). Since m" is a two-sided ideal
of E, we have ¢(m"P) € m"P. Hence, ¢ maps to zero in (24), which implies (21). The last
assertion follows from Proposition 3.8(i1). O

Corollary 3.11. — We have E. = lim E/m". The m-adic topology on E coincides with the

natural one, defined in Section 2.

Proof. — Lemma 3.5 and Proposition 3.8(1) imply that P = lim P/m"P. Thus
(25) E = Home (P, lim P/m"P) = lim Home (P, P/m"P) = lim E/m"

where the last isomorphism follows from Corollary 3.10. It follows from Proposition 3.8(1)
and Lemma 3.4 that P/m"P is of finite length, hence the ideal ©(P/m"P), defined in (2), is
an open ideal of E. It follows from Proposition 3.8(iii), that v(P/m"P) = m". Conversely, if
tis an open ideal of E then, E/t is an E-module of finite length, and so will be annihilated
by some power of m, which implies that t is open in the m-adic topology. Hence the two
topologies coincide. O

Corollary 3.12. — The functor Qg P is exact.

Proof. — We will show that if 0 - m; — my — m3 — 0 is an exact sequence of
right pseudo-compact E-modules then 0 — m, QP — my QP —> m; @ P — 0 is an
exact sequence in €. Since projective limits commute with the completed tensor product
and are exact in €, we may assume that m;, my and mj are of finite length. The functor
®¢ P is right exact, let T&;(*, P) be the i-th left derived functor of ®; P. It is enough
to show that To\rlla(k, P) = 0, since by devissage this implies that f(;}lz(m, P) =0 for all
pseudo-compact E-modules m, which are of finite length. We apply &y P to the exact
sequence 0 - m — E — £ — 0 to obtain an exact sequence:

(26) 0 — Torg (£, P) > m&; P — P — P/mP — 0.

It is enough to show that the natural map m®g P — P is injective. Proposition 3.8(iv)
says that the natural map m"/m"' @ P — m"P/m"*'P is an isomorphism for all z > 0.
By devissage, we obtain that the natural map m/m" ®g P — mP/m"P is an isomorphism.
Passing to the limit we obtain that the natural map m ®g, P — mP is an isomorphism. [J

We will refer to the result of the Corollary 3.12 as “P 1s E-flat”.

Corollary 3.13. — Let ¢ : E— A be a map of pseudo-compact rings, which makes A into a
pseudo-compact Ei-module then A ®E,¢ P s A-flat.
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Proof. — Since A is a pseudo-compact E-module, every pseudo-compact A-module
mis also a pseudo compact E-module via ¢. The assertion follows from the isomorphism
m®A(A®;P) £ m®; P and Corollary 3.12. O

Corollary 3.14. — Let m be an O-torsion fiee, pseudo-compact E-module. Then m @ P is
O-torsion free.

Progf. — Since m is O-torsion free multiplication by @ is injective. Since ®p, P is
exact it remains injective. 0J

Remark 3.15. — Let us point out a special case, where our results are particularly
easy to prove, and which was the motivation for the formalism. If Exté (S,S) =0 for
all irreducible S’ non-isomorphic to S, and Extlc(S, S) is finite dimensional, then the
hypotheses (H1)—~(H)) are satisfied with () = S. The filtration in Lemma 3.4 1s simply the
radical filtration, which is exhaustive, as by assumption P can be written as projective limit
taken over all the quotients of P of finite length. Hence, all the irreducible subquotients
of P are isomorphic to S. If m is a pseudo-compact E-module, then m &g, P is a quotient
of [, P for some set I, thus all the irreducible subquotients of m ®g, P are isomorphic
to S. Let m; <> my be an injection of pseudo-compact E-modules, and let K be the
kernel of the induced map m, P — my &g P. All the irreducible subquotients of K are
isomorphic to S, but Lemma 2.9 implies that Hom¢ (P, K) = 0. Hence, K is zero and P
1s E-flat.

3.1. Deformations. — Let €(O) be a full abelian subcategory of Mody”“*(O)
closed under direct products and subquotients in Modg,  *(Q). We further assume that
every object M of €(0O) can be written as M = lim M;, where the limit is taken over all

the quotients of finite length. Let €(£) be a full subcategory of €(O) consisting of the
objects which are killed by @ .

Let S and Q be as in the previous section with € = €(k). We assume that hypothe-
ses (H1)—(H)) are satisfied in € = €(k). Let P — S be a projective envelope of S in €(k),
E = End¢(,(P) and m the maximal ideal of E defined by 3.6.

Let P — S be a projective envelope of S in ¢(0), E:= Endg(@)(P) and m
two s1ded 1deal of E deﬁned by 3.6. For every M in €(k) we have HOI’]’I@(O)(P M) =
Homg(k)(P/wP M) thus P/ZD'P 1s projective in €(k), and the map P/wP — S is essen-
tial. Since projective envelopes are unique up to isomorphism, we obtain P = P/wP.
Thus we have an exact sequence:

(27) 0—Plw]>P3P—P—0.
Since P is projective applying Home o) (P, %) to (27) we obtain an exact sequence

(28) 0 — Homeo) (P, P[w]) - E3 E— E— 0.
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Lemma 3.16. — Let A and B be objects of C(k) then there exists an exact sequence
(29) 0— Extle(k) (A,B) — Exté(o) (A, B) - Homg, (A, B).

Proof. — Let 0 = B — C — A — 0 be an extension in €(Q0). Multiplication by &

induces an exact sequence

(30) 0— Blow]— Clo] — Alo] 2 B/@B.

Since A and B are in €(k) we have B = B[] = B/@B and A = A[@w] so 9 de-
fines an element of Home ) (A, B), which depends only on the class of the extension
n Exté(o) (A, B). Now 0 =0 if and only if C = C[w], which means if and only if the
extension lies in €(k). U

We note that since €(k) is a full subcategory of €(Q), (H1) and (H2) for €(k)
trivially imply (H1) and (H2) for €(O). It follows from the Nakayama’s lemma that €(k)

and €(Q0) have the same irreducible objects. Further, it follows from Lemma 3.16 and
(H1) for €(k) that (H3) and (H4) for €(k) imply (H3) and (H4) for €(O).

Proposition 3.17. — Suppose that the following hypothesis holds:
(H0) Homeo)(P[w], rad Q) =0,
then (H5) for €(k) implies (H5) for €(O).
Proof. — It follows from (H1) and (H2) that S 1s not a subquotient of R =rad Q.

Thus Homg o) (’ﬁ, R) = Homg) (P, R) = 0, by Lemma 3.3. Since P is projective us-
ing (27) we get Extlao) (P,R)=0and

(31) Home o) (P[@ ], R) = Exty o, (@ P, R) = Ext} o, (P, R).

Thus (HO) is equivalent to Exté(o) (P,R) = 0. We apply Homg)(*,R) to 0 — mP —
P — Q — 0 to get an isomorphism

(32) Exty o, (mP, R) = Extg o, (Q, R).

Since P is projective in €(£) we also have Extle(k) (mP,R) = Exté(k)(Q, R) = 0 by (H5) for
€(k). Since mP is a quotient of P®/ and Homg ) (P, R) = 0, we get Homg, (mP, R) = 0.
Lemma 3.16 implies Extlé(o) (mP, R) = 0 and the assertion follows from (32). 0

For the rest of the section we assume (H1)-(H5) for €(£) and (HO). It follows from
the Proposition that (H1)-(H5) also hold for €(O). Hence, the results of Section 3.1 apply
to P, E and m.
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Remark 3.18. — In the application to G = GLy(Q ;) we will show that P is in fact
O-torsion free, so (HO) will be satisfied.

Defination 3.19. — Let A be the category of finite local (possibly non-commutative) artinian
O-algebras (A, my) such that the image of O under the structure morphism o : O — A lies in the
centre of A, and o induces an isomorphism O [ O = A/my. We denote by U the full subcategory
of U consisting of commutative algebras.

Remark 3.20. — The category 2 contains genuinely non-commutative rings: for
example, every group algebra of a finite p-group over O/(w@") is in 2.

We refer the reader to [43, §19] for basic facts about non-commutative local
rings. Let 2 denote the category of local O-algebras (R, mg) such that for every n > 1,
R/mj is an object of A and R = hm R/mj and morphisms are given by Homg (R, S) =

hrn Homg (R, S/m{) = hrn Homm (R/mg, S/mg), where the limit is taken over all m > 1.

Definition 3.21. — Let (A, my) be an object of . A deformation of Q) to A is a parr (M, o),
where M is an object of €(QO) toget}zer with the map of O-algebras A — Ende o) (M), which makes
M into a flat A-module and o = k@ M = Q is an isomorphism in € (k).

Let (A, my) € 2, let n be the largest integer such that m’, # 0 and (M, o) a defor-
mation of ) to A. We note that A is finite (as a set). In particular, every finitely generated
A-module N is also finitely presented, and for such N we have

(33) N® MZEN®, M.

Lemma 3.22. — For 0 <1 < n we have
(34) ml /mi @, M= miM/mi M = Q%
where d; = dimm’, /m’"".

Proof We argue by induction on z. The statement is true if z = 0. In general, by
applying ®, M to 0 — m/, /mi™" — A/m”rl — A/m! — 0, and using flatness of M and
(33) we get an 1som0rphlsm mi/miy @M= mAM/mZHM Now, my /mi! = k84 a5 an
A-module, since k®, M = Q we obtain the last assertion. O

Given an O-module of finite length, we denote by £ its length.
Lemma 3.23. — We have £o(Home o, (P, M)) = £o(A).

Proof- — Since Pis projective, Home () g?, *) 1s exact and dim Homg ) (?, Q)=
dim Homg ) (P, Q) = 1. Hence, £o(Homeo) (P, M)) =>""  di = Lo (A). O
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Lemma 3.24. — The natural map
(35) Homeo)(P, M) 8 P - M
us an 1somorphism of (left) A-modules.

Proof- — Since Pis prOJGCtIVC and E-flat by Corollary 3.12, the functor F : €(O) —
¢(0), F(N) := = Home (o) (P,N) ®E P is exact. Moreover, if N is of finite length in €(QO)
then Homg o) (P,N) is an O-module of finite length, and so the completed and the
usual tensor products coincide. Further, we have F(Q) = £ @ P = Q and (34) gives
Fm'M/m™*'M) = m'M/m" ™M, 0 <7 < n. The exactness of F implies F(M) = M. Since
the map F(N) — N is functorial, we obtain that the isomorphism in €(Q) is also an
isomorphism of A-modules. O

Recall that the map P — S factors through 6 : P— Q, which induces an isomor-
phism " : k ®j P Q, A®v > A0(v). We will think of (P, @) as the universal de-
formation of Q,

Lemma 3.25. — Let (M, o) be a de formatzon of Q to A. There exists ¢ € Homg (E A)
and L : M= A®¢ EP such that o = " o (k®aL).

Progf: — Since Pis projective, there exists ¥ : P>M making the diagram:

M——=k@, M

wi al;
P——=Q

commute. We claim that the map A — Homg ) (ﬁ M), a+> a oy induces an isomor-
phism of A-modules. Lemma 3.23 says that it is enough to prove that the map is injective.
Choose v € P, such that the i image of v in Q is non-zero. Suppose a € m} and a & my"!
then (34) gives an isomorphism:

mi /mi ®, M/myM = m), M/m’'M.

Since (a+m*) ® (¥ (v) + maM) is non-zero, we also obtain a( (v)) is non-zero. Hence
ao ¥ =0 ifand only if @ = 0 and so the map is injective. This means that for every b € E
there exists a unique ¢(b) € A such that ¢(b) o = ¥ o b. Uniqueness implies that ¢ is a
homomorphism of algebras. The assertion follows from Lemma 3.24. U

Let Defg, : 20 — Sets be the functor associating to A the set of isomorphism classes
of deformations of Q) to A. We denote by Def" the restriction of Def to . Let
(A, mA) be in 2, then to ¢ € Homm(E A) we may assoclate an_isomorphism class of
(A Qx v P a,), where a,, is the composition of A ®E o Pk ®E 0 P with a™™. By Corol-
lary 3.13 this gives us a point in Defg (A).
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Theorem 3.26. — The above map induces a bijection between Defo(A) and A™ -conjugacy
classes of Homg (E, A).

Progf. — Lemma 3.25 says that the map Homm(E A) — DefQ(A) s SuI“JCCtIVC
Suppose we have ¢, ¢, € Homg (E, A) and an isomorphism B : A ®j o P= Ak o Pin
€(A) such that the diagram

A®g, P—=Q
p T -
A ®sz P
commutes. For ¢ € {1, 2} define ; : P— A®E o) P by ¥;(v) :=1 ®v. It follows from the
proof of Lemma 3.25 that HomQ(@)(P A®E 4 P) is a free A—module of rank 1, and

is a generator. Since f is an isomorphism, B, := Homg(o)(P B) is also an 1somorphlsm
Hence there exists u € A* such that uyr; = B,(¥9). Since B, is A-linear, we obtain

(36) Ba®v) = B(a(1 ®v)) = [aB.(¥2) | (v) = auny) (v) = @ v.
So for all b € E, (36) gives

(37) BUR ) = B(p:2(H) ®v) = g2 (DuB v,

(38) B Rb) =u® bv = up,(b) Dv.

It follows from (37) and (38) that (ugp;(b) — @o(b)u)yr; = 0. Hence, ¢(b) = ugp, (b)u~" for
all b € E.

Conversely, suppose that ¢; and ¢ lie in the same A*-conjugacy class. Since O —
A/my is surjective and the image of O in A is contained in the centre, there exists u € 1 +
mAAsuch that @y = up u~'. An easy check shows that 8 : A®E,¢2 P— A@E(/)1 ﬁ, a®v >
au®@ v 1s the required isomorphism of deformations. 0J

Corollary 3.27. — Defg(A) = Hom@(ﬁ“b, A), where E® is the maximal commutative
quotient of E.

Progf: — Since A 1s commutative, every A*-conjugacy class consists of one element.
Thus Def(;(A) = Defq(A) = Homg (E, A) = Homg(E”, A). The last equality follows
from the universal property of E. 0J

Remark 3.28. — If R is an arbitrary non-commutative topological ring then R”
might be the zero ring. This is not the case here, since E/M = £ is commutative.
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Lemma 3.29. — Let k[€] be the ring of dual numbers so that €* = 0. Then we have natural
isomorphisms

(39) Exth, (Q, Q) = Homg (E”, £[e]) = Homg (E, £le]) = (m/m?)",
where x denotes k-linear dual.

Proof: — The first isomorphism is classical. The second follows from the fact that
k[e] 1s commutative. The third is again classical. O

Let (A, my) be in 2 and let F : 2 — Sets be a covariant functor. For each u € A,
ad(u) : A — A, ar> uau™' is a morphism in 2, and hence induces a morphism of sets
F(ad(w)) : F(A) = F(A). We say that the functor ¥ is stable under conjugation if F(ad(u)) =
idp(s) for all objects A of % and all x € A*. For R in 2A we denote /g : A — Sets and
Fg : % — Sets the functors /g (A) := Homg (R, A) and Fr(A) the set of A*-conjugacy
classes in g (A). We have a variant of Yoneda’s lemma.

Lemma 3.30. — Let ¥ : A — Sets be a covariant_functor stable under conjugation then the
map n — nr({idr}) nduces a biection between the set of natural transformations Mor(Fg, F) and
FR) :=lIimF(R/my).

Proof. — Mapping a homomorphism to its conjugacy class gives rise to a natural
transformation of functors « : ig — Fr and hence a map Mor(Fg, F) = Mor(/g, F),
n + n ok, which is clearly injective. We claim that it is also surjective. Let & : ig — F be
a natural transformation, A an object of 2 and « € A*. Then we have

§x 0y (ad(u)) = F(ad(u)) 0 &x = idp) 05 = éa.

Thus & factors through x and hence the map is surjective. The assertion follows from the
usual Yoneda’s lemma. 0J

Lemma 3.31. — Let R and S be in A and suppose that n : Fr — Fg is an isomorphism of
Junctors then the rings R and S are isomorphic. Moreover, n determines the isomorphism up to conjugation.

Proof. — It follows from Lemma 3.30 that Mor(Fg, Fs) = Homg (S, R)/R*. Thus
we may find ¢ : S — R such that for each A in 2, 4 : FR(A) = Fs(A) sends the con-
jugacy class of ¥ to the conjugacy class of ¥ o ¢. Since, n is a bijection for all A, we
may find ¢ € Fr(S) such that nr (¢) = {ids}. Choose any ¥ € ¢ then the last equality reads
¥ o ¢ = 1ids, which implies that ¢ is an isomorphism. The last assertion follows from
Lemma 3.30. (|
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3.2. Examples. — We give some examples of deformations with possibly non-
commutative coefficients. Our coefficients are objects of the category 2 defined in 3.19.

Lemma 3.32. — Let G be a finitely generated pro-finite group and Q = 1 the trivial
representation. Then Defy(A) = Homg (O[[G (W17, A)/ ~, where G(p) is the maximal pro-
p quotient of G, and ~ denotes the equivalence under conjugation by A*. Moreover, Defi’(A) =

Homg (O[[G(p)“]], A).

Proof. — Let (M, @) be an A-deformation. Since M is A-flat and k®, M = k we
get that M 1s a free A-module of rank 1. Choose v € M, such that «(1 ® v) = 1. Then v

is a basis vector of M and for every g € G we obtain a unique @, € A such that gv = q,v.
Now

agv = (gh)v = g(hv) = ga,v = qgv = @a,v.

Hence, we get a group homomorphism G — 1 4+ m,, g+ 4,. Since 1 4+ m, is a finite
group of p-power order, the map factors through G(p)”. By extending O-linearly we
obtain a homomorphism O[[G(p)]]” — A. A different choice of v would conjugate the
homomorphism by z € 1 4 mj4.

Conversely, O[[G(p)]] is a free right O[[G(p)]]” = Endeo)(O[1G(p)]1]) module,
with the action b . a:= ab. Thus every ¢ € Homg (O[[G(p)]]7, A) defines a deformation
ABorgynrn.y OGP

If A is commutative then the map G — G(p) — 1 +m, must further factor through
G(p)®, and the same argument gives the claim. 0J

Lemma 3.33. — Let G=Q and x : Q7 — k™ a continuous character. If p # 2 then
Def, (A) = Homg (O[[x, 911, A)/A*, where O[[x, y]] denotes the ring of formal (commutative)
power series.

Progf- — We may choose a character x : Q7 — O™ lifting x. After twisting with X
we may assume that x is the trivial character. It follows from the proof of Lemma 3.32
that the deformation problem does not change if we replace G with its pro-p completion
G. Since p#2wehave GEZB®Z/(p— 1) ®Z, and hence Gz Z2 Thus O[[G]] =
Ol[x,»]] and the assertion follows from the Lemma 3.32. O

Proposition 3.34. — Let G = Q7 and x : Q7 — k* a continuous character and let S :=

X", then if p # 2 then Ex Ollx, 011 and E = K[[x, y]]. Moreover, Pis a free E-module of rank 1
and in particular it is O-torsion free.

Progf- — We claim that the hypotheses (H1)~(Hb5) are satisfied for Q =S = x " and
note that since in this case R = 0 the hypothesis (HO) is satisfied. Since Extg,(x, x) =
Hom™ (G, k) is 2-dimensional, (H4) holds. Consider a non-split extension 0 — x —
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€ — 7 — 0 in Modg;" (k) with 7 irreducible. Since G is commutative for each g € G the
map ¢, : € = €, vi> gv — x(9v is G-equivariant. If ¢, is non-zero for some g then
it induces an isomorphism between t and x, if ¢, is zero for all g then any k-vector
space splitting of the sequence is G-equivariant. Hence, (H3) is satisfied and all the other
hypotheses hold trivially, since R = 0. It follows from Lemma 3.33 and Lemma 3.31 that
E = Ol[x,]] and hence E = E ®o & = k[[x, »]]. Since P is flat over E = O[[x, y]] by
Corollary 3.12 and k@gﬁ = x" is one dimensional, P is a free E-module of rank 1 and
in particular it is also O-torsion free. O

. Corollary 3.35. — dimExtle(/?)(XV, x) =2, dimExtQG(k)(Xv, x") = 1. Moreover,
Exte (X7, x¥) =0 fori > 3 and Extig, (x 7, S") = 0 for all i > 0 and all irreducible S" € E(k)
not isomorphic to x .

Proof. — Since E = k[[x, »]] we apply ®g P to the exact sequence
0 — Allx, 11 = Allx, 211 © Allx, o1 — Allx, 011 = £— 0

where the first arrow 1s f = (xf, /), the second is (f, g) — )/ — xg to get a projective
resolution of x ¥ = P/mP:

0>P—>P¥” 5P— x¥—0.

The assertions follow from a calculation with this projective resolution. U

3.3. Cniterion for commutativity. — In this section we devise a criterion, see Theo-
rem 3.39, for the ring E to be commutative. When G = GLy(Q ) we will show that this
criterion is satisfied in the generic cases, see Section 5.8, and it will enable us to apply
Corollary 4.44. We use the notation of Section 3.1, we assume the hypotheses (H1)—(H5)
for €(O) or equivalently (H0) and (H1)-(H5) for €(k).

Lemma 3.36. — If there exists a suzjeclion E — Ollx1, ..., x4]], with d = dimm/m?,
and the graded ring gr%, (E) is commutative then E. = O[[x1, ..., x/]].

Proof. — Let R :=£[[x, ..., x,]] and m; = («xy, ...x,) be the maximal ideal of R.
Applying @ ok we obtain a surjection E — R, thus a surjection of graded rings

(40) gry, (E) — gry (R) = £[xy, ... x4]
Since gr?, (E) is commutative and dimm/m? = d, there exists a surjection
(41) klxy, ... xq] = gre, (E).

It follows from (40) and (41) that gry, (E) = grp (R). Hence m"/m"*' = mj]/ m’*! for all
n> 1. By induction we get that E/m” = R/m/ for all n > 1. Since both rings are complete
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we get E = R. Let K be the kernel of E — Ollx1, ..., x41]. Since O[[ x4, ..., x7]] is O-flat,
we have K ®p £ = 0 and hence K = 0, by Nakayama’s lemma for compact O-modules,
[26] Exp. VII (0.3.3). U

Let d be the dimension of m/m? as a k-vector space and let W be a (d — 7)-
dimensional £-subspace of m/m? then W + m? is a 2-sided ideal of E and the exact
sequence of E-modules 0 — m/(W + m?) — E/(W 4+ m?) — £ — 0 leads by tensoring
with P to an exact sequence of G-representations

(42) 0-Q¥Y->T—->Q—0

with T Z P/(W + m?)P. Conversely, any T in (42), such that Homg) (T, S) is one di-
mensional, is a quotient ¥ : P — T, as the cosocle of 'T' is isomorphic to S, and defines a
(d — r)-dimensional subspace

(43) W:={aem: ¥ oa=0}/m* Cm/m’

Lemma 3.37. — Let T and W be as above then
(44) dimExt. (T.S) = dim — T ™ _ fim W 4 dim ™
1m Lx s =dim —— = dim m--—-—-:.
€® Wm + m? Wm + m?

Progf: — We have an exact sequence:
(45) 0—> (W+m’)®:P—P—T—0.

Since dim Homg ) (T, S) = dim Home) (P, S) = 1 and P is projective, by applying
Homg 1 (¢, S) to (45) we obtain an isomorphism

(46) Home, (W + m?) ®¢ P, S) = Exty,, (T, S).

Let n be the dimension of (W + m?)/(Wm + m?®) then the exact sequence of right
E-modules 0 — Wm + m®> - W + m? — £%" — 0 leads to an exact sequence of G-
representations:

#7) 0— (Wm+m') @ P — (W+m’) &P — Q™ — 0.

So for the first equality it is enough to show that any ¥ : (W +m?) ®; P — Q is zero
on (Wm + m*) ® P. Suppose that W(a® v) # 0 for some a € W+ m? and v € P
then the composition ¢ : P — (W + m?) QP — Qv w(a®v) 1S non-zero. Since
Homeg ) (P, Q) is one dimensional, ¢ is trivial on mP and so for all 4 € m we have

0=y (a® b)) =V (abQv).

Hence, V¥ is trivial on (W + m?)m ®rP = (Wm + m?) &g P. The last equality follows

2 7 2
m W+m
from the exact sequence 0 = s = wngms — W — 0. ]
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Lemma 3.38. — Let (R, m) be a local k-algebra with R /m = k and m* = 0. Suppose there
exists a surjection

(48) @ R = k[x1, ..., x01/(x1s ... x0)°,

where d = dimm/m?. Let r = ng and further suppose that_for every d — r dimensional k-subspace
W of m/m? we have

m> (41
<
Wm — 2

(49) dim
then (48) is an 1somorphism. In particular, R is commutative.

Progf: — Any commutative local k-algebra (A, my) with A/my = £, m3 = 0 and
dimmA/m;Z\ <dis a quotient of k[[xy, ..., 411/ (x1, . .., xs)*. Hence,

R 2 k[[xy, .y 21/ (et s x0)°,

where R® is the maximal commutative quotient of R. Let a be the kernel of ¢. Since
dimm/m? = dim ¢(m)/p(m)* = d, we get that a is contained in m?. Since m* = 0, any
k-subspace V of a is also a two-sided ideal of R. Suppose that a # 0 and let V C a be any
k-subspace such that the quotient a/V is one dimensional. The surjection mj — my N
induces a surjection mj/Wmg —» m% ~v/Wmg y. Hence, by replacing R with R/V we
may assume that a is a one dimensional £-vector space. We let ¢ be a basis vector of a.

If @, b € m then the image of ab — ba in R® is zero. Thus there exists «(a, b) € k
such that ab — ba = Kk (a, b)t. If a € m? or b € m? then «(a, b)) = 0, as m®> = 0. Hence, «
defines an alternating bilinear form on m/m?.

We may choose a basis B = {xi, ..., x;} of m/m? such that for any two a,b € B
we have «(a, b)) = 0, except k(x;, Xj—it1) = —K (Xg—iy1, %) = 1, 1 < <, where d — 25
is the dimension of {a € m/m” : k(a, b)) = 0, Vb € m/m?}. Let W be the linear span of
S ={xi,...,x:_,}. The k-subspace of m* spanned by the set S.B:={ab:a€ S, b€ B}
is equal to Wm. The set S . B consists of monomials x7, 1 <i <d — r and xx; with
1 <i<d-—r,1<j<dandi <y, ssince by construction ab = ba for all a, b € S. We note
that d —r <, as d — 25 > 0. It follows from (48) that ¢ induces a bijection between
the sets S . B and ¢(S) « ¢(B). Since distinct monomials are linearly independent in
R the set ¢(S) . ¢(B) is a basis of @(Wm) = ¢(W)@(m). Hence, the dimension of
Wm is equal to the dimension of ¢(Wm), which is equal to the cardinality of the set
@(S) . ¢(B). The latter can be calculated as |B| 4+ (|1B| — 1) +---+ (|B| — |S| 4+ 1). Since
the dimension of ¢(m)? is equal to |B| 4 (|B| — 1) +- - - + 1, we deduce that the dimension
of p(m)*/p(Wm) is equal to 1 + 2+ -+ + (|B] — |S|) = @ Since we have assumed
a # 0 we have dimm? > dim ¢(m)? and hence dimm?/Wm > dim ¢(m)?/¢(Wm). This
contradicts (49). O
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Theorem 3.39. — Let d := dimm/m? and r = ng and suppose that there exists a surjection
E — Ollx1, ..., x/11. Further, suppose that for every exact sequence

(50) 0-Q¥ -T—-Q—0
with dim Home ) (T, S) = 1 we have dim Extlak) (T,S) < % +d then £ = Ollx, ..., 2411

Progf- — The bound on dim Extle(k) (T, S) and Lemmas 3.37, 3.38 imply that E/m®
is commutative. Hence, the commutator of any two elements in gr! E is zero in gr?, E.
Thus the graded ring gr?, (E) is commutative, as it is generated as a ring by grl, E over
gr) E =k, and the result follows from Lemma 3.36. (|

In the applications to G = GLy(Q ), » will turn out to be equal to 1. We finish the
section with lemmas of technical nature tailored for this situation.
Let a, b € Extle(k)(Q, Q) be equivalence classes of extensions of 0 = Q — A 5

Q—0and 0 — Q—ﬁ> B — Q — 0, respectively. We denote by ao b € Exté(k)(Q Q) the

equivalence class of 0 — Q — A B Q — 0. Applying Homg ;) (Q, *) we get an
exact sequence:

(51) Exth ) (Q, A) = Extl, (Q, Q) 5 Extl,(Q, Q).

Applying Home ) (*, Q) we get an exact sequence

0
(52) Extg, (A, Q) = Exty, (Q, Q) 3 Extg, (Q, Q).
Then 0,(b) =ao b and 9y(b) = boa, [13,8§7.6 Prop. 5].

Lemma 3.40. — The following are equivalent:

(i) Hom(E, £[x]/(x*)) — Hom(E, k[x]/(x%)) is surjective;
(i) aoa=0forall a € Exty, (Q, Q).

Progf. — By Hom in (1) we mean homomorphisms of local £-algebras. We will
show that (1) implies (ii). An extension ¢ may be considered as a deformation of Q) to
k[x]/(x*) and hence as ¢ € Hom(E, k[x]/(x*)) by Theorem 3.26. More precisely, a is the
equivalence class of

(53) 0— k®pP — k[x]/(x") ®rp P — k@ P — 0.
By assumption there exists ¥ € Hom(E, £[x]/(x*)) lifting . This gives an extension

(54) 0— k®pP — k[x1/(x") ®g.y P — k[x1/(x*) ®p,, P — 0.



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 37

The image of (54) in Extle(k) (Q, Q) via (52) is the extension class of
(55) 0= k®:P— (0)/(x") Bry P— k®:P— 0

and 1s equal to a. Hence, « lies in the kernel of 9y and so a0 a = 0.
Conversely suppose that @ o a = 0 then since a 0 a = 9, (a) there exists a commuta-

T
L

tive diagram:

A 0

|

Q—Q
Since P is projective and « is non-split there exists a surjection ¥ : P — B lifting ¢ : P —
A. Tt is enough to show that a:={bem: ¥ o b =0} is a two-sided ideal of E. Since

the composition P LB Q i1s trivial on mP, the image of ¢ 0 b: P — B is contained
i A = Ker(B — Q) for all » € m. Now Homg, (P, A) 1s 2-dimensional with basis ¢,
¢ : P— Q< A. For a fixed » € m we may write ¥ o b = A + u@,. For all ¢ € E we
have ¢ o c =Y o ¢ (mod Q) and hence ¢ o ¢ =0 if ¢ € a. Thus we obtain Y o bo ¢ =
A oc+ e oc=0forall ¢ € a. Hence, a is a two sided ideal. U

Lemma 3.41. — Let (R, m) be a commutative local artinian k-algebra with m* = 0 and
R/m = k. Let d be the dimension of m/m* as a k-vector space. Then the following are equivalent:

(i) Hom(R, k[x]/(x*)) — Hom(R, k[x]/(x?)) is surjective;
(i) R=ZA[[x1, ..., 201/ (xrs ey x0).

Proof. — Let S := k[[x1, ..., x]1/(x1, ..., x,)* and mg be the maximal ideal of S.
Since R is commutative and dim m/m? = dimmg/mZ there exists a surjection ¢ : S — R,
inducing an isomorphism S/mg = R/m?. For 1 <i <j < d define ¢; : R > R/m? =
S/ mé — k[x]/(x*), where the last arrow is given by sending x; — x, x; > x and x; = 0,
if £ % 1 and £ #j. By assumption there exists ¥; : R — £[x]/ (x%) lifting @;. Let k be the

composition
Vi
SHREY TT /().
I<isj<d

The kernel of « is contained in mZ. Any element y € m3 maybe written as y =
leiﬁf[i a;jx:x;, and Vi (@(y)) = a;x* and Vi) = (a; + a; + aj]-)xz, if ¢ < j. Hence,
Kk is injective and so ¢ is injective. The other implication is trivial. O
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Lemma 3.42. — Assume that Hom (E, k[x]/(x*)) — Hom(E, k[x]/(x*)) is surjective and
let a be a non-zero extension class of 0 — Q — T <> Q — 0. Then the following are equivalent:

(1) the kernel of Extlc(k)(Q Q) — Exté(k) (Q,Q), b+ boaisat most 1-dimensional;
(i) dim Extlak) (T, Q) =dim Extle(k) FT, S) < dimm/m?;
(i11) the kernel of Extlc(k)(Q Q) — Exté(k) (Q,Q), b+ aobisat most 1-dimensional;
(iv) dim Extlwf)(Q, T) < dimm/m?.

1If the conditions hold then all the inequalities above are in_fact equalities.

Progf: — Since o is bilinear, Lemma 3.40 gives a0 b = —b o a. Thus (i) is equivalent
to (111). We show the equivalence of (i) and (i1). Let Y be the kernel of Extlwc)(Q Q) —
Exti‘(k)(Q Q). Since Q/radQ = S is irreducible and occurs with multiplicity 1 we
have dim Homg ) (Q, Q) = 1. Since a is non-split, we also have dim Homg ) (Q, T) =
dim Homg ) (T, Q) = 1. Since dim Extlc(k)(Q, Q) = dimm/m? the exact sequence

Home ) (Q, Q) — Exty,(Q, Q) = Exte, (T, Q) — Y

gives dimExtIQ(k)(T, Q) = dimm/m? + dim Y — 1. Lemma 3.2 implies Extlg(k)(T, Q)
and Exté(k) (T, S) have the same dimension, so (i) is equivalent to (ii). It follows from
Lemma 3.40 that a o ¢ = 0 and so a € T, which implies that dimY > 1 and so
dim Extlc(k) (T,Q) = dim Exté(k) (T,S) > dimm/m?. This implies that if (i) or (i) hold
then the inequalities are in fact equalities. The same proof shows that (ii1) is equivalent

to (iv). O

Lemma 3.43. — Assume that Hom (E, k[x]/(x*)) — Hom(E, k[x]/(x*)) is surjective and
that there exists a (d — 1)-dimensional subspace V of Extlak) (Q, Q) such that the equivalent conditions
of Lemma 3.42 hold for every non-zero a € V. Then they hold for every non-zero a € Extlc(k)(()‘, Q).

Proof. — Let g, : Extle(k)(Q, Q) — Ext%(k)(Q, Q) be the map b+ boa. Lemma 3.40
implies that « lies in Ker¢,. Thus (i) in Lemma 3.42 holds if and only if @ spans Ker ¢,.
If a € V then the conditions hold by assumption and so Kerg, = (a). If « ¢ V then using
©,(b) = —@;(a) we deduce that the restriction of ¢, to V is injective. Thus the image of
@, 1s at least d — 1 dimensional, and so the kernel is at most 1-dimensional. Hence, the
conditions of Lemma 3.42 hold for a. O

4. Banach space representations

From now on we assume that G 1s a p-adic analytic group. The following fact 1s
essential: for every compact open subgroup H of G the completed group ring O[[H]] is
noetherian. An L-Banach space representation I1 of G is an L-Banach space IT together with a
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G-action by continuous linear automorphisms such that the map G x IT — IT describing
the action is continuous. A Banach space representation IT is called unitary, if there exists
a G-invariant norm defining the topology on I1. The existence of such norm is equivalent
to the existence of an open bounded G-invariant O-lattice ® in I1. A unitary L-Banach
space representation is admussible if ® ®e k is an admissible (smooth) representation of
G, this means that the space of invariants (® ®¢ k)™ is finite dimensional for every open
subgroup H of G. We note that it is enough to check this for a single open pro-p subgroup
of G, see for example [54, 6.3.2]. Our definition of admissibility does not depend on the
choice of ®. Moreover, it 1s equivalent to that of [61], see [33, 6.5.7], which requires
O? := Homp (O, O) to be a finitely generated module over O[[H]]. We say that an
L-Banach space representation IT is #rreducible, if it does not contain a proper closed G-
invariant subspace. We say that IT is absolutely irreducible if T1 ®;, L is irreducible for every
finite extension L of L.

Lemma 4.1. — Let T1 be an absolutely irreducible and admissible unitary 1.-Banach space
representation of G and let ¢ € End{y, (T1). If the algebra L[] is finite dimensional over L. then
¢ € L.

Proof. — Let f € L[X] be the minimal polynomial of ¢ over L, and let L be the
splitting field of /. If M is a finitely generated L[[H]] := L ® O[[H]] module, then M,
is a finitely generated L'[[H]]-module. Thus, it follows from [61, Thm. 3.5] that ITy; is
an admissible unitary L'-Banach space representation of G. Since by assumption Iy, is
irreducible, it follows from the proof of [61, Cor. 3.7] that any non-zero continuous linear
G-equivariant map v : [Ty, — Iy, is an isomorphism. Since f(¢) = 0 using this we may
find A € L’ such that f(A) =0 and ¢ ® id —A kills IT;,. Now Gal(L'/L) acts on IT} via
oc(v®@u) =vRo(n)forall u € L. Choose a non-zero v € I1, then ¢ (v) € I1, and hence
o(A)v = Av for all o € Gal(L'/L). This implies A € L, and hence ¢ = A. O

Lemma 4.2. — Let T1 be an irreducible admissible unitary L-Banach space representation of
G. If Endy[(,(T1) = L then T1 is absolutely irreducible.

Proof. — Suppose that IT is not absolutely irreducible. Then there exists a finite
Galois extension L. of L such that Iy, contains a closed proper G-invariant subspace X.
Since L is a finite extension of L we have isomorphisms:

End;, (i) = Hom{, (T1, Ty;) = End, (T, = L.

Hence, it is enough to show that Endf,"[tG] (ITy,) contains a non-trivial idempotent.

As observed in the proof of Lemma 4.1, IT;, is admissible. This implies that any
descending chain of closed G-invariant subspaces must become constant. Hence we may
assume that X is irreducible (and admissible). The group I' := Gal(L'/L) acts on I, by

G-equivariant, L-linear isometries

ry = Iy, v@A—v®y(@A), Vyel.
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In particular, r, is continuous and 7, (X) is a closed G-invariant L'-subspace of I1},. Since
¥ is an irreducible admissible unitary I'-Banach space representation of G, so are 7, (X)
forall y € I'. Let T be the image of the natural map

(56) @ry(z) — ..

yel

Since both representations are admissible T is a closed G-invariant subspace of ITy,. Now
Y is [-invariant and YT =Y N ﬂy . Ker(r, — 1) is a closed G-invariant L-subspace of
I}, = I1. Linear independence of characters implies that if v € Y is non-zero then there
exists A € I” such that Zy or Ty (V) # 0. Hence, Y is non-zero. Since I is irreducible
we deduce that YT = IT and hence (56) is surjective.

Now any non-zero continuous G-equivariant L-linear map between two admissible
irreducible unitary L-Banach space representations of G is an isomorphism. Using this
fact and arguing by induction on n one may show that any quotient of @’_, IT;, where
I1; are admissible and irreducible, is semi-simple. Hence, Iy, is semi-simple. As we have
assumed that I}, is not irreducible Endf,"[’fc](l'ly) contains a non-trivial idempotent. [J

Lemma 4.3. — Let 1 be a unitary Li-Banach space representation of G, let © and & be open
bounded G-invariant lattices in T1, and let 7t be an wrreducible smooth k-representation of G. Then
s a subquotient of ® Q@ k if and only if it is a subquotient of E Qo k. Moreover, if © Qo k is a
G-representation of finite length then so 1s & Qo k, and their semi-simplifications are isomorphic.

Proof. — Let m < J be an injective envelope of 7 in Mod' (k) the category of
smooth £-representations of G. Since ] is injective, Homg (%, J) 1s exact, thus if 7 occurs
as a subquotient of some smooth A-representation «, then Homg(k, J) # 0. Conversely,
if there exists some non-zero ¢ : k — J, then the image of ¢ must contain 7, as 7 < J
1s essential. Further, if k is of finite length the same argument shows that 7 occurs in k
with multiplicity dim Homg («, J). Since ® ®p £k and E ®p £ are smooth representations
of G, the assertion of the lemma is equivalent to Homg(® ®p £,]) # 0 if and only if
Hom¢(E ®o £,]) # 0; ® ®p £ is of finite length if and only if E ®p £ is of finite length,
in which case

dim Homg (E ®p £,]) = dim Homg (O Qo £, ]).

Since any two open bounded lattices in IT are commensurable, one can show this by
adapting the proof of analogous statement for finite groups, see the proof of Theorem 32
in Section 15.1 of [63] and use the exactness of Homg (%, J). 0J

Let IT be a unitary L-Banach space representation of G and ® an open bounded
G-invariant lattice in IT. We denote by @ its Schikhof dual

O’ :=Homp(®, O)
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equipped with the topology of pointwise convergence. If ©® ®o £ 1s a G-representation of
finite length, then we denote by IT its semi-simplification

I1:= (O Qp k)*.
Lemma 4.3 shows that IT does not depend on the choice of ©.

Lemma 4.4. — O is an object of Mody;"***(O).

Progf. — For every n > 1, ® /" ® is a smooth representation of G on an O-torsion
module, thus (® /@ "®)" is an object of Modf:~ **(0). It follows from the proof of [57,
Lem. 5.4] that we have a topological isomorphism:

(57) 0'®0 O/w"0=(0/w"0)".
Thus @/ = 1im O/ "@? = 1im (O /e "®)" is an object of Mod};” "¢(0). O

Lemma 4.5. — Suppose that Y1 is irreducible and admissible and let ¢ : M — @ be a non-
zero morphism in Modp”“"*(O), then there exists an open bounded G-invariant lattice E in T1 such
that B¢ = ¢ (M).

Progf: — Let H be an open p-adic analytic pro-p subgroup of G. The completed
group algebra O[[H]] is noetherian. The admissibility of T is equivalent to ®? be-
ing a finitely generated O[[H]]-module. Hence, ¢ (M) is a finitely generated O[[H]]-
submodule of ®¢ and is O-torsion free. Hence, there exist a unique Hausdorff topol-
ogy on ¢ (M) such that O[[H]] x ¢ (M) — ¢ (M) is continuous, [61, Prop. 3.1(i)], and
¢ (M) is a closed submodule of @7 with respect to this topology, [61, Prop. 3.1(ii)]. The
uniqueness of the topology on ¢ (M) implies that the submodule topology coincides with
the quotient topology. Since ¢ (M) is G-invariant and non-zero and IT is irreducible it
follows from [61, Thm. 3.5], that IT is naturally isomorphic to the Banach space repre-
sentation Hom@" (¢ (M), L)) with the topology induced by the supremum norm. If we let
€ := Hom{" (¢ (M), O) then E will be an open bounded G-invariant lattice in IT and it
follows from the proof of [61, Thm. 1.2] that ¢ = ¢ (M). O

Let Modg,(O) be a full subcategory of Mod " (0) closed under subquotients and
arbitrary direct sums in Modi"(0). Let €(0) be a full subcategory of Mody;"™*(O)
anti-equivalent to Mod,, (O) via Pontryagin duality. We note that Modg,(O) has injective
envelopes and so €(0) has projective envelopes, see Section 2.

Lemma 4.6. — For an admissible unitary Li-Banach space representation IT of G the following

are equivalent:

(i) there exists an open bounded G-invariant lattice ® in 1 such that ©? is an object of €(O);
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(ii) @7 is an object of €(O) for every open bounded G-invariant lattice ® in T1.

Proof. — Clearly (i1) implies (i). The converse holds because any two open bounded
lattices are commensurable and €(0) is closed under subquotients. O

Definition 4.7. — Let Ban™ (L) be the category of admissible unitary 1.-Banach space rep-
resentations of G with morphisms continuous G-equivariant Li-linear homomorphisms. Let Banﬁ“(}) be
the full subcategory of Ban™ (L) with objects admissible unitary 1.-Banach space representations of G
satisfying the conditions of Lemma 4.6.

Lemma 4.8. Ban¢<o) is closed under subquotients in Ban®™(L). In particular; it is
abelian.

Proof. — We note that it follows from [61] and [33, 6.2.16] that Ban{™(L) is an
abelian category. Let IT be an object of Bana,cd(r(‘;) and let ® be an open bounded G-
invariant lattice in T1. Then ©7 is an object of €(O) and any subquotient of ®? in
Modl*“*(O) lies in €(0), since €(O) is a full subcategory of Mody; " *(O) closed under
subquotients. Dually this implies that any subquotient of TT in Ban®™ (L) lies in Bane(o)
Hence Banc(o) 1s abelian. O

Lemma 4.9. — Let P be a projective object in €(O) and let E:= End¢ o) (?) Let
IT be Bang(o), choose an open bounded G-invariant lattice ® wm Il and put m(I1) :=
HOH’I@((’)) (P, ©%) ®¢ L. Then T1 — m(I1) defines an exact_functor from Bang(o) lo the category
of right E[1 / pl-modules.

Progf: — We note that since any two open bounded lattices in IT are commen-
surable the definition of m(IT) does not depend on the choice of ®. Let 0 — II;, —
[Ty — 15 — 0 be an exact sequence in Banagd(%). Let ® be an open bounded G-invariant
lattice in TTy. Since all the Banach space representations are admissible, IT) N ® is an
open bounded G-invariant lattice in IT, and the image of ® in ITs is an open bounded
G-invariant lattice in ITs5. So we have an exact sequence 0 — ©; — 0y — @3 — 0
with ®,; an open bounded G-invariant lattice in IT;. Dually this gives an exact sequence
0— O — G)le — ©% — 0 in €(0). Since Pis projective in €(0) we obtain an exact
sequence of right E-modules:

0 — Home o) (P, ©2) = Home(o) (P, ©%) — Home o) (P, ©) — 0.
The sequence remains exact after tensoring with L. O

Corollary 4.10. — Let Phea projective object in €(O) and let T1 be in Ban"éd(%) then there
exists a smallest closed G-invariant subspace of 1, of T1 such that m(IT1/ 1) is zero.
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Proof. — Since IT 1s admissible any descending chain of closed G-invariant sub-
spaces must become stationary, [57, Lemma 5.8]. The assertion follows from the exact-
ness of m. U

In the application we will be in the following situation.

Lemma 4.11. — Let G = GLo(Q ), ¢ : Z — O be a continuous character of the centre
of G and let €(O) be the full subcategory of Mody, " (O) anti-equivalent to Modlg?; (O) by Pon-
tryagin duality, see Section 2. Let T1 be an admussible L-Banach space representation of G with a central
character ¢ and let © be an open bounded G-invariant lattice in T1. Then % is an object of €(O). In

adm adm

particular, Bang oy, = Bang (L) the category of admussible unitary 1.-Banach space representations
of G on which Z acts by the character ¢ .

Progf. — Recall that an object M of Mod},” “*(Q) is an object of €(O) if and only
if M = lim M; where the limit is taken over all the quotients in Modf:" "*(O) of finite

length and Z acts on M via ¢ .

Since IT 1s admissible ® /@ "® is an admissible smooth representation of G for
all n > 1. Since Z acts on ©/w"® by a character ¢ [30, Thm 2.3.8] says that any
finitely generated subrepresentation of ® /@ "® is of finite length. Hence by definition
(®/w"®)" is an object of €(O). The assertion follows from (57). O

Remark 4.12. — If the Conjecture formulated by Emerton in [30, 2.3.7] holds then
the proof of Lemma 4.11 goes through unchanged for a p-adic reductive group G.

Lemma 4.13. — Let P be a projective envelope of an irreducible object S in €(O), w :=S" a
smooth wrreducible k-representation of G, I1 an object of Banﬁ“é) and © an open bounded G-invariant
lattice in T1. Then the following are equivalent:

(1) 7 s a subquotient of ® Qe k;
(i) S is a subquotient of O Q¢ k;

(i) Home(o)(P, O ®¢ k) # 0;
(1V) HOH’I@(@) (P, @d) 75 0.

Progf: — It follows from (57) that (i) is equivalent to (i1). Since ii—» S 1is essential (1i1)
implies (ii). Since €(O) is closed under subquotients and Homg ) (P, *) is exact (ii) im-
plies (ii1). We have isomorphisms:

(58)  Homg (o) (P, ©') = Home(o) (P, lim ©7/"0") = lim Home o, (P, ©//"0").

The transition maps are surjective since Pis projective. Hence (iii) implies (iv). Since ©¢
is O-torsion free multiplication by " induces isomorphism OO Zw"Q! /" O,
If Home o) (P, ®?/w®?) = 0 then by considering short exact sequences we obtain
Homgo) (P, ®//@"®%) = 0 for all > 1 and so (iv) implies (iii). U
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Lemma4.14. — Let i S, 7w and © be as in Lemma 4.13. If Home o) (fﬁ, O £ 0 then w
is an admissible representation of G. In particular, Ende o) (S) = Endg () s a finite field extension

of .

Progf: — Let H be an open p-adic analytic pro-p subgroup of G. Since IT is ad-
missible ©¢ is finitely generated over O[[H]]. Since O[[H]] is noetherian it follows from
Lemma 4.13 that S is a finitely generated O[[H]]-module. Since H is pro-p, dually this
implies that ™ is finite dimensional. Since 7 is irreducible, Endg (7r) is a skew field over
k contained in End;(7r™). Since 7! is finite dimensional Endg () is finite dimensional.
Since £ is a finite field Endg(77) is a finite field extension of . ]

Lemma 4.15. — Let P be a projective envelope of an irreducible object S in €(O) with d :=
dimy Ende(o)(S) finite. Let M be in €(QO), O-torsion free and such that My := M Qo k is of finite
length in €(O). Then Home o) (ﬁ M) s a_free O-module of rank equal to the multiplicity with
which S occurs as a subquotient of My, multiplied by d.

Proof. — Since M is O-torsion free so is Homg(o)(f’, M). Let m be the mul-
tiplicity with which S occurs as a subquotient of M;. It follows from Lemma 3.3
that Horng@)(ﬁ, M), = HOI’H@(Q)(P, M,) is an md-dimensional k-vector space. Since
Homg)(P, M) is a compact E, and hence O-module, the assertion follows from
Nakayama’s lemma. O

From now on we assume (unless it is stated otherwise) the following setup. Let
Si, ..., S, be irreducible pairwise non- isomorRhiC objects of €(Q) such that Endg(o)(S )
18 ﬁn1te dimensional over £ for | <¢<n. Let Pbe a ErOJectlve envelope of S := @
and let E = Endg(o)(P) Recall from Section 2, that E is a compact ring and E/ radE =
]_L  Ende0)(S;), where radE i is_ the Jacobson radlcal of E. Moreover, uniqueness of
projective envelopes 1mphes that P = D, P., where P; is a projective envelope of S; in
CO).Forl <i<nletm;:= SZ so that m; 1s a smooth irreducible £-representation of G
andm =P, 7, =S".

Remark 4.16. — The assumption on the finite dimensionality of Ende (o) (S;) holds
if r; 1s a subquotient of the reduction modulo @ of admissible Banach space representa-
tions, see Lemma 4.14.

Proposition 4.17. — Let T1 be in Ban%d(“é) and let © be an open bounded G-invariant lattice
in T1. Then Home o) (P, @) is a finitely generated module over E..

Proqf — Let m = Homg (o, (P ©7) and let M € ©7 be the image of the natural
map m & P— 0% We may assume that M # 0, since otherwise m = 0 is finitely gen-
erated. We apply Home o) (P, %) to m®5 P — M < O and use Lemma 2.9 to obtain
Homg o) (P M) = m. Since IT is admissible, @ is a finitely generated O[[H]]-module,
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which implies that ((©)?)" is admissible-smooth. Since the quotients of admissible repre-
sentations are admissible, we deduce that M" is admissible-smooth. The G-socle of M
is a finite direct sum of irreducible representations, because every summand contributes
to invariants by a pro-p subgroup of G. Hence, Homg(r;, M") is a finite dimensional
k-vector space, for 1 < i < n. Dually, we obtain that Home o) (M, S;) is a finite dimen-
sional £-vector space of dimension d; (say), for all 1 < ¢ < n. Since M is a quotient of
m &g P, all the irreducible summands appearing in its cosocle are isomorphic to S; for
some 1 <i < n. Hence, cosocM = @7, S, with #; equal to d; divided by the dimension
of Ende(0)(S;). We may choose a surjection a:: P®" — cosoc M for some integer m. Since
Pis projective, a factors through & : pen M. Since M — cosocM is an essential epi-
morphism, 4 1s surjective. We apply Home o) (P, %) to b: P®" — M to obtain a surjection
E®" — m, O

Proposition 4.18. — Let T1 be in Ban}d(“é) and let © be an open bounded G-invariant lattice
i I1. Suppose that T1 is irreducible and © ®o k contains 1v; as a subquotient for some 1. Let ¢ €
Homeg o) (P O%) be non-zero and let a = {a € E: @ o a=0}. There exists an open bounded
G-invariant O-lattice B in T1 such that ¢(P) 2. Moreover,

(1) Home () (E, B9 = / a as a right E- module'
(i) Homg o) (P, )y, is an zrreduczble nght EL module;

—~d

(11) the natural map Home o) (P, 2) R P — 8% is surjective.

Progf: — Since by assumption ® @ £ contains 7; as a subquotient, Lemma 4.13
implies that Homg (o, (? ©7) is non-zero. Let ¢, ¥ € Homg (o (ﬁ ©%) be non-zero then
by Lemma 4.5 there exists an open bounded G-invariant lattice & in IT such that ¢ (P) =

4. By applying Hom¢(o)(P *) to the exact sequence 0 — Ker¢ — P— ¢(P) — 0 we
obtaln that

(59) Home o) (P, ¢ (P)) = oE =E/a.

Lemma 4.5 1mphes that W(P) 18 commensurable w1th ¢(P) Thus for some n > 0,
w”t//(P) - (b(P), and hence "y € HOH’I@(O)(P ¢(P)) It follows from (59) that "y =
¢ o a for some a € E. Hence, Homg o) (P ) ) ®o L is an irreducible E ®o L- module
The image of the natural map ev : Homg (P = )®EP — B will contain ¢>(P), and
hence ev is surjective. U

Proposition 4.19. — Let & be as in Proposition 4.18 then we have natural isomorphisms of
rings:

Ende o) (&) = Endg(m) = Ende o) (m & P),

where m := Homg o) (ﬁ, 29).
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Progf: — We note that m is a compact right E-module and Endg(m) denotes con-
tinuous E-linear endomorphisms of m. We have natural maps

Ende(o)(87) = Endg(m) — Endeo)(m &5 P),
where the first one sends d) to ¥ > ¢ oy, the second one sends ¢ to ¥ Qui ¢p(¥) Q.

The natural map ev : m®EP — B is surjective by Proposition 4. 18(111) let K be its
kernel. By applying HOI]’I@(@)(P *) to the exact sequence 0 > K — m &P —> 8- 0
and using Lemma 2.9 we deduce that Homg ) (P K) =0.

We claim that Homg ) (K, %) = 0. Suppose we have a non-zero morphism ¢ :
K — E%in €(0). It follows from Lemma 4.5 that ¢ (K) contains w"Z2? for some n > 1.
This implies that Homg o) (P ¢ (K)) #£ 0. Since Pis projective we get HOI]’I@(O)(P K) #
0, which is a contradiction. The claim implies that every (,b € Endeo)(m O P) maps K
to itself. Hence we obtain a well defined map Endeo)(m ®E P) — Endg()(E?), which
sends ¢ to ¥ QU+ K ¢ (¥ @ v)+K. The composition of any three consecutive arrows

1s the identity map, hence all the maps are isomorphisms. U

Proposition 4.20. — Let T1 € Bana&”@) be vrreducible and let © be an open bounded G-
invariant lattice in T1. Suppose that © Qo k contains 7v; as a subquotient for some i. If the centre Z of
E is noetherian and . is a finitely generated Z-module then Hom oy (P, ®%)y, is finite dimensional
over L.

Progf. — Let B be an open bounded G-invariant lattice constructed in Propo-
sition 4.18. Since ® and & are commensurable, ® Q0 kand E Qo £ have the same
1rredu01ble subquotients by Lemma 4.3 and Homg(@)(P O, = HOI’H@(O)(P 29 as
E[l/p] -modules.

Since IT is admissible and irreducible it follows from [61, Thm. 3.5] that the ring
D := End{[(,(IT) is a skew field. Since E is an open bounded G-invariant lattice in IT,
[59, Prop. 3.1] implies that Endp(E) is an O-order in D. It follows from the anti-
equivalence of categories established in [61, Thm. 3.5] that sending / to its Schikhof dual
/% induces an isomorphism B := Ende ) (E¢) = Endp¢(E)” and B[1/p] = D”. Hence
B[1/p] is a skew field and since E is O-torsion free so is B and we have an injection
B — B[1l/p].

Let R be the centre of B. Since R is contained in a skew field B[1/p] it is an integral
domain and B[1/p] contains the quotient field K of R. Let s € KN B be non-zero, then we
may find non-zero a, b € R such that as = 4. Yor all ¢ € B we have (st — ts)a=bt —tb=0
as a and b are central. Since B is contained in a skew field we deduce that st = is for all
¢t and hence BN K = R. Since K is contained in B[1/p] we deduce that for every x € K
there exists 7 > 0 such that p"x € R and so K =R[1/p].

Without loss of generality we may assume that n =1, so that S is irreducible. This
may be seen as follows: since P = @ P and thus Homg(@) (Pl, ) #0 for some ¢, and
if ¢ € E denotes the idempotent such that P = Pl, then Ende o) (P) = cbeis a finitely
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generated eZe-module and ¢Ze is contained in the centre of cEe. Moreover, since Z is
noetherian so is eZ¢ and this implies that the centre of ¢Ee is noetherian.

Let m := Homg o) (f’, E7). We have a natural map Z — Endg(m), which sends z
to ¥ > ¥ o z. Let ¢ and a be as in Proposition 4.18. It follows from Proposition 4.18(1)
that for every o € Endg(m) there exists B € E such that a(¢) =¢ o B and the map o —
B + a is an injection of Z-modules Endj(m) — E/ a. Since by assumption E is finitely
generated over Z and Z is noetherian we deduce that Endg(m) is finitely generated
over Z. The image of Z in Endg(m) is contained in the centre. We identify Endg(m)
with B using Proposition 4.19. Then the image of Z in B is contained in R, hence R is
a Z-submodule of a finitely generated Z-module B. We deduce that R is a noetherian
ring.

Since R[1/p] is a field and R is a noetherian integral domain, Theorem 146 in [38]
implies that R/pR is artinian. Hence, R/pR = []L_, (A;, n;), where (A;, n;) are artinian
local rings. Let Z. be the image of Z in A;/n; via R/pR — A; = A;/n,;. Since R is a
finitely generated Z-module, A,/n, is a finitely generated Z-module. Since A/n; is a field
we deduce that Z; is a field. Since Z is a local ring with residue field a finite extension of
k, Corollary 2.6, we deduce that Z_i and hence A;/n; is a finite extension of k. Since A;
is an artinian local ring, A; is an A;-module of finite length with irreducible subquotients
isomorphic to A;/n;. Hence A, is a finitely generated O-module and so R/pR is a finitely
generated O-module. As E? is p-adically complete, so is B and hence so is R. Thus R is
a finitely generated O-module. Since by assumption Eisa finitely generated Z-module
we deduce from Proposition 4.18 that m is a finitely generated Z-module and hence m
is a finitely generated R-module and so a finitely generated O-module. Thus m ®¢ L is
finite dimensional over L. H

Corollary 4.21. — Let I1 be an wrreducible admissible unitary L-Banach space representation
of G, let ® be an open bounded G-invariant lattice in T1. If the conditions of Proposition 4.20 are
satisfied then there exists a finite extension L of L such that Ty, s tsomorphic to a finite direct sum of
absolutely irreducible unitary 1. -representations.

Progf. — Tt follows from Propositions 4.18, 4.19 and 4.20 that EndZ"(IT) is a
skew field, finite dimensional over L. Let L' be a finite Galois extension of L splitting
End?"(IT). Then EndZ"(ITy;) = End" (1)1, is a matrix algebra over L. Let {¢;},<;<, be
the complete set of orthogonal idempotents and let IT; := ¢;(I1;,). Then I, = P, IT;
and End?"(IT;) = ¢; End{" (ITy,)e; = L. Tt follows from the proof of Lemma 4.2 that, after
possibly enlarging I, we may assume that I, is semi-simple. Since End?"(IT;) = L/, we
deduce that IT; is irreducible and hence absolutely irreducible by Lemma 4.2. 0J

We equip every finitely generated O-module (resp. every finite dimensional L-
vector space) with the p-adic topology.
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Lemma 4.22. — If E is right noetherian then any O-linear right action of E ona Sfinite
dimensional L-vector space is continuous.

Progf: — Let my, be a finite dimensional L-vector space with an O-linear right E-
action. Choose a basis {vl, ..., U, of mp, and let m:= v, E + - Tt E. Since E is rlght
noetherian the kernel of E®” — m is finitely generated as a rlght E-module and, since E
is compact, the kernel is a closed submodule of E®". Thus the quotient topology on m
is Hausdorfl' and it has a system of open neighborhoods of 0 consisting of E-modules,
and in particular of O-modules. The action of O on m via O — E on m is continuous
for the quotient topology. Any compact linear-topological O-torsion free O-module is
isomorphic to [[,,; O for some set I, see Remark 1.1 in [61]. Since m is contained in a
finite dimensional L-vector space we deduce that m is an O-module of finite rank. Thus,
for each n > 1 the quotient topology on m/w"m is discrete, as it is Hausdorfl' and the
underlying set is finite. In particular, the sets "m are open in the quotient topology
on m, for all » > 0. Since m is w-adically complete, we deduce that the sets "m for
n > 0 build a system of open neighborhoods of 0 in the quotient topology on m. In
particular, the quotient topology and the p-adic topology on m coincide. Let n > 0, and
let v € my.. The same argument as above shows that (UE + @ "m) /o "m with the discrete
topology is a topological E-module. This implies that the set a(v,n) ;= {a € E:vae
w"m} is open in E. Let U be the preimage in E x my, of v 4+ @'m. If (¢, w) € U, then
(a4 a(w,n), w + @"m) is open in E x my,, and 1s a subset of U containing (a, w). In
particular, U is open and hence the action of E on my, is continuous. U

Ponsztzon 4.23. — Let m be a compact right E-module . free of finite rank over O. Assume that
(E /radE) ®¢ P is of, funate length in C(O) and is a finitely generated O[[H]1]-module, where rad E
is the Jacobson radical of E. Then m & Pis Sfinitely generated over O[[H]] and (m & P) Qo kis
of funite length in €(O).

Progf: — Let n be a finite dimensional £-vector space with a continuous E-action.
If n is an irreducible E-module then it is killed by rad E, and hence

n®; P = n &) o (E/ rad E) 85 P).

Thus it follows from our assumptions that n®;z P is of finite length in €(O) and is a
finitely generated O[[H]] module. In general, arguing inductively on the dimension of
n we deduce that n®E P is of finite length in Q:((’)) and is a finitely generated O[[H]]-

module. Applying ®s P to the exact sequence m — m — m; — 0 we get
(m & P) ®o k= m, By P.

Nakayama’s lemma for compact O[[H]]-modules implies that m ®E Pisa finitely gener-
ated O[[H]]-module, see [21, Cor. 1.5]. ]
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Remark 4.24. — 1f S is an irreducible object in €(O) and « : P — S s its projec-
tive envelope, then radE {(]b eE:xo ¢ = 0}, which is the ideal m defined in Defini-
tion 3.6, and (E/radE) ®&; P is the object Q) considered in Section 3, see Remark 1.13
and Lemma 3.7.

Lemma 4.25. — Under the hypotheses of Proposition 4.23 the maximal O-torsion free quotient
(m ®z Py of m Qs P is an object of €(QO). Moreover,

Homg o) (P, (m Qf P)lf) =m

Proof- — Since O[[H]] is noetherian and m@‘p‘P is finitely generated, the tor-
sion submodule (m @E P)mrq is finitely generated and hence is equal to the kernel of
multiplication by @w” for n large enough So (m ®E P)m,rs and (m ®E P)ﬁ are both ob-
jects of Q(O) Now HOHIQ(O) (P m®F P) , see Lemma 2.9, is O-torsion free. Hence,
Homg o) (P (m ®E P)tm) — 0. Since P is prOJective we obtain an isomorphism:

m = Homg o) (P, m ®5 P) = Homg (o) (P, (m ®5 P)tf). O

Defination 4.26. — Under the hypotheses of Proposition 4.23 to a right E-module m Jree of
finate rank over O we associate an admissible unitary L.-Banach space representation of G:

IT(m) := Hommm((m ®i Py, )
with the topology induced by the supremum norm.

Remar/f 4.27. — We define IT1(m) in terms of the maximal torsion free quotient of
m O P, as this allows us to appeal to the results of [61]. Since any O-linear homomor-
phism to L kills off the O-torsion, we have IT1(m) = Homg"(m = P L).

A continuous homomorphism of compact E-modules m; — my induces a mor-
phism m; ® P — my ®5 P in €(0O) and hence m — IT(m) defines a contravariant func-

tor from the category of compact right E-modules, free of finite rank over O to Ban}d("é)

adm

Since @ is invertible in Bang g, the functor factors through the category of finite dimen-
sional L-vector spaces with continuous E-action (note that E is compact).

Lemma 4.28. — Let my, be a finile dimensional Li-veclor space with continuous E-action.
Assume that (E/ rad E) ®g P is of finite length in €(O) and is a finitely generated O[[H]]-module.
T hen

m(H(mL)) =my,

where m 1s the_functor defined in Lemma 4.9.
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Progf: — Since E is compact and the action is continuous there exists an open
bounded O-lattice m in my, which is E-stable. Then

M(m;) = Hom®'((m &g P)y, L)

and let IT(myp)" be the unit ball in IT(m;) with respect to the supremum norm, so
that IT(m;)? = Hom{"((m ®E P)tf‘, 0). Then (IT(m)*)? = (m ®E P)tf and Homg o) (P
(M(mp)"% = m by Lemma 4.25. Since m is an open O-lattice in m; we get
m(IT(my)) = my. O

Lemma 4.29. — Let T1 € Bana@d("(,}) be rreducible, and let my, ;== m(I1), where m s the
JSunctor defined in Lemma 4.9. If my, is a non-zero finite dimensional L-vector space then I1 is isomorphic
to a closed subspace of T1(my,).

Progf. — Let © be an open bounded G-invariant lattice in IT. The evaluation
map Homg o) (P, ©7) ®z P — ©7 induces a non-zero continuous, G-equivariant map
[T — TT(my,). Since IT is irreducible, and both representations are admissible, the map
induces an isomorphism between IT and a closed subspace of IT(my,). 0J

Lemma 4.30. — Assume that (E/ rad E) @)ﬁﬁ is of finite length in €(O) and s a finitely
generated O[[H]]-module. The functor my, +— T1(my) is lefl exact.

Progf.: — This follows from the right exactness of Ok fﬁ, left exactness of Homg" (, L)
and Remark 4.27. ]

Lemma 4.31. — Assume that (E/ radE) ®z P is of finite length in €(O) and is a finitely
generated O[[H]]-module. Let my, be a finite dimensional L-vector space with a continuous E-action.
Then T1(my,) ts an admissible smooth, finite length representation of G.

Progf: — The assertion follows from Proposition 4.23 together with (57). 0J

Proposition 4.32. — Assume that (E /rad E) Q5 P is of finite length in €(QO) and is a finitely
generated O[[H]]-module. Let my, be a finite dimensional L-vector space with continuous E-action and
let T1 be a closed non-zero G-invariant subspace of T1(my,). Suppose that my, is an wrreducible right
EL—module, then m(IT(my) /IT) = 0 and m(I1) = m(I1(my)) = my,. In particular, each 7v; occurs
in T1 with the same (finate) multiplicity as in T1(my,). Further, of S s irreducible and Ende o) (S) = k&
then T =SV occurs in T1 with multiplicity dimy, my.

Progf. — Let TT(my,)" be the unit ball in TT(my) with respect to the supremum
norm and let ® :=I1 N IT(m)". Then ® is an open bounded G-invariant lattice in IT.
By [61, Prop. 1.3.111] we have a SuI‘JCCthIl o:(m ®h P)tf = (M(mp)")? — 07 As o 1s
non-zero, there exists 7 € m and v € P such that 0(n® v) is non-zero. Then ¥ : P—
O, v > o (n®v) is a non-zero element of Homg o) (P, ©%). Thus m(IT) # 0. Since the
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functor m 1s exact and contravariant and m;y, 1s an irreducible E-module we deduce that
m(IT(mp)) = m(IT) and m(IT(my,)/I1) = 0, which is a contradiction. The rest follows
from Lemma 4.15 and (57). U

Corollary 4.33. — Assume the setup of Proposition 4.32 then T1(my,) contains a unique irre-
ducible non-zero closed G-invariant subspace T1. Moreover, for any ¢ : I1(my) — T1(my,) continuous
and G-equivariant we have ¢ (IT) C TI.

Progf: — This 1s immediate from Corollary 4.10 and Proposition 4.32. U

Let Ban¢(oﬂ be the full subcategory of Ban"‘gl(“é) consisting of objects of finite length.
Let Kerm be the full subcategory of Banc(o) consisting of those IT such that m(IT) =0
Since m is an exact functor, Kerm is a thick subcategory of Bané‘}“é? and hence we may

build a quotient category Bana,cd(%;l / Kerm, see [35, §IIL.1].

Theorem 4.34. — Let P and E be as in the setup described before Proposition 4.18. Assume
that

(i) (E/radE) &z P is a finitely generated O[[H]]-module and is of finite length in €(O);

(i) For every wrreducible T1 in Banaéi(“é), m(IT1) s finite dimensional.
Then the functors my, — T1(my,) and T1 — m(I1) induce an anti-equivalence of categories between
an erm and the category of finite dimensional L-vector spaces with continuous 1t -action.
Bany(3)' / K d the category of finite di [ L-vect th cont oht E-act

Progf. — Let T : Ban%‘?g)ﬂ — Ban"é‘}%;q / Kerm be the natural functor. Recall that
a morphism ¢ : I} — II, in Bana@d(“(?j)ﬂ induces an isomorphism 7 (¢) in the quo-
tient category if and only Ker¢ and Coker¢ lie in Kerm (that is m(Ker¢) = 0 and
m(Coker¢) = 0), see Lemme 4 in [35, §IIT.1].

Since m is exact assumption (ii) implies that m(IT) is finite dimensional for all IT in
Ba ne(oﬂ Let IT be in Ban&‘}rg? and © be an open bounded G-invariant lattice in IT and
let m := Homg o, (P, ©®%). Evaluation induces a morphism m@fﬁ — ©%in ¢€(0) and
dually we obtain a morphism L-Banach spaces IT — IT(m(IT)). We claim that the map
T (IT) — 7 (IT(m(IT)) is an isomorphism. It is enough to prove the claim for irreducible
I1, since then we get the rest by induction on the length of I1. The diagram:

T (I3)

7))

7 (ITy)

~ ~

0——=T7 (IT(m})) ——=7 (IT(my)) —=7 (I1(m3))

where m; := m(I1;) gives the induction step. We note that 7 is exact by Proposition 1 in
[35, §III.1] and hence the rows are exact.
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Suppose that IT in Bana&%) is irreducible. If m(IT) = 0 then IT = 0 in the quotient
category Banacd(né)ﬂ/Kerm and hence 7 (IT) = 7 (IT(m(IT))). Suppose that m(IT) # 0
then m(IT) is an irreducible right E-module by Proposition 4.18(ii). By dualizing Propo-
sition 4.18(111) we obtain an injection ¢ : Il < IT(m(IT)) and it follows from Proposi-
tion 4.32 that m(IT(m(I1))/I1) = 0. Hence, 7 (¢) is an isomorphism between 7 (IT) and
T (IT(m(IT))). For the other composition we observe that m factors through the quotient
category, see [35, §III.1 Cor. 2], so m(7 (IT(my))) = m(I1(my,)) = my,, where the last
assertion is given by Lemma 4.28. OJ

Remark 4.35. — We note that since we assume that (E/ rad E) @E’IS is of finite
length in €(0), Lemma 4.31 implies that IT(my) is of finite length. The statement of
Theorem 4.34 holds if instead of making the assumption (i) we replace Banaél(r(%)ﬂ by a
smaller category. Namely a full subcategory of Ban¢(o) with objects IT such that ® @ &
is of finite length where ® is an open bounded G-invariant lattice in IT. Such IT are of
finite length and it follows from Lemma 4.15 that m(IT) is finite dimensional. However,
in the application to GLy(Q ,)-representations we will verify that the assumption (ii) is

satisfied using Proposition 4.20.

Theorem 4.36. — Let P and E be as in the setup described before Proposition 4.18. Assume
that

(i) (E /rad E) @Ef;l; s a finitely generated Ol[H]1-module and is of finite length in €(O);
(11) the centre Z of K. is noetherian and E 1s a finitely generated Z-module.

Then

adm.fl ~ adm.fl
Bane:(O) /Kerm = @ (Bane(o) / Ker m)n,
neMaxSpec Z[1/p]

where the direct sum s taken over all the maximal ideals of Z[1/pl, and for a maximal ideal n of
Z[1/p], (Banﬁ’g)ﬂ / Kerm),, us the full subcategory of Ban"éd(“é)ﬂ / Kerm, consisting of all Banach
spaces which are killed by a power of n.

Further, the functor m > T1(m) induces an anti-equivalence of categories belween the category
of modules of finite length of the n-adic completion of E[l/ ] and (Barfg}“é;i / Kerm),.

Proof. — We Clalm that Z[1/p]/n is a finite extension of L for every maximal ideal
nforl <i<nlete € E be orthogonal idempotents such that ¢P =P, and let Z; be the
centre of End¢ o) (P). Since Z C l_[zzl eZe; C [, Zi, Z[1/pl/n will be a subfield of
Z[1/p]/n; for some | <7 < n and some maximal ideal n; of Z,[1/p]. It follows from the
proof of Proposition 4.20 that Z,[1/p]/n; is a finite extension of L. Since Eisa finitely
generated Z-module the claim implies that every irreducible E[l /pl-module is finite di-
mensional over L, see the proof of Proposition 4.20.
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Propos1t10n 4.20 says that the assumption (i1) in Theorem 4.34 1s satisfied. More-
over, since Z is noetherian and E is a finitely generated Z-module we deduce that E
is left and right noetherian and hence any O-linear action of E on a finite dimensional
L-vector space is automatically continuous by Lemma 4.22. Thus it follows from The-
orem 4.34 and the claim that the functor m — II(m) induces an anti-equivalence of
categories between the category of E[1/ p]-modules of finite length and Ban@d(mo)ﬂ / Kerm.

Let n be a maximal ideal of Z[1/p] and let m be an E-module of finite length.
It follows from the anti-equivalence that IT(m) is an object of (Ban@d(%‘)ﬂ / Kerm), if and
only if m is annihilated by a power of n, and, since m is of finite length and n is maximal,
this is equivalent to m = m,, the localization of m at n. As already observed, m is a finite
dimensional L-vector space. Hence, the image of Z[1/p] in Endy,(m) is a finite dimen-
sional L-algebra, which implies via the Chinese remainder theorem, that m = @,m,,,
where the sum is taken over all the maximal ideals of Z[1/p], and m, = 0 for almost all
n. Applying the functor IT we deduce the last assertion. UJ

Proposition 4.37. — We assume the hypotheses of Theorem 4.36 and let n be a max-
imal ideal of Z[1/p) and ng := @~ '(n), where ¢ : Z — Z[1/p). The irreducible objects of
(Banzéd('g)ﬂ / Kerm), are precisely the irreducible Banach subrepresentations (fHom‘”’”((P/ 9Py, L).

Proof: — Since Z is noetherian ny is finitely generated and hence noP i is closed
in P. Thus E/noE QP = P/noP Since E i is a finitely generated Z-module E/nOE 18
a finitely generated Z/ng-module and so (E/nOE)tf 1s a finitely generated (Z/ng)y-
module. Now, (Z/n)¢ is equal to the 1 image of Z in Z[1/p]/n and hence is a finitely
generated O-module. We deduce that (E/ n()E)tf is a free O-module of finite rank. It
follows from Lemma 4.25 that ((E/nOE)tf®E P)tf‘ is an O-torsion free object of €(QO)
and from Proposition 4.23 that it is ﬁnltely generated over O[[H]]. It is immediate
that any O-linear r_ homomorphism from E/nE®z P to a torsion free O-module must
factor through (E/nOE)tf®EP and then through ((E/nQE)tf®E P)tf We deduce that
(P/nOP)tf = ((E/nOE)ﬁ s P)tf is a finitely generated O[[H]] module and is O-torsion
free, and so the Banach space representation IT := Homm'”((P/ n(]P)tf, L) is admissible.

Let IT, be a closed non-zero subspace of II, irreducible as a Banach space repre-
sentation of G. Let I1° be the unit ball in IT with re spect to the supremum norm and let
MY :=I1; N T1". Dually we obtain a surjection ¥ : (P/ngP)¢ = (M%? — (119)?. Compos-
ing ¥ with the natural map P (P/ nOP)tf we deduce that m(I1;) # 0 and hence IT; is
non-zero in the quotient category. Since Pis projective we get a surjection of E-modules:

(E/ﬂoE)tf = Hom¢(@) (?, (?/noﬁ)tf) —» HOI’HQ‘((’)) (ﬁ, (H?)d),

where the first isomorphism follows from Lemma 4.25. Hence, n kills m(IT,) and so IT,
is an object of (Banacd(”(;;1 / Kerm),.

Conversely, let IT; € Banﬁ“é) be irreducible with m(I1;) # 0. Then IT; is non-zero
in the quotient category. Suppose IT; is an object of (Banzéd(%‘)ﬂ/ Kerm),. Since m(I1;)
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is an irreducible E[l/p] module by Proposition 4.18, n kills m(IT,). Let ® be an open
bounded G invariant lattice in IT;, every ¥ € ny induces a map y* Homg(@)(P 0 —

Homg(@)(P ®7), which is zero after inverting p. Since ®¢ is O-torsion free, so is
Homg o) (P ©7) and hence ¥* is zero. We deduce that

HOI’HQ(O) ((ﬁ/noﬁ)tf, @d) = HOI’I]@(O) (?/noﬁ, @d) = HOI’I]@((Q) (?, @d)

Since m(IT;) # 0, Home (o) ((P/nP), ©7) # 0 and dually Hom{"(I1;, TT) % 0. As both
spaces are admissible and TII; is irreducible any such non-zero homomorphism induces
an isomorphism between IT; and a closed subspace of IT. UJ

Remark 4.38. — If we assume that Z is noetherian, E is O-torsion free and is a
free module of finite rank over Z then Z is O- t0r51on free, thus ng = Z Nnandso Z/ng
is a free O-module of finite rank, which implies E/ ok is a free O-module of finite rank.
If additionally we assume that P is flat over E then Corollary 3.14 implies that P/ noP is
O-torsion free. This situation will arise in the applications to GLy(Q ).

4.1. Relation lo the deformation theory. — In this subsection we assume a more restric-
tive setup which will be used in the applications. Let P be ~a projective envelope of an ir-
reducible object S in €(O) such that Ende o) (S) = £. Let E:= End¢ (o) (P) and 7 :=SY.
Assume that there exists Q in €(k) of finite length in €(k), a finitely generated O[[H]]-
module satisfying hypotheses (H1)-(H4) made in Section 3, (we do not assume (H5)).
Then it follows from Lemma 3.7 that (E /rad E) ®h px P/ (rad E)P Q) and hence the
hypothesis (i) in Theorem 4.34 is satisfied.

Remark 4.39. — If G = GLy(Q,,) then it follows from the classification in [1]
and [16] that every smooth irreducible £-representation of G with a central character
1s admissible and hence any smooth finite length A-representation of G with a central
character is admissible. So the assumption that Q is finitely generated over O[[H]] will
be automatically satisfied.

Theorem 4.40. — There exists a natural byection between isomorphism classes of

(1) arreducible topological right E\ -modules, finate dimensional over L, and
(1) wrreducible admissible unitary L-Banach space representations T1 of G containing an open
bounded G-invariant lattice © such that
(a) ® Qe k s of fimite length;
(b) ® ®o k contains 7w as a subquotient;
(c) O is an object of €(O).

Progf: — We recall if the conditions are satisfied for one open bounded G-invariant
lattice ® then by Lemmas 4.3 and 4.6 they are satisfied for all such lattices inside IT.



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 35

Suppose we are given I1, containing such ®, then m(IT) := Homg¢ ) (P, ©7);, does
not depend on the choice of ® and it follows from Proposition 4.18 that it is an irreducible
El-module and from Lemma 4.15 that it is finite dimensional.

Given an irreducible ;- module, finite dimensional over L, we may choose an
E-invariant O-lattice m inside it as E is compact. Let IT(m) be the admissible unitary
L-Banach space representation of G defined in 4.26. By Corollary 4.33 TI(m) contains
a unique closed irreducible G-invariant subspace of TT. Lemma 4.31 implies that TT is a
G-representation of finite length.

It is shown at the end of the proof of Theorem 4.34 that we have a natural injection
[T < IT(m(IT)). This fact together with Propositions 4.32 implies that the two maps are
mutually inverse. UJ

Corollary 4.41. — Let I1 be an wrreducible admissible unitary L-Banach space representation
of G containing an open bounded G-invariant lattice © such that @7 is an object of €(O) and 7 is a
subquotient of ® Q¢ k. If the centre Z of E is noetherian and E. is finilely generated Z-module then
O Qo k s of finite length as a G-representation.

Proof. — Proposition 4.20 implies that Homg o) (P, ®%),. is finite dimensional over
L and the assertion follows from Theorem 4.40. U

Corollary 4.42. — Let T1 be as in Theorem 4.40 and m := Homg 0, (ﬁ, O, where O is
an open bounded G-invariant lattice in T1, then the following are equivalent:
() Endiyt, () =
(11) EndEL (mp) =
(i11) my, s an absoluz‘ely urreductble right E\ -module;
(iv) IT zs an absolutely vrreducible 1.-Banach space representation of G.

Proof. — It follows from Proposition 4.19 that Endf’["é](l'[) = Endg, (m)”. Hence
(1) 1s equivalent to (i1). The assumptions on IT made in Theorem 4.40 imply that my,
is finite dimensional. Hence (ii) is equivalent to (iii), see [11, Cor. 12.4]. Moreover, we
deduce that Endﬁ’{é](l—[) 1s finite dimensional over L and so we deduce from Lemma 4.1
that (iv) implies (1). Finally Lemma 4.2 says that (i) implies (iv). U

Corollary 4.43. — Let TI and © be as in Theorem 4.40. If T1 is absolutely irreducible then
the image of the centre of E i Endp (Homg (o) (P O is equal to O.

Progf. — The image of Z contains O and is contained in Endg(Homg o) (’13, 0%)),
which is isomorphic to O by Corollary 4.42. O

Corollary 4.44. — Let T1 be an absolutely irreducible admassible 1.-Banach space representation
of G containing an open bounded G-nvariant lattice © such that @7 is an object of €(O) and 7 is a
subquotient of ® Qo k. If E is commutative then T1 C (Q)*.
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Proof. — As a consequence of the hypotheses (H1)-(H4) we know that the maxi-
mal ideal of E is generated by at most 1 + dimy, Extle(k)(Q S) elements, see Lemma 3.7
and Proposition 3.8(iii), which implies that E is noetherian. We note that the proof of
Lemma 3.7 and Proposition 3.8(ii1) for n = 1 does not use (H5). Let & and a be as
n ProEosition 4.18 then Homg ) (?, E7)y, is finite dimensional by Proposition 4.20.
Since E is commutative and IT is absolutely irreducible it follows from Corollary 4.43
that E/ a = O. Tensoring the surjection O®zP — B with k we obtain a surjection

Q=k®:P— B! ®o k. Thus TT= (E®0 h)” = (B ®0 )" S (Q)" 0

4.2. Extensions of Banach space representations. — Let Modg,(O) be a full subcategory
of Mod™(O) closed under subquotients and arbitrary direct sums in Mod™(O). Let
€(O) be a full subcategory of Mody;"***(0) anti-equivalent to Mod_,(O) via Pontrya-
gin duality. Assume that Mod? .(O) has only finitely many irreducible objects Ty vy Ty
Wthh are adm1551ble Let P be a projective envelope of )" @ --- @ ) in €(0), and let
E= Ende (o) (P) It follows from [35, §IV.4, Cor. 1] that the functor M — Homg o) (P M)
induces an equivalence of categories between €(0) and the category of compact
right E modules, with the inverse functor given by m — m &g P. This implies that
E/ radE®E P )/ @ - ®m), which is a finitely generated (’)[[H]] module, as ; are
assumed to be adm1551ble We further assume that the centre Z of E is noetherian, and E
is a finitely generated module over Z. Let Mod£ be the category of finitely generated

right E[1/ pl-modules.

E[1/p]

Lemma 4.45. — The functor m : Banisiey — Modgs | is fully faithful.

Proof. — Lemma 4.9 and Proposition 4.17 show that m is well defined. It remains
to show that it is fully faithfull. Let IT;, ITs be in Ban%d(“(} and let ®; and ®, be open
bounded G-invariant lattices in IT, and Iy, respectlvely Then @’l and ©f are objects
of €(0) by Lemma 4.6. For i =1 and i = 2 let m, := Homg () (P @ ), then because of
equivalence of categories explained above, we have HomQ(@)((@Q, o7 ) = Homg(my, m;).
Since Homg (I}, ITy) = Homg o) (©F, @‘f) ®o L by [61], and m(IT;) = m; ®p L, we
deduce the result. O

Proposition 4.46. — Let R be a ring, A the category of finitely generated (right) modules of
R, and let B be a_full subcategory of A containing all the modules of finite length and closed under
extensions and subquotients in A. Let 7. be the centre of R. If 7. is noetherian and R is a finitely
generated Z.-module, then for every A, B € B with B a module of finite length, the natural map between
the Yoneda-Ext groups:

¢" : Extg(A, B) — Ext’y (A, B)

is an wsomorphism, for all n > 0.
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Proof. — Since Z is noetherian, and R is a finitely generated Z-module, R is left
and right noetherian. Hence A is an abelian category. Since B is a full subcategory, closed
under subquotients in A, B is also an abelian category.

If ¢" is bijective for a given n and all A, B € 3 then ¢"" is injective for all A, B € B,
see [52, Prop. 3.3]. Moreover, ¢” and ¢' are bijective by assumption. So it is enough to
show that ¢" is surjective for n> 2. Let 0 > B - X, — --- = X, - A — 0 be an
extension representing & € Ext’; (A, B). Let I be the Z-annihilator of B, then by Artin-
Rees lemma, there exists a positive integer ¢, such that BN 1°X, = 0. Since B is of finite
length, Z /I is a Z-module of finite length, and hence X, /I'X; is an R-module of finite
length. We thus may represent & with the extension 0 — B — X, /I'X; — X,/I'X;, —

-+ — A — 0. Arguing inductively, we deduce that & can be represented by an extension
in B, and so ¢" is surjective for n > 2. 0

Remark 4.47. — The upshot of Proposition 4.46 is that .A has enough projectives
and the Yoneda Ext-groups can be calculated using projective resolutions.

Corollary 4.48. — Let Tl and T1, € Banzd(“é), with T1, of finite length. The functor m
induces an isomorphism

EXté‘,(nla 2) - EXtE[l//) (m(n2)7 m(Hl))

- adm g
between the Yoneda Ext-groups computed in Bany ) and in 1\/IodE[1 e , respectively.

Proof. — We apply Proposition 4.46 with R = E[1/p], A = Modg1 1, and B the

full subcategory with objects all the finitely generated E[1/ p]-modules, which are isomor-
phic to m(IT), with IT € Ban@d(%) Theorem 4.36 implies that BB contains all the modules
of finite length. Let m be a finitely generated E[l /pl- module and let m” be a finitely
generated E- submodule, which is an O-lattice in m. If m’ ®x Pis finitely generated over
O[[H]], then IT(m) := Hom"””(m ®EP L) is an admissible Banach space representa-
tion of G, and m(IT(m)) = m. Since O[[H]] is noetherian, this implies that B is closed
under extensions and subquotients in 4. Lemma 4.45 implies that m induces an equiva-
lence of categories between Bana&”é) and B. UJ

Remark 4.49. — The assumptions made in this subsection are satisfied if G =
GLy(Q,), p > 5 and Mod,(O) is a block in the category of smooth locally finite rep-
resentations of G with a fixed central character, see Section 5.5. Further, for each block
we will compute the ring E and show that it satisfies the assumptions made in this subsec-
tion. Since the decomposition into blocks is functorial, there are no extensions between
Banach space representations lying in different blocks, so Corollary 4.48 will enable us to
compute the Ext-groups in the category of admissible unitary Banach space representa-
tions of GLy(Q ;) with a fixed central character.
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5. Representations of GL,(Q ;)

5.1. Notation. — Let G := GLy(Q ), let P be the subgroup of upper-triangular

matrices, 1" the subgroup of diagonal matrices, U be the unipotent upper triangular ma-
trices and K := GLy(Z,). Let p := pZ, and

“\r Z) b p o 1+p)° b p 1+p)

For A € F, we denote the Teichmiiller lift of A to Z, by [A]. Set

(A1 0. x
e |(3 0|

Lete:Q,— L, x> x|x|], ®: Q, — £k, x> x|x| (mod py,), where |.|is anorm on Q ,
with |p| = -, and @ : T — £* be the character

(s )=t

Further, define

() ) )

For A € £ we define an unramified character pu; : Q) — £*, by x > A¥4®  Given two

1
P

characters i, xo : Q_; — k™ we consider x; ® xo as a character of P, which sends (S j)
to x1(a) x2(d).

Let Z be the centre of G, and set Z, :=ZN1;. Let G’ :={g € G : detg € Z;} and
set Gt :=ZG".

Let G be a topological group. We denote by Hom(G, k) the continuous group
homomorphism from G to (k,+). If V is a representation of G and S is a subset of
V we denote by (G .S) the smallest subspace of V containing S and stable under the
action of G. The socle socg V is the maximal semi-simple G-subrepresentation of V. The
socle filtration socig YV CV is defined by an exact sequence 0 — socig Y — SOCing] Y —
socg(V/ socé; V) — 0, for >0 and socog V:.=0.

We make the same conventions as in [23] regarding local class field theory: if A is
a topological ring let 7 (A) be the set of continuous characters § : Q) — A*. Local class
field theory gives us an isomorphism of topological groups between the abelianisation
Wgﬁ of the Weil group Wq, of Q, and Q. This enables us to consider an element
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s € ’?(A) as a continuous character of Wq , by the formula:

(60) 8(0) =8()"*¥5(e(9)), VgeWaq,,

where deg(g) is an integer defined by g(x) = xpdcg@, for all x € F/,, and ¢ 1s the cyclotomic

character. Since Gg, is isomorphic to the profinite completion of Wg ,, the character &
defined by (60) extends to a continuous character é : Gg, — A* if and only if n > §(")
extends continuously to Z. This is the case if A =% or A =L and § is unitary. The
formula (60) identifies the cyclotomic character with the character Q7 — Z %, x > x|,
which is also denoted by ¢ above.

5.2. Rationality.

Lemma 5.1. — Let G be a group, K a field and L a field extension of K. Let V and W be
K[ Gl-modules. If either V s finutely generated over K[ G) or L is finite over K then the natural injection

<61> HOI’I][{[G] (V, W) ®1{ L —> HOIl’lL[(;] (V ®]{ L, W ®K L)
is an isomorphism. In particular, WC Q5 L= (W Q@ L)°.

Progf: — If 'V 1s finitely generated over K[G] we have an exact sequence of K[G]-
modules 0 > U — K[G]®" — V — 0. We obtain a commutative diagram

0 —— Homg(V, W), —— (W), —— Homy;;(U, W),

| | |

0 —— HomL[G](VLaWL) — (WL)®” — HomL[G](UL,WL)-

Since the third vertical arrow is injective and the second is an isomorphism we deduce
that the first is also an isomorphism. Since W = Hom(1, W) we deduce Wl Ry L=
W®xLD)°.

Let V be arbitrary. The group G acts naturally on Homg(V, W) by conjugation. If
L is finite over A then we have Homy(V, W), = Hom(V,, W,), see for example Propo-
sition 16(1) in §I1.7.7 of [14]. Since by the previous part taking G-invariants commutes
with the tensor product with L we deduce that (61) is an isomorphism. U

Remark 5.2. — In the foundational papers [1], [16], [17], [67] the authors study
representation theory over an algebraically closed field. Using the Lemma one may show
that their results also hold over an extension of F,, provided the extension is “large
enough”, see Lemma 5.10. Lemma 5.1 will allow us to deduce various results on Ext-
groups between irreducible representations over £ from the corresponding results over al-
gebraically closed fields, which have already appeared in the literature, see Remark 5.15,
Lemma 5.32, Proposition 5.33.
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5.3. Irreducible representations. — We recall the classification of the (absolutely) irre-
ducible smooth £-representations of G with a central character’ due to Barthel-Livné [1]
and Breuil [16]. We then show that the category Modg‘f; (k) behaves well when we replace
k by an extension. We let £ be an arbitrary field of characteristic p until Proposition 5.11,
from then onwards £ is a finite field, which is the situation we are most interested in. This
assumption is made for the sake of simplicity, one has to work harder if £ is not a perfect
field, see Remark 5.4. We assume from Section 5.4 onwards that £ contains a square root
of ¢(p), where ¢ is the fixed central character.

Let o be an irreducible smooth representation of K. Since K, is a normal pro-p
subgroup of K, o®! is non-zero and since o is irreducible we deduce that K, acts trivially.
Hence o is an irreducible representation of K/K;| = GL,(F,) and so o = Sym’ £ ® det"
for uniquely determined integers 0 <7 <p— 1 and 0 < a < p — 2. We also note that this
implies that o is absolutely irreducible and can be defined over F,,.

Let ¢ : Z — k™ be a smooth character extending the central character of 0. We
extend the action of K on o to the action of KZ by making p act by a scalar ¢(p). It is
shown in [1, Prop. 8] that there exists an isomorphism of algebras:

(62) Endg (c-Indy,0) = £[T]
for a certain Hecke operator T € Endg(c-Ind,0) defined in [1, §3].

Proposition 5.3. — Let v be a smooth irreducible k-representation of G with a central character
¢. There exists a fimite extension | of k such that w & [ is of finite length and all the vrreducible
subquotients are absolutely irreducible in the sense of Remark 5.12 (u1).

Proof. — Following the proof of Proposition 32 in [1] we deduce that 7 is a quotient
of C—Indgza / P(T)C—Indgzo, where P € £['T] is a non-zero polynomial, irreducible over &
and T 1s as in (62). We know that the assertion holds if P('T) =T — A, for some A € £,
by [1] if A # 0 and [16] if A = 0. We may take [ to be the splitting field of P. U

Remark 5.4. — It k 1s perfect then the same proof shows that for every smooth
irreducible £-representation of G with a central character ¢ there exist a finite exten-
sion [ of £ such that & ®; [ is isomorphic to a finite direct sum of absolutely irreducible
representations.

Corollary 5.5. — If 7w 15 an object of Modléifz (k) then t @y [ 15 an object of Modglz ).

Progf. — Given v € m @, [ we may express v =y ., A;v; with v; € 7 and A € [.
Hence, we may assume that 7 is of finite length. Proposition 5.3 implies that = ®;. [ is of
finite length. O

% Laurent Berger has shown recently in [6], that every smooth irreducible representation of G over an algebraically
closed field of characteristic p admits a central character.
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Corollary 3.6. — Every smooth finite length k-representation of G with a central character s
admussible.

Progf: — It follows from the classification, see [1] and [16], that every absolutely
irreducible representation is admissible. The assertion follows from Proposition 5.3 and
Lemma 5.1. O

Lemma 5.7. — Let v and T be objects of Modléig (k) (resp. Modg;', (k)) and let I be a field
extension of k. If v s finitely generated over G then the natural map

1 1
(63) Extyg. (7, T) ®r { = Extyg, (7 Qi l, T Q4 1),
is injective, where Ext' are computed in the corresponding categories.

Progf. — In terms of Yoneda Ext the map is given by sending an extension
07—k —=>m—>0to0— 1, — kK, — 7, — 0. Since 7 is assumed to be finitely gen-
erated over £[G], it follows from Lemma 5.1 that Homg (77, ;) = Homg (7, k);, hence
any splitting of 0 — 1, — k; — m; — 0 is already defined over £. Thus the map is an
injective. UJ

Let & be the algebraic closure of £. Tt follows from [1, Thm. 33] and [16, Thm. 1.1]
that the irreducible smooth £-representations of G with a central character fall into four
disjoint classes:

(1) characters, n o det;

(i) special series, Sp ®@n o det;
(i11) principal series Indg’ X1 Q X9, with X1 # Xo;
(iv) supersingular c-Indg,o/(T).

The Steinberg representation Sp is defined by the exact sequence:
(64) 0— 1— Indj1— Sp— 0.

Definition 5.8. — Let 7w be a k-representation of a group G and [ a subfield of k. We say that
T can be defined over [ if there exists an l-representation T of G such that T &, k = 7w. We say that [ is
a field of definition of 7w if it 1s the smallest subfield of k over which v can be defined.

Lemma 3.9. — Let x : Q) — k> be a smooth character then the field of definition of x is
F,[x ().

Progf. — Since x is smooth it is trivial on 1 + pZ, and hence X(Z;‘) C F¥, the
group of (p — 1)-st roots of unity in £. Since Q,=Z; x P* the assertion follows. O
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Lemma 5.10. — Let 7t be a smooth irreducible k-representation of G with a central character
¢. Then there exists a smallest subfield | of k over which 7t can be defined. Moreover,

(i) of m =nodetthen [=F,[np)l;
(i) if'm = Sp@n odet then [ =F,[n(p)];
(i) o7 ZIndy x1 ® xo then [ =F,[x1(p), x2(p)];

(V) of 7T is supersingular then [ = F,[£(p)].

Proof. — Let [ be a subfield of £ and T an [-representation of G such that T ® &k = 7.
Since 7 is irreducible 7 is irreducible and hence it follows from Lemma 5.1 that 7 is
uniquely determined up to an isomorphism over /. As already mentioned 7! is finite
dimensional (and non-zero), this implies Endg (77) = k. We deduce from Lemma 5.1 that
Endg(t) = /. Thus Z acts on 7 by a central character. We deduce that ¢ (p) € [.

If 7 1s supersingular then we are done since o |g can be defined over F,, o can
be defined over F,[£(p)] by using KZ = K x p* and the endomorphism T can also be
defined over F,[¢(p)], as is immediate from [1, §3].

If 7 is a character or special series then 7" is 1-dimensional. Lemma 5.1 implies
that T is 1-dimensional. Since (2 _01) acts on 7' by a scalar £7(p), we deduce that
n(p) € [ and hence F,[n(p)] is a field of definition of 7. We note that it is immediate
from (64) that Sp can be defined over F,.

If 7 is principal series then 7' is 2-dimensional with basis {¢, ¢,}, where
Supp ¢, = Psly, ¢1(s) = 1, Suppgs =PI, (1) = 1. The K-representation o := (K.
@) C 7 is irreducible, o't = /_-c(pl and Homg (o, ) is 1-dimensional. Now o can be re-
alized over F,, so in particular over £. It follows from Lemma 5.1 that Homg (0, 7) is
1-dimensional. Choose a non-zero ¢ € Homg(o, 7) and let v € ¢(o)" be non-zero.
The I-dimensionality of the spaces involved implies that any G-equivariant isomor-
phism 7 = 7 ®; k must map ¢, to v ® A for some A € k. A direct calculation shows
that ZAeF,,(g [T])(pl = x2(p)¢1, hence erF,,(g[?])v = xo(p)v and so xo(p) € [. Since
¢(p) = x1(p) x2(p) we deduce that x,(p) € [. Hence, F,[x1(p), xo(p)] is the field of def-
inition of 7. Further, since both x; and x, maybe defined over F,[x(p), xo(p)] by
Lemma 5.9 we deduce that 7 is a principal series representation. 0J

Let x : T — k* be a smooth character and let X be the orbit of x under the action
of I' := Gal(k/k). It follows from Lemma 5.9 that x can be defined over a finite extension
of k£ and so X is finite. Let

(@

veX

r
’

where the action of I" on @wex Y is given by ¥« (Ay)y = (¥ (Ay))y ). Then V, is the

unique irreducible £-representation of T such that V, ®; & contains x. We note that if x
factors through the determinant, then we may consider both x and V, as representations

of G.
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Proposition 3.11. — Let 7t be an wrreducible smooth k-representation of G with a central
character. Then 1 s isomorphic to one of the following:

(1) Viodet> 11 - Q,p - kx )

(1) Sp®Vyoder, 11 Q) — K
(i) IndFV,, x : T — K with x # x°;
() supersingular o-Ind3., 0 /(T).

Proof. — Since £ is perfect it follows from the proof of Proposition 5.3 that there
exists a finite Galois extension / of £ such that

TRQlI=m&---Dm,

with 77; absolutely irreducible and distinct. If 7, is supersingular then, since the central
character of 7, is k-rational, 7, can be realized over £ by Lemma 5.10 and since 7 is irre-
ducible Lemma 5.1 implies that 7; = ) and so 7 is absolutely irreducible supersingular.

The proof in the cases m; is a character, special series or principal series is the
same. We only treat the principal series case so 77 = Indy x with x : T — k* a smooth
character with y # x’. Let T := Ind(’ V,,thent, = 691# X Ind Y. Since x # x’ we have
Y # ¢’ for every Y € X. Hence, all the principal series are 1rreduc1ble and distinct. Since
the I'-action on T ®; [ permutes the irreducible subspaces transitively we deduce that 7,
does not contain a proper G-invariant subspace, which is stable under the action of I'.
Hence 7 is an irreducible G-representation. Since Homg (7, 77;) # 0 Lemma 5.1 implies
that Homg (7, ) # 0. Since both 7 and 7 are irreducible they must be isomorphic. [J

Remark 5.12. — It follows from the Proposition 5.11 that for an irreducible 7 with
a central character the following are equivalent:

(1) m ®; 1s irreducible for all //£ finite;
(i) 7 ®y [ 1s irreducible for all //£;
(i11) 7 @ [ irreducible for some //k with [ algebraically closed.

In this case, we will say that 7 1s absolutely irreducible.

Suppose p € Z acts trivially on o and o|x = Sym’ £, Let ¢ € c-Ind{,Sym’ k% be
such that Supp ¢ = ZK and ¢(1) is non-zero and I;-invariant. If we identify Sym’ £* with
the space of homogeneous polynomials in two variables x and y of degree 7, then we may
take @(1) = «'. Since ¢ generates c-Ind§, Sym’ k% as a G-representation T is determined
by Te.

Lemma 5.13.

() Jr=0tenTo=(30)p+ e, (s })t0.
(i) Otherwise, To =3, ¢ (1 4)tg.
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Progf: — In the notation of [1] this is a calculation of T([1, ¢;]). The claim follows
from the formula (19) in the proof of [1] Theorem 19. UJ

Theorem 19 in [1] says that c-Ind$, o is a free £[T]-module. Hence, the map T — A
is injective, for all A € £.

Defination 5.14. — Let v (r, L) be a representation of G defined by the exact sequence:

T—2
(65) 0 —— C—Indg’KSym" P — C—Indg’KSym" P —— m(r,A) — 0.
Ifn: Q; — k™ is a smooth character then let w(r, A, n) == 7w (r, L) ® n o det.

It follows from [1, Thm. 30] and [16, Thm. 1.1] that 7 (r, A) 1s absolutely irre-
ducible unless (7, A) = (0, 1) or (r, A) = (p — 1, =1). Moreover, one has non-split exact
sequences:

(66) 0— pgjodet—>m(p—1,%£1) = Sp®u4; odet = 0,

(67) 0— Sp®uy; odet = (0, £1) = 4y odet — 0,

where [y : Qf; — £, x> AW Further, if A # 0 and (7, A) # (0, £1) then [1, Thm. 30]
asserts that

(68) w(r,A) = Indg’ Uo-1 @ '

If 7 is an absolutely irreducible £-representation of G with a central character ¢
and ¢ (p) 1s a square in & then 7 is a quotient of 7w (r, A, n) for some A € kand 7 : Q; —

k*. The supersingular representations are isomorphic (over k[ /¢ (p)]) to 7 (r, 0, n). All
the isomorphism between supersingular representations corresponding to different » and
n are given by

(69) (0, Ex,0,nu_)ZEx(p—1—1,0,170)ZEx(p—1—7,0,n0'1_))

see [16, Thm. 1.3]. We refer to the regular case if 1 = (r,0,n) with 0 <r <p— 1, and
Twahori case f m = (0,0, n) =nw(p—1,0,n).

5.4. Hecke algebra and extensions. — Let H := Endg (C-Ind%l ¢) and let Mody, be the
category of right H-modules. Let Z : Mod', (k) = Mody, be the functor:

Z(r) := 7" = Homg(c-Indy; ¢, 7).
Let 7 : Mody — Modg’, (k) be the functor:

T (M) :=M ® c-Indy; ¢.
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One has Homy (M, Z(r)) = Homg (7 (M), 7). Moreover, Vignéras in [67, Thm. 5.4]
shows that 7 induces a bijection between irreducible objects in Modg", (k) and Mody,. Let
Modg, (k)" be the full subcategory of Modg, (k) consisting of representations generated
by their I;-invariants. Ollivier has shown® in [51] that

(70) 7 : Mod', (k)" — Mody,, T : Mody, — Mod, (h)"

are quasi-inverse to each other and so Mody is equivalent to Modiﬁfc (k).

Remark 5.15. — We note that (C—Indg’hg‘ )R L= C-Ind%l (¢ ®; 1), and since it is
finitely generated we have H ®;/ = Endg (C-Ind%l ¢ ®; ). Moreover, Z() ®; [ = Z (1 ®;
[) by Lemma 5.1 and 7 (M) ®; [ =T (M ®; [). Hence, if we show that the functors in (70)
induce an equivalence of categories over some extension of £ then the same also holds
over k.

In particular, if T = (G . t!') and 7 is in Mods(’fg (k) then one has:
(71) Homg(t, ) gHomH(I(‘C),I(TL’))

and the natural map 7Z(t) — 7 is an isomorphism. We have shown in [56, §9] that (71)
gives an Ey-spectral sequence:

(72) Exth (Z(v), RZ(1)) = Ext(, (1, 7)

where Extg g(r, %) 1s the n-th right derived functor of Homg (7, *) on Modg} (k). The
5-term sequence associated to (72) gives us:

(73) 0 — Exty (Z(1), Z()) — Extg, (t,w) = Homy(Z (1), R'Z (1))
— Ext},(Z(1), (7)) — Ext;,  (t, 7).

Let Mod " (O) (resp. Mod{ " (%)) be the full subcategory of Mod', (O) (resp.
Modg’, (k) consisting of all locally admissible representations, see Section 2. As already
explained in Section 2, it follows from [30, Thm. 2.3.8] that a smooth representation
of G with a central character is locally admissible if and only if it is locally of finite
length, so that Modgim((’)) = Modlgf‘{ (O) and Modgim(k) = Modlgf} (k). The inclusion
L: Modléfi;m((’)) — Modg’, (k) has a right adjoint functor V = Vj,qm, which associates to
V the subset of all locally admissible elements. Taking locally admissible elements is a left

% In fact, both Vignéras and Ollivier work with the full Hecke algebra Endc (C—Indﬁ 1). Our Hecke algebra is the

quotient of the full Hecke algebra by the ideal generated by all the elements of the form T. — £ () ~!, where T. is the Hecke
operator corresponding to the (double) coset 21, see [54, §2], for all z € Z. In particular, if 77 is a smooth representation of
G, the action of the full Hecke algebra on "1 factors through the action of H if and only Z acts on 7!l by the character ¢,
or equivalently the subrepresentation of 7 generated by 7'l has a central character equal to ¢. The results of [51] imply
that (70) induces an equivalence of categories.
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exact functor, see [30, 2.2.19], which is the identity functor on locally admissible repre-
sentations. Let €(O) (resp. €(k)) be the full subcategory of Modyp,  +(O) anti-equivalent
to Modléim(O) (resp. Modlé‘im (k)) via the Pontryagin duality.

Proposition 5.16. — The functor ¢ : l\/[odlgj’d{m (k) — Modséfg (k) maps injectives to injectives.

Proof. — Let ] be an injective object in ModZ 9™

y (k) and let ¢(J) < J, be an injective
envelope of ((J) in Modg} (k). If «(J) # ], then (J,/t(J)" # 0 and thus there exists v €
(J1/t())" such that o := (K. v) is an irreducible representation of K. Let A := (G .v) C

Ji/t(J) then by pulling back we obtain B C J; and an exact sequence:
(74) 0—¢(J) > B—>A—0.

Since ((J) < J, is essential, the class of the sequence (74) is a non-zero element in
Exté’ éV(A, t(J)). We will show that Extgy g(A, t(J)) = 0 and thus obtain a contradiction
to t(J) #J.

Since J, has a central character ¢, Z acts on o by ¢. Let ¢ € C—Indgza be such
that Suppe = ZK and ¢(1) spans o''. By Frobenius reciprocity we obtain a map  :
c-Indg, 0 — A, which sends ¢ to v. Since v generates A as a G-representation, v is sur-
jective. It is shown in [34, Cor. 3.8] that the restriction functor Modlgim (k) —> Modi& k),
7 = 7|k sends injectives to injectives. Hence, '

(75) Ext, ; (c-Ind, 0, 1())) = Exty ; (o,e(D)=0

and so ¥ cannot be injective. Thus Kery is non-zero, and [I, Prop. 18] asserts that
(Ker y)! is of finite codimension in (C-Il’lngO')Il. In particular, the set { (T"¢) : n > 0},
where T is the Hecke operator defined in (62), is linearly dependent and so there exists a
non-zero polynomial P such that ¢ (P(T)¢) = 0. Hence, ¥ factors through

(76) c-Indy,0 — c-Indi,0/(P(T)) — A.

Since c-Ind$,0/(T — 1) is of finite length, for all A, by base changing to the splitting field
of P(T), we see that C-Il’lngO' /(P(T)) 1s of finite length and hence is admissible and thus
A is admissible.

We claim that there exists a finite length subrepresentation k of B such the B =« +
t(J). The claim implies that B is locally finite (or equivalently locally admissible). Since J is
Injective in 1\/Iodl(§"d{m (k), the claim 1mplies that (74) 1s split. To prove the claim, we proceed
as follows. Choose w € B, which maps to v in A. Let T be the KZ-subrepresentation of B
generated by v. Since Z acts by the central character and the action of K is smooth, 7 is
finite dimensional. By Frobenius reciprocity we obtain a map 6 : c-Ind§, t — B, such that

.. 0 . o __—
the composition c-Ind{, 7 — B — A is surjective. Let " be the kernel of the surjection
T — 0. Since compact induction is an exact functor we obtain an exact sequence

77 0 — c-Ind%, v/ — c-Ind$, T — c-Ind$, 0 — 0.
K7 KZ KZ
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Let Y be the subrepresentation of c-Ind, 7 fitting into the exact sequence
(78) 0 — c-Indg, 7" — T — P(T)(c-Indg,0) — 0,

where P(T) is the endomorphism of c-Ind{, o constructed in (76). It follows from (76) that
C—Indgzt /Y 1is of finite length, and the composition T % B Ajs zero. Hence, 6(Y) is
contained in ¢(J). It follows from (78) that Y is a finitely generated G-representation, and
since J is locally finite, we deduce that @(Y') is of finite length. Thus « := 6 (c-Ind§, ) is
of finite length, and the composition k < B — A is surjective, which implies the claim. [

If 7 is in Mod{$™ (k) then we denote by Extiy™" (T, %) (resp. Ext, (T, %)) the n-
th right derived functor of Homg(7, *) in Mod1adm (k) (resp. Modg', (k). It follows from
Corollary 2.3 or [31, 2.1.1] that l\/Iodlaldm (k) and Modladm((’)) have enough injectives.

Corollary 5.17. — Let T and v be in Modl(ijfl;m (k) then v induces an isomorphism
(79) Exty, (1(7), 1(m)) Z Extd ™" (v, ) = Extyyy (rV, 7)), ¥a>0.
Corollary 5.18. — The functor v Modladm (O) — Mod7', (O) maps injectives to injectives.

Progf. — Let J be an injective object in Modhdm(O) and ((J) = J; be an
injective envelope of ¢(J) in Mody I(O) Now J[w] is injective in Modladm(k) and
t(Jl@]) = Jilo] is an injective envelope of ((Jlm]) in Mod‘(rf,‘{(k) It follows from
Proposition 5.16 that Ji[@] = ((Jlew]) = ¢(J)[w]. Hence, we obtain an injection
i/t ] = «(J)/e(J). This implies that (J,/c(J))[@] is an object of Modlddm(O)

and so the extension

0> () > A— (Ji/t(]))[w]— 0

splits, where A C J,. Since ¢(J) < ], is essential, we get that (J,/¢(J))[@] = 0, which
implies that J; = ¢(]). 0J

Corollary 5.19. — Projective objects in €(QO) are O-torsion free. In particular, the hypothe-
sis (HO) of Section 3.1 1s satisfied.

Progf- — Let P be a projective object in €(O) then PY is an injective object in
Mo dhdm((’)) and also in Mod", (O) by Corollary 5.18 and it is enough to show that
PY is @ -divisible. We claim that any V in Mod(;’, (O) may be embedded into an object
which is @ -divisible. The claim gives the result, since injectivity of P¥ implies that the
embedding must split. Since direct summands of @ -divisible modules are @ -divisible,
we are done. We may embed j : V < W into a @ -divisible O-torsion module, since
the category of O-torsion modules has enough injectives and these are @ -divisible. The
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embedding V < C*(G, W), v [g > j(gv)] where the target is the space of uniformly
continuous functions with discrete topology on W solves the problem. U

Corollary 5.20. — Let M be an O-torsion_free object of €(O) then M s projective in €(O)
if and only if M Qo k s projective in E(k).

Proof. — Since every A in €(£) is killed by @ we have
HOIn@(k) (M ®O /f, A) = HOI’I]Q(O) (M, A)

Hence, if M is projective in €(O) then the functor Home (M ®p £, *) is exact and so
M ®p £ 1s projective in (k).

Let ¢ : P— M ®p k be a projective envelope of M ®¢ £ in €(0). Since M —
M ®o £ 1s essential and P is projective there exists a surjection ¥ : P — M such that the
diagram

v
P———M

o

Mok

commutes. Since M ® £ is projective it is its own projective envelope in €(k). Thus it
follows from Lemma 2.11 that ¢ induces an isomorphism P ®» £ =M ®p £. Since M is
O-torsion free we get (Ker ) ® o £ = 0. Nakayama’s lemma implies that Ker ¢y = 0 and
hence M = P is projective. O

Corollary 5.21. — Let Py — M be a projective resolution of M in €(k). Let M be an O-
torsion free object of €(Q) such that M Qo k= M. Then there exisis a projective resolution P, »M
of M in €(O) & ifting the resolution of M.

Proof: — Let ¢ : P — M be an epimorphism in €(k) with P projective and let P be
aAProjeCtive envelope of P in C(O) Lemma 2.11 says that P = P ®o k. Since M Ro k=
M/@M = M, the epimorphism M — M is essential by an application of Nakayama’s
lemma and since P is projective there exists @ : P — M such that the diagram

~ ¢ ~
P——=M

o

P——M

commutes. Since M is O-torsion free it is O-flat and hence (Ker (]3) ®o k= Ker ¢. More-
over, P is O-torsion free by Corollary 5.19, and hence Ker ¢ is O-torsion free. We may
then continue to lift the whole resolution. ([l
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Lemma 5.22. — Let 7t be a smooth k-representation of G with a central character ¢ . Forgetting
the H-action induces an isomorphism R'Z () = H(1,/Z,, ) for all i > 0.

Proof. — Let Regy, : ModSCT{ (k) — Modi‘f{ (k) be the restriction to I;. Since Res;, is
right adjoint to an exact functor C-Il’ld%] , Res;, maps injective objects to injective objects.
Since ¢ 1s smooth and I, is pro-p, ¢ is trivial on Z, :=1, N Z, hence we may identify
Modirff; (k) with NIOdiIl“/Zl (k). Choose an injective resolution m < J* of 7 in Modiﬁfc (k).
Then 7 i, = (JI1,)® is an injective resolution of 7y, in Mody), (£). Hence, for all 7> 0
we get an isomorphism of k-vector spaces RZ(w) = H'(1,/Z,, ). O

The results proved in the rest of the subsection will only be used in Section 10.
Lemma 5.23. — Ifp>5 thn R'Z =0 fori > 4.

Proof. — We have an isomorphism
L/ZiZ2(LNU)x NT/Z x LLNU)ZZ,xZ, X Z,.

Hence, I,/Z, is a compact p-adic analytic group of dimension 3. Since we assume p > 5
it is p-saturable {45, II1.3.2.7.5], and hence torsion free. Thus I, /Z, is a Poincaré group
of dimension 3, [45, V.2.5.8] and [62]. Hence H'(I,/Z,, *) = 0 for all > 3 and the
assertion follows from Lemma 5.22. O

Lemma 5.24. — Let T be a smooth wrreducible representation of G with a ceniral character ¢,
such that T Z 7 (r,0,n) with0 < r < p— 1. Then Ext} (Z(7), %) =0 for 1 > 2.

Proof: — Using Lemma 5.32 we may reduce to the case where 7 is absolutely
irreducible, which we now assume. It is enough to produce an exact sequence of H-
modules:

(80) 0P —-P—>ZT(r)dM—0

with Py and P, projective and M arbitrary. We observe that if A is a direct summand of
C—Indﬁz§ , then Z(A) is a direct summand of Z (c—Indﬁ’Zf ) = 'H and hence Z(A) is pro-
jective. If t = (r, A, ), with A #% 0 and 0 < 7 < p — 1, then such sequence is constructed
in [20, Cor. 6.6, Eq. (12)]. If t =7 (r, A, n) with r =0 or r = p — 1 then one may obtain
(80) by applying Z to (65). The sequence remains exact by [1, 2.9, 2.8] in the non-, and
by [16, 3.2.4, 3.2.5] in the supersingular case. If T =71 o det or T = Sp ®n o det, then T
may be realized as an Hy of the diagram t!' < 7®! see [20, Thm. 10.1]. This means an
exact sequence:

(81) 0— c-Indit" ® § — c-Indg, ™ — 7 — 0,

where §(g) = (—1)"@® where & is the G-normalizer of 1. Again applying Z we
get (80). U
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Corollary 5.25. — Let M be a finite dimensional H-module, such that the irreducible subquo-
tients are isomorphic to L(T), where T is as above, then Exty (M, %) =0, for ¢ > 2.

Proposition 3.26. — Let 7t and T be in Modg’, (k). Suppose that T is admissible, generated
by T, and the irreducible subquotients of T (T) are not isomorphic to M(r, 0, 1) withO <r < p— 1.
Then for 1 > 1 there exists an exact sequence:

(82) Exty, (Z(2),R™'Z(w)) — Exig, (1, ) = Homy (Z(7), RZ(7)).
Ifp =5 then Extg, (v, w) = Exty (Z(7), R*Z(1r)) and Exté}’{(t, m)=0fori>5.
Progf: — This follows from a calculation with the spectral sequence (72). Let B =

Ext),(Z(7), R?Z(rr)). Then E5’ =0 for p > 1, by Corollary 5.25. Thus E5, = EJ’ and for
all > 0 we obtain an exact sequence

(83) 0—Ey' — E'— Ey"' = 0.
If p > 5 then E) =0 for ¢ > 3 by Lemma 5.23, which implies the assertion. 0J

Lemma 5.277. — Let M, N be absolutely irreducible H-modules and let d be the dimension of
Exty, (M, N). If p > 2 and d # O then one of the following holds:

() MEN=Z(x(r,0,n) withO<r<p—1andd =2;
i) MENad MZZSpRn), MZEZ(), MEZ(w(r,0,n) with0 <r<p—1

and d = 1;
(iti) either M =1 (n) and N =Z(Sp®n)) or (N =1 (n) and M =L (Sp®n)) and
d=1,

where n . G — £ is a smooth character.

Proof. —IfN=Z(Sp®n) or N=1(n) the assertion follows from [56, 11.3]. Oth-
erwise, N = Z( (r, A, n)) and the assertion follows from Corollaries 6.5, 6.6 and 6.7 [20].
We note that when the module denoted by M in [20, Cor. 6.7] is irreducible, which is the
case of interest here, it is isomorphic to the module denoted by M’ in [20, Cor. 6.7], as
they are both isomorphic to Z (Indg Wi @ y-1). ]

Remark 5.28. — Let T, be the Hecke operator in the full Hecke algebra

Endg (C-Indﬁ 1) corresponding to the (double) coset (f; ;)Il, andlet A =¢ ((’g 2)) In [20]
we work with the algebra H,_,, which is the quotient of the full Hecke algebra by the
ideal generated by T, — 27!, Let ¢, :=|ZNK/ZNK, |1 ZzEZﬁK/ZﬁKI £ (2)T., where T,
is the Hecke operator corresponding to the (double) coset zI;, see [54, §2]. Then ¢, is a
central idempotent in H,—, and H = ¢, H,—;¢,. Since ¢, is a central idempotent we may
calculate the Ext-groups of H-modules in the category of H,—,-modules, which allows us

to use the results of [20].
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3.5. Blocks. — We show that the category Modlgz (O) naturally decomposes into
a direct product of subcategories.

Lemma 5.29. — Let J be an injective object of Modg" (k), where G is a profinite group. Let |
be a field extension of k then ] &y [ is an injective object of Modg" (1).

Progf- — Let V be a k-vector space and let C(G, V) be the space of continuous
functions f : G — V. For every smooth k-representation 7 of G the map ¢ — [v >
¢ (v)(1)] induces an isomorphism

Homg(ﬂ, C(, V)) = Hom,. (7, V).

The inverse is given by £ = [v = [g+> £(gv)]]. The functor Hom,(*, V) is exact and
so C(G,V) is an injective object of Modg" (k). The natural injection CG, V) ®; [ —
C(G, V ®; D) is also a surjection, since for every open subgroup P of G we have

(CG, V)& 1) = (HG/P1@: V) @ [ = [[G/P] &, VI = C(G, V)7,

as P is of finite index in G. This gives us the lemma for ] = C(G, V). In general, one
can embed ] into C(G, V) by taking V to be the underlying vector space of J. Since ] is
injective the embedding splits. Thus J ®; / 1s a direct summand of an injective object of
Modg" (/) and hence it is itself injective. ]

Corollary 5.30. — Let G, 7w and [ be as above then H'(G, ) @, | = H(G, w ®, ) for all
1> 0.

Progf. — Choose an injective resolution 7 <> J* of 7 in Modg"(£). Lemma 5.29
says that 77, < J7 is an injective resolution of 7r; in Modg"(/). Since taking G-invariants
commutes with @,/ by Lemma 5.1 we get the assertion. U

Corollary 5.31. — Let 7 be a smooth representation of G with a central character & then
(84) RZ(m)®; [=RI(m ;1)
Jor all field extensions | of k and all 1 > 0.
Proof. — Lemma 5.22, Corollary 5.30. UJ
Lemma 5.32. — Let M and N be H-modules. If M s finitely generated over H then
(85) Ext}y, (M, N) ®; [ = Exty, M ®; [, N ®; )

Jor all field extensions [ of k and all 1 > 0.
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Proof. — It follows from the explicit description of H given by Vignéras in [67] that
the centre of H is noetherian and H is a finitely generated module over its centre, see
[67,81.2, 2.1.1, Cor. 2.3]. Hence H is noetherian and since M 1is finitely generated we
may find a resolution P* — M by free H-modules of finite rank. Since Homy, (H®", N), =
NP = Homyy, (H7", N)) we get the assertion. O

Proposition 5.33. — Let T and 7w be in Mod(, (k) and suppose that T is of finite length.
Then

(86) Exty (1. 7) @ [ Z Extyg, (T @ L, Q)
Jor all field extensions | of k and all 1 > 0.

Progf.— We will first prove the result when 7 is irreducible. Then t'! is finite dimen-
sional and 7 1s generated by as a G-representation by the I;-invariants. By Lemma 5.1,
H ®; { = Endyg (C-Ind%l ¢ ®; 0). Since t! is finite dimensional, it is a finitely generated
‘H-module. Combining (84) and (85) we get an isomorphism of spectral sequences:

Exty(Z(0), RT (1)) @, | = Exty, (Z(r), RT ().

Since £ s a field, / is k-flat and so it follows from (72) that Ext;1 (Z(z), RZ()), converges
to Extyfz,; (T, 7),. We use (72) again to deduce the assertion.

We will finish the proof by induction on the length of 7. We have already proved
the result when 7 is irreducible and (86) is an isomorphism for : = 0 by Lemma 5.1. If T
1s not irreducible, then we may consider a short exact sequence 0 — 7, = 7 — 79 — 0,
with both 7, and 7y of length strictly less than the length of 7. The induction step is given
by comparing the two long exact sequences induced by the short exact sequence and the
5-Lemma. UJ

Let Irrg . (k) be the set of equivalence classes of smooth irreducible 4-representa-
tions of G with central character . We write w <> 7 if 71 = T or Exté’ ((,7) #0 or
ExtIG’{(r, ) # 0. We write  ~ t if there exists 7y, ..., 7, € Irrg ( (£), such that w = ),
T =m, and 7; <> 74 for 1 <7 <n— 1. The relation ~ is an equivalence relation on
Irrg . (k). A block is an equivalence class of ~.

Proposition 5.34. — The category Modg'f} (O) decomposes into a direct product of subcate-

gories
(87 Mod" (0) = ]‘[ Mod (0)®
B

where the product us taken over all the blocks B and the objects of Modléi’r‘{ (O)® are representations

with all the irreducible subquotients lying in B. The equivalence in (87) is induced by sending (7™ )gs,
where each ™ 1s an object of Modlé’z (O)®, to the direct sum P ™.
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Proof. — This is standard, see [35, §IV.2], especially the Corollary after Theo-
rem 2. Let us note that every irreducible object in Modlgz (O) is killed by @ and so
Irrg (k) = Irrg (O). Moreover, if T and 7 are irreducible then Extég[G]’ [(T.m)#0
implies that either w = 7 or EXt/lf[G])g(‘E,JT) # 0, see the proof of Lemma 3.16. So
we could have defined ~ by considering the extensions in Moleﬁfz (0). Let J, and J,
be injective envelopes of 7 and 7 in Moler‘z (O). Then the following are equivalent:
(1) Homg(Jr,J:) # 0; (2) T is a subquotient of J,; (3) there exists a representation x
of finite length which contains t as a subquotient and socg k = 7. Using this one can
show that our definition of a subcategory cut out by a block coincides with the one used

in [35]. O
Dually we obtain:

Corollary 5.35. — The category €(QO) decomposes into a direct product of subcategories
(88) cO)=]]eo®,
B

where the product is taken over all the blocks B and the objects of €(O)® are those M in €(O) such
that for every vrreducible subquotient S of M, SV les in B. The equivalence in (88) is induced by
sending (M™® ) g3, where each M™® s an object of €(O)®, to the direct product [1s M?Z.

Let Banadm(L) be the category of admissible unitary L-Banach space representa-
tions of G with a central character {. We note that it follows from [61] and [33, 6.2.16]
that Ban?ﬂ?(L) 1s an abelian category.

Proposition 5.36. — The category Banadm (L) decomposes into a direct sum of categories:

Banf"(L) = QD Bani™(L)®,

where the objects of Ban“‘dm(L)% are those T1 in Ban‘dm(L) such that for every open bounded G-
wmvaniant lattice ® n I1 t/ze urreductble subquotients of © ®o k lie in*B.

Progf: — Recall that we have showed in Lemma 4.3 that the reductions mod p of
any two open bounded G-invariant lattices in IT have the same irreducible subquotients.
Let ® be an open bounded G-invariant lattice in Il, 7w an irreducible subquotient of
® ®0o k and B the block of 7. By Lemma 4.11 the Schikhof dual ®“ is an object of €(O).
Let €(O)® be the full subcategory of €(0) as in Corollary 5.35 and let €(O)g be the full
subcategory of €(Q), such that M is an object if and only if for all irreducible subquotients
S of M, the Pontryagin dual S does not lie in B. It follows from Corollary 5.35 that we
may canonically decompose ©7 = (0%) g B (@))%, where (0% is an object of €(0)y
and (%) is an object of €(0)®.
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Let [Ty := Hom%’”((@’l)%, L) and 1% := Hom%’”((@”i)%, L) with the supremum
norm. Then it follows from the anti-equivalence of categories established in [61] that
[T = Iy @ IT®. Further, since the decomposition in Corollary 5.35 is a decomposition of
categories we have no non-zero morphisms in €(0) between (0% g and (©9)®. Dually
this implies that there are no non-zero morphisms between Iy and IT% in Ban%i';(L).
Using (O ®0 k)Y = O’ Qo £, see [57, Lem. 5.4], we deduce that IT® is a non-zero object
of Banécf';l(L)‘”B and none of the irreducible representations in ‘B appear as subquotients
of the reduction modulo p of any open bounded lattice in ITg. Inductively we obtain a
sequence of closed G-invariant subspaces IT; of I such that IT; = TT1%/ @ I1;,, for some
block B; with TT®i % 0 if IT; % 0. Since IT is admissible such sequence must become
stationary, see [57, Lem. 5.8]. Hence, there exist finitely many blocks By, ..., ‘B, such
that 1% # 0 and so 1 = P, 1%, O

Corollary 5.37. — Let T1 be an irreducible admissible L-Banach space representation of G
with a central character and let ® be an open bounded G-invariant lattice in T1. Then ® Qo k contains
an trreductble subquotient 7w and all other vrreducible subquotients lie in the block of 7 .

Proposition 3.38. — Let | be a field extension of k. Let 7w in Modg', (k) be absolutely irre-
ducible and let T in Mod(", (1) be irreducible. If T @y, [ <> T then there exisis an absolutely irreducible
o m Modiﬁf; (k) such that T = o Q. [. Moreover, o is unique up lo isomorphism.

Progf: — It follows from Lemma 5.1 that if such o exists then it is unique. It follows
from the proof of Proposition 5.3 that T ®;, = @?:1 7;, where each 7; is of finite length
and T = k™™ with «; absolutely irreducible. (Note that we do not require / to be a
perfect field, and hence T ®; / need not be semisimple.) Thus using Proposition 5.33 we
may reduce the problem to the case when / is algebraically closed. In this case in [56] we
have determined all possible 7 such that T <> ;. It follows from the explicit description
(recalled in Proposition 5.42 below) and Lemma 5.10 that every such 7 can be defined

over the field of definition of 7. O

Corollary 5.39. — Let w € Irrg . (k) be absolutely irreducible and let w —> ] be an injective
envelope of T in Moleﬁ)’z (k). Thent @l — J @ [ is an injective envelope of w Q. L in Modl(?’“g ).

Proof. — Let ¢ : ], < J' be an injective envelope of J; in Modlélfz (/). We claim that
the quotient is zero. Otherwise, there exists T € Irrg (/) such that Homg(7,]'/];) # 0.
Since ¢ 1s essential we have Homg (7, J;) = Homg(7,]’) and so Exté})g (t,]J)) # 0. Since we
are working in the category of locally finite representations, every representation is equal
to the union of its subrepresentations of finite length. Since 7 is irreducible, and hence
finitely generated as a G-representation, we deduce that Exté’ ¢ (r,]) = li_r)n Exté’ ¢ (7, K)),

where the limit is taken over all the finite length subrepresentations « of J. This implies
the existence of a subobject k of J of finite length, such that Exth’ (T, k) # 0. Further
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passing to short exact sequences we may assume that « is irreducible and lies in the block
of 7. Proposition 5.38 implies that « is absolutely irreducible, and applying it again we
deduce that there exists o € Irrg (k) such that T = o ®; [. As J is injective in Modg'g (k)
we have ExtIG,{ (0,]) =0 and so Proposition 5.33 implies that Exté’z(r,‘]z) =0.Thisis a
contradiction and so J; =]’ is injective.

Since all the irreducible subquotients o of J are absolutely irreducible, all the irre-
ducible subquotients of J; can be defined over £. Since Homg (0, J;) = Homg (0, ]); by
Lemma 5.1, we deduce that 7, < ], is essential. ]

Let I be a finite extension of L. with the ring of integers O and residue field £'.
Let 7 be an absolutely irreducible -representation of G with a central character { and
let P be a projective envelope of S := " in €(O).

Corollary 5.40. — P ®o O is a projective envelope of S ®; k' in €(O"). Moreover,
Endg((’)/) (P ®(9 O/) = El’ldQ‘((g) (P) ®(9 O/.

Progf: — It is enough to show that P®o K is a projective envelope of S ®; £’ in
(), see Corollary 5.20, as P is O-torsion free by Corollary 5.19. Now,
Pok =] @k = (J. @ k),
where J, is an injective envelope of 7 in Modlgg (k) and the last isomorphism follows
from Lemma 5.1. Since J, ®; £’ is an injective envelope of m ®, £ in Modgl’“{ (K) by
Corollary 5.39 we get the first assertion. The second assertion follows since O is free of
finite rank over O. O

Corollary 5.41. — Let S be as above and suppose there exists Q in €(k) satisfying the hy-
potheses (H1)~(HD) of Section 3. Then Q @, k' and S @y, k' satisfy the hypotheses (H1)~(HS) in
C(K).

Progf: — Propositions 5.38, 5.33. UJ

Proposition 3.42. — Let w € Irrg ¢ (k) be absolutely irreductble and let °B be the equivalence
class of w n Irrg (k) under ~. If p > 5 then one of the following holds:

(1) of 7w is supersingular then B = {};
(i) of 7w = Ind§ x; ® o™ with x1 x5 " # 1, w*! then

B = {Indgxl ® xow ™', Indy xo ® 10~ };

(iii) 7 =Indy x ® ™! then B = {r};
(iv) otherwise, B = {n, Sp®n, (Ind$ o) ® n};

where n : G — k> is a smooth character.
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Proof. — 1If k is algebraically closed this is the main result of [56]. It follows from
Lemma 5.10, Propositions 5.38 and 5.33 that the same statement is true over £. U

Remark 5.43. — In fact, [56] also computes the blocks for p = 3, the only difference
is that the block in case (iv) contains 4 distinct irreducible representations, because Ind$ o
1s reducible if p = 3, and its semi-simplification is isomorphic to @ o det® Sp @w o det.
In [58] we have found a new method to compute the blocks, which also works for p = 2.
If p = 2 then the cases (iii) and (iv) collapse to one: a block with two irreducible represen-
tations ‘B = {n, Sp ®n}.

Corollary 5.44. — Let T1 be an absolutely wrreducible admissible unitary L-Banach space
representation of G with a central character ¢, let ® be an open bounded G-invariant lattice in I1 and
let T be an wrreducible subquotient of ® @ k. Then either v 15 absolutely trreducible or there exists a
smooth character x : Q7 — k< such that 1 := k[ x (p)] is a quadratic extension of k and

TRE Indg’x ® x°w! @Indg’x" ® xw ',

where x° 1s a conjugate of x by the non-trivial element in Gal({/k).

Proof. — We observe that for every finite extension / of £ the irreducible subquo-
tients of 7r; are contained in the same block. Since otherwise Proposition 5.36 implies that
Iy, is not irreducible, where L is a finite extension of L with residue field /. The assertion
follows from the description of irreducible £-representations of G in Proposition 5.11 and
Proposition 5.42. 0J

It follows from Propositions 5.42, 5.11 and 5.33 that a block B contains only
finitely many isomorphism classes of irreducible £-representations of G. Fix a representa-
tive 77; for each isomorphism class in B and let Py be a projective envelope of (D, 7;)"
then Eg := Ende o) (Pg) 1s a compact ring, see Section 2.

_ Proposition 5.45. — The category Modlc?g (O)® is anti-equivalent lo the category of compact
right Eieg -modules. The centre of Modl({fz (O)® is isomorphic to the centre of Egs.

Progf: — See [35, §IV.4 Thm. 4, Cor. 1, Cor. 5]. U

3.6. Representations of the torus. — Let T be the subgroup of diagonal matrices in G,
T() :=TﬂI, T] =TﬂIl

Proposition 5.46. — Every smooth irreducible k-representation of T is finite dimensional and
hence admussible. The absolutely irreducible representations are 1-dimensional.

Progf- — Let T be an irreducible smooth £-representation of T'. Since T is a pro-
p group we have ' # 0, and since T, is normal in T and 7 is irreducible we obtain



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 77

! = 7. Since Ty/T) is a finite group of prime to p order and with all its absolutely
irreducible representations defined over F,, we may find a smooth character x : Ty — £*,
such that x is a direct summand of 7|r,. Since T is commutative and 7 is irreducible we
deduce that 7|y, is isomorphic to a direct sum of x’s, in particular any £-subspace of t
is Ty-invariant. Choose ¢, &, € T such that their images generate T /T, as a group. Let
R = k[tlil, t;c 1 C K[T] then any R-invariant subspace of 7 is Ty-invariant and hence T-
invariant. Thus 7 is an irreducible R-module and hence is isomorphic to R/m, where m
is a maximal ideal of R. Since R is just the ring of Laurent polynomials in 2 variables,
R/m is a finite extension of £. Thus, T is finite dimensional and R/m is an absolutely
irreducible R-module if and only if R/m = £. 0J

Corollary 5.47. — Let T|, Ty be smooth irreducible k-representations of T. If Ind$ 7, and
Indg’ Ty have an trreducible subquotient in common then T, = 5.

Proof. — If 7, and 79 are absolutely irreducible then they are characters and the
assertion follows from [1, §7]. In general, since 7, and 1y are finite dimensional, we may
find a finite extension [ of £ such that

nenl= P o, L l= P x5,

oeGal(l/k) oeGal(l/k)

where x; and xy are smooth characters T — /*. From the absolutely irreducible case, we
deduce that x; is Galois conjugate to x, and thus 7} ®; [ = 79 ®; [. Lemma 5.1 implies
T = T9. [

Lemma 5.48. — Let W - 'T — kX be a smooth character such that |, = ¢ and let O —
Y — € = ¥ — 0 be a non-split extension in Modfﬁq; (k). If p > 2 then dim ExtlT’ (Y e)=2.

Proof. — After twisting we may assume that ¢ = ¢ = 1. As we have seen in Propo-
sition 3.34 the hypotheses (HO)-(H5) are satisfied for T/Z = Q} and S =Q =1". More-
over, the endomorphism ring E of the projective envelope of 1V is isomorphic to O[[x, y]]
and E=F ®o k = kl[x, y]] with the maximal ideal m = (x, »). The non-split extension
€, defines a 1-dimensional subspace W of m/m?, see Section 3.3. Without loss of gen-
erality we may assume that the image of x is a basis of W. Then the image of {x, »*} in
(W +m?)/(Wm + m?®) is a basis and the assertion follows from Lemma 3.37. [

5.7. Colmez’s Montreal functor. — Let Modfgfz((/)) be the full subcategory of
Mod' (O) consisting of representations of finite length with a central character. Let
Modg;ﬁ(O) be the category of continuous Gg ,-representations on (O-modules of fi-
nite length with the discrete topology, where Gg, is the absolute Galois group of Q.
Colmez in [23] has defined an exact covariant functor V : Modf(’;Z(O) — Modg'; , (O).
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If ¥ : Q'; — (O is a continuous character, then we may also consider it as a contin-
uous character ¥ : Gg, — O via (60) and for all 7 in Mod¢',(O) we have V(r ®
¥ o det) = V() ® ¥. Moreover, V(1) = 0, V(Sp) = o, V(Ind§ (1 ® xow™)) = xo,

~ - 199, . . .
V(@ (r,0)) = 1ndgzl a);H, where w is the reduction of the cyclotomic character modulo
/2

p

b, wo Q%Q — £ 1s a character of the absolute Galois group of an unramified quadratic

extension of Q ,, which via local class field theory corresponds to the character Q5 — £,
x = x|x| mod @, see [23, §VIL.4]. In particular, the representation V(i (r, 0)) is abso-
lutely irreducible.

Let ¢ : Z — O be a continuous character and let €(QO) be the category dual
to Modlgf‘g (0). Let Rengﬁ (O) be the category of continuous Gg ,-representations on

compact O-modules. We define a functor V: cO) — Reng/ (O) as follows. Let M

be in €(0), if it is of finite length then \V/'(M) = V(MY)Y(e¢), where V denotes the
Pontryagin dual, ¢ the cyclotomic character and we consider ¢ as a character of Gg,
via the class field theory. In general, we may write M = lim M, where the limit is taken

over all quotients in €(O) of finite length, we define V(M) = lim\v"(Mi). Since we have
dualized twice, the functor V is covariant. Moreover, it preserves exactness of short exact
sequences of objects of finite length. Since all the maps M; — M; in the projective system

are surjective with M; and M; of finite length, we deduce that the maps V(Mi) — V(MJ-)

are surjective. The exactness of projective limits in Reng (O) implies that the functor V
b

is exact. Let us note that with our normalization of V we have:
V@)=V,  V((Ind§x @ o) )=x,  V(Sp®noden¥)=n,

where 7 is a supersingular representation.

Let IT be an admissible unitary L.-Banach space representation of G with central
character ¢, and let ® be an open bounded G-invariant lattice in I1. Then ® /@"® is
admissible-smooth representation of G for all » > 1, and hence locally finite. It follows
from Section 4 that @ is an object of €(O). Since O is O-torsion free and V is covariant
and exact, V(@d) is O-torsion free. We let \V’(H) = V(@d) ®o L. Since different open
lattices in IT are commensurable, V(I‘I) does not depend on the choice of ®.

Lemma 3.49. — Let IT and © be as above. If © /@ © is of finite length as a G-representation,
then let V(O) :=1im V(O /@"®), and V(I1) := V(O) ®p L. Then V(IT) = V(I1)*(£¢),
where * denotes L-linear dual. Ijv (IT) is 2-dimensional and det\v/(l_l) = €¢, then \v/'(l'I) = V().

Progf. — Since V sends irreducible representations of G to finite dimensional
Galois representations, and ®/@w® 1is of finite length by assumption, we deduce
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that V(® /@ ®) is a finite dimensional £-vector space. It follows from [41, 2.2.2]
that V(O /w"®) is a flat O/(w")-module for all » > 1 and hence V(®) is a free
O-module of finite rank, such that V(®)/@"V(®) = V(@/w"@) for all n» > 1.
For every n > 1 we have @//w"®! = (0 /w"®)", and hence V(@d)/w”V(®d) =
(V(@)/w”V(@)) (e0) = Homo(V(®) O/(@"))(€¢), for all n > 1, which implies that
V(@d) = Homp(V(®), O)(g¢), and V(H) =V(II)*(e¢). The last assertion follows from
the fact that (71 o) conjugates A = (‘_ d) to (det A)A"™!, where ¢ denotes the transpose. [

We are going to adapt an argument of Kisin [41, §2], which uses Colmez’s functor
to relate the deformation theory on the GLy(Q ,)-side to the deformation theory on the
Galois side.

Lemma 5.50. — Let M be in €(O), let A be a noetherian O-subalgebra of Endg (o), (M)
and let v be a finitely generated A-module, then there exists a natural isomorphism V(m @, M) =
m®s V(M).

Progf: — This 1s identical to [41, 2.2.2], via [39, 1.2.7]. We recall the argument for
the sake of completeness. Since A C Endgo)(M) and V is a covariant functor, V(M) 1s
naturally an A-module. Since V is exact and additive, we have an isomorphism V(A” Ra
M) = V(M®) = V(M)®" = A" ®, V(M). The isomorphism, exactness of V and the
snake lemma imply that for any finitely presented A-module m we have an isomorphism
m ®x V(M) = \vf(m ®a M). We leave it as an exercise to the reader to check that the
isomorphism does not depend on the presentation of m and is functorial. Since A is
noetherian any finitely generated A-module m is also finitely presented. O

Lemma 5.51. — Let Q) be an object of finite length in €(k). Let A — A’ be a morphism in
A, let Qn be a deformation of Q to A in the sense of Definition 3.21. Then V(Qu) s a flat A-module

and
A'®,V(Qu) = V(A ®, Q).
In particular, k @ V(Q) = V(Q) and V(Qy) is a finite fiee A-module of rank dim,, V(Q).

Progf: — By definition of a deformation, Q)4 is A-flat. Hence the functor m —
m ®x QA is exact. Since V is exact, using Lemma 5.50 we deduce that the functor m —
m ®a V(QA) 1s exact, so that V(QA) is A-flat. The A-linear map QA — A" ®,0Qp, v
1 ® v induces an A-linear map V(QA) — V(A ®a Qx). Since V is a functor, A’ acts
on V(A' @, QQ and by the universality of the tensor product we obtain an A’-linear
map A’ @4 V(QA) — V(A @4 Qx). This map is an isomorphism, since it follows from
Lemma 5.50 that it is an isomorphism of A-modules. Since Q) is of finite length and
irreducible subquotients are mapped to finite dimensional k-vector spaces we deduce
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that V(Q) is finite dimensional, as £ @ V(QA) = \V’(/f ®aQp) = \v’(@, by Lemma 5.50,

we deduce the last assertion from Nakayama’s lemma for A. 0J

Corollary 5.52. — Let Q) be an object of finite length n (k). The functor V induces
natural transformations between the deformation functors Defq — Defyq,), Def” — Def?

¥ v’
Qa = V(Qy).

Lemma 5.33. — Let P — S be a projective envelope of an absolutely irreducible object S in
C(O) and let E= El’ld@(())(P) For every compact right E-module m there exists a natural isomor-

plasm V(m ®E P) m ®E V(P)

Progf- — Let {m;};c1 be a basis of open neighbourhoods of 0 in m, consisting of right
E- modules, and let a; be the E-annihilator of m/m,. Since m;, is open in m, the quotient is
an E-module of finite length and the quotlent topology on m/m; is discrete. In partlcular
a; is open. Moreover, since E is a local ring with residue field £, we deduce that E/g, is
a finite O-module, which implies that it is noetherian. Let P; be the closure of a;P in
P, so that P/P; = £/, & P. Then V(m/m;&; P) = V(m/m; @5, B/P) = m/m; @5
V(P/ P ) =m/m; i V(P) where the second 1sorn0rphlsm is given by Lemma 5.50. Since
V and ® commute with projective limits and m = hm m/m;, by passing to the limit we

obtain V(m ®F P) m ®F V(P) O

Corollary 5.54. — Let_ P—Sbea projective envelope of an absolutely vrreducible object S in
€(0) and let E. = End¢ o) (P) Let T1 be an wrreducible admissible unitary Li-Banach space repre-
sentation of G with a central character ¢ and the reduction T1 of finite length. Suppose that S is a
subquotient of I and let & be an open bounded G-invariant lattice in 11 such that the natural map
Homg o) (P, 2% Ok P— 2%is surjective, see Proposition 4.18(ur). Then we have a surjection

Home o) (P, &) &5 V(P) = V(Home o) (P, E) &3 P) — V().

Proof. — We note that since IT is of finite length, Home o) (ﬁ, E7) is a finitely gen-
erated O-module by Lemma 4.15. The isomorphism follows from Lemma 5.53, the sur-
jection from the exactness of V. 0J

Corollary 5.55. — Let P—>S be a projective envelope of an absolutely wrreducible object S in
C(O), let E= End¢ (o) (ﬁ) and let T'o\r%(*, ’ﬁ) be the i-th derived functor of @*F‘ P in the category of
compact right B-modules. If SLy(Q.,) acts trivially on Tory(k, P) then the finctor m — m &g V(P)
is exact. Moreover, if k ®j P is of fimite length then V@) is a Jree E-module of rank equal to
dim; V(¥ ®z P).

Proof. — Since every compact E-module can be written as a projective limit of E-
modules of finite length, and ® commutes with projective limits, which are exact in the
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category of continuous Gg -representations on compact O-modules, it is enough to show

that the functor m - m ®x V(P maps short exact sequences of continuous E-modules
of finite length to short exact sequences.

If m is a continuous E-module of finite length then by devissage we deduce
that SLy(Q,) acts trivially on f&%(m, fﬁ). Since V kills every irreducible on which
SLy(Q,) acts trivially, we obtain V(Torg(m, P)) = 0 for all finite length modules m. Us-

ing Lemma 5.50 we deduce that the functor m — m ®s V(P maps short exact sequence
of continuous E-modules of finite length to short exact sequences.

If k@gfﬁ 1s of finite length then \v7(/~c @E ’ﬁ) is a finite dimensional k-vector space.
Since £ ®E \v7(f’) = ‘v’(/f @E ﬁ) by Lemma 5.50, we deduce from Nakayama’s lemma that
V(ﬁ) is a free E-module of rank equal to dimy, ‘v’(k ®E ’ﬁ). [

Let P—Sbea projective envelope of an absolutely irreducible object S in €(0),
let E = End¢ (o) (fﬁ). From now on we assume the existence of Q in €(k) of finite length,
satisfying the hypothesis (H1)—(H5) in €(k). Since (HO) holds in €(QO) by Corollary 5.19,
the hypotheses (H1)—-(H5) hold in €(QO) by Proposition 3.17, and so P is a flat E-module
by Corollary 3.12.

Since Q is of finite length, \V/'(@ is a continuous representation of Gg, on a finite
dimensional £-vector space. Let Def:v/b (g) be a subfunctor of Def‘ivf @ parameterising de-

formations with determinant equal to ¥ := €, where ¢ is the cyclotomic character. If

Def:vf(Q) is pro-representable then so is Defg’ég), see [48, §24], and we denote the corre-

sponding ring by RY, and the universal deformation of {7(@ with determinant equal
to ¥ by p"V. Let m be a maximal ideal of R¥[1/p], then the residue field k(m) is a
finite totally ramified extension of L, and the image of R¥ in k (m) is equal to the ring of
integers O, (m). Let a be the intersection of those maximal ideals m of R¥[1/p] for which
k(M) gy "V is an absolutely irreducible k(m)[Gg ,]-module and let R’ be the image
of R in RY[1/p]/a.

Proposition 5.56. — Assume that S" is not a character, so that V(S) # 0. Suppose that the
Jollowing hold:

(i) Endg,,(V(Q) =k;

(11) 'V induces an injection,
Ext (', Q") = Extgg, , (V(Q): V(Q)):

(iii) for every irreducible representation p of G , defined over some finite totally ramified extension

L' of L and satisfying detp = ¥ and p = \VI(Q)” there exists an open bounded G-
movariant lattice E in a unitary admissible L'-Banach space representation T1 of G such
that the following hold:
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(@) & us the central character of T1;
(b) IT contains S with multiplicity 1;
(©) pEV(E) ®o L.

Then there exists a natural surjection E® » R’

Proof. — We note that in this Proposition we allow only commutative coefficients for
our deformations. In particular, all the rings representing different functors are commu-

tative. Corollary 5.52 gives a natural transformation of functors Def” — Def‘“f @ Since

both functors are pro-representable we obtain a map ¢ : R — E, where R is the ring
pro-representing Def" . Now (ii) is equivalent to the assertion that V induces an injec-

tion
Deffs (kel) = Exty, (Q, Q) < Ext,i[ggp](\vf(g), V(Q) = Defy, o (HT€1),

which is equivalent to the assertion that ¢ induces a surjection
mg/(my + @R) — M,/ (W, + wE”).

Since both rings are complete we deduce that ¢ : R — E* is surjective.

Let m be a maximal ideal of R¥[1/p], such that «(m) Qv "™V is absolutely
irreducible. We claim that there exists a map of O-algebras x : E — O, such that
Kk(m) R V(ff’) is isomorphic to k(M) ®rv p™V as a k (m)-representation of Go ,- Since
\V7(Q) has only scalar endomorphisms by (i), there exists a unique Gg ,-invariant O, m)-
lattice in k(M) R ‘V’(ﬁ), which reduces to \VI(Q) modulo the maximal ideal of Oy ).
Hence, the claim implies that O, (m) ®% V(P) and Or(m) rv "V define the same defor-
mation of V(Q) with determinant ¥. Thus the natural map RY — «(m) factors through
x o ¢, which implies that the surjection R¥ —» R’ factors through ¢ : R¥ — E®.

We will deduce the claim from (iii) Let E and IT be as in (ii1) with L’ =k (m)
and p = k(M) rv ™Y, so that p = V(:d) ®o L. As V is exact, and B¢ is O-
torsion free, we deduce that V(2%) is O-torsion free and it follows from (111)( ) that
V(29 is an O, m-lattice in p. Part (iii)(b) implies that S occurs as a subquotient of
k ®0,m B with multiplicity one. It follows from Lemma 4.15 and Corollary 5.40 that
Homg(QL(P 29) is a free Orc(m)- module of rank 1. The action of E gives us an O-linear
map x : E — Endg,,, (Home o) (P, 2%)) = O, m)- Let C be cokernel of the natural map
O (m) OF P — 2. It follows from Lemma 2.9 that Homg o) (P,C) =0 thus S is not a
subquotient of C by Lemma 4.13. Since V(S) #0 by assumption, and v maps distinct
irreducibles to distinct irreducibles, we deduce that V(S) is not a subquotient of V(C)
Hence, the map V(Ok(m) ®E’x P) — V(ud) 1s non-zero. Lemma 5.53 and the irreducibil-
ity of p implies that the induced map « (m) ®x , ‘V’(IND) — p 1s surjective. The map is an
isomorphism as both k (m)-vector spaces have dimension equal to dimy V(Q) O
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5.8. The strategy in the generic case. — We are now In a position to explain how in
the generic case the proof of the main theorem reduces to a computation of dimensions
of some Ext groups in the category of smooth £-representations of G with a central char-
acter, when p > 5. By the generic case we mean that QY is an atome atomorphe in the sense
of Colmez, which is either irreducible supersingular, so that S = Q, or Q" is a non-split
extension of Ind§ x; ® xe@ ™' by Ind$ xo ® 10~ with x; x5 ' # ©*!, 1 and SV is a prin-
cipal series representation.

We know that the hypothesis (HO) is satisfied by Proposition 5.19 and to verify
(HI)~(H5) we only need to compute the dimensions of some Ext groups. Suppose that
we can do this and (H1)-(H5) hold. Now V(Q) is 2-dimensional and is either irreducible
or a non-split extension of two characters x, by x;. Since p > 5 and x; x5 £ ot 1

the universal deformation ring Def{, @ is representable by R = O[[xy, ..., x5]] and the

deformation ring with the determinant condition RY is isomorphic to O[[x, xy, x3]].
Moreover, one may show that the irreducible locus is dense, hence the ring R" introduced
before Proposition 5.56 is isomorphic to R¥. The condition (ii) in Proposition 5.56 in
this case 1s a result of Colmez [23, VIL.5.2], and the condition (iii) is a result of Kisin
[41, 2.3.8]. Hence, Proposition 5.56 gives us a surjection E% — RV = O[[X],Xg, x3]].

One may calculate that dim ExtG g(QV QY) = 3 and hence dimm/(m* + ZD'E) =3.1If
we can show that for every non-split extension 0 = Q* — 7 — Q" — 0 in Mod’, (k)
the dimension of Ext;, Z(Sv 7) is at most 3 then using Theorem 3.39 we may deduce
that EZRY. In particular, E is commutative and hence Corollary 4.44 says that every
absolutely irreducible admissible unitary L.-Banach space representation IT of G with the
central character ¢ and such that TT contains S satisfies TT C (QY)*.

6. Supersingular representations

In this section we carry out the strategy described in Section 5.8 in the supersin-
gular case. The main result is Theorem 6.4 and its Corollaries. In Section 6.1 we carry
out some Ext calculations, we suggest to skip them at first reading. We assume throughout
this section that p > 5. Let w = 7 (r, 0, n) be a supersingular representation with a central
character congruent to ¢.

Proposition 6.1. — The hypotheses (H1)~(H5) of Section 5.1 hold with Q = S = 7. More-
over, dim Extlg(k)(S, S) = dim Extévc(n, T)=3.

Proof. — Let T be an irreducible representation in Modg", (k) not isomorphic to
7, then Extg,{(t, ) =0, [56, 10.7]. Moreover, dimExté’g(n’, ) =3, [56, 10.13]. This
implies (H3) and (H4) via Corollary 5.17, the rest holds trivially. U

Since (HO) holds vacuously in the supersingular case, we may apply the results
of Section 3.1 and Section 4. Let P — S be a projective envelope of S in €(0), let E =
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End¢ o) (ﬁ), fii the maximal ideal of E and let m be the maximal ideal of E ®o k. We note
that Proposition 6.1 and Lemma 3.29 imply that  := dimm/m? = 3. Let p := V(rr) then
0 =ind w;+1 ® 1 1s absolutely irreducible. We note that det p is congruent to ¢ e, where ¢
is the cyclotomic character. Let R, be the universal deformation ring of p and Rf* be the
deformation ring of p pro-representing a deformation problem with a fixed determinant

equal to Ce.

Proposition 6.2. — The functor V induces a surjection

E - Rfjs = Ollx, x9, x3]].

Proof. — This is a consequence of Proposition 5.56. We note that \v/'(S) =V(r) =
p. Since p > 5 using local Tate duality and Euler characteristic, we may calculate
that HQ(QQP,Adp) =0 and HI(QQP,Ad,o) 1s 5-dimensional. This implies, see [47,
§1.6], [48, §24], that the universal deformation problem Defg’(s) is represented by R, =
Ollx1, ..., x5]] and the deformation problem with the fixed determinant is represented
by Rff = Ol[«1, x9, x3]]. Since the residual representation is irreducible, the ring R" in
Proposition 5.56 is isomorphic to RE°. Part (i) of Proposition 5.56 is satisfied by [23,
VIL.5.2], and (i1i) is satisfied by [41, 2.3.8]. 0

Proposition 6.3. — The functor V induces an wsomorphism Ex RE°. In particular, E is

commutative and V(P) is the universal deformation of p with determinant ¢ €.

Progf. — Since dimm/m? = 3 we deduce from the map in Proposition 6.2 in-
duces an isomorphism Ee =~ Rff = O[[x1, X9, x3]]. It follows then from Lemma 3.41
that the natural map Hom(E, £[x]/(x*)) — Hom(E, £[x]/(x*)) is surjective. In view of
Theorem 3.39 and Lemma 3.43, it is enough to find a 2-dimensional subspace V of
Exté’ ¢ (7w, ) such that for every non-zero § € V, representing an extension 0 — 7 —
E; — 7 — 0 we have dim Extg, , (77, E¢) < 3 or equivalently dim Extg, , (E¢, ) < 3.

We have shown in [56, 10.14] that for any non-zero & lying in the image of
Ext;i(I(n),I(n)) in Extéyg(ﬂ, ) via (73), we have dimExté’g(Eg, ) < 3. In the reg-
ular case, we have dim Ext;{(l-(n),l-(n)) = 2, [20, Cor. 6.6], and so we are done. In
the Iwahori case, dim Ext;{(I (),Z(m)) = 1, but in Proposition 6.23 below, we find
a two dimensional subspace V in Exté}’ (7, ) such that for any non-zero § € V we

have dim Exté’ (7, E¢) < 3. Hence, V induces an isomorphism of deformation functors,

Corollary 5.52, and so ‘V’(ﬁ) is the universal deformation of p with determinant ¢e. [

Theorem 6.4. — Let 1 be a unitary absolutely vrreducible L.-Banach space representation with
a central character ¢ . Suppose that the reduction of some open G-invariant lattice in T1 contains 7w as a
subquotient then T1 = 1.
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Progf: — Since E is commutative the assertion follows from Corollary 4.44. 0J

Recall that the block B of 7 consists of only one isomorphism class, Proposi-
tion 5.42. Then Modlcﬁ“{ (0)® is the full subcategory of Modlﬁn (O) consisting of rep-
resentations with every irreducible subquotient isomorphic to 7.

Corollary 6.3. — The category Modlﬁn (O)® is anti-equivalent to the category of compact
RE¢-modules. The centre of 1\/[0dlhn (O)® is naz‘umlly isomorphic to REF.

Proof. — The assertion follows from Proposition 5.45 and Proposition 6.3. UJ

Remark 6.6. — Since p is absolutely irreducible and p > 2 = dim p, sending a
deformation to its trace induces an isomorphism between R¢* and Rfrs;fs, the deformation
ring parameterizing 2-dimensional pseudocharacters with determinant {¢ lifting tr p,
see [50].

Corollary 6.7. — Let T: G, — R?flf be the universal 2-dimensional pseudocharacter with
determinant £ & lifting tr p. For every N in €(O)®, \V7(N) is killed by g* — T(g)g + ¢&(g), for all
g€ ng'

Progf: — Proposition 6.3 and Remark 6.6 imply that the assertion is true if
N = P. In general, V(N) = V(Homg o, (P, N) ®; P) = Home o, (P, N) ®; V(P), by
Lemma 5.53. O

Let Ban}d‘;1 (L)® be as in Proposition 5.36 and let Banadmﬂ(L)% be the full subcat-
egory consisting of objects of finite length.

Corollary 6.8. — We have an equivalence of categories

Banadm ﬂ(L)‘B ~ @ Banadm ﬂ(L)‘B

neMaxSpec Rf;g[l/ﬁ]

The category BanaClm YL)® is anti-equivalent to the category of modules of finite length of the n-adic
completion of REF[1 / pl. In particular, Bana‘c|m YL)® contains only one irreducible object.

Proof. — Apply Theorem 4.36 with €(0) = €(0)®. O

6.1. Iwahori case. — Let m = (0,0,n) =m(p— 1,0, n). In this section we iden-
tify a two dimensional subspace V of Exté’{(n,n) such that for any non-zero & €
V, the equivalence class of an extension 0 - 7 — E — 7 — 0, we have either
dim Extéy (B¢, ) <3 or dim Exté’ (7, E¢) < 3, thus completing the proof of Proposi-
tion 6.3. The proof involves tracking down the dimension of various Ext groups. Essen-
tially the same argument should also work for p = 3, but we have not checked the details.
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After twisting we may assume that 7 is the trivial character, and so Z acts trivially
on 7. We will write 1\/[0d2’;’}Z (k) instead of Modsé"’; (k) and Exté /7 instead of Extg’ ¢ To
ease the notation in this section we will also write Rep to mean smooth representations
on k-vector spaces. It follows from [16, 3.2.4, 4.1.4] that " is 2-dimensional. Moreover,
[16, 4.1.5] implies that there exists a basis {vy, vy} of £'!, such that vy = vy, vy = vy
and there exists an isomorphism of K-representations:

<89> <K . U]) = 17 <K . vst) = st,

where st is the inflation of the Steinberg representation of GLy(F,). In particular, H acts
trivially on vy and vy. We recall the results of [56, §4]. Let

2n b
M1:<(p0 1)U117’l20,b€2p>,
AT
M, = 01 ve:n>0,b€Z,).

Then My, M, are stable under the action of I, [56, 4.6], 1\/[11l = kvy and Mit‘ = kvg. We
set

(90)

91) =My + IT. Mg, g =M, + IT.Mj.

The subspaces 7y and 7, are stable under the action of G*, [56, 4.12]. Moreover, we
have

(92) g+ = ® 7.

This implies

(93) 7 = IndS, myp = Indg, 7y,

Further, [56, 6.4] says that
(94) T =My NTIM =kvy, 7l =M, N TIM; = kuy,.

The key observation that goes into the proof of this result is that the restrictions of M;
and M, to H(IN U) are injective envelopes of the trivial representation in Repy jny-

Lemma 6.9. — Let N be a representation of 1/7.) such that N|y,nu ts an injective envelope
of the trivial representation in Repy . Let v € N such that H acts on v by a character x and let
Kk :={l.v), then

(i) dim(N/k)h = 1;
(i) H acts on (N/i)"" by a character xo™';

(i) xa=' < (N/k) [, Uy @5 an igective envelope of xo !

n Repyyp, -
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Proof. — Since N is smooth and « is finitely generated, k is of finite length. We
argue by induction on the length € of k. Suppose the length of k is 1, then k = N =
NI and the assertion follows from [56, Prop. 5.9]. In general, let N} := N/N" and
let k denote the image of ¥ in N;. Now [56, Prop. 5.9] says that N, |;,nu 1s an injective
envelope of the trivial representation in Rep; ;. Since N'' = N"" is 1-dimensional
and k NN = k' £ 0 we have £(k;) = £(k) — 1, and hence we get the assertion by
induction. 0J

Proposition 6.10. — Let

(95) wy = Z A <(1) L] tp[k]> Puy,  wy = ZA (é [)IL]> vy,

)L,;,LEFP Aer

and set T = (K. wy) + (K. (IMwy)) C my. There exist an exact non-split sequence of K-
representations

(96) 0—1— 17— Indfa— 0.
Moreover, Extll/Zl (1, m1/7t) =0 and (m1 /)" Ea? @ o’

Progf: — From (95) we get

97) 3 (é [’1‘]> s(Mwy) = wy.

HeF,

Let 7, u; and uy be the images of v, w; and [Mwy in 7y/1, respectively. It follows from
[56, Lem. 6.1] that »; and uy are I;-invariant. Moreover, they are linearly independent,
since H acts on #; by «™! and on uy by @, and these characters are distinct, as p > 5.
Now (94) implies 7y /kvy = My /kvy @ IT(M,/kvy). Moreover, since the restrictions of
M; and M;; to HINU) are injective envelopes of the trivial representation in Repyjrp),
Lemma 6.9 implies that the space of I;-invariants of My /kvy @ IT(M,/kvy) 1s two dimen-
sional. Hence, {u;, uy} is a basis for (;r;/1)"" and Mw, € TIM,,. Moreover, (97) implies
that the natural surjection Ind?oc — (K. u) 1s injective, since it induces an injection on
(Indi{ o). Thus T = Indi{oe and the extension 0 — 1 — 7 — T — 0 is non-split, since
socg T C sock 1 = 1. Now suy 1s the image of

(M) = fw, =Y 2 ((1) /’[1”) P,
A€EF,

which lies in My. Since T = kuy @ (I; . (suo)) we obtain

77:1/7: ; Ml/(I . (twst)> @ H(Mst/<1 . wst))-
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Let N| := M;/(I. (tw,)). Lemma 6.9 gives that N' is I-dimensional, H acts on N by
the character % and @~ <> N |gq,nu) is an injective envelope of &2 in Repyq,auy- Let
Y 11— £ be a smooth character, [56, Prop. 7.2, Cor. 7.4] say that Extll/Zl (¥,Ny) #0
if and only if ¥ = a ™! or ¥ = a2, Since p > 5 we get Extll/Zl (1,N;) = 0. Similarly, one
gets Extll/zl(l/r, (M /(I.wy))) #0ifand only if = (@ )" = or ¥ = ()T = >
Again we obtain, Extll/Zl (1, TTI(M,. /(I . wy))) = 0 and hence Extll/Zl (1,m/7t)=0. O

Lemma 6.11. — We have

(1) Ethlg/Zl (st, 1) = Extll{/Zl (1,st) =0;
(i) dim ExtllqZl (st,st) =1;
(it) dimH'(I/Z;,st) = 1.

Proof. — Since 1 and st are self dual, sending an extension to its dual induces an iso-
morphism Exty sz, (st 1) = Exty sz, (1, s). So for (i) it is enough to prove Exty 1z, (st 1) =
0. Let « be a smooth representation of K/Z,, then

(98) HOIHK/Z] (st, K) = HOIIlK/Kl (St, KKI),

since K acts trivially on st. Now st is a projective object in Repg ., [63, §16.4]. Thus,
Homg /k, (st, *) is exact and we get:

(99) Exty ,, (st, &) = Homyg x, (st H' (K /Z, ©)).

If K, acts trivially on ¥ we have an isomorphism of K-representations:

(100) H'(K,/Z,,k) Z=Hom(K,/Z\, k) @ k = (Sym2 P ® det_l) & K,

see [20, Prop 5.1]. Now dim Homg (st, st ® Sym? &> ® det™") = 1, by [20, Prop 5.4 (ii)]

and Homg (st, Sym? £ ® det™') = 0 as p > 5. So we get the assertions (i) and (ii). For (iii)
we observe that

H'(I/Zy, st) = Exty , (Indf 1, st) = Extg , (1@ st, st). O
Lemma 6.12. — We have dim EX‘[II/Z1 (st, &) = 1. The natural map
(101) Exty,, (st, &) = Ext{p , (st', @)
is an isomorphism.

Progf. — Since Indf 1 = 1 ®st, we have an isomorphism st|; = IndhKl 1 and hence

(102) Exty,, (st,@) = Extyy (L) =H' (K, /Z;, )",
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which is one dimensional, see the proof of [56, Prop. 5.4]. We identify H' (K, /Z,, &) with
Hom(K,/Z, k), then ExtI1 17 (st, ) 1s identified with the subspace generated by «, where

k(g) = (bp™") (mod p), Vg:(? 3)eK1.

Let 0 = o — E — st — 0 be the unique non-split extension and let v be the basis vector

of a. For each coset ¢ € I/HK, fix a coset representative ¢ of the form ( (1) [T]). We note

that given g € I, the element g¢~'g¢ lies in K. The isomorphism st|; = IndhKl 1 and (102)
imply that there exists w € E such that the image of {cw : ¢ € I/HK,} is a basis of st and
for all g € K; we have gw = w 4+« (g)v. Let w; = ) tw, then the image of w; in st spans
st'. We have

(103) =gy w=)Y @@'@w=w+)Y «(@ g

=w +« (H(g__lgi))v.

4

Ifg= ((1) %) then g commutes with ¢, and so [ [ (g&c"'g¢) = ¢’, thus gw; = w; + v. This
implies that the map (101) is non-zero. Moreover, the target is 1-dimensional by [56,
Prop. 5.4], hence (101) is an isomorphism. UJ

Corollary 6.13. — dim Extll{/zl (o,m) =1 and Extlli/zl (o,m/7) =0, whereo =1 or
o = st.

Progf: — It follows from 6.10 that

Exty , (Indf 1, 71/7) Z Ext{,, (1,m1/7) =0,

HOIHK/Zl (Ind? ]., 7'[1/7,') = HOI’Il]/Zl (1, 7T1/'L') =0.

Since Indf 1=1® st, we get ExtIqu1 (o,m1/7) =0 and Homg (o, 11 /1) = 0. Thus, ap-
plying Homg (0, *) to the exact sequence

0— Indfoz —->m/1—>m/t—0
we obtain
Exty , (0.71/1) Z Exty , (0, Ind ) = Extj, (0, ).

Now Ext{ sz, (st, ) 1s 1-dimensional by Lemma 6.12 and Ext{ sz, (1, &) is 1-dimensional
by [56, Prop. 5.4]. Hence,

Ext{,, (1,7m1/1) = Exty,, (1@ st,m/1)
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1s 2-dimensional. We know that Extll/Zl (1,1) =0, [56, Prop. 5.4], so
(104) Ext{,, (1,m) — Ext{,, (1,7,/1)

is an injection. The source has dimension 2 by [56, Thm. 7.9]. Hence, (104) is an iso-
morphism. Using Ind;* 1 = 1 @ st again we get that Ex‘[Il{/Z1 (st, 1) and ExtIl(/Zl (1, 7ry)
are both 1-dimensional.

Lemma 6.14. — We have exact sequences of G -representations:
(105) 0— c-Ind$n,1 — c-Ind{,1 — m; — 0,
(106) 0— c—Indg;Zstn — c—Indg;st — e — 0.

Progf. — Below we let (0 =st and 6 = 1) or (6 =stand o = 1). Let

= {f € c-Ind,o : Suppf C G+} = C-Indgo,

{f € c-Ind{,0 : Suppf C HG+} =c- IndKnZ

We have c-Ind§, 0|+ = Fr @ F~. Let ¢ € c- IndKZJ such that Supp ¢ = KZ and ¢(1)
spans 0. Then F© = (G".¢) and F~ = (G . [1g). It follows from Lemma 5.13 that
Te € F~ and TTlp =Ty € F*. Hence, T(F") C F~ and T(F~) C F*'. Hence,

(107) mles EFHT(F )@ F /T(F).

Now (94) implies that Homg (6, 77,) = 0, and thus (92) and (107) give 7, = F*/T(F "),
s = F/T(FT). Since T is an injection we obtain the result. ]

Proposition 6.15. — We have

(i) dimExtg: (77, 1) = dim Extg,s (71, 70) = 2;
(i) dim Extg; (77, 70) = dim Extg;, , (771, 1) = 1.

Proof. — By applying Homg-+ 7 (*, 1) to (105) we get an exact sequence
Homgn (1, ;) — EXté}+/Z(7T1, ) — Extlli/zl(l, ).
It follows from (90) that ;' = 7, hence
Homgn (1, 77) = Homg (1, 7)) =0

and so dim Extéﬂz(nl, my) < 1. Similarly, by applying Homg+,7(*, 1) to (106) we ob-
tain dim Exté+ /7 (7, m1) < 2. On the other hand 7 = Ind& 71 and we know that

1 ~ 1
EXtG/Z(n’ T)= EXtG+/z(7TI @ my, 1)
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is 3-dimensional, [56, 10.13]. Hence, both inequalities are in fact equalities. We obtain
the rest by using 7y = nln and m; = JTST. ]

Corollary 6.16. — We have dim EXt11</z| (st, my) = dim Extll{/zl 1,7, =1.

Proof. — Applying Homg+ 7 (*, ) to (105) we get an exact sequence:
Homgn (1, 7)) — Ext}ﬁ/z(nl, Ty) — Ethlg/zl (1, ).

Proposition 6.15 implies that dim Extg /7, (1, wy) > 1. We apply Homg+ 7 (*, ) to (106)
we get an injection

Extgs (4, 703) = Extyg , (st, 7).
Proposition 6.15 implies that dim Ext%{ 17 (st, my) > 1. We know [56, 7.9] that
Ext;,, (1,7,) = Extg, (Indf* 1, 7)) = Extg , (1@ st, 7,)
is 2-dimensional. This implies that both inequalities must be equalities. 0

Lemma 6.17. — Let E be the unique non-split extension 0 - 1 — E — 1 — 0 of
(I N P)/Z,-representations. Then the natural map

(108) Ext(yp) 7, (B, @) = Extyp) , (1, @)
18 zero.

Proof. — We know that Extgmp) 17 (1,1) Z=Hom((INP)/Z,, k) is one dimensional
and we may choose a basis {w;, wy} of E such that wy 1s fixed by INP and dw, = wy +w,,
uw; = w;, where d = (13/;(1)) and u = ((1) i), [56, 5.7]. Suppose that the map is non-
zero, then we have an extension 0 - o« — E' — E — 0. Since Ext(lmp) sz, (1, ) 1s one
dimensional, [56, 5.7], we may choose a basis {v;, vy, v3} of E such that I acts by @ on
Vs, Vg maps to Wy, dvy = Vg, UV = Vg + v3, v} maps to w; and H act trivially on v, and vs.
Now H act trivially on (¢ — 1)v;, hence (d — 1)v; = Av; + pnv,. By considering the image
in E we get dv; = v; + vy. The image of (v — 1)v, 1s zero in E. Hence (¢« — 1)v; = Avs,
for some A, (i’ — 1)v, = (u — 1)’v, =0 and so v, = uv; = v, + Avs. Now

duv1 = d(v1 + )\1)2) =v + Vo + )\.Ug,
W dvy = (v + v) = v+ Avs + vy + 5.
Since du = w’*'d in IN P we deduce that E’ cannot exist. O
Lemma 6.18. — Let e be the unique non-split extension 0 — st = e — st = 0 of K/Z, -

representations. Then eV is the unique non-split extension 0 — 1 — "V — 1 — 0 of INP) /Z,; -
representations.
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Proof. — By taking I-invariants we obtain an exact sequence:
1 1 1.9 1yl
st > e — st > H (I/Z, st).

Now dime! = 1, since Hom;(1, e) = Homk (st, €) by Frobenius reciprocity. Hence, 9 is an
injection. Since by Lemma 6.11 dimH'(I/Z,, st) = | we get that 9 is an isomorphism.
Fix a non-zero v € st' = e!. To prove the assertion it is enough to give a 1-cocycle f :
1/7.; — st, such that for some scalar A # 0 we have

(109) f((g Z)):%ZAU, v(é z)eIIOP.

Since then there exists w € e such that (¢ — 1)w =f(g), for all g € I, as 9 is an isomor-
phism. Then (109) implies that w € "V and w ¢ ¢!™. Thus v and w are linearly inde-
pendent, and so dim eV > 2. Since st! is 1-dimensional we get that "V = (v, w),
thus we have an exact sequence 0 — st' — ™V — st! — 0 and (109) implies that this se-
quence is non-split.

We will construct a cocycle f* satisfying (109). We have Z = p,1 x (1 + pZ,),
let pr:Z* — 1 + pZ, denote the projection and let § : K — 1 4 pZ, be the character

8(g) = pr(det(g)). Let M := Sym’™! Z; ® 81‘%/), then K acts on M, Z, acts trivially and
M/pM = st. We have an exact sequence of Z,/p*Z,[K]-modules

— iU

0 — M/pM 5 M/p*M — M/pM — 0.
Let w := "'+ p*M € M/p*M, then the image of w in M/pM is I-invariant. Thus £ (g) :=
(¢ — Dw takes values in pM/p*M = st for all g € I. Moreover, it is immediate that f
satisfies (109) with v ="' + pM and A = -, O

Lemma 6.19. — Let e be the unique non-split extension 0 — st — e — st = 0 of K/Z,-
representations. Then the natural map

(110) Exty,, (e, &) > Ext,, (st, )
18 zero.
Proof. — Lemma 6.18 gives a commutative diagram

0 st! eV st! 0

R

0 st e st 0
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with exact rows, and the top row a non-split extension of I N P-representations, with the
middle vertical arrow I N P-equivariant. Applying Homy,z, (*, ) to the bottom row, and
Homnp),z, (*, @) to the top row we obtain a commutative diagram:

B
Ext, (e, @)= Extl,, (st, @)
aon) | =

0
1 INU 1 I
Extpz, (€7, @) s Ext(np) 7, (st @).

It follows from the diagram that B is the zero map. U
Lemma 6.20. — Let ¢ be the unique non-split extension 0 — st = e — st = 0 of K/Z, -
representations, then dim Ext}{ 7 (e, my) = 1. Moreover, let
0—>m—>E —>e—>0
be an exact sequence of K /Z.,-representations, then Homg (st, E) # 0.

Proof. — Applying Homg 7, (*, 1) to 0 — st = e — st — 0 we get an exact se-
quence

EXt%(/z, (st, my) = EXtIl</Z| (e, 1) 5 Extllqz1 (st, 771).

We claim that B is zero. The claim and Lemma 6.12 gives dimExt;(/Zl(e,r[l) = 1.
The Yoneda interpretation of the claim gives the second assertion. Let T C m; be
the representation considered in Proposition 6.10, then Homgk(st, 71/7) = 0, hence
Homgk (e, 71 /1) = 0. Moreover, Corollary 6.13 says that Ext%(/z] (st,my/T) = 0, this im-
plies Extlli 7 (e, m1/7) = 0. Hence, we have a commutative diagram:

y
EXtIl{/Zl (e, 7)—— ExtllqZl (st, T)

l: ,3 lz

EXtII(/Zl (e’ EI)H EXtIl{/Zl (St, 7[1).

Recall that (96) is an exact sequence 0 — 1 — © — Ind; @ — 0 of K/Z,-representations.
Lemma 6.11 says that Ethlg/Zl (st, 1) = 0. This implies Ext}l{/zl (e, 1) = 0. Thus applying
Homg 7, (e, *) and Homg 7, (st, *) to (96) we get a commutative diagram:

Y
Extl , (e, T) ——— Extk, (st, 7)

| |

s
EXtIl{/z1 (e, Indi{a) — Extll{/zl (st, Indi(a).
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Now 8 is zero by Shapiro’s lemma and Lemma 6.19, hence y = g = 0. ([l

Proposition 6.21. — Let
(111) O—>m—>E —>n,—0

be a non-split extension of G%t/Z representations. Suppose that Ell1 15 1-dimensional, then
Exty , (st E) =0,

Proof.— We note that the assumption dim E}' = 1, implies that EI' = ;" and hence
Homg (st, E;) = 0. Let 0 — st = e — st = 0 be the unique non-split extension of K/Z,-
representations. Now, e cannot be a subrepresentation of 7, since in that case by pulling
back we would obtain a subrepresentation E| C E; such that we have an exact sequence
0 — my — E| = e = 0 of K/Z,-representations with Homg (st, E}) = Homg (st, E,) =
0, which would contradict Lemma 6.20. Hence, Homg (st, 77 /st) = 0 and so we obtain
an injection

(112) Exty , (st, st) = Exty , (st, 7).

Corollary 6.16 asserts dim Exty /7, (st, y) =1, so the map of (112) 1s an isomorphism.
The Yoneda interpretation of this says if we let

(113) 0—=>nmy— Ey—>st—0

be the unique non-split extension of K/Z,-representations, then E, contains e as
a subrepresentation. Corollary 6.13 says that dimExtlli/Zl(st, m1) = 1 so applying
Homg 7, (st, %) to (111) gives us an injection

(114) Exty ,, (st, Ey) <= Exty , (st, 7).

Suppose that Extj sz, (st, E1) # 0 then (114) would give a non-split extension of K/Z;-
representations

(115) 0—=>E —>E;—=>st—=0

such that Es/my = Ey. Now, Homk (st, E;) = 0 and so Homg (st, E3) = 0, as otherwise
we would obtain a splitting of (115). As e is a subrepresentation of Eo, by pulling back we
obtain a subrepresentation Ej C Es, which sits in an exact sequence:

0—m — E;, >e—0.

Since Homgk (st, E3) = 0, we have Homg (st, E;) = 0. Hence, we obtain a contradiction
to Lemma 6.20. O

Corollary 6.22. — Let E,| be as above, then dimH'(1,/Z.1, E) < 2.
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Proof. — Taking I, /Z,-invariants of (111) gives us an exact sequence:
(116) e H'0,/Z,m) — H'(1,/Z,,E) - H' 1,/Z,, 7).
By [56, 7.9] H acts trivially on H!(1,/Z,, ;) and H'(I,/Z,, 7). Hence,
(117) H'(1,/Z,,E) =H'(1,/Z,, E)" Z Exty,, (1,E))
= Exty,, (Indf 1, Ey) = Exty , (1, Ep) @ Exty , (st, Ey).

Application of Homg 7, (1, *) to (111) gives an exact sequence:
(118) Ext%{/Zl(l, ) <= Ext}{/zl(l, E)— Extlli/zl(l, Ty).

It follows from (118) and Corollaries 6.13, 6.16 that dimExtIl(/Zl(l, E;) < 2. Proposi-
tion 6.21 says ExtIl(/Zl (st, E1) =0, hence (117) gives us the assertion. UJ

Recall that w = Indg+ T = Ind8+ 7y Thus we have an injection
(119) Extgs (70, 1) <= Extey , (1, @ 71, 11) = Ext, (70, 7).

Proposition 6.23. — Let & lie in the vmage of (119). Suppose that & # O then either
dim Exté /Z(rr, Ez) < 3 or dim Exté /Z(EE’ ) < 3, where B¢ 15 the corresponding extension of
T hym.

Proof. — Since £ lies in the image of (119) we have E; = Indg; E;, where E, is an
extension of G /Z-representations: 0 — m; — E; — 7 — 0. Moreover, & # 0 implies
that E, is non-split. If dimE]' = 2 then dim E? =4 and hence & lies in the image of
Ext;i (", 7l — Exté /7 (v, ) via (73) and we know that the assertion is true for such &
by [56, 10.14]. Suppose that dim E}' = 1 then, since E¢l;, EE, @ E], we get dim E? =2,
hence E? = 7" and [20, 6.7], or Lemma 5.27 gives dim Exty, (7", E?) = 1. Moreover,
Corollary 6.22 implies that dim H' (1, /Z,, Es) =2dim H'(,/Z,,E;) < 4. Since ! is an
irreducible H-module and its underlying vector space is 2-dimensional, we deduce from
Lemma 5.22 that dim Homg ("', R'Z(E¢)) < 2. Now (73) implies dim Exté/z(n, E) <
3. O

7. Non-supersingular representations

We recall the properties of Emerton’s functor of ordinary parts. This functor is an
extremely useful tool for calculating Ext groups, when some principal series are involved.
In Section 7.2 we discuss Banach space representations of G obtained by parabolic in-
duction of admissible unitary Banach space representations of the torus T. We assume
throughout this section p > 3.
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7.1. Ordinary parts. — Let A be a complete local noetherian commutative O-
algebra with a finite residue field. Emerton in [30] has defined a functor Ordp :

MOdlé‘,i?l A) — Modlflifn (A), satisfying

(120) Homyg)(Indg U, V) = Homypy (U, Ordp(V)),

where P is the parabolic subgroup of G opposite to P with respect to T, see Theorem 4.4.6
in [30] if U is admissible, the general statement follows from the fact that Ordp and Indg’
commute with inductive limits, see Lemmas 3.2.2 and 4.1.4 in [30]. Since induction is an
exact functor, [30, 4.1.5], the functor Ordp is left exact. It follows from [30, Prop. 4.3.4]

that for every U in Mod!ﬁfi;“ (A) we have:

(121) Ordp(Ind§ U) = U.

From now on we suppose that A is artinian. It is shown in [31, §3.7] that (120) induces
an Ey-spectral sequence:

(122) Ext; (U, R Ordp V) = Ext’, (Ind$ U, V).

The Ext groups in [31] are computed in the category of locally admissible representa-
tions. This category coincides with the category of locally finite representations by Propo-
sition 5.46, Corollary 5.6 and [30, 2.3.8]. However, we have shown in Corollary 5.17
that for G = GL,(Q,) and A = £ these groups coincide with the Ext groups computed
in Modg’, (). This answers a question raised in [31, 3.7.8]. It follows from [34] that
R/ Ordp = 0 for j > 2. Moreover, it follows from Proposition 3.34 that each block of

the category Modll"ffi;n(/f) is anti-equivalent to the category of compact £[[x, y]]-modules.

Hence, Extfrﬁ ¢ =0 for 1> 3. Thus (122) yields an exact sequence:
(123) Exty (U, Ordp V) < Extg, , (Indg U, V) = Hom¢ (U, R! Ordp V)
— Ext}. (U, Ordp V) — Extg; : (Indg U, V) — Ext}, ¢ (U,R' Ordp V)
and an isomorphism
(124) Exty, ,(Indy U, V) = Ext}., (U, R' Ordp V).

Moreover, we have Extl(I : (Indg U, V) =0 for : > 4. Since, we prefer working with P
instead of P we note that the map f +> [¢ > f(sg)] induces an isomorphism:

(125) Indj U= Ind§ U'.
It follows from [31, 4.2.10] that

(126) Ordp(Indy U) ZU’, R'Ordp(Ind; U) 2 U®a .
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Proposition 7.1. — Let x : ' — kX be a smooth character such that x|z = ¢. Let

L: Ind%’ X <> ] be an mjective envelope of Ind%’ X n Modlélim (A). Then the following hold

(1) Ordp(Indg’ x) < Ordp] w5 an injective envelope of x in 1\/Iolea’d{m (A);
(1) the adjoint map Indg’ OrdpJ — ] s injective;
1) 7T here exists a natural surjective ring homomorphism

] s i

Endacy(J) = Endag(Indg Ordp]J) = Endam(Ordp J).

Progf: — Since Ordp 1s right adjoint to the exact functor Indg' , Ordp ] 1s injective in
Mod' 4™ (A) and we obtain an injection Ordpt : x < Ordp]. For every t in Mod!24™ (A)
T,¢ 1) X Y T,¢

we have a commutative diagram:

(1 27) HOI’IlA[T](T, X)% HOl’IlA[T](T, OI‘dPJ)

~ ~

Homy g (Ind§ 7, Ind§ x) < Homygy(Indg 7, ).

We claim that if 7 is irreducible then the bottom arrow is an isomorphism. Suppose that
HomA[G](Indg’ 7,J) 1s non-zero, then as ¢ : Indg’ X < J 1s essential, the representations
Ind%’ 7 and Indg x have an irreducible subquotient in common. In this case it follows
from Corollary 5.47 that T = x. If x # x’ then Indg x 1s irreducible and the claim follows
from the essentiality of ¢. If x = x’ then x factors through the determinant and thus
extends to a character x : G — £* and we have an exact non-split sequence 0 = x —
Indg X — Sp®x — 0. Since the sequence is non-split, J is also an injective envelope of
x and any non-zero map A[G]-equivariant map Indg X — J 1s an injection. Thus the
claim in this case is equivalent to the assertion that Exté /Z(Sp, 1) is one dimensional.
This is shown in [56, Thm 11.4]. The claim mmplies that the top arrow in (127) is an
isomorphism and hence Ordp ¢ is essential, which proves ().

We claim that the map Indg Ordpt : Indg X — Indg’ Ordp ] is essential. It is enough
to show that the natural map

(128) Homg (7‘[, Indg’ X) — Homg (7‘[, Indg’ Ordpj)

1s an isomorphism for all irreducible representations 7. By adjointness this is equivalent
to showing that the natural map

(129) Homy (7, x) — Hom (g, Ordp )

is an isomorphism, where 75 denotes the coinvariants by the subgroup of lower-
triangular unipotent matrices. Since 7 i3 an irreducible representation the coinvariants
are either zero or an irreducible representation of T'. Since x <> Ordp] is essential by
Part (i), in both cases we obtain that (129) is an isomorphism.
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Applying Homyg; (Indg OrdpJ, *) to the injection Indg OrdpJ < J we get a com-

mutative diagram

Homy1(Ordp J, Ordp J)

HOHIA[T] (OrdPJ, OrdPJ)

~ ~

HOHIA[G] (Indg’ OrdpJ, Indg’ Ordp‘])% HOHIA[G] (Il’ldg OrdpJ,J).

Hence, the bottom arrow is an isomorphism. Applying Homy g (*, J) and using injectiv-
ity of ] we get a surjection

HOI’I’IA[G]G,J) —» HOITIA[G] (Indg’ OrdpJ,J) .

This implies that every endomorphism of J maps Indg Ordp] to itself and every endo-
morphism of Indg Ordp ] extends to an endomorphism of J, which implies (ii1). 0

Corollary 71.2. — Let x : T — k* be a_smooth character such that x| z =¢. Let P be a
[Jr(yeesze envelope of (InclG x)Y i Cq  (O), let P v be a projective envelope of x" in Cr (O) and
let M = (Ind(’ (P V)Y)Y then there exists a continuous surjection of rings:

(130) El’ldg((’)) (P) —» El’ldg((’)) (M) E O[[X,y]]

Proof. — It follows from Proposition 7.1 that Ordp(PY) is an injective envelope of
X in Modlddm(O) Since injective envelopes are unique up to an isomorphism we deduce

that Ordp(PV) = (P v)¥. Duality induces an 1somorphlsm between the endomorphism
ring of an object and the opposite of the endomorphism ring of its dual. Thus it follows
from Proposition 7.1(iii) that we have natural maps:

Ende,,0)(P) = Ende, 0y (M) = Ende, o), (P,).

The last ring is isomorphic to O[[x, y]] by Proposition 3.34. O

Corollary 7.3. — We keep notations of Corollary 7.2. Let R := End¢ o) (M) and let m be a

compact R-module then there exists a natural isomorphism:
m@RM = (Il’ldG (m @Rﬁ v)v)v.

In particular; m — m ®R M a’eﬁnes an exact functor from the category of compact R-modules to €(O).
Moreover, Home (o) (P m Qg M)

Proof. — The assertion is true by definition if m = R. If m = [ [.; R for some set I
then

(8D = DI = Indy (@ 15;) = Ind$ (m@P,)".

1€l €l
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In general we may presentm as [ [, g R— [[..;R = m — 0 and argue as in Lemma 2 9.

el
Since P is a free R-module of rank 1 by Proposition 3.34, the functor m — m ®R P
exact and since induction and Pontryagin dual are exact functors m — m ®g M is exact.
The last assertion is proved similarly. It follows from Proposition 7.1 that we have
an isomorphism Home)(P, M) = Homo1)(Ordp ], Ordp, J) = Ende)(M). Hence
the assertion is true when m = R and thus it is also true when m = [, ;R for some
set I. In general, we may present m as [[; ;R — [[;q R — m — 0 and argue as in
Lemma 2.9. U

Lemma 1.4, — Let U and ] be in Mod{\"™ (k) and suppose that ] is injective. Then
(131) Extg, , (Indy U, Indy J) = Homy (U, J @ ™)
and Ext; ,(Ind; U, Indy J) =0, for i > 2.
Progf. — Tt follows from (126) that Ordp(IndSJ) and R' Ordp(IndS J) are both

injective objects. Thus the terms ExtT, ¢ 1n (123) and (124) vanish and we get the asser-
tion. U

Proposition 7.5. — Let x : T — k* be a smooth character, such that x # x° and x # x‘o?.
Then there exists an exact sequence in Cg, ¢ (k):

(132) 0— Py - Ps— M,v— 0
where S = (Ind§ x)¥, S' = (Ind§ x°@)", Ps a projective envelope of S in €, (k) and
M, := (Ind§ (P,)")",
where P 1s a projective envelope of x " in Cr ¢ (k).
Remark 7.6. — If we write x = x; ® o~ ' then x*o = xo ® 10~ and we exclude

the case ;x5 ' = w*!. In particular, both principal series representations are irreducible.
For analogous sequences, when x,x; ' = @*! see Proposition 10.17 and (234), (235).

Proof: — We show the existence of the dual sequence in Modg (). Let J, be an
injective envelope of x in Mod'; ddm (k) and let ], be an injective envelope of 77, := = Ind$ x
in Mole"dgm (k). Then Proposmon 7.1 gives an injection IndS J, > Jx, and we denote the
quotient by ;. Let 7 be an irreducible smooth representation of G, then by applying
Homg (7, %) we get an isomorphism

(133) Homg (7, 1) = Extg; (7, Ind} ], ).

If Homg (7, k1) # 0 then 7 is a subquotient of J,, and hence lies in the block of Indg X,
see the proof of Proposition 5.34. Hence, w = Indg X or w= Indg x'a, see Proposi-
tion 5.42. It follows from Lemma 7.4 and (133) that w = IndIC,’ x'a and Homg (7, k1) 1is
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one dimensional. Thus we may embed «; < J,, where J, is an injective envelope of 7.
Let k9 be the quotient. Then for every irreducible T we have isomorphisms

(134) Homg (7, ko) = Extg, (T, k1) = Extg, (7, Ind} ], ).

If Homg(t, ky) # 0 then T lies in the block of Ind$ x. Hence, T = Ind§ x or 7 =
Indy x*a. It follows from Lemma 7.4 and (133) that Ext” term vanishes. Since every non-
zero object of Modlel (k) =Mo dlrm (k) has a non-zero socle, we deduce that ko = 0. [

Corollary 7.7. — Let x - T — k* be a smooth character, such that x # x* and x # x'o*.
Then there exists an exact sequence in € (O):

(135) 0— Py — Ps— M, — 0

where S = (Indg’ x), S = (Indg' xX'a)Y, ﬁs a projective envelope of S in €¢, . (O) and
M, := (Ind§ (P,))",

where ﬁxv is a projective envelope of x in €1 (O).

Progf: — Recall that if A is an object in €() and P—Aisa projective envelope of
Ain €(O) then P/ZD'P — A is a projective envelope of A in €(£), see Lemma 2.11. From
this and Corollary 7.3 we deduce that M ®o k= M,v. Proposition 3.34 says that P
is O-torsion free, hence its dual is @ - d1v151ble hence IndG P; 1s w -divisible and so M
is O-torsion free. The assertion follows from Corollary 5. 21 and Proposition 7.5. D

7.2. Parabolic induction of unitary characters. — Let Modlﬁn (O) be the full subcate-
gory of Mod"(O) with objects locally finite representations on which Z acts by ¢. The
irreducible objects correspond to the maximal ideals of A[T']/(z — £ (2) : z € Z), or alter-
natively Gal(/_f//c)—orbits of smooth characters x : T — &%, such that the restriction of
to Z is congruent to ¢, and are of the form V,, see Proposition 5.11. It follows from the
proof of Proposition 3.34 that there are no extensions between distinct irreducible rep-
resentations Hence, each block consists of only one irreducible representation and so if

= {7} then 1\/Iodlﬁn (O)® is a full subcategory of 1\/[0d¥l : (O) with objects locally finite
representatlons with all the irreducible subquotients isomorphic to 7. It follows from [35,
§IV.2] that we have a decomposition of categories:

(136) Mody", (0) = HM 4 (0%,

where the product is taken over all the blocks B. Using (136) and arguing as in Propo-
sition 5.36, we obtain a decomposition of the category of admissible unitary L-Banach
space representations of T on which Z acts by ¢ into a direct sum of subcategories:

(137) Banj'™ (L) = EB Ban}™™ (L)%,
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where IT is an object of Ban”‘dm(L)% if and only if all the irreducible subquotients of
O/w O lie in B, where © is an open bounded T-invariant lattice in IT. By Proposi-
tion 5.46, an irreducible 7 is absolutely irreducible if and only if it 1s a character.

Let x : T — £* be a smooth character with x|, = ¢, let P— x" be a projective
envelope of x" in €r(0), the category anti- equlvalent to 1\/[0dlﬁn (O) by Pontryagin
duality, and let E be the endomorphism ring of Pin ¢r (0). We have showed in Propo-
sition 3.34 that E = Ol[x,»]]. In particular, E is commutative and noetherian. Let B be
the block of x and let Banadm (L)® be the full subcategory of Ban“i“rl (L)® consisting of
all objects of finite length.

Lemma 7.8. — We have an equivalence of categories

Banddm A (L) ‘,B ~ @ Banddm A (L) ‘,B

neMaxSpec E[ f 1/p]

The category Bani™™ ﬂ(L)% is anti-equivalent to the category of modules of finite length of the n-adic
completion of E[l / ]9] In particular, Bany adm. ﬂ(L)% contains only one vrreductble object T1,,.

Proof. — Apply Theorem 4.36 with €(0) = €1 (0)®. O

Lemma 7.9. — Let v be a maximal ideal of E[1 /pl and let T1,, be as above then T1,, s finite
dimensional over L, with dimp, T1,, = [E[1/p]/n : L].

Progf. — Let © be an open bounded T-invariant lattice in_IT,. It follows from
Theorem 4.36 that m(I1,,) := Homg, (o) (P ®%)y, is an irreducible E[l/[)] -module killed
by n. Since E[l/p]/n is a field we have m(IT,) = E[l/p]/n Corollary 4.41 implies
that ® ®o £ is of finite length and the irreducible subquotients are isomorphic to x.
Lemma 4.15 says that x occurs in © / w ©® with multiplicity [E[1/p]/n : L]. Hence,
[E[l/p]/n L] =dim; ® ®p £ = dimy, IT,. O

Let IT be in Ban“‘dm(L) and let | . | be a T-invariant norm defining the topology
on Il. We may cons1der IT as a representation of P by letting U act trivially. We let
(Ind T),,,, be the space of continuous functions f : G — IT such that f(bg) = bf(g)
for all » € P and g € G. The function g — |f(g)| is continuous and constant on the
cosets Pg since the norm on IT is T-invariant. Since P\G is compact, the function
J = If Il :==sup,c¢ |/ (¢)| defines a G-invariant norm on (Ind§ IT),,,, with respect to
which it is complete. If ® is an open bounded T-invariant lattice in I, then (Indg (C)
is an open bounded G-invariant lattice in (Indlcf IT),,» and we have

(138) (Ind$ ©)  ®0 O/(w") ZInd§ (0 /w"®), Va> 1.

Using (138) one may show that the admissibility of TII 1mAphes the admissibility of
(IndG IT) . Let M:= (IndG PV)v and recall that Endg,, . (0)(M) is naturally isomorphic
toE= End@l.vg(@)(P) by Corollary 7.2.

cont
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Lemma 7.10. — Let TT be in Ban’} adm (L)% let © be an open bounded 'T'-invariant lattice in
[T and let m := Homg, . (0) (P, ©9). T/zen

(Ind§©)" =m@;M,  (Ind$ 1) = Homy (m®;M,L).

cont

Proof: — Since x 1is the only irreducible object of Modﬁng (O)®, for every object

N of Q:T;((’))% HomgT[(@)(P N) =0 is equlvalent to N = 0. Thus, it follows from

Lemma 2.9 that the map HomcT [(O) (P,N)®; P — N is an isomorphism. In particu-

lar, m &z P = 0, (m/w m) @i P = 07/w 0", for all n > 1. It follows from (57) that
O/o"® = ((m/@"m) Sk P) for all » > 1. Hence,

(Ind$ ©) ®0O/(w") = (Ind§ (6 /w"®))" = (m&; M) ®0 O/ ("),

cont

where the first isomorphism is (57) and (138), the second is given by Corollary 7.3. We
get the first assertion by passing to the limit. The second assertion follows from [61]. U

Proposition 7.11. — Let T1 be an absolutely irreducible admissible unitary 1-Banach space
representation of G with a central character ¢ . If Home, .0, (M, E) 3 0 for some open G-invariant
lattice B n T1, then either T1 = n o det or [1 = (Ind(P} V) eoms JOr S0me continuous unitary character

v T — L* lifling x with ¥ # .

Progf. — Let S := (Ind Sx)¥ and let Ps — S be a projective envelope of S in
€. (O). We note that if IndP X 1s reducible then it is a non-split extension of two ir-
reducible representations, hence Ps is a a projective envelope of an irreducible object in
C:.(O), namely the cosocle of S. Let Eb = Endg, (0)(Ps) and let E= Endg, . (O) (M)
as above. Recall that in the Corollary 7.2 we have shown that the natural map Ps—M
induces a surjection of rings ¢ : Es — E.

Lemma 4.5 allows us to assume that there exists a surjection ¢ : M — B in

€. (O). Let ¥ be the composition Pg S ML e and let m := Homgu(@) (Pq, 4.
It follows from Proposition 4.18 that m = =70 Es Since y factors through M it will
be killed by any ¢, € Kerg. Hence, m = ¢ o E = Hom%[(@)(M ) and the ac-
tion of Eb on m factors through the action of E. By Proposition 4.18, my, is an irre-
ducible E[l /pl-module and, since E = Ollx,»]l, my, is a finite dlmensmnal L-vector
space. Moreover, Endg (m) = Endg(m). Since my, is finite dimensional, E is commu-
tative and IT absolutely irreducible we deduce from Proposition 4.19 and Lemma 4.1
that my, is one dimensional and so m is a free O-module of rank 1. Since ¢ € m

the map ev: m@EM — E? is surjective. Dually this means that we have an injection

[T — Homy"'(O ®EM L) = (In d(’ Y¥)om and the character ¥ comes from Lemma 7.9,
where the last isomorphism is given by Lemma 7.10, which identifies I'T with a closed G-
invariant subspace of (IndI(:’ Y )on- (We note that both Banach space representations are
admissible.) If ¢ # ¢* then (Indg’ Y¥)wn 18 topologically irreducible and if ¢ = v* then
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it has a unique closed G-invariant subspace isomorphic to a character, [29, 5.3.4]. This
implies the assertion. UJ

8. Generic residually reducible case

In this section we deal with the case where in Colmez’s terminology the atome
automorphe consists of two distinct irreducible representations. More precisely, let x;, xo :
Q’, — £ be smooth characters and assume that x; x,° '#£ 1, 0*!. We assume throughout
this section that p > 3. Let x : T — £* be the character x = x; ® oo ' then x'a =
X2 ® 1w~ Let

T = Indl(f X, Ty 1= Indg’ x'a.

We note that the assumption on x; and x, implies that both representations are irre-
ducible and distinct. Let = be an irreducible smooth representation of G with a central
character. It is well known, see for example [56, 11.5], that if Extg’ (. m1) # 0 then
T =, or m = 1y. Moreover,

dim Extg, , (771, 1) = 2, dim Extg, (75, 1) = 1.
Let
(139) O—=m—>k—>m—0
be the unique non-split extension.
Lemma 8.1. — Ordpk = Ordp 7, = x¢, R Ordpk = R! Ordp 719 = x°.

Progf: — Since R'Ordp = 0 for ¢ > 2, we apply Ordp to (139) to get an exact
sequence:

(140) 0 — Ordpm; — Ordpx — Ordp 7y
— R' Ordpr; = R!' Ordpx — R! Ordp 7y — 0.

It follows from (126) that Ordp7r; = x* and Ordpmy = xa~'. Hence, if the map
Ordpx — Ordpmy is non-zero then it must be surjective. Hence, we have an exact
sequence of T-representations 0 — x* — Ordpk — xa~' — 0. Since x° # xa~' this
sequence must split, see Corollary 3.35. But then using adjointness (120) we would ob-
tain a splitting of (139). Hence, the map Ordp 7wy — R! Ordp 7, is non-zero, and since
R!' Ordp 7, = xa™! the map is an isomorphism. Thus we obtain the claim. O

Lemma 8.2. — Let 7w be wrreducible and suppose that Exté}’ (7T, k) # 0 then w = 7.
Moreover, dimExté,{(nl,K) <3 and Extg,g(ng, k) =0 forall1> 0.
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Proof: — If Exté(n, k) # 0 then Exté(n, m) #0 or Exté(rr, my) # 0 and hence
m =m or w = my. The assertion follows from the degeneration of spectral se-
quence (123), Lemma 8.1 and the fact that for distinct characters x, vy : T — £* we
have Extfu(x, Y) =0forall : >0, see Corollary 3.35. O

Proposition 8.3. — Let S := 1" and Q = k" then the hypotheses (H1)—~(H5) of Section 3.1
are satisfied.

Proof. — (H1) holds because (139) is non-split, (H2) holds as 7, # my, (H3), (H4)
and (H5) follow from Lemma 8.2. UJ

Since (HO) holds for G by Corollary 5.19, we may apply the results of Section 3.1 and
Section 4. Let P — S be a pl“Q]CCthC envelope of S in €(0), let E= EHd@((’))(P) and let
m be the maximal ideal of E Qo k. Let p := V(Q) then since V is exact we get an exact
sequence of Galois representations

0— xo— p— 1 — 0.

This sequence 1s non-split by [23, VII.4.13]. We note that det p is congruent to £, where
¢ 1s the cyclotomic character.

Proposition 8.4. — The functor V induces a surjection
I3 er ~
E— R = Ollx,, 211,
o, : : :
where REF pro-represents the deformation functor of p with determinant €¢ .

Progf. — Since ), # X2 and the sequence is non-split, we get that Endyg, 1(0) =4

and hence the universal deformation functor Def’;f is representable. Since xix, T+

w*! a standard calculation with local Tate duality and Euler characteristic gives

H*(Gg,,Adp) = 0 and H'(Gg,, Adp) is 5-dimensional. This implies, see [47, §1.6],
[48, §24], that Def’;b is represented by R = O[[«q, ..., x5]] and the deformation prob-
lem with the fixed de‘eerminant is represented by R* = O[[xy, xo, x3]]. It follows from
[41, 2.3.4] that SpecE” is a closed subset of SpecR and contains SpecR®¢, which
is stronger than (ifi) in Proposition 5.56. Since R* is reduced we obtain a surjection
E? — R® = O[[x, x9, x3]]. O

Corollary 8.5. — We have
dim Extg, , (771, k) = dim Extg,, (Q, S) = dim Exty, (Q, Q) = 3.

Proof. — We note that all three Ext' groups are isomorphic, the first two by anti-
equivalence of categories, the last two by Lemma 3.1. Now Extle(k) (Q, Q) isisomorphic to
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(m/m?)* by Lemma 3.29 and the surjection of Proposition 8.4 implies that dim; m/m? >
3. Since dim Extéﬁz(m, k) < 3 by Lemma 8.2 we are done. ]

Proposition 8.6. — dim Exté‘ (71, T) = 3 for all non-split extensions 0 — k — T —
k — 0 Modg, (k).

Proof. — Proposition 8.4, Corollary 8.5 and Lemma 3.41 imply that the equivalent
conditions of Lemma 3.40 are satisfied and thus by Lemma 3.43 it is enough to check the
statement for every non-split extension in some 2-dimensional subspace of Exté’ (K, K).
Let Y be the image of:

Ext%’g(x‘, Xf) = Exth,{(nl, ) —> Extésg(m,lc) = Exté’C(K, K).

The extension class of 0 > k = 7 — k — 0 lies in Y if and only if there exists an
extension 0 > x —> € —> x — 0in Modfﬁfg (k) and an injection Ind](f € — 7. We denote
the quotient by k. Since the semi-simplification t° = 7%* @ 72* we have k' = 72”.
As x # x’a, the 5-term sequence (123) implies that Exté) gV(JTQ, Indg’ €) 1s 1-dimensional.
Since Homg (79, T) = 0 we deduce that k, cannot be semisimple. We use (123) again to
obtain Exté’g(ng, Ty) = ExtlT,g (x’a, x°a). Hence, k| = Indg’(?, where 0 = x'a — § —
x'a — 0 is an extension in ModY', (k). Applying Ordp to 0 — Indj € - 7 — Indj § —
0 gives an exact sequence:

0— € —>Ordpt — §° 2 ea ' > R'Ordpt — Sa™! — 0.

Since Homg (79, k) = 0 we have Homr(xa ™!, Ordp 7) = Homg (7, T) = 0. Since x* #
xo~ ! we have Extl1 o xa~', x*) = 0 and hence 9 is injective. Since the source and the
target are 2-dimensional, 9 is an isomorphism and hence Ordp T = R' Ordp T = €' and
we have an exact sequence

0— Ext%’g(x", es) — Exté’{(m, T) —> HomT(X", eﬁ’).

Since the first term is 2-dimensional by Lemma 5.48 and the last term is 1-dimensional
as € 1s non-split, we deduce that dim Exté’ ;(7717 T) <3. ]

Corollary 8.7. — The functor V induces an somorphism Ex RS, In particular, V(P) is the
universal deformation of p with determinant ¢ €.

Progf: — The first assertion follows from Theorem 3.39. We then deduce that v
induces an isomorphism of deformation functors, Corollary 5.52, and thus V(P) is the
universal deformation of p with determinant ¢e€. O

Theorem 8.8. — Let T1 be an admissible unitary absolutely irreducible L-Banach space repre-
sentation of G with a central character £ . Suppose that the reduction of some open bounded G-invariant
lattice in T1 contains 7| as a subquotient then I1 C 1| @ 9.
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Progf. — The Schikhof dual of an open bounded G-invariant lattice in IT is an ob-

ject of €(0) by Lemma 4.11. Since E is commutative the assertion follows from Corol-
lary 4.44. O

Corollary 8.9. — Let T1 be as in Theorem 8.8 and suppose that T1 does not contain 1,
then T1 = (Indg’ V) oot for some continuous unitary character W :'U' — L Ufting x and satisfying

Ylz=¢

Proof. — Let P, be a projective envelope of 7, in € ((0) and let ® be an open
bounded G-invariant lattice in I1. Theorem 8.8 implies that H . Hence Lemma 4.15
says that HOI’I’I@LO)(PQ, ®% =0 and HOH’IQ(O) (P 0% £ 0. We deduce from Corollary 7.7
that Homgo)(M, ®9) # 0, where M = (Ind(’ PVV)v and P is a projective envelope of

Yin €1 (O). The assertion follows from Proposmon 7.1 1 O

8.1. The centre. — Recall that the block B of 7, contains only two irreducible
representations 77, and 7y, Proposition 5.42, and so 1\/[0dlﬁn (O)® is the full subcategory
of 1\/Iodlé1 % (O) consisting of representations with every 1rreduc1ble subquotient isomor-
phic to either 7, or my. Let €(O)® be the full subcategory of ¢(0) anti-equivalent to
Modl(lf“{ (O)®, as in Proposition 5.35. Let Pl and Pz be prOJCCtIVC envelopes of 81 =m’
and Sy := 1y in €(0), respectively. Let P% = P1 &) P2 and E% = End¢ (o) (P%) The
aim of this subsection is to compute the ring Eo and determine its centre.

Lemma 8.10. — Let M and N be objects of €(O)® then V induces an wsomorphism
Homg o) (M, N) = Homg, (V(M), V(N)).

Progf- — Since V commutes with projective limits it is enough to show the statement
for objects of finite length. Now €(0)® has only two irreducible objects Si, S9. For A and
B isomorphic to S; or Sy we have Homg o) (A, B) = HorngQ (V(A) V(B)) since both

sides are equal either to £ or to 0 and an injection Extc(o) (A, B) — Exthﬁ (V(A), V(B))

by [23, §VIL.5]. We then may argue by induction on £(M) + £(N), where £ denotes the
length, see the proof of Lemma A.1 in [56]. UJ

Let p; and py be 2-dimensional A-representations of ng such that we have exact
non-split sequences of Galois representations:

O=xo—=>0p—=>x1—>0, 0= x1—> ps—> x2— 0.

Since Extngﬁ( X1, X2) and Ext(lep (X2, x1) are one dimensional such representations exist
and are uniquely determined up to isomorphism. We note that det p; = det p, 1s congru-
ent to ¢e. Let pi" and py" be the universal deformations of p; and py respectively with
determinant Ce. Let x :=trp; = tr po and let RI;(S’SC be the universal deformation ring
parameterizing 2-dimensional pseudocharacters with determinant ¢ ¢ lifting x.
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Corollary 8.11. — The category Modlhn (O)® is anti-equivalent to the category of compact
Endg, (0" © p5")-modules. The centre of Modlgg (O)® is naturally isomorphic to RP>¢€,

Progf- — Corollary 8.7 and Lemma 8.10 imply that
Eg = Endgy, (V(P) @ V(Py)) = Endg,, (01" @ p3").

In Proposition B.26 we have showed that Endeﬁ (p"® py") is a free Rg’(s’“—module of rank

4 and its centre is isomorphic to RP*¢*. The assertion follows from Proposition 5.45. [

Corollary 8.12. — Let T : Gg, — RV*® be the universal 2-dimensional pseudocharacter
with determinant ¢ ¢ lifing x . For every N in €(O)®, \V7(N) is killed by g* — T(9)g + ¢&(g), for
allg € Gg .

_Progf- — Corollary 8.7 and Proposition B.17 imply that the assertion is true if
N =P, or N = P,. Hence, the assertion holds for N = Pg. The general case follows from
the isomorphism:

V(N) = V(Home(0)(Ps, N) ®f,, P ) = Home o) (Pos, N) &5, V(Psw),

which is proved in the same way as Lemma 5.53. U

Let Ban”(‘j'drgl1 (L)® be as in Proposition 5.36 and let Ban"‘dm 1(L)® be the full subcat-
egory consisting of objects of finite length.

Corollary 8.13. — We have an equivalence of categories

Banadm ﬂ(L)‘B ~ @ Banadm ﬂ(L)%

neMaxSpec RE)(S'{S [1/p]

The category BanaClm YL)® is anti-equivalent to the category of modules of finite length of the n-adic
completion of Endell (" ® py")[1/pl.

Proof. — Apply Theorem 4.36 with €(0) = €(0)®. O

Corollary 8.14. — Suppose that the pseudo-character corresponding to a maximal ideal w of
RP“[1/p] is irreducible over the residue field of  then the category Banadm YL)® is anti-equivalent
to t/ze category of modules of finite length of the n-adic completion of RY>*| 1 / p] In particular, it contains
only one vrreducible object.

Proof. — Since the pseudocharacter corresponding to n is irreducible, n cannot
contain the reducibility ideal of RP***[1/p], see Section B.1. It follows from Corol-
lary B.27 that for such n the n-adic completion of Endg, (01" @ p3")[1/p] is isomorphic

to the ring of two by two matrices over the n-adic completion of RP*¢*[1/p]. UJ
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Let n be a maximal ideal of Rl))(s’“[l/p] with residue field L, let T, : gQﬁ — L
be the pseudocharacter corresponding to n and let Irr(n) denote the set (of equivalence

classes of) irreducible objects in Ban‘1dm H(L)%

Corollary 8.15. — If Ty =) + Yo with Yy, Yy : ng — L™ continuous homomorphisms
then

Irr(n) = {(Indy ¥, @ Yoe ™), (Indy Yo @ Yrie ™), ).

cont’

Progf: — Corollary 8.12 implies that, since
V((IndS i ®@yue™), J=vo.  V(IndSyo@vie™") )=,

both Banach space representations lie in Irr(n). Since x;x, ' w*', 1 we also have
2L2% ! £ ¢*! 1. Thus the Banach space representations are irreducible and distinct. It
follows from the explicit description of Ende (p" @ p3") in Proposition B.26 that the
ring Ende (pi" @ py")[1/p]/n has two non- 1somorphic irreducible modules. 0

9. Non-generic case I

In this section we deal with the case where in Colmez’s terminology the atome auto-
morphe consists of two isomorphic irreducible representations. We assume throughout this
section that p > 3. Let w := Indg’ x, where x : T — £* is the character x = x, ® xy0 ',
for some smooth character x; : Q_; — k*. We note that x’a = x. We show that the
formalism of Section 3 applies with Q = S = 7". Hence, the projective envelope P of
S is the universal deformation of S, and its endomorphism ring E is the universal de-
formation ring in the sense of Theorem 3.26. The new feature in this case is that the
ring E is non-commutative. Indeed, if E were commutative, then by arguing as in the
proof of Theorem 6.4, we would deduce that if 77 is a subquotient of a reduction mod-
ulo @ of an open bounded G-invariant lattice in an absolutely irreducible L-Banach
space representation IT with central character ¢, then the reduction is isomorphic to 7.
However, the Banach space representations corresponding to 2-dimensional crystalline
Galois representations of small weight prov1de a counterexample to this, see [17, 5.3.3.1]
with a, = 2p. By applying the functor V we deduce that V(P) is a deformation to E of
one dimensional Galois representation V(S) = V(1) = x;. Since we allow the coefhi-
cients in our deformation theory be non-commutative, Lemma 3.32 implies that the ring
OllGq ) (p)117 solves the universal deformation problem of x;, where QQ (p) is the max-
imal pro-p quotient of Gq,- Hence we obtain a map ¢y : O[[Gq,(N)]]” — E uniquely
determined up to E- -conjugation. We show that ¢y, is surjective by looking at the tangent
spaces.
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Let Rg;fs be the universal deformation ring parameterising 2-dimensional pseu-
docharacters of Ggo , with determinant {e¢ lifting 2V(7r) = 2x; and let T': Go , = Rg;fe
be the universal pseudocharacter. Kisin has shown that every two dimensional Galois
representation, with reduction modulo @ equal to x; @ x;, lies in the image of V. This
result combined with a “non-commutative Zariski closure” argument, see Corollary 9.6,
shows that ¢y, 1nduces a surjection E— (Rg’j(f*’"[[gQ Nl /D?, where J is a closed two-sided
ideal generated by g* — T(g)g+ ¢ £(g) for all g € Gg ,. We show that this map is an isomor-
phism, Corollary 9.27, by proving structure theorems about both rings, see Lemma 9.3

and Proposition 9.23. We also show that Rg;’fa[[gQ ,11/J 1s a free module of rank 4 over

. . .. . s,0&
its center, which is isomorphic to Rgxf . We record the consequences for Banach space
representations in Section 9.3.

The idea to try and show that E is 1somorphic to a Cayley-Hamilton quotient was
inspired by [10].

9.1. Deformation theory.

Proposition 9.1. — Let S = Q = 7" then the hypotheses (H1)—(H5) of Section 3.1 are
satisfied. Moreover, d := dim Extle(k)(S, S)=2.

Proof: — Let T be irreducible in Modg‘fg (k). It 1s well known, see for example [56,
Thm 11.5], that if Extg, ,(z, ) # 0 then 7 = 7 and dim Ext;; , (77, 7) = 2. Dually this
implies (H3) and (H4) and all the other hypotheses hold trivially. U

Since (HO) holds for G by Corollary 5.19, we may apply the results of Section 3.1
and Section 4. Let P — S be a projective envelope of S in Q(O) let E = Endg(@)(P) m
the maximal ideal of E and let m be the maximal ideal of E ®o k. We note that the last
part of Proposition 9.1 and Lemma 3.29 gives dim m/m? = 2.

Let P,v be a projective envelope of x" in €1, (O) and let M := (IndG va)v
Corollary 7. 2 gives us a surjection

(141) E — Ende,, ) (M) = Ende,, ) (P,) = O[[x,5]].

Let a be the kernel of (141). Since dimm/m? = 2 we deduce from (141) that E/a=E”.
Lemma 9.2. — There exists t € M2 such that a = Bt and ¢t #£ 0 for all non-zero ¢ € E.
Progf: — Since x = x’a Corollary 7.7 gives us an exact sequence

(142) 0>P5>P>M—o0.

Applying the exact functor Homg o (’15, *) to (142) we get an exact sequence

(143) 0— E 5 E — Home o, (P, M) — 0.
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The last term 1s 1som0rph1c to End¢ o) (M) by Proposition 7.1(iii), Corollary 7.2. Hence,
a=t, (E) E¢ and since ¢, is injective we get that ¢¢ = 0 implies ¢ = 0. As the image
of ¢ in E* is zero, the image of ¢ in the commutative ring E/m?* will also be zero. Hence,
tem?, O

Lemma 9.3. — Let @ : E—+Rbea quotient such that R® = O[[«, y]] and there exists an
element ' € R such that Ker(R — R®) = Rt and at’ = 0 implies that a = 0 for all a € R. Then
@ s an 1somorphism.

Proof. — The composition E — R — R factors through E“ and since both rings
are formally smooth of the same dimension we deduce that ¢® : E® — R is an isomor-
phism. Thus Ker(R — R®) = Re(#). Hence, we may write ¢(¢) = at and ¢ = bgp(t) for
some 4, b € R. Hence, (1 — ba){ = 0 and so ba = 1 and this implies that b and « are units
in R. (Note that any element of 1 + mg is a unit and hence if the image of a in R is a
unit then a is a unit in R.) So we may assume that ¢’ = ¢(?).

Since a is a two-sided ideal and a = E¢, for every b € E there exists a € E such that
tb = at. This 1mphes that for n > 1 we have a" = E". Moreover, since the rlght multi-
plication by ¢ is injective, multiplication by ¢ induces an isomorphism E/a = a'/a".
Since the multiplication by ¢(#) is injective in R, multiplication by ¢(#)" induces an
isomorphism R/¢(a) = ¢(a)"/@(a)"*'. Hence, ¢ induces an isomorphism a"/ ! =
p(a)"/p(a)"!, for all n> 1. Thus an isomorphism E/a" = R/p(a)" for all n. Passing
to the limit we get EXR. 0J

Now V(S) is a 1-dimensional k-representation of Gg ,, the absolute Galois group
of Q,. Let 2 be the category of local finite artinian augmented (possibly non-commu-
tative) O-algebras defined in Definition 3.19 and let Defv(s) : A — Sets be the functor,
such that Defy (A) is the set of isomorphism classes of deformations of V(S) to A, see
Definition 3.21. Lemma 3.32 says that the functor Defyg) : 20 — Sets is pro-represented
(in the sense of Theorem 3.26) by the ring O[[G]]” = Endoyg;(O[1G]]), where G :=
Gg,(p) is the maximal pro-p quotient of QQ , and O[[G]] is the universal deformation.

It follows from Corollary 5.52 that V induces a natural transformation V : Defy —
Defys,. Since Defs is pro-represented by E by Theorem 3.26 we deduce from Yoneda’s
Lemma in this non-commutative context, see Lemma 3.30, that the natural transforma-
tion of functors is induced by

vy OlIG]” — E,

where the morphism @y i1s uniquely determined up to conjugation by E*. Since by a
result of Colmez, [23, VII.4.15], we know that V induces an injection

Exty,, (S, 8) = Extg, (V(9), V(9)),

we deduce via Lemma 3.29 and the proof of Proposition 5.56 that ¢y is surjective.
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Remark 9.4. — A note on actions: our groups always act on the left, (g, v) — gv,
hence a representation (p, V) of G gives rise to a left O[[G]]-module, which we may write
down as a homomorphism p : O[[G]] = Endp (V). In our context, it is also natural to
consider p as a right O[[G]]”-module, via the isomorphisms Homeyg, (O[IG]], p) =
p, ¢ = ¢ (1), and O[[G]]” = Endoygy(Ol1G]]). Having made this point we will not
distinguish between left O[[G]]-modules and right O[[G]]”-modules.

Proposition 9.5. — Let M be a finite extension of L and let p : O[[G]] = Endy(W) be a
continuous absolutely irreducible representation of G with dimy W < 2. Then Ker g3, C Ker p.

Proof. — If dim W = 1 then p factors through O[[G]]. Since p > 2, G is a free pro-
p group on 2-generators, [49, 7.5.8]. It follows from (141) that ¢ induces an isomorphism
OlgNN* = E® and we are done.

Suppose that dimW = 2 by base change we may assume that M = L. It follows
from [41, 2.3.8] that there exists an open bounded G-invariant lattice E in a unitary
admissible L-Banach space representation IT of G such that L ®¢o \VI(Ed) =pand 1=
7®2. Since all open bounded lattices are commensurable, L. ® V(Ed) does not depend
on the choice of E. Thus we may choose E so that we have a surjection

Homg o) (ﬁ, Ed) ®: P — 8,

see Proposition 4.18. Corollary 5.55 says that V(P) is a free E-module of rank 1 and
Corollary 5.54 gives us a surjection

Home o) (P, ) 8 V(P) — V(E7).

Choose a basis element of V(P) over E then this gives us an isomorphism of E- modules,
P=E and hence a \ map OlG1] — P compatible with ¢g. (We note that all such choices
differ by a unit of E and in the non-commutative setting ¢y, is uniquely determined up
to conjugation by Ex .) And thus we have a surjection of G-representations

Homg o) (P ‘) ZHome (o) (P E) ®oyge O[161]
— HOHI@(O)( 2') ®r V(P) - V(Hd)

where the first isomorphism is given by ¢ = ¢ ® 1. The G-action on Homg o) (ﬁ, 29 is
given by

(144) g p=g. BN =0¢Be=0¢B(1.9) = (pops(®) B = opy(o).

Since IT = 7%? Lemma 4.15 says that Home o) (’ﬁ, 27) is a free @-module of rank 2, and
hence Homg o) (P, EY) = V(EY). Since V(E?) is a lattice in p we deduce that Ker @y C
Kerp. U
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Corollary 9.6. — Let ¢ : O[[G]] — R be a quotient such that ﬂp Ker p = 0, where the in-
tersection is taken over all continuous representations p : R — Endy (W), where M is a finite extension
of L, dimy W < 2 and (p, W) s absolutely irreducible. Then Ker ¢y, € Ker ¢.

9.2. Cayley-Hamilton quotient. — We will construct a quotient O[[G]] — R, sat-
isfying the conditions of Corollary 9.6, and such that R” satisfies the conditions of
Lemma 9.3. This will imply that E = R”. After twisting we may assume that y; is trivial
and ¢ = ¢!, The ring R will turn out to be isomorphic to RP>1[G]] /], where RP! s a
(commutative) deformation ring parameterizing all 2-dimensional pseudocharacters lift-
ing the trace of the trivial 2-dimensional £-representation of G with determinant equal to
1, see the conditions (o)—(ii1) in Proposition 9.12 below, and J is a closed two-sided ideal
generated by g — T(g)g + 1, for all g € G, where T : G — RP*! is the universal pseu-
docharacter with determinant 1. Using this we will show that for a finite extension M of
L an absolutely irreducible M-representation of Exr can be at most 2-dimensional.

Recall that the maximal pro-p quotient G of Gg , is a free pro-p group generated
by 2 elements, which we denote by y and §. We let

_ Ollt. b, 511®00I[G]]
‘], b

where J 1s a closed two-sided ideal generated by

(145) R:

(146) v =200 +t)y +1, 82 —2(1+16)8 + 1,

(147) (¥8)* —2(1 +1)y8 + 1, (y)* —2(1 + )8y + 1.

Sending x > y — 1, y+> 8 — | induces an isomorphism between O[[G]] and O[[x, y]]™,
the ring of non-commutative formal power series. We denote the images of ¢, &y, &3, x, »
in R by the same letters. We note that the elements ¢, £ and # are central in R.

Substituting ¥ = 1 + x and § = 1 + y in the relations defining the ideal J we get
that the following relations hold in R:

(148) C=2014+x), =20+,

(149) (x+y+x9)° =261+ x4+ + 1), (x4 490> = 263(1 + x +y + yx).

Since 2 is invertible in R, and every a € 1 4 mg is a unit, we get that ¢, &, 13 € m%.
Thus the natural map O[[G]] — R is surjective on tangent spaces and, since both rings
are complete,

(150) Olgn — R
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is surjective and dimmg /(my + @ R) < 2. Let J be the ideal generated by the relations
(148), (149) in the commutative ring O[[¢, &y, #5, x, y]]. Then we have a natural surjection

O[[tlv ZQ’ t37 xv_y]]
- Jab

Since the target is commutative, (151) factors through R” — O[[x, »]]. Since dimmg/
(m% + @1 R) < 2 we obtain R” = O[[x, y]] and dim mR/(mﬁ + o R) =2.

(151) R = O[[x, 1]

Defination 9.7. — Let C be the commutative ring

Ollu, b, 11lar, as, by, by]
(a1 +ay — 24, ayay — 241, by + by — 21y, by1by — 21y)

let m¢ be the maximal ideal of C and let A := (n%( g), P = (2; H?C )

Proposition 9.8. — There exists a continuous representation of G on a_free rank 2 module over
C, which induces a homomorphism of O[[t,, o, t5]]-algebras p : R — A. In particular, tr p(y) =
20+ 0),trp(8) =2(1 + ), tr p(y8) = 2(1 +&5) and det(p(g)) =1, forallg € G.

Proof. — We note that B is a two sided ideal of 2 and 2 is *B-adically complete.

N 4! 1 _ by 0O
(5 0) =)
with b =242t — (1 +a))(1 +b;) — (1 + a)(1 4 by) € m¢. Sending g +— ¢ — | induces
an isomorphism (1 + B /(1 + P = P/P!, where the right hand side is a group
with respect to addition. Since '/ is a finite dimensional O/ O-vector space, we

deduce that 1 4B is a pro-p group. Hence, y = 1 4+« and 6 — | + B induces a group
homomorphism G — 1 + ‘P and hence an algebra homomorphism

Let

By construction of C we have det(1 + o) =det(l + 8) =1, tr(1 + o) =2(1 4+ ¢) and
tr(14+B) =2(1 4+ ). Hence, det((1 + @) (1 + B)) = 1 and a direct calculation shows that
tr((1 +a)(1 + B)) = 2(1 + #;). Hence, (152) factors through p : R — 2. O

Corollary 9.9. — The natural map O[[t, ty, t5]] = R is injective.

Proof- — Since the composition O[[4, &, t3]] = R 5 s injective, where p 1s the
representation constructed in the Proposition 9.8, we obtain the claim. UJ
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Let H be the subgroup of G generated as an abstract group by y and §. There
is a natural length function £ : H — Z., £(h) = min(X:Z.Zl |m;]), where the minimum is
taken over all finite expressions 4= y™§™ ..., with m; € Z. We let

I':={1,y,8,y6,dy}
and given an integer m > 0 we define

S, = {geH:E(g)fm},
and for a subset S of H we define

2 ={ae:a.9.4'2eS}U{s 0 0.0.09 €S}

We note that if 1 € S then by taking g; = | we obtain that X (S) contains S and by taking
2 = 1 we get that £(S) contains S™', the set of inverses of the elements of S.

Lemma 9.10.

(1) Sy € X(X(T));
(i) S, C X(B(X(S,-1))), for m = 3.

Proof. — Since 1 € I', (") will contain TUT' ! and also y2, 8%, 18,8 'y. Thus
all the elements of Sy, except for y8~! and § 7!, are contained in (I") U X(T")~!, which
is a subset of £(X(I")). To finish the proof of (i), we observe that since y, 87!,y 167! €
2(T), Y8 '€ 2(Z(I')) and since 8, y~ 1,87y~ e T(T), sy~ ' € Z(Z(IN)).

Let g = y™é&™ ... be an expression of g such that £(g) = >_._, |m;| > 3. Without
loss of generality we may assume m; # 0. If |m;| > 1 then g € E(Sm:l) as we may take
g =v°% g =y ‘gwheree =m/|m]|,sothatg =g, andgl_lgg € S,-1. Hence, if |mj| > 1
for some j, then g € ¥(X(S,,-)), for we may take (for odd j ) gy = y™ ...8"'y"™ and
g =38"+...and so g = g.g and g 'go € £(S,,_1) by the previous calculation. Thus we
may assume |m;| = 1 for all 7 and since £(g) > 3 this implies m3 # 0. Let g = y™ 8™,
g2 =7y"™..., if m; and mg have the same sign then g '@ € S,_, if not then g 'g =
sTmymTm e B(X(S,-1)). 0

Corollary 9.11. — Let B be a topological ring and let f : G — B be a continuous function
such that

(153) S(&'h) —f@f (W) +f(gh) =0, Vg heg.

Then f s uniquely determined by its values at the elements of I". Moreover, the image of f is contained
in the closure of the subring of B generated by f(g), g € T.
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Progf. — Since f is continuous and H is dense in G, f is uniquely determined by its
restriction to H. Using (153) and Lemma 9.10 we deduce that /|y 1s uniquely determined
by f(g), g € I' and f(H) is contained in the subring of B generated by f(¢), g € I'. Since
H is dense in G, f/(G) is contained in the closure of this ring, ]

Proposition 9.12. — Let T(g) := g+ g~ ' € R then T(g) € O[[t, ty, ts1] for each g € G.
Moreover, T is the unique continuous function T : G — O[[t, to, t3]] such that

(0) T(1)=2;

0)2—T(c%)
i) TSI

(11) T(g/z) T(hg);
(i) T(¢g'h) — T(Q)T(h) + T(gh) =
(i) T(y)=2(1+1), T(3)—2(1+t1) T(yd) =T(Ey)=2(1+15).

—~

Progf. — We note that T : G — R is continuous and satisfies (0), (i) and (iv). Now
(154) T(¢g'h) — T(e)T(h) + T(gh) = h " T(g) — T()h™".

So (i11) holds for all g, # € G such that T(g) is central in R. Since T(g) is central in R
for every g € I', using Lemma 9.10 we deduce that (ii1) holds for every g, 2 € H and
by continuity of T and density of H, we get that (iii) holds. It follows from Lemma 9.9
and (iv) that the closure of the subring of R generated by T(g), g € I is Ol[4, b, t3]].
It follows from Corollary 9.11 that T(g) € O[[#, &, t3]] and is uniquely determined. It
remains to show that T satisfies (i1). Let p : R — 2 be the homomorphism constructed in
Proposition 9.8. Recall that 2l is a subring of the ring of 2 x 2 matrices over a commutative
ring C. Hence for every a € 2 we have

(155) @’ — tr(a)a+ deta =0,

where tr: 2l — C and det: 24 — C are the usual trace and determinant. Since by con-
struction det p(y) = detp(8) = 1 we get that detp(g) =1 for all g € G, and so we may
rewrite (155) to get

(156) p(T(@) =ple) +p@ ' =t(p(e)
and hence p(T(gh) — T(4g)) = 0. The restriction of p to O[[4, t, 13]] is injective and this
implies (ii). U

Corollary 9.13. — Letn : Ggo .= k< andr : Ggo , O* be continuous characters such that
Y =n? (mod pyr). Then the universal deformation ring RPV parameterizing 2-dimensional pseudo-
characters of QQ , lfting 2n with determinant  is isomorphic to Ollx1, X9, x3]1] and the universal
pseudocharacter s equal to the trace of the representation constructed in Proposition 9.8 twisted with

No3
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Proof. — Since ¥ modulo py, is a square and p # 2 there exists a continuous char-
acter ¥, : G, — O such that W} = . Corollary A.3 implies that it is enough to show
that the assertion after replacing Gg , with its maximal pro-p quotient G and this follows
Proposition 9.12. U

Following [10] we introduce an involution * on R, by letting g* := g~', extending
it linearly on O[[#, &y, $3]1[[G]] and observing that J* =].

Lemma 9.14. — O[[t1, by, 3]] ={a € R :a=d"}.

Proof: — Every a € O[[4, ty, t3]] is fixed by * by construction. The map R — R,
ar> ”J’Q‘l* is continuous and maps the subring O[[4, &, ]1[G] + ] into O[[¢4, &y, 3]] by
Proposition 9.12. Since the subring is dense in R, we conclude that the fixed points of *
are contained in O[[4, &, &]]. O

Corollary 9.15. — Let a € R then a + a* and a*a are in O[[ty, by, t3]].

Progf.: — This follows from (ab)* = b*a* and (¢*)* = a and Lemma 9.14. [

Corollary 9.16. — Let p : R — 2 be the representation constructed in Proposition 9.8. Then
(157) pla+a)=u(p@),  p(a‘a) =det(p(a)), VaeR.

Proof. — The function R = A, a > p(a+ a*) — tr(p(a)) is Ol[4, &y, t3]]-linear,
continuous, and zero on G by (156). Hence, it is zero on O[[#, ty, 53]][G] + ] and since it
is dense the function is zero on R. Now ¢> — (¢ 4+ ¢*)a + a*a = 0 in R. Hence,

0=p()*— p(a+a*)p(a) + p(a*a) = p(a)’ — tr(p(0)) p(a) + p(a*a).
Since, p(a)? — tr(p(a)) p(a) + det(p(a)) = 0 in A we get p(a*a) = det p(a). ]
Corollary 9.17. — Let g € G and T as in Proposition 9.12 then g*> — T(g)g+ 1 =0 R.

Proof. — We have T(g) = g+ ¢! = g+ g* and the assertion follows from (157) and
the identity g — (¢ + g")g + g*g = 0. O

To ease the calculations we set
(158) u::X—ﬁ:V—l—tl, U::))—l‘Q:(S—l—l‘Q.

We note that the images of u and v form a £-basis of mg / (mf{ + w1 R) and hence it follows
from (150) that « and v generate R topologically over O. Then (148) reads

(159) =2t —t, V=2 — 1.
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In particular, «* and v* are central in R. Hence,

(160) u(uv — vu) = —(uv — vu)u, v(uv — vu) = —(uv — vu)v.

We also note that substituting 4, = y+§’_l —land t, = 5+§_1 — 1in (158) gives u = V_;_l ,

v= 8‘371 . Hence,

(161) " = —u, v = —v, (wv —vu)* = —(uv —vu), (wv+vu)* = uv +vu.
Lemma 9.18. — Every element a € R maybe writlen as

(162) a= A + Aot + Asv + Ay(uv — vu)

with )"i S O[[tl, 1, ng]].

Proof. — It follows form (150) that  may be written as a formal power series with
coefficients in O in (non-commuting) variables u, v. It follows from (159) that #?, v* €
Oll4, to, t3]] so we only need to deal with monomials of the form (uv)”, (wv)"u, (vu)",
(vu)"v. Lemma 9.14 and (161) give that (uv — vu)?, uv + vu € O[[#, t, #3]] and since
2 is invertible in R, we may substitute uv = w and vy = W) Py
(uv)? = Auv — Avu+ p and (vu)? = Avu— Auv+ p with A, u € O[[4, b, £3]], which leaves
us to deal with wvu and vuv. Since wvu = (wv + vu)u — v’v and vuv = (v + vu)v — v2u
we are done. O

Corollary 9.19. — Let 1" be a finite extension of L and W a finite dimensional 1. -vector space
with continuous R-action T : R ® o L' — Endy, (W). Suppose that the representation W is absolutely
wrreductble, then dimp, W < 2.

Progf- — Since W is absolutely irreducible and finite dimensional over L we
have Endg(W) = L' and thus 7 induces a continuous homomorphism of O-algebras
Oll4, to, t3]] = L. Since W is absolutely irreducible 7 is surjective. It follows from
Lemma 9.18 that (dim;; W)? = dimy; Endyy W = dimy, (7 (R) ®o L) < 4. U

Lemma 9.20. — (uwv — vu)*(uwv — vu) # 0 m R.

Proof: — It follows from (158) that v — vu = 8 — 8y . Using Corollary 9.16 it 1s
enough to show that det(p(yd — dy)) # 0. If we specialize ¢, = & = 0 this means it is
enough to show that the determinant of

G )G -G )6 )= )

is non-zero in O[[#]], which is clear. O
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Lemma 9.21. — Let m be a maximal ideal of C[1/p] and let py, : R — A Q¢ k(M) be
the specialization at wv of the representation p constructed in Proposition 9.8. Then the following are
equivalent:

(1) om is absolutely vrreducible;
(1) pm(uv — vu) is movertible;
(i) (v — vu)(uww — vu)* ¢m.

Proof: — (1) implies (i1). The kernel of py, (uv — vu) is stable under z and v, see (160).
If p (uv — vu) = 0 then the action of G factors throughout its abelian quotient, as y§ —
dy = uv — vu. Since py, 1s absolutely irreducible, this would force the dimension of py
over k (m) to be 1. Since the dimension is 2, we deduce that the kernel of oy, (uv — vu) is
zero, and hence it is invertible.

(i1) implies (1). Suppose that p,, i1s not absolutely irreducible. Then after replacing
k (m) be a finite extension, we may choose a basis such that the matrices of pn(y) and
Pm(8) are both upper-triangular. Since, uv — vu =y 3§ — §y we deduce that py, (uv — vu)
is nilpotent.

(11) 1s equivalent to (ii1). It follows from (157) that the image of (vv — vu) (vv — vu)*
in k (m) 1s equal to the determinant of py, (vv — vu). O

Lemma 9.22. — Let f € O[[xy, - .., x,]] be non-zero then there exists a; € py,, | <i1<n
such that f (ay, . .., a,) # 0.

Proof. — Since O|[x, ..., x,]] is a unique factorisation domain, [46, 20.3], f is di-
visible by only finitely many prime elements. Hence, we may find a, € py, such that x, —a,
does not divide /. Let f; be the image of / in O[[x, ..., x,]1/(x, —a,) = O[[x1, ..., x,-1]].
By construction f; is non-zero and we proceed as before. U

Proposition 9.23. — Let a = Xy + ou+ A3v + Ay (uv — vu) € R with 1; € O[[4, b, 13]]
and not all \; equal to zero. Then there exsts a finite extension L of L and a 2-dimensional 1. -vector
space W, with a continuous action T : R ® o L' — Endy; W such that T s absolutely irreducible and

(a) # 0.

Progf: — Let A = (uwv — vu)*(wv — vu) € R, we note that A is non-zero in R by
Lemma 9.20. Let / € O[[4, &, t3]] be the product of A and non-zero A;’s. By Lemma 9.22
we may find ay, as, a3 € py, such that f(a,, ag, a3) # 0. Let C be the ring defined in Defi-
nition 9.7 and let m be any maximal ideal of C[1/p] containing (¢, — a1, & — ag, t3 — as).
Then the residue field k (m) of m is a finite extension of L. Moreover, the image of / in
Kk (m) is equal to f(a, ay, as) and hence is non-zero. So the image of A in k(m) is non-
zero, and not all A; map to 0 in k(m). Let T = pr, : R®p k(M) = A ¢ k(M) as in
Lemma 9.21. Since the image of A in k¥ (m) is non-zero by construction, Lemma 9.21 im-
plies that T is absolutely irreducible. Thus, 7 is surjective. Since dimy m) A ¢ k(M) = 4,
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we deduce from Lemma 9.18 that 1, t(x), T(v) and t(uv — vu) are linearly indepen-
dent. Hence, t(a) # 0, as k(m) was constructed so that the images of non-zero A; are
non-zero. ]

Corollary 9.24. — The centre of R is equal to O[[ 1, by, t3]].

Progf: — Suppose there exists a non-zero element z in the centre of R such that
7= —z Let (r, W) and L' be as in Proposition 9.23 with 7(z) # 0 then 7(2) is a scalar
matrix in End;; (W). It follows from Corollary 9.16 that tr t(z2) = 7(2* + 2) = 0 and thus
7(z) = 0. We obtain a contradiction. Since 2 is invertible in R, Lemma 9.14 implies that
the centre is contained in O[[#, &, t3]]. The other inclusion holds by construction. O

Corollary 9.25. — R is a free O[[t,, ty, t3]]-module of rank 4.

Proof: — If 0 = Ay + Agu+ Asv + Ay(uv — vu) then it follows from Proposition 9.23
that all A; = 0. The result then follows from Lemma 9.18. ]

Corollary 9.26. — Let a € R and suppose that a(uv — vu) =0 or (wv — vu)a =0 then
a=0.

Proof. — Since (uv — vu)* = —(uv — vu) (uv — vu)* is in O[[1, t, 3]] and is non-zero
by Lemma 9.20, the assertion follows from Corollary 9.25. 0J

Corollary 9.27. — EZR”. In particular, the functor V induces an equivalence of categories
between €(O)® and the category of compact R”-modules.

Progf. — Proposition 9.23 says that ¢ : O[[G]] — R satisfies the conditions of
Corollary 9.6 and thus we have Ker ¢y, € Ker¢ and hence a surjection E — R”. Corol-
lary 9.26 implies that R” satisfies the conditions of Lemma 9.3 with ¢ = uv — vu, hence
the surjection is an isomorphism. The last assertion follows from Proposition 5.45. [

Corollary 9.28. — Let Z be the centre of R, let 0 be a maximal ideal of Z[1/p] with residue
Sield k (n) and let Ty : G — k(0) be the specialization at w of the universal pseudocharacter T, see
Proposition 9.12. If the image of (uv — vu)(uv — vu)* n k (n) s non-zero then R @ z k (n) s a
central simple k (n)-algebra of dimension 4. Moreover, R @ z k (n) s a matrix algebra over k (n) if
and only if Ty is the trace of a 2-dimensional representation of G defined over k (n).

Progf.: — It follows from Corollary 9.25 that R ® z k(n) is a 4-dimensional x(n)
algebra. Let m be any maximal ideal of C[1/p] containing n and let k (m) be its residue
field. The representation py, 1s absolutely irreducible, as part (ii1) of Lemma 9.21 is sat-
isfied. Hence, R ® z Kk (m) = My(k(m)) the algebra of 2 x 2 matrices over k(n). Thus
the centre of R ®z k(n) is a one dimensional «k (n)-vector space, which implies that
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R ®z k(n) is a central simple «(n)-algebra. If R ® z k(n) = My(k(n)) then letting
be the standard module, we obtain that T @, ) K (m) = p,, and hence trtv = tr p,, =T,
by Proposition 9.8. Conversely, if there exists a representation 7 : G — GLy(k (1)) such
that trt =T, then trv = trp, and so 7 is absolutely irreducible and the surjection
R — End, ) (7) factors through R ® z k(n) and is then an isomorphism, since both the
source and the target are 4-dimensional. OJ

Corollary 9.29. — Let Z be the centre of R, let w be a maximal ideal of Z[1/p] with residue
field k (w) and let Ty, : G — k(0) be the specialization at w of the universal pseudocharacter ‘T, see
Proposition 9.12. If the image of (uv — vu) (wv — vu)* in k (1) s non-zero then the w-adic completion
of R[1/p] s an Azumaya algebra of rank 4 over the w-adic completion of Z[1/p]. Moreover, it is
a matrix algebra over the w-adic completion of Z if and only if U s the trace of a 2-dimensional,
absolutely irreducible representation of G defined over k (n).

Progf: — It follows from Corollaries 9.24, 9.25 that the n-adic completion of R
is a free, rank 4 module over the n-adic completion of Z. The assertion follows from
Corollary 9.28 and the idempotent lifting Lemma. 0J

Corollary 9.30. — Let Z be the centre of R and let w be a maximal ideal of Z[1/p). If
the tmage of (uv — vu)(uv — vw)* mn Z[1/pl/n is zero then R[1/p]/mR[1/p] has at most 2
non-isomorphic irreducible modules.

Proof. — Let Ry :=R[1/p]/nR[1/p]l, L' := Z[1/p]/n and let  be the image of uv —
vuin R;. Let V be an irreducible right R;-module. It follows from (160) that V6 is an R -
submodule of V. Since the image of (uv — vu)? = —(uv — vu) (wv — vu)* in L is zero, we
deduce that * = 0 and since V is irreducible we get VO = 0. Thus Homg, (R, /R0, V) #
0 and it is enough to show that dimy; R, /R0 < 2. It follows from Corollary 9.25 that
R, is a 4-dimensional L. vector space. Let my : Ry — Ry, a+> af, then dim Kerm, +
dimImmy = 4 and since % = 0 we have dimImmy < dimKermy. Thus dim;; R,/

R,0 <2. 0J
9.3. The centre and Banach space representations.

Theorem 9.31. — Let T1 be a unitary absolutely irreducible admissible 1.-Banach space rep-
resentation with the central character ¢ . Suppose that the reduction of some open bounded G-invariant
lattice in T1 contains v as a subquotient then I1 C w @ 7.

Progf: — By Proposition 4.18 we may choose an open bounded G-invariant lattice
& in IT such that the natural map Homg ) (P, §d) P — B s surjective. It follows
from Corollaries 9.25 and 9.27 that the centre of E is noetherian and E is a finite module

over its centre. Hence E ®o £ 1s of finite length by Corollary 4.41 and Homg ) (ﬁ, 29,
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1s finite dimensional over L. Since the block of 7 consists only of 7 itself we deduce that
n=((8'®ck)") =n®",

where m is equal to the dimension of Homg o, (ﬁ, %1, by Lemma 4.15. Since IT is ab-
solutely irreducible, Homg ) (P, 8%, is an absolutely irreducible right E-module by
Proposition 4.42. Since E = R” we deduce from Corollary 9.19 that the dimension of
HOI’HQ((’)) (ﬁ, Ed)L 1s at most 2. ]

Corollary 9.32. — Let T1 be as in Theorem 9.31 and suppose that T1 = 7 then TI =
(Indg V) cone_for some continuous unitary character  :'T' — L lfting x and satisfying |z = ¢

Proof. — Let E be as in the proof of Theorem 9.31. Since IT = 7 we deduce from
Lemma 4.15 that Homg o (P %) is a free O-module of rank 1. Hence the action of E
on it factors through the action of E®. In particular, the element ¢ € E defined in (142)
kills Home (o) (P, ), and hence it follows from (142) that we have an isomorphism
Homg o) (M = Homg o) (P 4). The assertion follows from Proposition 7.11. [

Let x1 : Q) — &* be a continuous character. Recall that the block %8 of

= Indy x; ® x10~! consists of only one isomorphism class, Proposition 5.42. So
M dlﬁn (O)2 is the full subcategory of N[odlfln (O) consisting of representations with
every 1rreduc1ble subquotient isomorphic to 7. Let RP*¢ be the universal deformation
ring parameterizing 2-dimensional pseudocharacters of Gg , with determinant ¢¢ lifting
x :=2x andlet T : Ggo , R‘;(S’“ be the universal deformation of .

Corollary 9.33. — The category Modlﬁn (O)® is anti-equivalent to tke category of right
compact RE* ““[[Gq,11/]-modules, where] is a closed two-sided ideal generated by g* —'T(g)g+ € (9)

Jorall g € ng(p).

Progf. — By twisting we may assume that x, is trivial and ¢ = &, see the proof of

Corollary 9.13. We have shown in Corollary 9.13 that T factors through G, the maximal
pro-p quotient of Gg ,. Corollary A.4 says that R';’(S’“[[QQ RINE R';’(S’g *[[G11/], where the
ideal J' is a closed two-sided ideal of Rg’j’“[[g]] defined by the same relations. It follows
from Proposition 9.12 and Corollary 9.17 that Rg“[[g]] /)’ 1is the ring R considered
above. The assertion follows from Corollaries 9.24, 9.27 and Proposition 5.45. We also
note that the involution * induces an isomorphism between R and R?, so the category
of right compact R is equivalent to the category of left compact R-modules. O

Corollary 9.34. — The centre of the category Modladm(O)% is naturally isomorphic to RP*¢°.

Progf: — Corollary 9.28, Corollary 9.13, Proposition 5.45. UJ
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Let Bangi’;(L)% be as in Proposition 5.36 and let Banadmﬂ(L)% be the full subcat-
egory con51st1ng of objects of finite length. Let IT be in Banadmﬂ(L)% and let m(II) :=
Homg o) (P 0% ®o L, where O is an open bounded G-invariant lattice in IT. It follows
from Proposition 4.20 that m(IT) is a finite dimensional L-vector space with continuous
E-action. Let n be a maximal ideal in Rps *C[1/p], recall that Ban ‘dmﬁ(L)% is the full
subcategory of Banadmﬂ(L)% consisting of those IT such that m(IT) is killed by a power
of n.

Corollary 9.35. — We have an equivalence of categories

Banadm ﬂ(L)‘B ~ @ Banadm ﬂ(L)%

neMaxSpec RE"°[1/]

The category Banadm L)® is anti-equivalent to the category of modules of finite length of the n-adic
completion of (RG> “[[QQP]]/J )1/l

Proof. — Apply Theorem 4.36 with €(0) = €(0)®. O

Corollary 9.36. — Suppose that the pseudo-character corresponding to a maximal ideal w of
Rps’{ [1/p] is the trace of an absolutely irreducible representation of Gg , defined over the residue field
of n then the category Banadm YL)® is anti-equivalent to the category of modules of finite length of the
n-adic completion of RY> & [1 /pl. In particular, it contains only one irreducible object.

Progf: — Corollaries 9.29 and 9.35. The last assertion follows from the fact that the
only irreducible module is Rgs*“[l /pl/n. O

Let n be a maximal ideal of Rl;s’“[l /pl with residue field L, let T, : QQ_P — L
be the pseudocharacter corresponding to n and let Irr(n) denote the set (of equivalence
classes of) irreducible objects in Banadm (L)2.

Corollary 9.37. — If Ty = Yy + Yy with Y1, ¥y : Gg, — L™ continuous homomorphisms
then

Irr(n) = {(Indy 1 ® Yoe ™), (Indy Yo @ e ™)}

cont’

Progf. — Let Z be the centre of E. We may identify E with R and Z with
RP=¢¢. Corollary 9.13 says that the universal pseudocharacter is equal to the trace of
the representation constructed in the proof of Lemma 9.9. In particular, if the im-
age of (wv — vu)(uwv — vu)* in Z[1/p]/n is non-zero, then T, is the trace of an abso-
lutely irreducible 2-dimensional representation, see the proof of Proposition 9.23. Since
Ty = ¥ + ¥ we deduce that the image of (uv — vu)(uv — vw)* in Z[1/p]/n is zero.



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 123

Corollary 9.33 implies that for every N in €(0), \V/'(N) is killed by g* — T(g)g + €¢ (9), for
all g € Gg,. Since

V(Ind§ v @ e ), ) = v V(Ind§ @ i), ) = v

both Banach space representations lie in Irr(n). If ¥, # ¥, then the representations are
non-isomorphic and we are done, since Corollary 9.30 says that Banﬁf‘?'ﬁ (L)® has at most
2 irreducible objects. Suppose that ¥, = ¥y and Irr(n) contains an irreducible object
Iz (Indlcf Y1 @ Y167 . Then it follows from the proof of Corollary 9.30 that m(IT)
is one dimensional. By Corollary 9.32, IT is isomorphic to the parabolic induction of a
unitary character, and thus must be contained in one of the components that we have

handled already. Hence, if ¥, = ¥, then |Irr(n)| = 1. ([l

10. Non-generic case II

In this section we deal with the case, where in Colmez’s terminology the atome
automorphe consists of three distinct irreducible representations. We assume throughout
this section that p > 5. After twisting we may assume that our fixed central character is
trivial and the block B consists of 1, Sp and 7, := Indg a. The formalism developed in
Section 3 does not work in the category €(0)®. However, Colmez’s functor kills off all the
representations on which SLy(Q ,) acts trivially and so it is natural to work in the quotient
category. We show in Section 10.3 that the category of compact O-modules with the
trivial G-action is a thick subcategory of €(0)® and the formalism of Section 3 applies in
the quotient category Q(0)® to a projective envelope P,y of /. Using Proposition 5.56
we show that V induces a surjection ¢ : E:= End¢ o) (ﬁ,oy) —» Rg, where p is the non-
split extension 0 - 1 — p — @ — 0 and RZ is the universal deformation ring of p with
a fixed determinant. The proof requires all kinds of Ext calculations, which are carried
out in Sections 10.1, 10.2. (We suggest to skip them on first reading,)

The second difficulty is that Rg is not formally smooth and hence we cannot use
the same argument as in the generic case. The functor Ind$ Ords is left exact and we
have a natural transformation to the identity functor. This induces a functorial filtration
on every object of Modléiin(@) and dually on every object of €(0)® and by functoriality
on E. In Section 10.4 we compare this filtration to the filtration on Rg induced by powers
of the ideal defined by the intersection of Rﬁ and the reducible locus in Rﬁ[l /pl. We show

in Theorem 10.71 that ¢ is an isomorphism and ‘v’(i,av) is the universal deformation of
p with the fixed determinant. In order to do this we need a good knowledge of the ring
Rg. This is provided by the Appendix B using results of Bockle [9].

In Section 10.5 we compute the endomorphism ring of’ Ev ) ﬁspv @ ﬁﬂl and show
that its centre is naturally isomorphic to RZ and it is a finitely generated module over its
centre. As a consequence we may describe €(0)® as a module category over an explicit
ring.
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In Section 10.6 we apply the theory of Section 4 to describe the category of admis-
sible unitary L.-Banach space representations of G of finite length whose reduction mod
@ lies in Mod " (k)™

If m and T are smooth £-representations of G on which Z acts trivially, in order to
simplify the notation we will write:

e,/ (0, T) = dim; Ext, , (7, 7).

If it is clear from the context that we are working with G-representations, then we will
drop the index G/Z and write ¢ (7, T) instead. Similarly, if 7 and T are representations
of T on which Z acts trivially, we will let ¢, (77, T) := dimy Ext/, (7, 7).

We assume all the way till Section 10.6 that our fixed central character ¢ is trivial.
This is harmless since we may always twist to achieve this, see Lemma 10.103. We recall
that the representation 7 (0, 1), defined in (67), is the unique non-split extension of Sp by
1 with 2-dimensional I;-invariants.

10.1. Higher Ext-groups. — The dimensions of Extg, sz groups between irreducible
representations in the block of the trivial representation, are given by:

(163) (1, 1)=0, Sp. D=1, (Indje,1)=1,
(164) ¢'(1,Sp)=2,  (Sp,Sp)=0,  ¢'(Indj e, Sp) =0,
(165) ¢'(1,Indy @) =0, ¢ (Sp,Indja)=1, ¢ (Indy e, Indja)=2,

see Theorems 11.4 and 11.5(i1) in [56]. We are going to determine the dimensions of
higher Ext-groups. It is shown in [31, 4.1.3] that

(166) Ordp1=0, R'Ordpl=0a"",

(167) OrdpSp=1, R'OrdpSp=0.

It follows directly from (123), (124) and (166) that

(168) ¢z (Indy 1,1) =0, >0

and from (123), (124), (167) and Corollary 3.35 that

(169) e (Indy 1, Sp) = ¢;,(1, 1) =2, ¢,z (Indy 1, Sp) = ¢} ,(1,1) = 1
and ¢/(Ind$ 1, Sp) = 0 for i > 3.

Proposition 10.1. — R'Z(1) = I(Indg’a), R*Z(1) = I(Indg’oz), R*Z(1) =Z(1)
and RZ(1) =0 fori > 4.
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Proof. — The first assertion is given by [56, 11.2]. Since I, /Z, is a Poincaré group
of dimension 3, see the proof of Corollary 5.23, H*(I,/Z,, 1) is one dimensional and
H(I1,/Z,,1) =0 for i > 4. We deduce that R*’Z(1) = Z(7 ® ), where 1 =1 or 7 =
Sp and p : G — £* is a smooth character, since all the 1-dimensional modules of the
Hecke algebra H are of this form. It follows from Proposition 5.26 that Ext, ;72T ®
w, 1) # 0. Hence, m @ w 1s in the block of 1 and so w is trivial. If w = Sp then the same
argument implies Ext, /Z(Indg 1, 1) # 0, thus contradicting (168). It follows from (123),
(124) and (166) that ¢ (Ind§ o, 1) = 0 for i > 4 and

(170) ¢ (Indy o, 1) =1, ¢(Indy o, 1) = 2.

Since R'Z(1) = I(Indg a), Lemma 5.27 (i) implies that Ext;{(I(Indg a), R'Z(1)) is one
dimensional. Proposition 5.26 and (170) imply that Homg(Z (Ind$ «), R?Z(1)) is non-
zero. Since I, /7, 1s a Poincaré group of dimension 3 we have

dimH*(I,/Z,,1) =dimH'(1,/Z,, 1) = 2.
AsT (Indg’ ) is irreducible and 2-dimensional we obtain R?Z(1) =7 (Indg’ o). O

Corollary 10.2. — For i > 2, ¢(1,1) = 0 and ¢ (Sp, 1) = 0, except ¢*(1,1) = 1 and
¢ (Sp, 1) = 1.

Progf: — The only non-zero Ext}, groups for i > 1 between Z(1) and Z(Sp) are
Exty,(Z(1), Z(Sp)) and Ext;,(Z(Sp), Z(1)), see Lemmas 5.24 and 5.27, which are 1-di-
mensional. The assertion follows from Proposition 10.1 and Proposition 5.26. 0

Lemma 10.3. — Let x : T — k* be a smooth character, then H*(1, /7., Indg’ X) s 2-di-
mensional and H' (1, /Z., Ind}(:’ x) =0, fori>3.

Progf: — By restricting to I; we obtain
(171) (Ind§ x)Iy, = Ind;'p 1 @ Ind;’ p 1.
Shapiro’s lemma gives
(172) H'(I;/Zy, Indy x) =H (I, NP)/Z;, 1) @ H' (L N P*)/Z,, 1).

Since (I,NP)/Z, = (I,NP*) /2, =Z, X Z, is a compact torsion-free p-adic analytic group
of dimension 2, the assertion follows from [45, V.2.5.8] and [62]. 0

Corollary 10.4. — Let x : T — k* be a smooth character; then R*T (Indg’ X) is a2-
dimensional k-vector space and R'T (Indg x) =0, fori>3.

Proof. — Lemma 5.22 provides a natural isomorphism of £-vector spaces between
H'{d,/Z,, Indg x) and R'Z (Indg’ x) and the assertion follows from Lemma 10.3. [
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Proposition 10.5. — R'Z(Sp) = I(Indg 1), R*Z(Sp) = Z(1) and RZ(Sp) = 0 for

1> 3.

Proof. — Proposition 11.2 of [56] says that the natural maps induce isomorphisms
R!'Z(Indj 1) =R'Z(1) @ R'Z(Sp) and R'Z(Sp) = Z(Ind{ 1). Hence, applying Z to the
exact sequence 0 — 1 — Ind 1 — Sp — 0, and observing that R*(Ind{ 1) vanishes by
Corollary 10.4, we get

(173) R’Z(1) — R’Z(Ind}; 1) — R*Z(Sp) - R’Z(1).

The first arrow in (173) is a surjection, since both the source and the target are 2-dimen-
sional, see Proposition 10.1 and Corollary 10.4 respectively. This implies the last arrow
is an isomorphism. Further, we deduce from Corollary 10.4 and Proposition 10.1 that

RZ(Sp) =R Z(1)=0fori> 3. O
Proposition 10.6. — Let U be in Modl{‘f; (k) then for all 1 > O we have an exact sequence
(174) Extg, , (Sp. Indj U) < Extg, , (Indy 1, Indy U) — Extg, , (1, Ind U).

Proof. — Recall that by Corollary 5.17 it does not matter whether we compute the
Ext groups in Mody}), (k) or in Mod{(; (k). If V is in Mod), (k) then

(175) Ext,, (V. Indy U) = Ext},, (V, U),

see [31, 4.2.1]. Since the sequence 0 — 1 — Indy 1 — Sp — 0 splits, when restricted to
P, we obtain the result. O

Corollary 10.7. — Let k be in Mod';" (k) such that Homy(x, k) = 0 for all x €
Irry)z(k), x # Lv. Then ¢ (Sp, IndSK) = 0 and Extg (1, Ind(;/c) = Exty,, (1, &) for all
i>0.

Progf: — Suppose that ¥k =] is injective in Modlif;irzn(k). Then it follows from (123)
and (124) that Ext{, /Z(Indg’ 1,Indy J) = 0 for all i > 1. Proposition 10.6 implies that
IndIC,’ J is acyclic for Homg,7 (1, *) and Homg,z(Sp, *). Moreover, since R' Ordp Sp =0,
the U-coinvariants Sp, are zero by [31, 3.6.2]. Hence, Homg(Sp, Indy ]) = 0 and
Homg (1, Indgj) = Homr(11,]).

In general, let k < J* be an injective resolution of k in Modlqﬁ?;f(k). Since the
block of 11 contains only 17 itself, see Corollary 3.35, we may assume that for each
¢ > 1 all Homy(x,]J) =0 forall x € Irryz(k), x # 17. By inducing we obtain a resolu-
tion Indy & < Ind$ J* by acyclic objects for functors Homg (1, %), Homg(Sp, ). Since
Hom¢ (Sp, Indl(:’ J) =0 and Homg(1, Indl(:’ J) = Hom<(1,]’) we obtain the assertion. [J
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Corollary 10.8. — Let k be in Mod}ﬁjl?(k) such that Homy(x,k) = 0 for all x €
Irryz(K), x # a, then ¢'(1, Ind}(,;/c) =0 forall 1> 0.

Proof. — Frobenius reciprocity and the assumption on « imply the assertion for
¢ = 0. It 1s enough to show the assertion when k is injective in Mod,lfjf(k), since then
we may deduce the general case as in the proof of Corollary 10.7. Suppose that k =] is
injective, it follows from Proposition 10.6 and Lemma 7.4 that Ext’ vanishes for i > 2. It is
enough to show the statement for : = 1. We know that Exté/z(l, Ind$ &) =0, [56, 11.5].
Hence, if U is any representation of finite length with irreducible subquotients isomorphic
to Indy & then Extg, z(1,U) = 0. Since Ind{ J is a union of subobjects of finite length with

the irreducible subquotients isomorphic to Ind§ o we deduce the assertion. 0J

Corollary 10.9. — We have Extg/z(l, Indy ) = 0 for all i > 0. Moreover,
(176) eé/Z(Sp, Indy 04) =2, eé/Z(Sp, Indy oz) =1,
and eg/Z(Sp, Ind§ @) =0 for i > 4.

Proof. — The first assertion follows from Corollary 10.8. It follows from Proposi-
tion 10.6 that Extg; ,,(Sp, Indy &) = Extg, ,, (Indy 1, Indy @), for all i > 0. The last asser-
tion follows from (122). O

Corollary 10.10. — R'Z(r,) = I(7,) ® Z(7(0, 1)), R*Z(7,) = Z(w(0, 1)),
R'Z(m,) =0 fori > 3.

Proof. — The first assertion is [20, Thm. 7.16]. Since Exté/Z(Sp, Ind$ &) # 0 by
Corollary 10.9 and R*Z(Indy &) = 0 by Corollary 10.4, Proposition 5.26 implies that
Ext;i(I (Sp), R°Z (Indg a)) # 0. If M is irreducible then Ext;i(l' (Sp), M) # 0 implies
that M = Z(1), see [56, 11.3]. Thus Z(1) is an irreducible subquotient of R*Z (Indg o).
Since Exté /Z(l, Indg a) =0, it follows from Proposition 5.26 that Z(1) cannot be a sub-
module of R*Z (Indg o). If M is irreducible then Ext;{ (Z(1), M) # 0 implies that M =
Z(Sp), [56, 11.3]. Since by Corollary 10.4 the underlying vector space of R?Z(Indy @) is
2-dimensional, we deduce that there exists a non-split sequence:

(177) 0— Z(Sp) — R’Z(Indy a) — Z(1) — 0.

Now Ext;{ (Z(1),Z(Sp)) is one dimensional, [56, 11.3], and the only non-split extension
is obtained by applying Z to (67). O
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We record below the dimensions of ExtiG /z(, T), where 7, 7w are 1, Sp or Indg o.
All the other Ext-groups vanish.

=1 T=35p ‘L’:Indg’a

i 1234 4 123 i 123
1 0010 1 220 1 000
Sp 1001 Sp 001 Sp 121
Indfo 1210 Indfe 000 Indfa 210

Using the table one can construct minimal injective resolutions of 1, Sp and Indy a:

Remark 10.11. — Let k be an object ofModléc/lg1 (k) and ¢ : socg kK < J an injective
envelope of socg k In Modlé‘};l(/c). Since ] is injective there exists ¢ : k — J such that
the composition socg k — k — J 1s equal to ¢. Since ¢ is an injection, we deduce that

soce Ker¢ = 0 and since Ker ¢ is an object of 1\/Iodl(3f/h%1 (k), we deduce that ¢ is injective.

Since ¢ 1s essential, so is ¢ and hence for every irreducible object 7w of Modlé‘}?(k) we
have Homg,7 (7, k) = Homg,z (7, ]) and thus Homg,z (7, J/k) = Ext(l}/z(n, k). Hence,
if we know the dimensions of Ext,, sz (7, k) for all irreducible 7 then we may determine
soci(J/x) and thus construct the next step in the injective resolution. This way we obtain
an injective resolution k¥ < J* such that for all irreducible 7 in Modléc/l%l(k) the complex
Homg (7, J*) has zero differentials. In particular, Extg 1z (7, k) = Homg (7, ]") for all i >
0. Since in a locally finite category every injective object is determined by its socle up
to isomorphism, the knowledge of Ext, /27, k) for all irreducible 7 determines J up
to 1somorphism. It should be pointed out that these kind of arguments are standard in
commutative algebra, see for example [46, Thm. 18.5].

Using the table and Remark 10.11 we get:

(178) 0—>1—J1—Js, ®Jr, —>J5'ff = Jry ®J1 = Jsp = 0,
(179) 0— Sp—Jsp — ] - ]9 — Jsp — 0,
(180) 0= 7y = Ju, > Jsp @ ?Zf —Ué‘f ®Jr, > Jsp =0

where 7, = Ind$ o and J,, denotes an injective envelope of 7.

10.2. Preparation. — Since ¢' (1, Sp) = 2 there exists a unique smooth k-representa-
tion 7, of G/Z such that Homg (1, 7;) = 0 and we have an exact sequence:

(181) 0—-Sp—=>11—->181-0.
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Applying Ordp to (181) and using (166), (167) we get
(182) Ordp7) ZOrdpSp=1,  R'Ordpr = (R' Ordp1)™ = ().
Lemma 10.12. —¢'(1, 7)) =0, ¢'(Sp, 1) = 2, el(Ind?oz, ) =2.

Progf. — Since ¢'(1,1) = 0, we get the first claim by applying Homg (1, *)
to (181). From (182) and the 5-term sequence for Ordp, see (123), we get that

(183) Extg,, (Indy 1, 71) = Ext} , (1, 1),

(184) Ext},, (Ind§ @, 7;) = Homyyy (a7, (@) ™)

are both 2-dimensional. Since ¢'(1, ;) = 0, by applying Homg 7 (%, 7)) to the exact se-
quence 0 — 1 — Indi1 — Sp — 0 we deduce that Extg 2(Sp, 1) =
Extg,, (Indy 1, 7). O

Proposition 10.13. — Z(t)) = Z(7(0,1)), R'Z(r)) = Z(Sp) & I(Indf,’oe)@Q,
R’Z(1) =Z(1) ® Z(Indy a)®2.

Proof. — We apply Z to (181). Suppose that the connecting homomorphism
9 : Z(1)® — R!Z(Sp) is zero. Then we would have an exact sequence of H-modules
0 — Z(Sp) —» Z(1)) - Z(1)® — 0. Since Ext;{(I(l),I(Sp)) =1 by [56, 11.3], we
would obtain Homg(1, 71) = Homy(Z(1), Z(t;)) # 0 contradicting the construction of
71. Hence, 9 is non-zero. Since R'Z(Sp) = I(Indlg’ 1) by Proposition 10.5, the image
of 9 is 1-dimensional. Hence, we obtain a non-split extension 0 — Z(Sp) — Z(1;) —
Z(1) — 0. Since the only non-split extension between Z(Sp) and Z (1) is realized by ap-
plying Z to (67) we deduce that Z(t,) = Z (7 (0, 1)). The cokernel of 9 is isomorphic to
Z(Sp). Hence, we obtain an exact sequence

(185) 0— Z(Sp) — R'Z(1)) — R'Z(1)*2.

As e!(Indy o, 7)) = 2 by Lemma 10.12 and Ext},(Z(Indy @), Z(t,)) = 0 by Lemma 5.27,
Proposition 5.26 implies that dim Homy (I(Indg’ a),R'Z(1))) = 2. Since RIZ(1) =
Z(Ind§ a) by Proposition 10.1, we deduce that the last arrow in (185) is surjective. Since
Ext;{(I(Indga), Z(Sp)) = 0 by Lemma 5.27, we get R'Z(7,) = Z(Sp) ® I(Indg’ a)®?.
As R*Z(Sp) = 0 by Proposition 10.5, we have an exact sequence:

(186) 0 — R*Z(Sp) — R*Z(1)) — R Z(1)®* — 0.

Propositions 10.5 and 10.1 give R*Z(Sp) = Z(1) and R*Z(1) = Z(Ind}c,' o). Lemma 5.27
mmplies that the sequence (186) is split. This gives the last assertion. UJ
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Since ¢'(1, Indg’ a) =0 for : > 0, Corollary 10.9, by applying Homg (x, Indl(,}oz)
to (181), we deduce that Extg; (11, Indy &) = Ext;, ,(Sp, Indy @) for all i > 0. In par-
ticular, ¢' (1, Indl(;’ a) = 1 and hence there exists a unique smooth k-representation 7, of
G/Z such that Hom¢ (Sp, 19) = 0 and there exists an exact sequence:

(187) 0 — Indj & — 79 — 7, — 0.
Lemma 10.14. — Ordp o =o', R1Ordp o Ea ' P

Progf: — We apply Ordp to (187). Since Hom¢(Sp, 72) = Homg (1, 79) = 0 we
have Homt(1, Ordp 7o) = HomG(Indg’ 1,7) = 0. Since Ordpt; = 1 and there are
no extensions between «~' and 1, we deduce that the connecting homomorphism
9 :Ordp7, — R! Ordp(Indg’ a) 1is injective. Since both the source and the target are 1-

dimensional we deduce that 9 is an isomorphism. Hence, Ordp 79 = Ordp(Indg’ o) and
I{l OI‘dP Ty = I{l Ordp T1. ]

Corollary 10.15. — ei(Indg’ 1,79) =0, fori:>0.

Proof. — Lemma 10.14, (123). 0J

Lemma 10.16. — ¢' (1, 15) = 0, ¢' (Sp, 72) = ¢*(Sp, T2) = 0, el(Indg’a, Ty) < 4.

Proof. — Since e'(1, Indg’a) =¢'(1, 7;) = 0 we deduce that ¢'(1, 7o) = 0. By ap-
plying Homg,z(*, 75) to the exact sequence 0 — 1 — Indj 1 — Sp — 0 and using
Corollary 10.15 we obtain EthG/Z(l, Ty) = Extgr/lz(Sp, 7y) for i > 0. Hence, €' (Sp, 7o) =
¢*(Sp, T2) = 0. Since el(Indg’ o, Indg a)=-¢ (Indg o, T;) = 2 the last assertion follows af-
ter applying Homg, 7 (Indj @, ) to (187). UJ

For a smooth character x : T/Z — £ we denote by J, its injective envelope in

Modlff%f‘ (k). We note that uniqueness of injective envelopes implies that (J, )’ = J,+ and

Jx =J1® x. Let Ji,, Jsp and J5, be injective envelopes of the trivial representation, Sp

and m, := Indg o in Modl("f/l;l (k), respectively.

Proposition 10.17. — There exist exact sequences:

(188) 0 — Ind J1, = Ji, — Jn, — O,

(189) 0 — Indy Jo = Ju = Jsp = O,

(190) 0— (Indg Ji,)/16 = Jsp = Jor.
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Proof. — The injections in (188) and (189) follow from Proposition 7.1. Lemma 7.4
gives ei(Indg’ 1, Indgjl) =0 for ¢ > 1. Proposition 10.6 gives é(l1, Indg’_]l) =0 and
¢ (Sp, Indg’Jl) =0 for i > 1. Lemma 7.4 implies that ¢' (Indl(f o, Indg’JI) =1, and
¢(Ind§ a, Ind§ J;) = 0 for all ¢ > 2. This gives (188), see Remark 10.11. Similarly we
obtain (189), noting that ¢ (1, Ind$ J,,) = 0 for all i > 0, see Corollary 10.8.

Applying Homg,7(1, *) to the exact sequence:

(191) 0—1c—IndiJ; >« — 0

we get ¢/(1,k) =0 for i =0 and ¢ = 1. (Here we are using the fact that ¢'(1,1) =
A(1,1)=¢'(1, Indl(,}Jl) =0.)Ase'(Sp, 1) = 1 and ¢'(Sp, Indgjl) =¢*(Sp, 1) = 0 we get
dim Homg,7(Sp, k) = 1 and ExtlG /7 (Sp, k) = 0. Since all the irreducible subquotients of

Indl(;’ J1 are either 15 or Sp we have Homg,,, (Indg’a, k) = 0. Moreover, ¢' (Indg’ a,1l) =
¢/(Indj o, Ind;Jy) = 1, &(Indje,Ind;J;) = 0 and thus Extg, (Indy k) =
Ext}, /7 (Indy @, 1) is 2-dimensional. Hence, we deduce the existence of (190). O

Let
(192) 0->1-«xk—>m,—0

be a non-split extension. Since Ext(l; /7 (4, 1) is one dimensional « is uniquely determined
up to isomorphism. Applying Ordp to (192) we obtain:

(193) Ordpk =0, R'Ordpx =ZR'Ordprr, =1.
It follows from (123) that
(194) ¢ (e, k) =0, ¢'(Indy1,6)=1.
Lemma 10.18. — ¢' (i, k) = 0, ¢! (Sp, k) = 2, ¢' (k, Sp) = 2.

Proof. — The first assertion follows since ¢' (1, 1) =0, ' (1, ,) = 0 thus ¢! (1, k) =
0 and ' (74, k) = 0 by (194). For the second apply Homg,z(*, k) to 0 — 1 — Indy 1 —
Sp — 0 and use (194). Since ¢' (7., Sp) = ¢* (7, Sp) = 0 we have ¢' («, Sp) = ¢' (1, Sp) =
2. O

Lemma10.19. — Let  in Mody), (k) be such that socg B = Sp and the semisimplification
is isomorphic to Sp ®1 @ 7, then ¢' (B, B) < 3.

Proof: — Since €' (74, Sp) = ¢*(1,, Sp) = 0 there exists an exact sequence 0 —
Sp — B — k — 0. Since ¢'(Sp, Sp) = ¢*(Sp, Sp) = 0 we get ¢' (Sp, B) = ¢'(Sp, k) = 2.
Since ' (i, k) = 0 we get e (k, B) = €' (x, Sp) — ’(k, k) = 1. Thus ¢ (B, B) < ¢'(x, B) +
¢ (Sp, B) = 3. O
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Remark 10.20. — Using the bound of Lemma 10.19 and the results of Kisin [41]
one may show that V induces an isomorphism between the deformation functors of B
with a fixed central character and V(8) with a fixed determinant.

Lemma 10.21. — Let G be a compact torsion-free p-adic analytic pro-p group of dimension
d and let T be in Mody" (k) then there exists a natural isomorphism belween Ext”é(l, T) and the
G-comnvariants Tg.

Proof: — Since H(G, %) = Hom(1, %) and H'(G, %) is the i-th derived functor of
H(G, %), [64, §2.2], for all i > 0 we have a natural isomorphism of functors Extg(l, *) =
H'(G, *). Since G is compact torsion-free and p-adic analytic, it is a Poincaré group of
dimension d, [45, 2.5.8], [62]. Since G is pro-p, it acts trivially on the dualizing module.

~

If 7 is finite then Poincaré duality induces an isomorphism HY(G, ) = HY(G, t*)* = 1,
(64, 1.4.5], where * denotes k-linear dual. In general, we may write T as a union of finite
subrepresentations T = lim 7;. We have

HY(G, t) ZlimHY(G, 7,) Zlim (1)) = 14,
where the first isomorphism is given by [64, 1.2.2 Cor. 2]. OJ

In Lemmas below « is the representation defined in (192).
Lemma10.22. — T (k) =Z(1),R*Z (k) =0.

Progf. — Since Ext;_l(I(n’o,),I(l)) = 0, Lemma 5.27, we have Z(x) = Z(1).
Lemma 10.3 and Lemma 10.21 imply that the I, /Z,-coinvariants of 7, are zero. Hence,
I, /Z,-coinvariants of k are also zero, since otherwise we would obtain a I,-equivariant
splitting of (192), which would contradict Z(x) = Z(1). Lemma 10.21 implies that
H3*(1,/Z,, k) = 0 and it follows from Lemma 5.22 that R*Z (k) = 0. ]

Lemma 10.23. — R'T(x) = (7 (0, 1)), R2Z(k) = Z(Sp), R'Z(x) =0 for i > 3.

Progf. — Lemmas 10.22 implies that R*Z (k) = 0. It follows from Lemma 5.23 that
R'Z(k) =0 for i > 4. Applying Z to (192) and using Proposition 10.1, Lemma 10.22 and
Corollary 10.10 we obtain an exact sequence:

R'Z(k) — Z(m,) EBI(JT(O, 1)) — I(m,) = R*Z(k)
— I(n(O, 1)) — Z(1).

It follows from Proposition 5.26 and (194) that Homy(Z (7r,), R'Z(x)) = 0, which im-
plies the assertion. O
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Leomma 10.24. — ¢ ((0, 1), k) = 2, (0, 1), k) = 1.

Proof. — Using‘Lemmas 5.24, 5.27 one obtains Extéi(I(n(O, 1)), Z(m(0,1))1s 1-
dimensional and Ext}, (Z (7 (0, 1)),Z(Sp)) =0 for : =0, = 1. The assertion follows
from Proposition 5.26 and Lemma 10.23. U

10.3. Quotient category.

Lemma 10.25. — Let 0 — 7y — w9 — 75 —> 0 be an extension in Mods(‘;’}z((’)) then G
acts trivially on 7y and 15 1f and only if it acts trivially on 5.

Progf: — Choose v in my then the map g+ (¢ — 1)v defines a group homomor-
phism ¢ : G — (71, +). Since Z acts trivially on 779, ¥ will factor through G/Z SLy(Q ,).
The order of G/Z SLy(Q ) is prime to p, as p > 2. Since every element of 7, is killed by a
power of p, we deduce that ¥ is zero. Hence, G acts trivially on 9. The other implication
1s trivial. O

Let T(O) be the category of compact O-modules with the trivial G-action. It fol-
lows from Lemma 10.25 that T(O) is a thick subcategory of €(0) and hence we may
build a quotient category Q(O) := €(0)/T(O). Recall, [35, §III.1], that the objects of
£(0) are the same as the objects of €(0), the morphisms are given by

(195) Homg ) (M, N) :=lim Home o) (M, N/N),

where the limit is taken over all subobjects M" of M and N’ of N such that G acts trivially
on M/M' and N'. Let 7 : €(O) — Q(O) be the functor 7M = M for every object of
€(O)and 7f : TM — TN is the image of / : M — N in lim Homg ), (M’, N/N’) under
the natural map. The category 2(Q) is abelian and 7 is an exact functor, [35, Prop 1,

QIII.1]. In our situation it is easy to describe the homomorphisms in the quotient category
explicitly. For an object M of €(0), we denote by I(M) := (MY/(M¥)%)¥ C M.

Lemma 10.26. — Let M and N be objects of €(O), then Homgo)(Ic(M), 1) = 0 and
(N/NC = 0. In particular,

(196) Homg ) (7M, 7N) = Home o) (I (M), N/N).

Progf. — The first two assertions follow from Lemma 10.25. Hence, it follows
from the definition that Homgo) (7 (Ic(M)), 7 (N/N®)) = Homeo)(Ic(M), N/N©).
Moreover, Lemme 4 in [35, §III.1] implies that the natural maps induce isomorphisms

TIe(M) = 7T (M), TN = 7 (N/NS). 0
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Lemma 10.27. — If P is a projective object of €(O) with Home (P, 1) = 0 then TP is
a projective object of Q(O) and

HOI’l’IQj((’)) (P, N) f:\’ HOITIQ((Q) (TP, TN)
Jor all N.

Progf. — Since Homg()(P, 1) = 0 we get Homg o) (P, N¢) = 0. Since P is pro-
jective we deduce Home () (P, N) = Homg o) (P, N/ N®). The second assertion follows
from Lemma 10.26. The exactness of Homgq ) (7 P, *) follows from [35, Cor 1, §IIL.1],
which says that every exact sequence of () is isomorphic to an exact sequence of the
form 0 — 7TM, - TM, - TM; — 0, where 0 - M, — My, — M3 — 0 is an exact
sequence in €(0). O

Lemma 10.28. — The category Q(O) has enough projectives.

Proof- — Let M be in €(Q) and let P — I (M) be a projective envelope of I (M) in
€(0). Since Homgq o) (Ig(M), 1) = 0 by Lemma 10.26 we also have Homg ) (P, 1) = 0.
Thus 7P is projective in Q(O) by Lemma 10.27 and since 7 is exact we have 7P —
TIg(M)=TM. ]

Lemma 10.29. — IfHomg o) (N, 1) = O then for every essential eprmorphism q : M — N,
T q:TM — TN is an essential epimorphism in Q(O).

Proof. — Let a: T — TM be a morphism in Q(Q) such that the composition
Tgoa:T — TN is an epimorphism. We claim that « is an epimorphism. After replacing
T with the image of ¢ we may assume that a is a monomorphism. It follows from [35,
Prop 1, §I11.1] that there exists a monomorphism «: M’ — M in €(O) such thata: T —
TM is isomorphic to Tu:TM — TM. Now TqgoTu=T(qgou): TM' — TN’ is an
epimorphism, and hence G acts trivially on the cokernel of ¢ o u in €(0), see Lemme 3
in [35, §IIL.1]. As Homg)(N, 1) = 0, we get that ¢ o « is an epimorphism, and since ¢
is essential, « : M’ — M is an epimorphism, which implies that 7« (and hence a) is an
epimorphism. UJ

We note that the category Q(Q) is O-linear. Since 7 is exact we have (TM)[w] =

T(M[w]) and TM/wTM = T(M/@M). The composition €(k) — €(O) = Q(0O)
factors through the quotient category (k) := €(k) /% (k) and induces an equivalence of
categories between £ (k) and the full subcategory of Q(Q) consisting of the objects killed
by @ . We denote by Ty and T, the following objects of Q(k):

(197) Ty:=7(Ind$1)", T,:=7(IndSa)".
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We note that since 7 (1) =0 in (k) and since 7 is exact we have

(198) T, =TSp"' =71/,

where 7, is the representation defined by (181).
Lemma 10.30. — Homgq ) (TM, Ty) = HomG(Indg’ 1, MY), for all M in €(k).
Progf: — Since Extg/Z (Indg 1, 1) =0 for i > 0 by (168), we have

Homg (Ind$ 1, MY) 2 Homg (Ind$ 1, M /(M")“) = Homgg (TM, Ty).
The last isomorphism follows from Lemma 10.26. U

Proposition 10.31. — The hypotheses (H1)~(H5) hold in Q(k) with S =T, and Q =
Ty, where Ty is the representation defined by (187).

Remark 10.32. — The hypotheses (H1)—(H5) are stated in Section 3 assuming that
€ is a full subcategory of Mod{,"“**(0), where G is a locally pro-p group, but the state-
ments make sense in any -linear abelian category, such as (k).

Proof of Proposition 10.31. — If 7wy, w9 are irreducible non-trivial in Modlg‘}‘%1 (k) then it
follows from Lemma 10.26 that 77" and 7 7y are irreducible in Q(k) and 77 =T m,
implies 77y = my. In particular, Ty and T, are irreducible, non-zero and non-isomorphic
in (k). Conversely, it follows from Lemma 10.26 that every irreducible non-zero object
of (k) is isomorphic to 77", where 7 is an irreducible non-trivial representation in
Modl(if/irzn(k). Let ], be an injective envelope of Ind$ o in Modl(ff/hzn(k), then P:=] isa
projective envelope of (Indg )Y in €(k) and it follows from Lemmas 10.27 and 10.29
that 7P is a projective envelope of T, in Q(%). It follows from Lemma 10.16 and Re-

mark 10.11 that we have an exact sequence in Modléc/l;l:

(199) 0—> 17— Jr > J2 - k>0,

where d = dim Exté/z(lndg o, 7o) <4 and Homg (Indg 1, k) = 0 by Corollary 10.15. By
dualizing (199) and applying 7 we get an exact sequence:

(200) 0> Tk —>TP¥ > TP— Tt/ — 0.

ladm

Let 7 be an irreducible representation of Mod); (k) with w Z 1 and 7w # Indy «. Since
T 1Y is irreducible in Q(k), is not isomorphic to Ty, and 7 P is a projective envelope of T,
in Q(k), we deduce that Homgqy (7P, 7n¥) = 0. Applying Homg ) (%, 77Y) to (200)
we get that

(201) Homgqyy (71, Tn") =0, Extg(k) (Tz,, Tn")=0,
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<202> EXtE](k) (TTQV, TTL’V) = Homg(k) (TKV, TJTV)

It follows from (201) that (H1) and (H3) hold. Dualizing (187) and applying 7" we get
an exact sequence 0 - Ty = 71y — T, — 0. Since T, Z Ty, (H2) holds. Further,
applying Homg ) (¢, Ty) to (200) we deduce that

(203) dim Extgy , (77), T,) <d <4,

hence (H4) holds. Since Homg(Ind$ 1,k) = 0 we deduce from Lemma 10.30 that
Homg ) (T«k",Ty) = 0. Since Ty is the maximal proper subobject of 7 7y, it follows
from (202) that (H5) is satisfied. 0J

Remark 10.33. — It follows from (199) that the hypotheses (H1)-(H4) hold in €(k)
with S =7/ and Q = 7,’. The problem is that (H5) does not hold in €(£): one may calcu-
late using the results of Section 10.1 that Exté/z(l, Ty) = Exté/z(l, 7)) = Exté/z(l, Sp) #
0. This implies that Exté/z(‘rl, T9) # 0 since ¢! (Sp, 7o) = 0 by Lemma 10.16. Dually we
obtain that Exté(k)(rgv, 7,7) #0.

Lemma 10.34. — Extb(k) (Ty, Ty, Extg(k) (Ty,T,), Ext}g(k) (Ty, Ty) are 2-dimensio-
nal and Extlg(k) (T, Ty) is 1-dimensional.

Proof. — Let Js, Jx, be injective envelopes of Sp and 7, := Indg’a in Modl(if/h;(k).

It follows from Lemma 10.12 that we have an exact sequence:
(204) 0= 1 —Js > Jo @]

Moreover, if we let ¥ be the cokernel of the second arrow then the monomorphism
K L)Jgpg EBJ%Q induced by the third arrow is essential. Let 7 be Sp or m, then we know
from Lemmas 10.27 and 10.29 that 7] is a projective envelope of 77" in Q(%). By
dualizing (204), applying 7 and then Homgq ;) (%, 77") we obtain

Eth](k) (Tl, TT[V) = Homg(k) (TKV, TT[V) = Homg(k) (TJV, T?Tv),

where J :JSBPQ @Jj?f. The last isomorphism follows from the fact that 7" is irre-
ducible, and 7J¥ — T«" is essential by Lemma 10.29. Hence Extg(k)(Tl,Tl) and
Extg(k)(Tl,To,) are 2-dimensional. To calculate dimensions of Extb(k)(Ta,Ta) and
Extg(k) (Ty, T1) the same argument may be applied to (180). UJ

The functor V : ¢cO) - RengP (O) kills the trivial representation and hence ev-

ery object in T(0). It follows from Corollaire 2 in [35, §IIL.1] that V factors through
T :¢(0) = Q(0). We denote V: Q(O) — Rengﬁ (O) by the same letter. We have

(205) VT ZVEP) () =1, V(T) ZV(IndS o) (6) Z .
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Lemma 10.35. — The functor V induces an mjection
V: Exty 0, (S1, S2) — Extg[ng](V(sl), V(Sy)),
‘]for Sl’ SQ € {Tl’ Tot}

Proof. — We interpret Ext' as Yoneda Ext and the extension 0 — Sy — E — S, —
01s mapped to 0 — V(Sg) — \V7(E) — V(Sl) — 0. If this extension splits, then \V7(E)
V(Sl) @V(SZ) is killed by . Since V(S ) and V(Sg) are non-zero by (205) the exactness
of V implies that E is killed by . Thus it is enough to show that V induces an injection

Extiy ) (S1, Sp) <= Ext}c[ng](\v’(Sl), V(Sy)).

This assertion follows from the work of Colmez. We first treat the case S; = So. Let
x : T/Z — k* be a smooth character. Since T/Z = Q7 the space ExtlT/Z(l, 1) =
Hom(Q}j, k) is 2-dimensional. Fix 7 € Hom(Q;, k) and let Y, be the corresponding
extension of 1 by itself. Since parabolic induction is exact we have an exact sequence

0— Ind§ x — IndS Y, ® x — Ind§ x — 0.

We denote 7, := Indl? X - Since x is trivial on Z we may write it as x = Xl_l ® X1, then
V(m,) = xyo. It is shown in the proof of [23, VII.4.14] that the composition of

X V ~ X
Hom(Q);, k) — Extg, , (71, ) = Ext,i[g%](xlw, x10) = Hom(Q, k)

1s the identity map. Using the anti-equivalence of categories, we obtain a surjection

Exté(k) (n;, n;) 5 Ext/i[ng](Xl_la Xl_l) = Hom(Q;, k).

Since V factors through 7', we obtain a surjection

Exth,(Ty, 7)) Extygy 1 (7 xi7') = Hom(Qj, £).

When x =1 or x =« we know by Lemma 10.34 that the source is 2-dimensional. Since
the target is 2-dimensional, the map is an isomorphism. We deal with the case S| Z S,
similarly.

We claim that the map \& Extb(k)(Tl, T, — EXt/lc[ng](l’ w) 1s surjective. For
every non-zero smooth homomorphism 7 : Q7 — £, Colmez constructs an extension
0— Sp— E; = 1— 0, see [23, VIL.4.19], and shows that Exth/Z(Indg’ot, E;) i1s 1-
dimensional, [23, VII.4.26], see also Lemma 10.18. If we let €; be a non-split exten-
sion 0 > E, - I1 — Indgoe — 0, then V(¢;) defines an element of Ext,l[gqp](l, ).
It follows from [23, VII.4.25], that the V(e;) for different v span the 2-dimensional
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space Exté[gQﬁ](l, w). Since TEY = T we get our claim by applying V to the extension
0—T,— 7MY — TEY — 0. Since Ext,s(k) (Ty, Ty) is 2-dimensional by Lemma 10.34
we deduce that V induces an isomorphism.

Finally, since Extg(k) (T4, T1) 1s 1-dimensional, it is enough to produce an ex-
tension 0 — Indlcfa — Il - Sp — 0, such that 0 - 1 — V(II) - @ — 0 is non-
split. We know that Ext, 12(Sp, Indy @) is 1-dimensional, see [56, 11.5 (ii)]. Let 0 —
Indy @ — IT — Sp — 0 be a non-split extension. Applying Ordp to it gives an isomor-
phism R! Ordp IT = R! Ordp Sp = 0. It follows from [31, 3.3.1] that the space of U-

coinvariants of I1 is zero. Since the space of U-coinvariants of Indy « is 1-dimensional,
we deduce from [23, VII.1.8] that the space of Gal(Qp / Q_“/f)—invariants of V(IT) is 1-di-

mensional, where “[f is the maximal abelian extension of Q ,. Hence, V(IT) can not be

split. 0J

Let B = {1, Sp”, (Indg )"} be the block of the trivial representation. Let €(O)®
be the full subcategory of €(O) consisting of all M whose irreducible subquotients
lie in B. It follows from 5.5 that €(0)® is abelian and €(0) = ¢(O)® @& ¢€(O),
where €(O)g is the full subcategory of €(QO) consisting of those M which no irre-
ducible subquotient lies in %B. Since T(O) is contained in €(O)® we may build a
quotient category Q(O)% := €(0)®/Z(O) and we have an isomorphism of categories
Q(0) = Q(0)? & €(O)y. Recall that Reng[’ (O) is the category of continuous rep-

resentations of Gg, on compact O-modules. Let Rep?q/ (O) be the full subcategory of
Rengp (O) with objects T such that there exists M in €(0)*®, such that T = \V/'(M).

Proposition 10.36. — The_functor V induces an equivalence of categories between Q(O)™
and Rep?qp (0).

Progf. — We note that since Q(0)® is a direct summand of Q(0), for every object
M of Q(0)® a projective envelope of M in Q(O) lies in Q(O)*®. This implies that if M
and N are objects of Q(O)® then Extlﬂ(o)% (M, N) = Extiy o, (M, N) for all : > 0. It is

enough to show that for M and N objects of Q(O)%, V induces a bijection

(206) Homg o, (M, N) > Hom@[gQﬁ](\V’(M), V(V)),

where Homoyg, ; means morphisms in the category Repgqp (O). We may write M =
l(iLn M, and N = l(ir_n N;j, where the limit is taken over all the quotients of finite length.
Then V(M) = lim V(M,) and V(N) = lim V(N,), where V(M) and V(N,) are of finite
length. Now

(207) Homoyg, (VOM), V(N)) = lim Homoygq, (VOM), V(N))).
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The kernels of \V’(M) — \V’(MZ-) form a basis of open neighbourhoods of 0 in \V7(M). Since
V(N)) is of finite length it carries the discrete topology and hence every ¢ : V(M) —
\vf(N ;) in Reng/ (O) factors through \vf(Ml-) — ‘v’(N ;) for some 2. We obtain:

(208) Homogg,| (VOM), V(N))) = lim Homoyg, (V(M), V(N))).

Since (207) and (208) also hold for M and N in 2(0), it is enough to verify (206) when
M and N are of finite length.

One may show that (206) holds, when M and N are of finite length, by proving a
stronger statement: (206) holds and V induces an injection

(209) Exth o, (M, N) & Extb[ng](\v’(M), V().

The proof is by induction on £(M) + £(N), where £ denotes the number of irreducible
subquotients, see the proof of Lemma A.l in [56]. Since the only irreducible objects in
Q(0)® are T, and T; the initial induction step follows from Lemma 10.35. O

Corollary 10.37. — The category Rep?Qﬁ (O) is abelian.

Lemma 10.38. — If M is an object of Q(O)® then the action of Gg , on V(M) factors
through Gal(F(p)|Q ), where ¥ = Q , () and ¥ (p) denoles the maximal pro-p extension of F.

Proof: — If M 1s irreducibhz then M =Ty or M =T, and it follows from (205)
that Gal(Qp|F) acts trivially on V(M). If M is of finite length then the cosocle filtra-
tion on M induces a filtration of V(M) such that Gal(QplF) acts trivially on the graded
pieces. This implies that the image of Gal(Qp|F) in Autp(V(M)) is a p-group, and hence

Gal(QP|F (p)) acts trivially on \V/(M). The general case may be deduced form this by
taking projective limits, as in the proof of Proposition 10.36. 0J

Remark 10.39. — Lemma 10.38 allows us to consider Rep?Qp (O) as the full

proaug

subcategory of MOdGal(F(MQ,,)(O)- Since Gal(F(p)|F) is an open pro-p subgroup of
Gal(F(p)|Q ), this enables us to apply the results of Section 3 with € = Rep?Qj (0).

Let P — (Indy @) be a projective envelope of (Indy @)¥ in €(O). Then TP —
T, is a projective envelope of T, in Q(O) by Lemma 10.27 and hence V(P) - w is a
projective envelope of @ in Rep?Qﬁ (O). Let
~ ~ T ~ V , v o~
E .= Endg(@) (P) = El’ldg((/)) (TP) = End%"[gw] (V(P)),

where the first isomorphism is given by Lemma 10.27 and the second by Proposi-
tion 10.36.
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Corollary 10.40. — The hypotheses (HO)—(HDS) hold in Reng/ (O) with S = V(T,) =
w and Q = V(T‘L’Qv ) = \V"(‘L'Qv ), which s uniquely determined up to isomorphism by the non-split

extension

(210) 0—1- V() = o— 0.

Proof. — Since P is O-torsion free by Corollary 5.19 and V is exact and O-linear,
we deduce that the sequence 0 — \V7(P) =3 \VI(P) — \V/'(P/ @wP) — 0 1s exact. Hence,
V(P) is O-torsion free and so (HO) holds in Repgql (O). The equivalence of categories

established in Proposition 10.36 and the Ext- calculations made in Proposition 10.31
show that (H1)~(H5) hold in Rep?Qp (k), and hence in Rep?gp (O) by Proposition 3.17. J

Corollary 10.41. — The functor m — m @ﬁ \V’(fﬁ) is exact.

Progf: — Since the hypotheses are satisfied by Corollary 10.40, the assertion follows
from the Corollary 3.12. 0

Lemma 10.42. — For a compact right E-module m, we let m & TP be an object of Q(O)®
correspondmg fo m Ok V(P) under the equivalence of categories induced by V, see Proposition 10.36.
wan T(m ®E P) m ®E TP

Proof: — This follows from Lemma 5.53 and the fact that V factors through 7. [J
Corollary 10.43. — SLy(Q.,) acts trivially on Torg (k, P).

Progf.: — It follows from Corollary 10.41 and Lemma 10.42 that T(Tor (%, P)) =
which implies the assertion. D

Defination 10.44. — Let R be the universal deformation ring of \V7(t2v ) and let RV be the de-

Jormation ring parameterizing deformations of V(ty') with determinant equal to the cyclotomic character.
Here we consider the usual deformations with commutative coefficients.

In the Appendix B we have recalled a construction of an explicit presentation of R
and RY due to Bockle, [9].

Proposition 10.45. — The functor V induces a surjection @ : E—»RY.

Proof. — The intersection of maximal ideals of RY[1/p] corresponding to the irre-
ducible representations is zero by Lemma B.10. Moreover, it follows from Corollary B.5
that RY is O-torsion free. Hence, the ring denoted by R’ in the statement of the Proposi-
tion 5.56 is equal to RY. We will prove the assertion by modifying the proof of Proposi-
tion 5.56.
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We note that ‘v’(‘l:zv ) = Qg V (ﬁ) = \V7(/f S lND) and has only scalar endomor-
phisms. Since V(P) is E-flat by Corollary 10.41, E” ®z V(P) is a deformation of V(r )
to E*. Thus we obtain a natural map ¢ : R — E®, where R is the universal deforma-
tion ring of V(T2 ). To show the surjectivity of ¢ it is enough to show that it induces

surjection on tangent spaces, which is equivalent to showing that the natural map

Ex tRCp w V(). V(1)) — Extngp(d/(r;),V(r;)) is injective. This assertion follows

from (209). Hence, ¢ : R — E? is surjective. We proceed as in the proof of Proposi-
tion 5.56 to show that every closed point in m € Spec RY[1/p], corresponding to an irre-
ducible representation lies in Spec E®. This implies that R — RY factors through ¢. As
explained in the proof of Proposition 5.56 it is enough to produce a map of O-algebras
x:E— k(m), such that x(m) Q5 V(’ﬁ) is isomorphic to k(m) g pV, where p"™V is
the universal deformation with determinant . It follows from [41, 2.3.8] that part (iii)
of Proposition 5.56 holds, and then the argument in the proof of Proposition 5.56 allows
us to conclude. 0

Corollary 10.46. — Let ™ be the maximal ideal of E then dim /(%% + wE) =

Progf- — It follows from Corollary B.5 that the tangent space of RY is 4-dimensio-
nal. Hence, Proposition 10.45 implies that the tangent space of E is at least 4-dimensional.
By Proposition 10.36 and since (H1) and (H3) hold in Q(k) we have:

Ex tRLpg o (V(%y), V(1)) = Extly, (T7), T7y) = Exthy, (T, Ta)

and is of dimension at most 4 by (203). Hence it follows from Lemma 3.29 that the
tangent space of E is at most 4-dimensional. U

Let Pav be a projective envelope of ¥ in €1/7(0) and M = (IndG (P VYV Al
the irreducible subquotlents of M are 1somorphlc to (Ind(’Ot)v and hence 7 induces
an isomorphism Endgo) (M) Endg(@)(TM) by Lemma 10.26. Thus it follows from
Proposition 7.2 that we have a natural surjection

(211) E = Endg(0)(TP) = Endg o) (TM) = O[[x, y]].
We let @ be the kernel of (211), then @ is also the kernel of End¢(o) (ﬁ) — Ende o) (1\7[).

Proposition 10.47. — The image of @ in RV is equal to v := RY N (), m, where the in-
tersection is taken over all maximal deals of RY[1/p] such that the corresponding representation p, is
reducible. Moreover, E/a = RY /¢ (q).

Proof. — Since we know that RY /v = O[[«, y]] by Corollary B.6, E/H = Ollx, 11
by (211), and ¢ is surjective, it is enough to show that t contains ¢ ().
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Let x be a maximal ideal of RY[1/p] with residue field L. and let p, be the corre-
sponding representation. Suppose that p, is reducible then since det p, = ¢ we have an
exact sequence 0 — 8§~ ! — p, — 8¢ — 0, where § : Go , — L™ is a continuous character,
lifting the trivial character 1: Gg , — £*.

Let x : T — L be the character x := 8¢ ® § '¢~!. Then x 1s trivial on Z and is
a deformation of & : T — £* and hence deﬁnes a maximal ideal y: E— End¢ o) (M) —
L, such that Hom%"(O ®g ” M L) = (Ind X)eon- It follows from the construction of

Colmez’s functor that V((IndP X)) = 87! and hence L ®f, V(M) = \vf((’) %, M)L =
8e. Since V(P) is a free E-module of rank 2 by Corollary 5.55, L ®F, V(P) is a 2-
dimensional L-representation of ng lifting £ ®f V(P) V(r ). Moreover, we know
that L ®j, \v’(rI\’J) admits L ®g, V(M) = e as a quotient. Lemma B.9 implies that
oy =L ®g, V(P), which implies that y = ¢~ (x). Since by construction y contains @,
we deduce that x contains ¢(@). Hence, ¢ (@) is contained in R¥ N (), m, where the in-
tersection is taken over all maximal ideals of RY[1/p] with residue field L such that the

corresponding representation p, is reducible. Remark B.8 implies that this ideal is equal
to t. 0J

10.4. Filtration by ordinary parts. — Let P be a projective envelope of (Ind$ o)
in &(£) and let E = Ende(, (P). Recall that uniqueness of proiectlve envelopes implies
the existence of an isomorphism P = P ®o k, and hence EZE E ®p £. Moreover TP is
projective in Q(k) and Endgq) (7 P) = E by Proposition 10.27. Since E/ a= Ollx,]] is
O-torsion free, we have an injection @ ® £ < E, and we denote the ideal @ ®¢ k by
a. We are going to show that ¢, defined in Proposition 10.45, induces an isomorphism

a’/at! 3 @(a)"/@(a)"!, for all n > 1. Using this we will show in Theorem 10.71 that ¢

1s an isomorphism.

Lemma 10.48. — Let k be an object of Modlf“/hzn (k), let 0 be a subspace of (Indl(f k)C and
let T be the quotient:

(212) 0— 60— Indik — 7 — 0.

Then Ordp T = i*, R' Ordp T = (/0) @ o™, where we have identified 0 with the subspace of k' *
by evaluating at 1.

Progf: — We note that evaluation at 1 induces an isomorphism (Ind(’lc)G k"t
which allows us to identify 6 with a subspace of «T. It follows from [31, 4.1.1] that
Ordp # = 0 and from the proof of [31, 4.1.2] that we have a commutative diagram

R' Ordp§—=R! Ordp Indy « .

l; l;

fQa ' ————k@a~!



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 143

Hence, Ordp T = Ordp IndI(,J Kk =k'and R'Ordp 7 = (k/0) @ o' ]

Lemma 10.49. — Let T be Modléc/lgl(/f) such that Homg (7', ) = 0 for all urre-
ducible 7t not isomorphic to 1, Sp or Indy . Then G acts trivially on the kernel of the natural
map Indg Ordp T — 7.

Progf: — We denote the kernel by K. By construction we have Ordp K = 0.
If x is irreducible in Molea;igl(k) and x # 1, x # a™', then Homy(x, Ordp1) =
Homg (IndFG X, T) =0, the first quality holding by the adjointness property of Ordp, and
the second by our assumption on t together with Corollary 5.47. Since there are no ex-
tensions between a~! and 1 in Modlfjlzm(k), we deduce that Ordp T = k; @ Kky-1, where
all the irreducible subquotients of xy are isomorphic to 1 and all the irreducible sub-
quotients of k,-1 are isomorphic to «~!. Hence, there are no non-zero homomorphisms
between Indg’ k1 and Ind%’ ko1 and so we may write K = K; @ K,-1 where all the irre-
ducible subquotients of Ky are 1 or Sp and all the irreducible subquotients of K,-1 are
Indg’afl. Since Ordp K = 0 we get that K,-1 = 0. Now (K/K®%)¢ = 0 by Lemma 10.25.
Hence, if K # K¢ then we must have Homg (Sp, K/K%) # 0. However, this implies that
K contains Sp or Ind$ 1 as a subobject, which contradicts Ordp K = 0. UJ

Lemma 10.50. — Let ] be an injective object in Modlf‘;hzn (k) and T an object of Modlg(};] (k).
IfHomy(Ordp 7,] @ ") = 0 then Extg, ,(z, Ind J) = 0.

Proof. — Since by (126) and assumption Hom(Ordp 7, R! Ordp Ind} ]) = 0, by
applying Ordp to the extension 0 — Indy ] — k — 7 — 0 we obtain an injection
J®a ' — R'Ordp«. Since J is injective the injection splits. As G = GLy(Q,,) we have
R' Ordpk = ky ® a, where subscript U denotes the coinvariants by the unipotent rad-
ical of P, [31, 3.6.2]. Thus «y = (Ind§ J)u ® v =] @ ty. Since Homg(k, IndS ]) =

Homry(ky,]) we obtain a splitting. U
On every 7 in Modlé‘}%l(/f) we define an increasing filtration 7°* by subob-

jects uniquely determined by (1) 7° = 0 and (2) gr'™' v := t'*!/7’ is the image of
Indg’ Ordp(t/7") — 7/7'. Dually on every M in €(k) we define a decreasing filtration M*

by subobjects M’ = M and M’ be the kernel of M — ((M"¥)")¥ and let gr' M := M'/M"™,

A Lemma 10.51. — The filtration s functorial: for every ¢t — K n Modlgjrzn(/f) we have
@ (') S k' and for every ¥ : M — N in E(k) we have y (M') S N, for all 1 > 0.

Proof. — Trivially ¢(z") C k°. Suppose ¢(t°) C ¢ (k') then we get a map ¢ :
7/t" — k/k'. The natural transformation Indg Ordp — id induces a map gr't!' t —
gr'™ k and hence ¢ (r') C k', O
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Lemma 10.52. — Let ] be an injective object in Modg‘}f; (k). Then for 1> 1 we have:
(213) Ordper't' ] = OrdpJ/J' = R' Ordp gr'J.

Progf: — From Indg Ordp(J/J=") — gr'] < J/J*~! and left exactness of Ordp we

deduce that Ordpgr’] = OrdpJ/J!, for all ¢ > 1. This gives the first isomorphism
in (213). Since J is injective we have R'Ordp] = 0 and since R*Ordp = 0, we get
R' Ordp]J/J' =0, for all > 1. Thus applying Ordp to 0 — gr'] — J/J"' — J/J' = 0
we get the isomorphism Ordp J/]J' = R! Ordp gr'], for all i > 1. O

Lemma 10.53. —J; = Indg’JlT,J}w = Indg’_]a,_]sp = (Indy J1,)/ 1, where ]y, and

ladm

Jo denote injective envelopes of 11 and o in Modyy' ().

Proof: — The first two 1somorphisms follow from the Propositions 10.17 and 7.1(31).
Applying Ordp to (189) gives us an isomorphism Ordp(Js,) = R! Ordp(Ind} J,) = J, ®
o~ ! ZJy,. The last isomorphism follows from (190). U

Lemma 10.54. — For all 1 > 0 we have exact sequences 0 — Jq —>J’1J(r1 —>Jj1a — 0,
1 i+1 j 2 i+2 ' '
0—J.. _>J§;; —>ng — 0,0 J;, = Ji, —>Jlsp — 0.

Proof: — By construction of the filtration for each 7 in Modlé‘}h;(k) and 7,7 > 0 we
have an isomorphism (t/7'yY = t'¥/t'. We apply this observation to (188) and (189). [

Lemma 10.55. — gr’ Js, = Indy, (Ju/a), ¢' (16, J§,) = 0.

Proof: — Tt follows from (213) and Lemma 10.48 that Ordp gr’ Js, = J,-1/a~" and
hence there is a surjection Indy (J, /o) —» gr’Jsp. The injectivity of this map follows
from Lemma 10.49 and (190). Corollary 10.8 implies that ¢' (1¢, gr’Js,) = 0. It follows
from (190) that el(l(;,_]ép) = 0. Hence, ¢! (lGJép) =0. ]

Lemma 10.56. — Let 0 > 1 — k — m, — 0 be a non-split extension. There exists an
exact sequence 0 — K —>Jf(’ —>Jép — 0.

Progf. — We recall from Section 10.2 that « is uniquely determined up to isomor-
phism, since ¢! (74, 1) = 1. Since socg k = 1 there exists an injection ¢ : k <> Jy,. Since 1
occurs as a subquotient of ¥ with multiplicity one, Homg(k, J1,) is 1-dimensional and so
the image of ¢ does not depend on the choice of t. Since 1 < Jy, is essential J; . Nk # 0.
SinceJiG = Indy J;, by Lemma 10.53, it does not contain 7,, as a subquotient and we de-
duce thatJiG Nk = 1 and hence we have an injection 7, = k /1 = ]y, /JiG = J.,- Hence,
« is contained in J§ . and since J§_/J}. =J. = Indy J, by Lemmas 10.54 and 10.53, we
obtain an exact sequence

214 0— Ind$ ]y, /16 = J2 /k — Ind$ (Jo /o) — O.
P I 1g P
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Since Js, 1s injective there exist a mapﬁG [k — Jsp extending the injection Ind$ J;,/1¢ =
Jép — Jsp. Since e (my, k) = 0, see (194), and HomG(ﬂa,Jip) = 0 we obtain
HomG(na,J%G /k) = 0 and it follows from (214) that socGJfG /K = socg IndIC,’JI,l. /1a,
which implies that the map J%(, /& — Jsp, constructed above, is an embedding, as it in-
duces an isomorphism on G-socles. By applying Ordp to (214) and using (213) we obtain
isomorphisms

Ordp((J3./€)/J8,) =R OrdpJ§, = Ordp(Js,/J3, )

and SOJ%G /K gjgp. Thus (214) coincides with the tautological exact sequence 0 —>Jép —
J%p - grQJSp — 0. O
Lemma 10.57. — ¢! (7 (0, 1),J§p) =1.
Proof. — Combining (188) and (189) we obtain an exact sequence 0 —>ch —
Jic = Jsp = 0. Hence, ¢! (7 (0, l)JfG) =1 and (7 (0, 1),J%G) = 0. Since Sp occurs

only once as a subquotient of 77 (0, 1) we have ¢"(7 (0, 1), Js,) = 1. It follows from (190)
and Lemma 10.53 that any map 7(0,1) — Js, has image lying in Jép, and hence
n Jgp Thus ¢ (7 (0, l),J%I)) = 1. We apply Homg (7 (0, 1), %) to the exact sequence
of Lemma 10.56. Since e'((0, 1), k) = 2, Lemma 10.24, we obtain an isomorphism
Exté}/Z ( (0, 1),J§p) = Exté/Z ( (0, 1), k). The assertion follows from Lemma 10.24. []

It follows from Lemma 10.55 and (213) that Ordp gr’ Js, = J1, /1. Moreover, since
¢! (lg,Jép) =0 by Lemma 10.55, we have an exact sequence

(215) 0= (Ind$ (Ji,/11))" = Ind§ (Ju, /17) — gr’Js, — 0.
In particular, Homg (1, gr’Js,) = Homg (714, gr’ Js,) = 0 and
Homg (Sp, grgjsp) = Homg (Indg’ 1, grgjsp) = Homt(1, J1,./17),

where the last isomorphism follows from Lemma 10.48. Hence, socg gr’ Js, = Sp®* and
we have an isomorphism

(216) ar’ Jsp/ socg gr’ Js, = Indy (J1,/ soctJ1,)-
Since ¢'(1,1) = ¢*(1, 1) = 0 we have isomorphisms:

10.7

Extg, , (1, gr° Jsp) = Extg, (1, Indy (Ji,/11)) = Exty, (1, J1,/11).

In particular, ¢} z(1, ar’Js,) = er z(1,1) = 1. Using (216) we deduce that

HomG(l, grgjgp/ socg grgjsp) = HomT(l,Jh,/ socgrjl,l‘)
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is 3-dimensional. Since ¢' (1, socg grgjsp) =¢'(1, Sp@g) = 4 we deduce that the natural
map

(217) Extg,, (1. gr’Js,) = Extg, (1. gr’ Jsp/ soca gr’ Jsp)

1S Z€ero.

Proposition 10.58. — el(l,Jgp) =0.

~

Progf- — Let T be the subrepresentation ofjgp such that t containsj%p and T /Jép =
socg gr’ Jsp. In particular,jgp /T = gr’Js,/ socg gr’ Js,. We have a commutative diagram:
1 3 1 3
Extg,, (1, J5,) — Extg (1, Jg,/7)

10.55 =

, 0
Exté}/z(l, grSJSP)W Exth/Z(l ,Jgp/‘c).

Hence, the top horizontal arrow is zero and we obtain an exact sequence:
(218) 0 — Homg(1,J¢,/7) = Extg, (1, 7) = Extg, (1,J3,) = 0.

As (]gp/‘c)G = GIT/SOC%JlT)T i1s 3-dimensional, if el(l,Jgp) # 0 then ¢'(1,7) > 4. As
¢! (l,Jép) = 0 we have an injection Ext'G/Z(l, T) — Extg/z(l, T/Jép). Since t/‘]gp = Sp®2,
(1,7 /_]gp) = 4 and the injection must be an isomorphism. This implies the existence of
an exact sequence

(219) 0=J5, = =17 —=0,

with socg T/ = Sp, where 7, 1s the representation defined by (181). Since socg T’ = Sp,
we have ¢ (7 (0, 1),J§p) =¢"(7(0, 1), t) = 1. Applying Homg,z(7 (0, 1), *) to (219) we
deduce that ¢! (77 (0, l),Jgp) > ( (0, 1), ‘L’fBQ) > 2. This contradicts Lemma 10.57. [

Corollary 10.59. — el(l,Jia) =0.

Progf: — Lemma 10.54 gives an exact sequence 0 _)-.Llra —>Jf;a —>Jgp — 0. Corol-
lary 10.8 says that ei(l,‘]}TQ) =0forall7> 0. Hence, ¢'(1,]J} ) = el(l,ng)) =0, where the
last equality follows from Proposition 10.58. UJ

The following technical result will be useful later, in the arguments of Section 10.5.

Lemma 10.60. — Let J be an wnjective envelope of 1 or m, n Modlé‘}‘;f(k). The
exact sequence 0 — J' — J — J/J' — 0 induces isomorphisms Endg(]) = Endg(J/JY),

Endg (gr' J) = Ende(gr' (J/J)).
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Remark 10.61. — Proposition 10.17 and Lemma 10.53 implleG/JiG = J, and
Jru /I, EJsp-

ladm

Progf: — Let J, be an imjective envelope of x in Modg)7 (£), where x is either
It or a. Lemma 10.53 says that J' = IndyJ,. It follows from (213) that Ordp] =
OrdpIndy ], =], Since x° # xa~' we get Homp(OrdpJ,J, ® @™') = 0 and thus
Ext(l;/z(_], IndyJ,) = 0 by Lemma 10.50. Hence we obtain an exact sequence 0 —
Homg(J,J') — Homg(J,]) = Homg(J,J/J') — 0. Since J is injective R Ordp ] =
0 thus the U-coinvariants Jy are zero, [31, 3.6.2], and so Homg(J,J') = 0. As
OrdpJ/J]' ZR'OrdpJ' ZJ, ® @~ we get Homg(J',J/J") = 0 and so Homg( J,J/]") =
Homg (J/J',J/J)-

The second assertion follows by the same argument with J* instead of J. Note
that J' = gr' ] = IndS ], and gr’] = gr'(J/J"). Now Ordp]J? = Ordp ], hence Exté/z(‘]g,
IndyJ,) = 0 by Lemma 10.50, and R' OrdpJ? = OrdpJ/J* = R! Ordpgr?] by (213).
Hence, J# = (gr’])y and so

HomG(JQ, ngJ) = HomG(grQJ, ngJ) =0.

The last equality follows from the fact that gr' J and gr’J do not have a common irre-
ducible subquotient, as gr']J = Ind$ J, and gr’] is a quotient of Ind$ J,« by (213) and
X # x’a since p > 5. We obtain an isomorphism Homg(J?,J%) = Homg(J?, gr’)) =
Homg (gr? ], gr*]). On the other hand from the exact sequence 0 — Homg(J',]) —
Homg( J?,]) — Homg(gr?],]) — 0 we obtain an exact sequence 0 — Homg(J',J') —
Homg( J?,J?) — Homg (grQJ,Jl) — 0 from the functoriality of the filtration. Hence, an
isomorphism Homg (J',J') = Homg(J%,J?). U

We let dnd : €1(0) — € (O) be the functor dIndy N := (Indy N¥)". With this
notation we have M = dInd Pav and hence M := M R0 k dInd(’ PY, where Pav (resp.
P,v) is a projective envelope of ¥ in €1 (O) (resp. €r(k)). Moreover we have

E/Cl = End¢T(k) (Pav) = Endqc(k) (M) = Endg(k) (TM),

see Corollary 7.2, (211). We let J : €g(k) — €g(k) be the functor J(N) =
(Indg (OrdpNY))".

Proposition 10.62. — Let Pyv be a projective envelope of o in Cyyz (k). There exists a
decreasing filtration P5,, of Pov by subobjects, such that

() P =Puri
(ii) radP,, C P C P, foralli> 0;
(i11) for ¢ > O we have

(220) TP*/TP*" =T dIndy P,
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(221) TP** /TP* =T dIndy ((P,.) ®«a),
where P' = (J/J')" and]* is the filtration of ] by ordinary parts. Moreover, Homg (7 P*, T1) = 0.

Proof. — Let J be an injective envelope of Indy & in Modléc/l?(/f). It follows from

Lemma 10.49 that for z > 1 we have an exact sequence
(222) 0 — 6; — Ind{ Ordp(gr'J) — gr'] — 0,

where G acts trivially on 6;. By evaluating at the identity, we may identify 6; with a sub-
space of (Ordpgr'])". Lemma 10.48 says that

(223) R' Ordpgr'] = ((Ordp gri])/@l')s Ra .

For i > 1 let k; := Ordp gr']. We deduce from Proposition 7.1 that we have an injection
Indgjaq < J. Hence, k] = J,-1 =J; @ @ and 0, = 0. It follows from (213) and (223)
that k,,_; = 0 and hence 6y;,_; = 0, for all i > 1. We deduce from (213) and (223) that

K9; = (k9;_1)* ® @~ ! and we have an exact sequence

<224> 0— 922' —> K9; —> K9j19 — 0

of T-representations, where T  acts trivially on 6y;. In particular, «; is a successive extension

of copies of @ ™! when 7 is odd, and a successive extension of copies of 11 when i is even.

Since 70" = 0 we deduce from (222) that

(225) T (gr']) =T (IndS«;)” =T (Ind§ «;) "
We let P/, := (k3;01)" = (Koiyo @ @) then P, = (J:-))Y = Pyv. Moreover, by twist-
i+1

ing (224) by @ and dualizing we obtain injections P\ — P!, with semi-simple cokernel.
Hence, rad P!, € P:i'. Part (iii) follows from (225). Moreover, we deduce from (213) that

Homg (Indy 1, J/J*) = Homy (1, koi1) = 0.
Since P' = (J/J)Y, Lemma 10.30 implies that

(10.30

A ) ! : :
Homg (TPQZ, T1) = HomG(Indg IJ/JQZ) = HomT(l, OrdP(J/JQI))
<2£> HomT(l, Ordp grQiHJ) = Homr (1, k9i1) = 0.

O
Lemma 10.63. — Home, (P?, 1) = 0, Home, (P*, 15) = 0.

Progf. — The assertion is equivalent to Homg (1, J, /J2 ) = Ext,, /Z(I,Jf{i) =0 for
1= 1,2. If = 2 this follows from Corollary 10.59. Proposition 10.17 gives an exact
sequence 0 = J2 = Jn, — J27, which proves the assertion for i = 1. UJ
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Lemma 10.64. — The ideal a is a finitely generated right F.-module and E./a @ P = P/P?,
aP= P2, a®y TP X a7P = TP

Progf: — Since M ®o k= P/P! and M is O-flat, we deduce from the definition of
din (211) that
a={pecE:¢(P)CP'}={pcE:p(®P) P,

where the second equality follows from the fact that Homg ) (P, P!/P?) =0 as Lemma
10.65 implies that 7, is not a subquotient of P!/P?. Hence, aP C P?> and a7 P C 7T P%
On the other hand using (189) and (190) we get a surjection P @ P — P2, For i = 1 and
1 =2 let ¢; € E be the composition

P—>P@®P—»P <P,

where the first arrow is (id, 0) if ¢ = 1 and (0, id) if ¢ = 2. Then ¢, ¢» € a and P?> =
&1 (P) + ¢9(P). Hence, P> C aP and so aP = P? is closed in P, which implies E/a@EP =
P/aP = P/P%. Using Lemma 2.9 and exactness of Homg) (P, *) we get

a = Home (P, aP) = Homeg) (P, P?).

Hence, a = ¢, E + ¢ E is a finitely generated right E-module. In particular, a7 P =
& (TP) + ¢o(TP) = TP? is an object of Q(k). Since TP is E-flat by Lemma 10.41,
we obtain a ®p 7P = a7 P. O

Lemma 10.65. — Homg (TP, TP~ /TP¥) =0, for all i > 1.

Proof. — All the irreducible subquotients of 7P*~!/7TP% are isomorphic to Ty,
see (221). Since 7P is a projective envelope of T, in (%), see Lemmas 10.27 and 10.29,

there are no non-zero homomorphisms. UJ

Lemma 10.66. — We have an isomorphism of E-modules:
(226) Homg) (7P, 7P*/TP**?) = Home, 4y (Pov, Piv ),
Jorall 1> 0.

Progf: — The E-module structure on the left hand side is given by the action of
E = Endq ) (7P) on 7P and on the right hand side by the action of E/a = Ende,.¢) (Pyv)
on P,v. Since 7P is projective, Homg ) (7 P, %) is exact and so we get:

. . 10.65 . .
HOHID(/C) (TP, TPQI/TPQH_Q) E HOl’l’lQ(k) (TP, TPZZ/TPQH_I)

(220)

= Homgqu (7P, 7 dIndy P..)
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10.27

= HOH’IQ(/C) (P, dII’ldg’ P(Z;{v)

10.51

= Homg(P/P', dIndy Pi.)

c

o

20)

= Home (dIndy Pyv, dIndyy Pi)

= HomgT(k) (Pav s Pfxv). ([l
Lemma 10.67. — Let m be a compact E/a-module. If Home (P, 1) = 0 for a fixed i
then
(227) Homg(k) (TPQi/TPQH_Q, m @F TP) = HOH’IQ(/C) (TPQi, m @F TP)

Progf: — Since a acts trivially on m we have m ®; 7P = m ®g 7 P/a7 P. It follows
from Lemma 10.51 that the filtration on 7 P is E-invariant. Lemma 10.64 gives us an
exact sequence:

(228) mQy TP /TP? > m®; 7P - m®; TP/TP' — 0.

We may find an exact sequence of compact E-modules:
(229) [[E/a—[]E/a>m—0
el J€J

for some index sets T and J. Applying ®g, 7P' /7 P? to (229) we deduce that m ®g, 7 P! /7 P?
is a quotient of ]_[j.eJ TP'/TP% Hence, it follows from (221) that all the irreducible sub-
quotients of m®g 7P /TP? are isomorphic to Ty. Since Homg, (7 P*, Ty) = 0 by
Proposition 10.62, we get an injection:

(230) HOHIQ(/C) (TPQi, m ®E TP) —> HOIHQ(/C) (TPQi, m ®E TP/TPl)
Hence, we obtain a commutative diagram:

HOIHQ(/C) (TPQi, m ®E TP) I Homg(k) (TPQi, m ®E TP/TPI)

HOH]Q(/O (TP2i+2 , 1M @E TP) - Homg(k> (TPQiJrQ , 1M @F TP/TPI) .

It is enough to show that the right vertical arrow is zero. As P/P' = dIndj P,v, Corol-
lary 7.3 says m ®g P/P' = dInd$ (m &g P,+). In particular, m ®; P/P' = J (m ®; P/P")
and so the second step of filtration on m®p P/P! is zero. Hence, Lemma 10.51 implies
that

HOI’I’I@(/{) (Pzi, m ®E P/Pl) = HOIHQ(/C) (PQZ./PQH_1 , 1M @E P/Pl) .
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Since Homgy (P%, 1Y) = 0 by assumption, Lemma 10.26 implies that
(23 1) Homg(k) (TPQi, T(m ®E P/Pl)) = HOHIQ(k) (TP2i/TP2i+1 , T(m ®E P/Pl)) .

Since 7 (m ®g P/P') = m®g 7P/TP' by Lemma 10.42, the right vertical arrow in the
diagram above is zero. UJ

Let ¢ : E — RY be the homomorphism defined in Proposition 10.45, let t be the
ideal of R¥ defined in Proposition 10.47 and let t, = t Qo £.

Lemma 10.68. — If Homg (P*, 1%) = 0 and o' @ TP = TP for a fixed i then

the map @ induces an isomorphism o' Ja™™ = <t/ t}jl = ', where v is the maximal ideal of E/aq.

Moreover, @' @p TP = TP?+2,

Proof. — Recall that E/a = £[[x, y]], let n be the maximal ideal of E/a and let K be
the quotient field of E/a. We have a surjection

TP Za' ®,TP—a'/at @y TP,

We note that since a is a finitely generated right E-module, @ is a closed submod-
ule of @' for all j > 1 and hence a’/a'™! is a compact E/a-module. It follows from
Lemma 10.67 that the surjection factors through TP¥/TP*+? — ¢/ /at! @ TP. We
apply Homg ) (7 P, %) and use Lemmas 2.9 and 10.66 to get a surjection of (right) E-
modules: Homg, ) (P,v, P'y) — a'/a™™! | where E acts on m := Homg, 4 (Pyv, P) via
E/a = Ende, ) (Pyv). It follows from Proposition 10.62(ii) that rad' P,v C Pfxv. Since P,v
1s flat over E/a, see the proof of Proposition 3.34, and k@E/u P,v = «V is irreducible,
we get that rad Ppv = 0’ ®p P,v = n'P,v. Since P;v C P,v we have n' € m C E/a.
Hence, dimym ®g A = 1 and we have an injection m <> m ®g A". Proposition 10.47
and Corollary B.6(ii) give a surjection m — ¢(a)'/¢(a)™" — n’. Since n' ®g K is 1-
dimensional, the map induces an isomorphism m ®p K = n ®g K. Hence, the com-
position m — n'’ is injective, and so ¢ : a’/a’™! — @(a)'/p(a)™! is injective, and thus
an isomorphism. Since Homg, (7 P%, T1) = 0 by Proposition 10.62, Lemma 2.10 im-
plies that the evaluation map m ®g TP — 7 P%*/T P**? is surjective. Since the compo-
sition m®g TP — TP%/TP*? 5 g /a*! @ TP is an isomorphism, we deduce that
TP¥/TP**2 = g /a*! @ TP. Since TP is E-flat and a’ ®; 7P = T P¥ by assumption,
we deduce that 7 P22 = g't! @, 7TP. O

Lemma 10.69. — The map ¢ induces isomorphisms a/a’ = v,/t} = n and a®/a® =
v} /t) = %, where n is the maximal ideal of E./ q.

Progf. — Since Homg, (P?, 1) = 0 by Lemma 10.63 and a®p TP X TP by
Lemma 10.64, Lemma 10.68 implies that a/a’* = t;/t} = n and a’ ®; 7P = 7P, Since
Homg ) (P, 1) = 0 by Lemma 10.63, Lemma 10.64 implies a®/a® = t/%/tf =n?, O
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Proposition 10.70. — The surjection of graded rings ¢* : gry (E) — gry, (RZ/) is an 1somor-
phism.

Progf. — 1t follows from Lemma B.5 that RZ’ = kllx, 9, 2, w]]/(xz — yw) and
t; = (2, w). Thus R} /v, = H[x,»]] and grt (R}) = R} /v)[z, w]/(Z —yw). It fol-
lows from Proposition 10.47 that ¢" induces an isomorphism E/a = RZ/ [t = kl[x, v]].
Lemma 10.69 implies that ¢' induces an isomorphism a/a? = t;/t}. In particular,
gre(E)/ gr7'(E) = gry, (Rw) / gr>1(R'/f) 1s a commutative ring. Hence, we have a surjec-
tion

(232) B (E/a)[z, w]™ — gry(E)

such that the image of xz — yw is zero, where the source is a polynomial ring in two non-
commutative variables with coefficients in E/a. Lemma 10.69 implies that ¢* induces an
isomorphism a?/a’ = ti /v}. Hence, Z — wZz maps to zero in gr%(E). Thus gr(E) is a
commutative ring and (232) factors through

(E/a)[Z, w]/(xz —yw) — gra(E) — gry (RY) = (E/a)[Z, w]/(xZ —yw).

Since any surjection of a noetherian ring onto itself is an isomorphism we deduce the
assertion. O

Theorem 10.71. — The map ¢ induces an isomorphism EXRY.

Proof. — We deduce from Proposition 10.70 that ¢ induces an isomorphism
E/a’ > R}f /o(a)’, for all i > 1. Passing to the limit we get an isomorphism E = R}f.
Since RY is O-flat by Corollary B.5, we get that (Ker¢) ®o £ = 0. Hence, Kergp = 0 by

Nakayama’s lemma. O
Corollary 10.72. — \v/'(ﬁ,av) us the universal deformation of p with determinant equal to ¢ €.

Progf: — It follows from Theorem 10.71 that V induces an isomorphism between
deformation functors and hence an isomorphism between the universal objects. 0J

10.5. Thecentre. — Let B = {1, Sp, na} and let Plv Pbpv and an be pI‘OJCCthC en-
velopes of 1, Sp¥ and 7/ in €(O). Let P% = P,,v @Pqpv @Plv and E% = Enduo)(P%)
Recall that the functor N +— Homc(@)(P%, N) induces an equivalence of categories be-
tween €(0)® and the  category of compact Eos-modules, Proposition 5.45. In this section
we compute the ring Eg and show that it is a finitely generated module over its centre,
and that the centre is naturally isomorphic to RY.
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After twisting we may assume that our fixed central character ¢ is trivial, see
Lemma 10.103 below. For a character x : T/Z — £* we let P be a projective enve-
lope of x" in €1/2(0) and let M vi= (Indc (P VIV Further we define Mlv 0 by the

exact sequence:
(233) 0— My o35 8y > 0 -0,

where O is equipped with the trivial G-action. Proposition 10.17 and Corollary 5.21
imply the existence of exact sequences:

(234) 0— Pry BBy By -0,

(235) 0— Py B P, B M, — 0,
~ ~ w ~

(236) P?; d PSpV —2) Ml%,() — 0.

Lemma ];9.73.&’7 HOI’H@(O) (fﬁn&/ , M1¥), HOI’HQ(O) (’ﬁ”o\/ , 1’\7[1%0), HOI’I’I@(O) (ﬁ]é , Mav)
and Home o) (Ps,v, Mgv), all vanish.

Progf: — The proof in all the cases is the same, so we prove only the vanishing
of Homg (o) (an Mlv) The irreducible subquotlents of Mlv are isomorphic to 1;; and

Sp”. In particular, 7,/ is not a subquotient. Since an is a projective envelope of )/, we
deduce that Homg(o)(an Mlv) =0. O

We let @30 1= @31 0 @19 :ﬁspv — Eé and denote:
En := End¢ 0 (ff’n(y), E22 = End¢(0) (ﬁspV), Ezz := End¢ 0 (Eé)-

Fori=1,2,3 weletd; :={¢ € EQ‘: Yiop = 0},~with~1//l~ deﬁneg in (234), (235), (236).
Let e1, e; and ¢ be idempotents in Eg cutting out Prv, Ps,v and Plé respectively.

Lemma 10.74.

(237) Eu — HOYH@(O)(’E@, ’ﬁlé), Z11 = @31 0211,
(238) EQQ — Homg o) (’ﬁspv, ’ﬁnoy), Z99 > @19 O Z99,
(239) Homg o) (iilg, §spV) — Homg o) (1315, ’I\;nav), Z23 F> P19 0 Z23,

(240) Homg o) (f’n‘y, ’ﬁspV) = ), 291 > @19 0 291,
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inz

(241> H0m¢<o> (’ﬁlv nV) Z13 > @31 013,

(242) Home o) (Pyy, Ps,v) = s, 293 > (39 0 Z93.

Progf: — The proof in all the cases is the same, one uses (234), (235) and (236)
together with Lemma 10.73 and the left exactness of Hom. The assertion in (242) follows
from (239) and (241). U

Lemma 10.75. — There exists B : ’ﬁspv — ’ﬁl(v such that Yr5 o B = &E39 0 Yro. Moreover, the
Jollowing sequence:

(243) P 0P 2P, > 050

15 exact.

Progf: — Since Homg (o) (ﬁspv, 0O) = 0, we deduce from (233) that &3 induces

Eszo
an isomorphism Homg(o)(Psp ,Mlv ) = HOI’I’I@(O)(PSP ,Mlv) Since Pspv 1s pro—
jective we deduce from (234) that 3 induces a SuI‘JCCthn Homg(@)(Pspv,Plv) —»
Homg o) (Pspv, Mlv) Hence, there exists B : Pspv — Plv such that Y3 0 B = &35 0 Yrs.
Combining (233) w1th (234) we obtain (243). UJ

Proposition 10.76. — Restriction to ﬁﬂav in (234) and to ’ISSPV in (235) induces isomorphisms:

Ess = Ei, 233 > 253l5 , and By = Eoo, 210 205, -
v A

Progf. — We only show the first claim, the second can be proved in an identical
manner. Since Homg ) (an Mlv) =0 by Lemma 10.73, every endomorphlsm of Plv
maps P,,v to itself. Hence, we obtaln a well defined map 7 : E33 — EH Now both E33
and EH are O-torsion free, since Plv and P,,v are by Corollary 5.19. Nakayama’s lemma
for compact O-modules applied to the cokernel and then to the kernel of 7 implies that
it 1s enough to show that » ®p £ : Egg Qo k — E11 ®o k 13 an isomorphism. Let J, be

an injective envelope of an irreducible representation 7 in Modlg‘/i?;(k), P,v projective

envelope of 7V in €(k) and P, projective envelope of 7V in €(O). Then
Ende()(Prv) ®0 £ = Endeqy (Pr) = Endo (Jo)".

where the first isomorphism follows from (28) in Section 3.1, the second since J is a pro-
jective envelope of w¥ and thus is isomorphic to P,v. Now the assertion of the Proposition
follows from Lemma 10.60. ]

Corollary 10.77. — Let z lie in the centre of Eos. 1f the restriction of z to any of an Pspv or
Plv w5 equal to zero then z = 0.
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Proof. — Since €(O)® is equivalent to the category of compact Eos-modules, for
every object M of €(0)®, z defines a functorial homomorphism zy; : M — M. It follows
from the functoriality that for every subobject N of M, zyx is equal to the restriction of 2
to N. The assertion follows from Proposition 10.76 and this observation. 0J

Corollary 10.78. — The rings Ei1, Eo and Es; are naturally isomorphic to RY . In particular,

they are commutative noetherian integral domains.

Progf: — The isomorphism EH = RY in Theorem 10.71 is natural since it is in-
duced by a morphism of deformation functors. The sequences (234) and (235) are not
canonical, but are minimal projective resolutions of Mlé and M, respectively. Since any
two minimal projective resolutions of the same object are isomorphic, a different choice
of an exact sequence in (234) would conjugate the homomorphism Es; — B by an ele-
ment of Es3. Since as a consequence of Proposition 10.76 all the rings are isomorphic and
hence are commutative, we deduce that the homomorphism Es;3 — E,; does not depend
on the choice of (234). The last assertion follows from the explicit description of RY in
Corollary B.5 below. 0

Corollary 10 79. — For 1 = 1 2, 3 Ay is the anmihilator of HomQ(@) (an M v),
Homg o) (Pspv, Mlv 0) and Home o) (Plv Mlv) respectively. Moreover, E” /a;; is O-torsion free.

Proof. — "The proof in all cases is the same. We deal with : = 1. By applying
H0m¢(o)(an *) to (234) we deduce that Homg(@)(an V) = WI (¢} E11 = E“/all
Since E;; is commutatwe the annihilator of i comades with the anmhllator Yy o EH
Further, since Mav is O-torsion free so is Homg o) (an «v) and hence En /a1 ]

It follows from Corollary B.5 that R¥ is O-torsion free. Thus we have an injection
RY < RY[1/p]. Let t be the intersection of the reducible locus in R¥[1/p] with R see
Corollary B.6.

Lemma 10.80. — The image of © in E; via the natural womorphuism of Corollary 10.78 s
equal to @;.

Proof. — It 1 =1 then the assertion follows from Proposition 10.47 and Theo-

rem 10.71. We claim that the 1sornorphlsrns E33 3 EH —> EQQ of Proposmon 10. 76 iden-
tify ds3 with @}y and @;; with @gy. Since Homgo) (Plv av) and Homg ) (Pﬂv Mlv 0)
are zero by Lemma 10.73, using Corollary 10.79, we get that the image of d33 is con-
tained in d;; and the image of @), is contained in dy. Hence, we obtain surjections
Egg [dsg —» EH /) — EQQ /099, Since Eii /a; is O-torsion free it is enough to show that the
surjections are isomorphisms after tensoring with £. This assertion follows from the last
assertion in Lemma 10.60. [
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We embed RY into Eg diagonally using the isomorphisms of Corollary 10.78:
(244) RV > E) @Ep ®Esy > En, 20> 211 @ 200 D 235.
Lemma 10.81. — Letf € E% such that e 0 o ey = 0 then zo Y = Yoz forall z € RV.

Progf: — It follows from the definition of the embedding thgt z commutes with
@31 and @9 and hence with their composition ¢3,. Since the rings E;;, Egy and Es; are
commutative the assertion follows from Lemma 10.74. O

Lemma 10.82. — Homg () (O, Eé) =0

Pm(yf — If not then by composing Plv -0 — Plv we would obtain a zero divisor
n El’ldq((’)) (PIV) = Rl/j ]

Lemma 10.83. — Let Eé,o be the kernel of ﬁlé —» . Then restriction induces an isomor-
[J}zzsm EndQ(O) (Pl(v,) = Endg(o) (P](V;’()).

Proof.: — It follows from (243) that Plv 0 1s a quotient of ngv @ P,,v which implies
that Homg o) (Plv 0, @) = 0. Thus every endomorphism of Plv maps Plv o to itself. Since
P1g,o contains the image of ¢;5 the assertion follows from Proposition 10.76. ]

Lemma 10.84. — Let N be an object of C(O)®. Then G acts trivially on N if and only if
Homg o) (Pry @ Pspv, N) =0

Progf. — Let N be an object of €(Q) then Homg o) (ETav e i;spv, N) =0 is equiva-
lent to the assertion that none of the irreducible subquotients of N are isomorphic to
or Sp¥. If N is an object of €(0)® then the last condition is equivalent to the assertion
that all the irreducible subquotients of N are isomorphic to 1}, which is equivalent to G
acting trivially on N by Lemma 10.25. 0J

Corollary 10.85. — Let P :=Pry @ Ps,v and let E := Endeo) (P). The functor TN +
Homq o) (T P, TN) induces an equivalence of categories between Q(O)® and the category of compact
E-modules.

Progf. — It follows from Lemma 10.84 that the category T(0), defined in Sec-
tion 10.3, is precisely the kernel of the functor N = Homg ) (P, N). Given this, the
assertion follows from [35, §IV.4, Thm. 4]. 0

Lemma 10.86. — Let 7z € Egg and let zy, and zo9 denote the restriction of z to Pﬂv and
ngv respectwely via (234) and (235). Then & o (21, @ z290) = 20§ for all § € Homg (o) (Pﬂv sy
Py Pro).
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Progf. — Let P:= Fﬁ,,av & §Spvy E:= Ende o) (fﬁ), let fﬁlé’o be the kernel ofﬁlé -0
and let

m::= HOI’HQ(O) (’ﬁ, ﬁlé) = Homg(@) (’ﬁ, ’ﬁ]é’o).

Since Plv 1s a quotient of P by (243), Lemma 2.10 implies that the natural _map
m®zP — Plv o 1s surjective. Let K be the kernel, Lemma 2.9 implies that Homg (o) (P, K)
= 0. Thus G acts trivially on K by Lemma 10.84. It follows from Lemma 10.82 that ev-
ery endomorphism of m ®s P maps K to itself. Thus we obtain well defined sequence of
maps

Endi(m) — Endgo)(m Ok ﬁ) — End¢ o) (ﬁlé,o) — Endg(m),

in which composition of any three consecutive one is an identity. The arrows are given
by ¢ —> [EQvi> ¢E)BV]; ¢~ [ERv+ K> ¢(ERv) +Kl; ¢ > [£ > ¢ 0 &] re-
spectively, see also the proof of Proposition 4.19. Since z;; @ 299 lies in the centre of E
by Lemma 10.81, it defines an element of Endz(m) by & > & o (211 @ 290). Let 2/ be
the image of z;; @ 290 in Endg(o) @1{;,0) via the above maps. Tautologically we have
7 o0& =E&o0(z11 D z99). From (243) we obtain a commutative diagram

~ P139P ~

-~

ﬁﬂv D ngv —>m ® PH'PIv

211D299 l 211Dz22 l l 7
ei3®8 ¥

~ ~

PﬂV@PSpV >'1’Il® PHPl\/ .

Thus the restriction of 2 to an is equal to zj;, which is equal to the restriction of z to
an It follows from Proposition 10.76 and Lemma 10.83 that z = 7. O

Theorem 10.87. — The centre of Eos (and hence the centre of €(O)® ) is naturally isomorphic
to RY, defined in Definition 10.44.

Proof. — It follows from Lemma 10.81 and Lemma 10.86 that the image of RY
via (244) lies in the centre of Eq. Conversely, suppose that ¢’ lies in the centre of E. Since
the restriction map z — .z|§7rv induces an isomorphism RY = E,, there exists z € R such

that (z — 2) |§]Zv = 0. It follows from Corollary 10.77 that z = 7. O

Remark 10.88. — We note that it is shown in Corollary B.16 below that sending
deformation to its trace induces an isomorphism between the ring R¥ and Rfrsplp the
deformation ring parameterizing 2-dimensional pseudocharacters lifting tr o with deter-
minant V.
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Corollary 10.89. — Let T : Go, — Rf):,f be the universal 2-dimensional pseudocharacter
with determinant & lifting tr p. For every N in €(O)®, V(N) is killed by g —T(9)g+ ¢e(g), for
allg € Ggo .-

Proof. —If N = fli,v then the assertion follows from Theorem 10.71 and Corol-
lary B.16. Since Vis exact, V(Pspv) isa Gg, ) —subrepresentatlon V(Pﬂv), see (235), thus

the assertion also holds for N = Pspv and hence for P := P,,v ) ngv LetE:= End¢ (o) (P)
then Proposition 10.36 and Lemma 5.53 imply that

V(N) = V(Home (o) (P, N) & P) = Home (o) (P, N) 8 V(P),
which implies the claim. O
Lemma 10.90. — Eq s a finitely generated torsion-free RY -module.

Proof. — It 1s enough to prove the statement for eiE%@-, t,)=1,2,3.1f (z,y) # (3, 2)
then the assertion follows from Lemma 10.74 as El- =RY,d; =t and RY is an integral
domain. Let m := Homg (,Fsp\/, ﬁlé). It follows from the proof of Lemma 10.86 that
m is generated over RY by ¢o3 and B. It remains to show that m is torsion free. We may
dualize (178) and using Proposition 5.21 lift it to an exact sequence:

245 0—>1~35v—>§1%@’ﬁnvefﬁ@gelﬁsv@ﬁnvaﬁv‘—>(’)—>O.
P G o Ty P o G

We apply Homg (o) (Fspv, *) to (245) and use Lemma 10.74 to obtain an exact sequence
0—>RY > m®RY - R¥ & RY of R¥-modules. Since R” is an integral domain we
deduce that m is torsion free. O

For § € Eg we let §; = ¢; 0 8 0 ¢. This notation is consistent with (244).

~

Lemma 10.91. — Let 5,y € Eos then the image of 8; o y;; under the isomorphism E; = Eﬂ
of Proposition 10.76 15 equal to yj; o 8.

Procy‘ — There ex1sts z € RY such that z; = d;j o ;. Since (Y 08; — z5) o Vi =
Yiozi — zjo ¥y =0 and E% is a torsion free RY -module we obtain the Clalm 0]

By Corollary B.6 the ideal t 1s generated by two elements ¢ and ¢;. For each pair
¢Pos and ¢; P;B appearmg in (240), (241), (242) we may choose go € Homg (o) (& Pa. ¢ iPog)
such that ¢; o (pﬂ = e £0r k=0and k= 1. It follows from Lemma 10.74 that the elements
(pj? and goji generate ¢lge; as an RY-module, which is isomorphic to t. It follows from
Lemma 10.91 that (pjlj o @; = ¢gj for k=0, 1. We record this below:

k k k
(246) P12 © @y = ey, @31 © Qg = Cre3, @32 © Qo3 = Cie3,
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(247) 9051 O P19 = ¢y, ¢f3 O @31 = ¢ke1, (053 O P39 = Cpey.
By definition of ¢39 and (241) we have:

(248) @31 0 P12 = P32, P12 0 ‘ng = </’lf3,

(249) (Pél ° ‘/’{3 = ‘/’51 o0 90§3 = Ck(pégs P32 0 fﬂél = @31 0@Q120 9051 = kP31 -

Since @19 0 (@4 0 031 — b)) = @, 0 931 — ey = 0 and (240) is an isomorphism we obtain:
(250) §0§3 o @3 = §0§1, §0f3 O Y32 = §0f3 O Q31 0 P12 = G P12.

Lemma 10.92. — Let B € Homg o) (ﬁspv, ﬁlé) be the morphism constructed in Lemma
10.75. Then there exist unique dy, d, € RY such that co = do@os and ¢ 8 = dypy3. Moreover,

(251) Bo 9051 = dyps, ¢f3 o B =dipio, Bo (053 = dje3, 9053 o B = de.

Proof. — The uniqueness follows from the fact that Eg is RY-torsion free, see
Lemma 10.90. It follows from (237) that there exists &, € RY such that B o ¢}, = dips. It
follows from (247) that ¢, = B o gz)él 019 = dip3) 0 Q19 = dy3s. There exists a; € RY such
that 8 o (,053 = are3. We may multiply by ¢, to get ¢iares = dp@sg 0 gogg = dy¢es. Since RY
is an integral domain we obtain @; = d;. Lemma 10.91 implies <,0§g o B = dyey. Moreover,
@150 B =120 @4 0 B = dipy. O

Lemma 10.93. — Sending x — ¢y, y > ¢, 2+> dy, W > d| nduces an 1somorphism of
rings Ol[x, 9, z, w]l/(xw — yz) RV

Progf: — Since E% is a torsion free RY-module, (cod; — ¢1dy) B = (dyd, — ddy) o3 =
0 implies ¢od; = ¢1dy. Thus the map 1s well defined. It is enough to show that it is surjec-
tive, since we know that RY can be presented as O[[x, », z, w]]/(f), see Corollary B.5,
and xw — yz is a prime element in a factorial ring. Let b:={b € RY : 6 o b= 0}, where
0 : Mlv — O is defined in (233). Applymg HOI’I’I@(O) (Plv *) to (236) we obtain a surjec-
tion HOI’]’I@(O) (Plv ngv) —» HOH’I@(O)(P] Mlv 0), thus ¥ o g023 and ¥y o g023 generate
Homg o) (Pl Mlv o) as an RY-module. Applylng Homg o) (Pl *) to (233) we obtain

an exact sequence
0— H0m¢<o) (PI(V . MIY‘,O) —> HOI’I’I@(O) (Plz/ y MIY) — O — 0.

As HOI’I’I@(O)(P]V Mlv) = Egg/agg RY /v = O[[x, »]] we deduce that b contains t and
the images of &3 o wg o @y, and &3y 0 Yy 0 @y, generate b/t as an RY-module. Since by
definition, see the proof of Lemma 10.86, /50 8 = &30 0 Yy and B o (pgg = dies by (251),
we deduce that the images of dy and ¢, generate b/t. Hence RY /(dy, d\, ¢y, ;) = O and
so the map is surjective. O
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Corollary 10.94. — The Gq ,-representation corresponding to the ideal (cy, ¢\, dy, dy) in
RY[1/p] is characterized as the unique non-split extension 0 — 1 — V — & — 0.

Proof: — Let ng = (co, 1, dy, d) C RY. It follows from the proof of Lemma 10.93
that there exists a surjection MW /nolf\v/ll,r — O where G acts trivially on O. It follows
from Lemma 7.10 applied with m = RY /ny = O that I1 := Hom%”t(f/[1¥/n01\~/[1¥, L)isa
parabolic induction of a unitary character, which reduces to the trivial character modulo
w. Since T1% # 0 we deduce that IT = (Indg 1), and thus V(IT) = ¢. Let 0’ be the
maximal ideal of R¥[1/p] corresponding to V and let nj, := R¥ Nn’. Theorem 10.71 and

Corollary 10.72 imply that V = V(P /n/P,v) ®¢o L. It follows from Proposition 10.36
that

Homg o) (Mq /ﬂof/h%, rlsno, /%T)n;) ®o L
= Homg,, (V(Muy/moMyy), V(P,, /n)Pr)) ®0 L

is non-zero thus ny = ny. O
Since
RVe¢, RY ¢y RV¢l; + RV ¢,
Eo = RY¢), +R%g,, RYe, Ry + RV,
RY @3 RY@s5 +RYB RYes

the multiplication in Eg is determined by (246), (247), (250) and (251). One may check
that the RY-module structure of Homg o) (Pspv, Plé) is completely determined by Lem-
mas 10.92, 10.93 and Corollary 10.94. We also point out that

~ ~ ~ RY¢ RY¢1
(252) E:= El’ld@(@) (Pﬂav &) PSpV) =

R7¢) +RV¢,; RVe

and the multiplication is given by ¢y o gogl = qe, (pé“l 0 Q19 = e for k=10, 1, where ¢
and ¢, are generators of t, the intersection of RY and the reducible locus in R¥[1/4].

Lemma 10.95. — Let ENbe the ring in (252) and let n be a maximal ideal of RV [1/p] with
residue field L containing t. Then E @gy RY[1/p]/n has two non-isomorphic irreducible modules, both
of them 1-dimensional.

Progf: — Let b be the two sided ideal in E Qv RY[1/ p]/n generated by the images
of g1y, @5, @, Since n contains t = (¢, ¢;) we have b? = 0 and the quotient by b of
E ®rv RY[1/p]/n is isomorphic to L x L. This implies the assertion. ]



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 161

Remark 10.96. — We note that the Galois side sees only the quotient category
Q(O)®, see Proposition 10.36, and this category is equivalent to the category of compact
modules of the endomorphism ring of TPsp &) TPT[\/ which is isomorphic to the ring
in (252) by Corollary 10.85. Moreover, it follows from Proposition 10.36 that the ring is
isomorphic to Endg,, (V(Ps,v) ® V().

Remark 10.97. — We are going to describe \v/'(?spv) as a Gg ,-representation. Corol-
lary 10.72 says that V(ﬁ,ﬂv) is the universal deformation of p with determinant ¢e.
Hence, V(ﬁ,ﬂv) / t\v/'(ﬁrg) is the universal reducible deformation of p with the determi-
nant {e. Thus we have an exact sequence 0 — N; — V(?nav)/t\v/(ﬁnav) — N, — 0,
where Ny is the deformation of the trivial representation and N,, is a deformation of
o to RY /t. One may deduce from Theorem B.16 and the proof of Proposition B.19
that these deformations are universal. We apply Vto (235) to obtain an exact sequence
0— (’(?Spv) — \V/'(ﬁ,av) — \VI(N/IQV) — 0. Proposition 10.47 implies that v acts trivially
on \v7(1§7[av), and since all the irreducible subquotients of \V’(K/Iav) are isomorphic to w,
the surjection V(E,uv) / t\v/'(ﬁroy) —» \VI(K/IQV) factors through the surjection N, — ‘v’(ﬁ[av).
But both are free Rg /t-modules of rank 1. Hence, the surjection is an isomorphism. This
implies that V(ﬁspv) is the kernel of the map from the universal deformation of p with
determinant ¢ to N,,.

Let E be a direct summand of ﬁ%, let E* := End¢(0) (E). The rings E* and E%
are finitely generated modules over a noetherian ring RY, thus they are right and left
noetherian. Every finitely generated module carries a canonical topology, with respect
to which the action is continuous. Since the rings are noetherian the canonical topology
is Hausdorff. Let ¢ be a non-zero element of R¥ and let 1\/[0d]:g w/n [¢™!] denote the full
subcategory of finitely generated Egll /pl-modules consisting of those modules on which
¢ acts invertibly. Define a functor

Q : Mod? T G Mod;im[ '],
m Homg(@) (P*, m() ®E% P‘B)La

where we have chosen a finitely generated Eg-submodule m® C m such that m = m°[ 1 /p]
and equipped it with the canonical topology. Since Homg¢ ) (P,,Py) isa finitely gener-
ated R¥-module, Q (m) is a finitely generated E.[1/ p]-module. The definition of Q does
not depend on the choice of m’, since any two are commensurable.

Lemma 10.98. — If Q s faithful then it induces an equivalence of categories.
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Progf. — Since Home o) (ﬁ%, *) induces an equivalence between €(Q) and the
category of compact Eg-modules, Lemma 2.9 implies that the natural map

Home o) (P, N) &5, P — N

is an isomorphism. Thus the functor m’ > m’ @, Pes is exact and hence Q is exact.
Define

R: MOd?[I/p][ _1] - MOd;:g [1/;]][ _1]’

m = Homg o) (P%, m’® Qf, ﬁ*)L
We claim that Q o R is equivalent to the identity functor. The claim implies that Q 1s
fully faithful and surjective, hence an equivalence of categories. We may choose R(m)"°
to be the maximal O-torsion free quotient of Homeo) (P, m’ ®g, P.). Then we have a
surjection

m’ &g, P, = Home o) (P, m” &, P.) Of, P — R(m)° O, Py

with the kernel killed by a power of p Since HomQ(o)(P*,m ®E P,) = m’, see
Lemma 2.9, is O-torsion free, we get m” = HOI’Ile(O)(P*, R(m)° ®h% Ps). O

Lemma 10.99. — Let m be in Modg l/p][
kernel of ¢ : m° ®E% Py — m’ ®EsB Py is zero and the cokernel ts killed by a power of p.

¢ '] and choose m°® C m as above. Then the

Progf: — Let K be the kernel and C be the cokernel. Lemma 2.9 gives an exact
sequence

0

0 —> HOI’I]@(O) (ﬁ%, K) — m —f) mo —> Homg(o) (ﬁ%, C) —> O

Since m" is finitely generated and ¢ is invertible on m we deduce that there exist p" such
that HOI’I’I@(O)(P&B p"C) =0 and Homc(@)(P%, K) = 0. Since K and p"C are objects of
€(O)® this implies that they are 0. O

Proposition 10.100. — Let ¢ € v be non-zero and f’ be either fﬁﬂav, ﬁgpv or Eé then Q.

-1 -1
induces an equivalence of categories between N[odE [/ p][ ] and N[ode[1 pr [¢™'].

Progf. — Let m be in Modg l/ﬁ][

Lemma 10.80 that ¢ kills Mlv Mav Since ¢ acts invertibly on m Lemma 10.99 im-
plies that Homg(@) (M*, N) =0 and ExtQ(O) (M*, N) = 0 1s killed by a power of p, where
* = 1Y or x = &". Thus (234) and (235) imply that we have an isomorphism of R¥[1/p]-

modules:

¢!l and let N =m" @ﬁ% ﬁg. It follows from

Homg o) (iilg, N)1. = Homg o) (rﬁnoy, N)1. = Homg o) (§Spv’ N)r.
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If Q (m) = 0 then 0 = Homg (0, (ﬁ%, N)1. = m. Hence the functor m — Q (m) is faithful.
The assertion follows from Lemma 10.98. O

Proposition 10.101. — Let w be the maximal ideal of Rf [L/p] corresponding to O — 1 —
V — & — 0, let c € RY N\ be non-zero and let P, = Ps,v @ Prv then Q induces an equivalence of

categories between M0d~ [ 1 and Mod [ 1, where E is the ring described in (252).

2 [1/1] E[1/p]

Progf: — We have an exact sequence P, —> ’lslé — O — 0, see (243), and ¢ kills O,
see Corollary 10.94. The proof is then the same as the proof of Proposition 10.100. [J

Let n be a maximal ideal of R¥[1/] with residue field L and let ng := nNRY. Sup-
pose that ny contains t. Then the Galois representation corresponding to n is reducible.
Thus it follows from Theorem 10.71 and Corollary 10.72 that we have a non-split se-
quence 0 = ¥ — \v/(ﬁrav / noﬁ,av) — Yo — 0, where Y1, ¥y : Gg , O* are continuous
characters such that v, is congruent to \v/(Spv) =1 and ¥ is congruent V(nav )=w
modulo @ .

Proposition 10.102. — Let w, Y, and ry be as above then we have isomorphisms of Banach
space representations of G:

Hommnt(Mlv /nOMlv L) (Indg wl ® wQS_l)aml’

Hom' (Mg /oM, L) = (Indy ¥ ® Yrie7")

cont”

Pm(y‘ — Lemma 10.80 1dent1ﬁes t with @, and by the definition of d;;, we have
that P, v/ anP,,v is the quotient of P,,v by the submodule generated by the images of all
endomorphlsms of I P, , whose image lies in the first term Pspv of (235). Now using the
fact that Home ) (an Mlv ,) =0, see Lemma 10.73, we deduce that this submodule is
precisely the image of the ﬁrst arrow in (236). Hence, we obtain an exact sequence:

(253) 0— My, — Py /tPry — My — 0.

As K/Iav is RY /v-flat, see Corollary 7.3, and ny contains t by applying R¥/ NoQrv /e We
obtain an exact sequence:

<254> 0— M1¥0/n01'\711¥0 — ?nav /ﬂoﬁnav — Mav/nomav — 0.
Applying RY /1n,®gy /¢ to (233) gives an exact sequence:

(255) 1’\\’/[1'{,10/1’101’\\1/11}]{'0 — 1\711\1/ /n01\711¥ —> O@R!f/ R'/’/no — 0.



164 VYTAUTAS PASKUNAS

Lemma 7.10 implies that \V"(l&v/[l% / n0M1¥) # 0. Since V is exact and it kills the represen-
tations on which G acts trivially we deduce that

(256) V@ /M) Z 9y, VO /mMg) 2 .

Lemma 7.10 says that Hom%’”(ml% / nOK/I1¥, L) and Hom‘g‘t(f/lav / nolvlav, L) are parabol-
ic inductions of unitary characters. As V((Ind? X1 ® %96 Dew) = xo and the central
character is trivial we deduce the assertion. ]

10.6. Banach space representations. — Let ¢ : T — L* be a unitary character. It is
shown in [29, 5.3.4] that if ¢ # ¢’ then (Indg W) om 18 Irreducible and otherwise v fac-
tors through det, and so extends to ¥ : G — L* and we have a non-split exact sequence
of admissible unitary L.-Banach space representations

(257) 0— ¢ — (IndSy) —Spey — 0,

cont
where gfa 1s the universal unitary completion of the smooth Steinberg representation over
L. Moreover, S'f) is irreducible, see [18, 4.5.1], [29, 5.1.8 (1)].

Let ¢ : Z — L™ be a continuous unitary character and let IT be an admissible
unitary L-Banach space representation of G with a central character ¢ and let ® be an
open bounded G-invariant lattice in IT. Let 7 : Q7 — £ be a smooth character.

Lemma 10.103. — If © ®p k contains n o det, Sp @1 o det or (Indg’ a)®nodetasa
subquotient then there exist a unique continuous unitary character 1 : Q7 — L such that § = 7* and

n=n (mod pr).

Progf: — Since I is unitary, the central character ¢ is unitary and Z acts on ® @ £
by the character { modulo py. Since the central character of 1 o det, Sp ®7 o det and
(Indg’a) ® 1 o det is n?, we deduce that £ = n*> (mod py). Let [n] : Q’/‘) — O* be the
Teichmiiller lift of . Then ¢ []72 takes values in 1+ py.. Since p # 2 we may take a square
root by the usual power series expansion. Let 77 := [1]/¢ [n]~2. This proves existence. For
the uniqueness we may assume that both n and ¢ are trivial, in which case the assertion
follows since (as p # 2) the equation X* — 1 has a unique solution in L, which is congruent
to 1 modulo py.. 0

Proposition 10.104. — Suppose that T1 is absolutely irreducible then:

(i) i ® ®p k contains n o det and does not contain (Indy ) ® 1 o det as subquotients and
@) f ® ®p k contains Sp @ o det as a subquotient then T1 = (Indg’ V) oo and
ﬁ%(leBSp)@nodet;
(b) of ©® ®p k does not contain Sp @n o det as a subquotient then T1 = 1 o det and
TI = 5 o det;
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(1) f ® Qo k does not contain 1 o det and contains Sp @n o det as subquotients then
[n= Sp®nodet and T1 = Sp ®n o det.

(iii) i ® ®o k contains (Ind$ o) ® n o det and does not contain Sp ®n o det as subquotients
then T1 = (Ind}(,; V) o and TT = (Indg’a) ® n o det.

Proof. — After twisting by 77" o det, constructed in Lemma 10.103, we may as-

sume that n and ¢ are trivial. Let m, = Ind(’ o and let Plv Pspv and P,,v be projective
envelopes of 1y}, Sp” and 7, in € /Z((’)) Let Plv be a prOJectlve envelope of the trivial
representation ofT in C/z(0) and let Mlv = (Ind(’ (Plv)v)v Recall that (234) is an
exact sequence:

(258) 0— Py — Py — Myy — 0.

Lemma 4.11 says that the Schikhof dual ® is an object of €(0). Suppose that
® ®o k contains 1 arid does not contain mw, as iubquotients. Then Lemma 4.13
implies that Home o) (Pry, ®) = 0 and Homg (o) (Pry, ©7) # 0. Using (258) we get
Homg o) (Mlv ©%) #£ 0. The assertion in (i (1) follows from Proposition 7.11.

Let (IndG 1)O be a unit ball n (Indc l)wn, with respect to the supremum norm.
Let (Sp)0 be the i image of (Ind 1)?  inside Sp, then (Sp)” is an open bounded G-
invariant lattice in Sp Since (Ind l)mt Ro k= Ind(’ 1 we deduce that (Sp)O ®o k= Sp
and hence ((Sp)o)d ®o k= Sp”. Now using (179) and Corollary 5.21 we get an exact

sequence
~ ~ o~ d
PY — Pyv = ((Sp)’)" — 0

If ® ®o k contains Sp and does not contain 1 then HOH’IQ(O)(PSF v, ®%) £ 0 and
HOI’HQ((’))(P]V ®% = 0. Hence, HOH’IQ(O)(((SP) N 0% # 0 and so dually

cont

HomL[(](H Sp) # 0. As both representations are irreducible and admissible we deduce

that [T = Sp _
The proof of (ii1) is identical to the proof of (i), using (235) instead of (234), and M,v

instead of Myy. O

Theorem 10.1053. — Suppose that T1 is absolutely irreducible and © ®o k contains 1 o det,
Sp ®n odet or (Ind]? o) @nodet as a subquotient then I us contained in (1@ Sp B Indg' a)®no
det. Moreover, if the inclusion is not an isomorphism then we are in one of the cases of Proposition 10.104.

Progf. — By twisting we may assume that { and 1 are both trivial. Let 7 be ei-
ther 1, Sp or 7, and P,v a projective envelope of 7 in €(QO). If IT is not one of the
representations described in Proposition 10.104 then TI contains 1, Sp and m,. Thus it
follows from Lemma 4.15 that Homg (o) (Pn , ©®%) is non-zero. Smce by Corollary 10.78,
El’ld@(@)(an) = RY is commutatwe and IT 1s absolutely irreducible, we deduce from
Theorem 4.36 that Home ) (an @71, is an absolutely irreducible finite dimensional
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RY[1/p]-module. Hence, Home o) (fﬁﬂv, ®%);, is one dimensional and Lemma 4.15 im-
plies that 7w occurs in IT with multiplicity 1. 0J

Let 8 = {n o det, Sp ®n o det, (Ind(’ a)®@nodet}, 1y =1 SpEBna) ® 1 o det,
P% a projective envelope of mg in €(0) and E% = End¢ (o) (P%) The ring E% s a
finitely generated module over its centre, and the centre is naturally isomorphic to RP*#¢,
see Theorem 10.87 and Remark 10.88, where RP** is the universal deformation ring pa-

rameterizing 2-dimensional pseudocharacters with determinant ¢ ¢ lifting x :=n + wn.
Let Ban’édr{“(L)‘B be as in Proposition 5.36 and let Banadmﬂ(L)% be the full subcate-

gory consisting of objects of finite length. Let IT be in Banadmﬂ(L)%, choose an open

bounded G-invariant lattice ® and let m(IT) := Homg o, (P%, @d) ®o L. It follows from
Proposition 4.20 that m(IT) is a finite dimensional L-vector space with continuous Eg-
action. Let n be a maximal ideal in RPS “¢[1/p] and Ban“i“rl ﬂ(L)‘B the full subcategory of

Banadm (L)® consisting of those TT such that m(IT) 1s kllled by a power of n.

Corollary 10.106. — We have an equivalence of categories
Banadm A (L) ‘B ~ @ Banadm A (L)%

neMaxSpec R [1/p]

The category Banadm L)® is anti-equivalent to the category of modules of finite length of the n-adic
completion of Eq[1 / p].

Proof. — Apply Theorem 4.36 with €(0) = €(0)®. O

Let IT in Banadmﬂ(L)% be absolutely irreducible, we say that IT is ordinary if it is
isomorphlc to one of the representations in Proposition 10.104, otherwise we say that I1T
1s non-ordinary.

The ring Eg is described explicitly in Section 10.5. However, in many cases one
can give a simpler description of the category Ban"‘dmﬂ(L)% Let n be a maximal ideal
of RP*¢¢[1/p] with residue field L, let T, : Gg, — L be the pseudocharacter correspond-

ing to n and let Irr(n) denote the set (of equivalence classes of) irreducible objects in
Banldm ﬂ(L)‘B

Proposition 10.107.
(1) f To =1+ ne then
Irr(n) = {ﬁ o det, Si)L ® 1 o det, (Indg ne ® ﬁe_l)wm}.

(i) o Tn =91 + Vo with Y1, ¥ : Gg, — L continuous homomorphisms and T, #
N+ ne then

Irr(n) = {(Indy 1 @ Yoe™') . (Indi Yo @ yre7") )
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and Banddm NL)® is naturally equivalent to the category of modules (y‘ “finute length of the
n-adic completzon of E[l /Pl see (252) for definition and description of E.
(1) ¢f Ty a5 trreducible then Irr(n) = {I1,} with T1,, absolutely irreducible non-ordinary. The

category Banadm NL)B is equivalent to the category of modules of finite length of the n-adic
completion Qf Rpb Le[1/p].

Proof: — Suppose that n contains the reducible locus in Rg’:’“[l /pl. Since 1 # o
and the residue field of n is L, we get that T\, = ¥ + ¥, with ¥, Y5 : Go, — L* contin-
uous homomorphisms. It follows from Proposition 10.102 that Irr(n) contains the semi-
simplification of unitary principal series appearing in (ii). Recall that (Ind$ x; ® X2).m
is irreducible if and only if x; # xo. We get that [Irr(n)| > 3 if T, = n + ne and
| Irr(n)| > 2, otherwise. The representations in Banadmﬂ(L)%, on which SLy(Q ) acts
trivially, form a thick subcategory. The quotient category QBanadm 1(L)® is equivalent to
the category of E[1/ 'p]-modules of finite length, Theorem 4.36 and Lemma 10.84. Since
we have fixed a central character and p > 2 any Il in Banadmﬂ(L)% on which SL,(Q )
acts trivially is isomorphic to 7%”. Hence, if n does not kill m(n) then

Banadm ﬂ(L)% ~ QBanadm ﬂ(L)%

and the last category is equivalent to the category of modules of finite length of the n-
adic completion of E[1 /pl by Theorem 4.36. This category has 2-irreducible objects by
Lemma 10.95. If n kills m(7) then QBanadmﬂ(L)% has one irreducible object less than
BanaClm 1(L)®. Again Lemma 10.95 allows us to conclude.

Suppose that n does not contain the reducible locus then it follows from Proposi-
tion 10.100 that Ban?ffé"ﬂ (L)? is equivalent to the category of modules of finite length of
the n-adic completion of RP*¢*[1/p]. This category contains only one irreducible object
and hence Banadmﬂ(L)% contains only one irreducible object IT. Since all the ordinary
representations have already appeared in (i) and (i1) and |Irr(n)| > 1 in those cases, we
deduce that IT cannot be ordinary. U

11. p-adic Langlands correspondence

Let IT be a unitary irreducible admissible L.-Banach space representation of G with
a central character. We say that IT is ordinary if I is either a unitary character IT = nodet,
a twist of the universal completion of the smooth Steinberg representation by a unitary
character [T = Sp ® n odet or I is a unitary parabolic induction of a unitary character.
We assume throughout that p > 5.

Theorem 11.1. — Let T1 be a unitary admussible absolutely vrreducible 1.-Banach space repre-
sentation of G with a central character and let ® be an open bounded G-invariant lattice in T1. Then
O Qo k s of finate length. Moreover, one of the following holds:



168 VYTAUTAS PASKUNAS

1) © Qo k s absolutely irreducible supersingular;
(i11)) ® Qo k is irreducible and

259 ORoI[=IndS x @ x°w ' @IndS x° ® xo ',
P P

where | 15 a quadratic extension of k, x @ Q7 — I a smooth character and x° 15 a
congugate of x by the non-trivial element in Gal(l/k);

(1) (O ®p k)* < (Indg X1 ® xow N B (Indg Xo ® 1w~ ")* for some smooth charac-
ters X1, Xo Q_; — k*.

Further, the inclusion wn (i11) s not an wsomorphism 1f and only if T1 is ordinary.

Proof: — Let 7 be an irreducible subquotient of ® @ k. Suppose that 7 is abso-
lutely irreducible. Then it follows from Theorems 6.4, 8.8, 9.31 and 10.105 that either
(1) or (iii) holds. Further, if the inclusion in (iii) is not an isomorphism then IT is ordi-
nary, see Corollaries 8.9, 9.32 and Theorem 10.105. If 7 is not absolutely irreducible
then it follows from Corollary 5.44 that 7 ®; [ is isomorphic to Indy x ® x°w™" @
Ind$ x° ® x@™'. The previous argument applied to ITj; where 1 is a quadratic un-
ramified extension of L. shows that

O ®pH* C Indg’x x°w! @Indg’x" ® xo .

Since ® ®¢ k contains w we deduce that ® Qp k= 7. O
We refer the reader to Section 5.7 for the definition of the functors V and V.

Corollary 11.2. — If T1 is a unitary admussible absolutely vrreducible 1.-Banach space repre-
sentation of G with a central character then dimy, V(IT) < 2. Moreover, dimy, V(IT) < 2 if and only
i T1 w5 ordinary.

Progf: — Let © be an open bounded G-invariant lattice in IT. It follows from The-
orem 11.1 that dim; V(O ®p k) < 2 and the equality is strict if and only if the inclusion
in Theorem 11.1(iii) is not an isomorphism. Hence V(®) is a free O-module of rank at
most 2, see [41, 2.2.2] or the proof Lemma 5.51. Since V(®) is an O-lattice in V(IT) we
get the assertion. OJ

Let IT be an absolutely irreducible non-ordinary unitary L-Banach space repre-
sentation of G with a central character ¢. Then IT is an object of Banéd’?(L)% for some
block B, Proposition 5.36. Let TI be the semi-simplification of the reduction modulo
@ of an open bounded G-invariant lattice ® in I1. Suppose that TT contains an abso-
lutely irreducible representation; this can be achieved by replacing L. with a quadratic
unramified extension. Then there are essentially four possibilities for B, described in
Proposition 5.42. Recall that Modlgf‘g (O)® is the full subcategory of Modlcﬁ;f‘g (O) con-

sisting of representations with all the irreducible subquotients in 9B, and €(0)® is the
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full subcategory of €(Q) anti-equivalent to Modlg‘f{ (O)® via Pontryagin duality. The

centre of the category €(0)® is naturally isomorphic to R::;zﬁ)’
parameterizing 2-dimensional pseudocharacters of Gg , with determinant ¢ = &¢ lifting
tr V(TT), Corollaries 6.5, 8.11, 9.34, Theorem 10.87. Since ®7 is an object of €(0)® and

I[1 = Hom{"(®7, L) we obtain a ring homomorphism:

the deformation ring

. s, ¥ con ~
x: RUG [1/p] = End" () = 1,

where the last isomorphism follows from Corollary 4.42.

Proposition 11.3. — The representation V(I1) ts absolutely irreducible with determinant €¢ .
Moreover, tr' V(IT) us equal to the pseudocharacter corresponding to x € Spec Ris{,‘ﬁﬁ) [1/p].

Proof. — Let T, : Gg, — L be the pseudocharacter corresponding to x. There
exists a unique semi-simple continuous representation V, of Gg ,, defined over a finite
extension of L, such that tr V, =T, and detV, = ¢¢, [65, Thm. 1]. The representation
V, 1s absolutely irreducible, since otherwise Corollaries 8.15, 9.37 and Proposition 10.107
would imply that IT is ordinary. It follows from Corollaries 6.7, 8.12, 9.33 and 10.89 that
V(I0) is killed by g* — T.(¢)g + £¢(g) for all g € Gg . Since V(II) is 2-dimensional by
Corollary 11.2, the main result of [10] implies that V, = V(IT). O

Theorem 11.4. — Assume p > 5, the functor V induces a byection between isomorphism classes
o

(1) absolutely vrreducible admissible unitary non-ordinary L-Banach space representations of G
with the central character ¢ , and

(ii) absolutely irreducible 2-dimensional continuous L-representations of Gg , with determinant
equal to ¢ €,

where € s the ¢yclotomic character, and we view ¢ as a character of G , via the class field theory.

Proof- — It follows from Proposition 11.3 that V maps one set to the other. The
surjecg/ity follows from [41, 2.3.8]. We show injectivity: suppose that V(IT,) = V(ITy).
As V(IT) = V(IT), Theorem 11.1 implies that [T, and IT, lie in Ban?f?(L)‘B for the same

PSJ// . . . _
block ®B. Let x € Spec RtrV(ﬁ)[l/ p] be the maximal ideal corresponding to tr V(II;) =

tr V(ITy). Proposition 11.3 implies that I, and IT, are killed by x and hence are objects of
Banﬁg?(L)X%. Since V(I1;) = V(Il,) is absolutely irreducible this category contains only
one irreducible object, see Corollaries 6.8, 8.14, 9.36 and Proposition 10.107. Hence,

I, = II,. O

Let V be an absolutely irreducible 2-dimensional L-representation of Gg, with
determinant v := ¢e. Let V be the semi-simplification of a reduction modulo @ of a
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Gg ,-stable O-lattice in V. We assume that V is either absolutely irreducible or a direct
sum of two one dimensional representations. This can always be achieved by replacing
L by a quadratic unramified extension. Let R{p, be the deformation ring representing the
deformation problem of V with determinant ¢ to local artinian L-algebras, and let V*
be the universal deformation of V with the determinant €.

Lemma 11.5. — Let m;, my be R{//,—modules of finite length. Then the natural map
Hong (m;, my) —> HomgQI) (m, ®Rz/7 VY, my ®R$ V') s an isomorphism.

Progf: — The assertion is true if both modules are of length one, since then both
groups are isomorphic to Endg, (V) = L. Moreover,

Exty, (L, 1) = Hom(RY, LLel/(€?)) = Extg, (V. V).

Given this we may finish the proof in the same way as in Proposition 10.36: we argue by
induction on £(m;) 4+ £(my) that the functor m — m ®R‘{, V" induces an isomorphism

between Hom-groups and an injection on Ext'-groups. UJ
Corollary 11.6. — Let m be a R\'/’, -module of finite length. Then

m= Homggp (Vu, m ®R€§ V“).

Proof: — Let m be the maximal ideal of R := Rg, and let V(m) := m ® V".
Then Homggﬁ (V*,V(m)) = lim Homng (V*/m"V*, V(m)) = lim Homg (R/m", m) =

m, where the second isomorphism follows from Lemma 11.5. 0J

Let IT be an absolutely irreducible admissible unitary L-Banach space represen-
tation of G with central character ¢, corresponding to V by Theorem 11.4, so that
V(II) = V. Let Banig?'ﬂ(L) be the category of admissible unitary L.-Banach space rep-
resentations of G of finite length with the central character ¢ and let Bané{?‘ﬂ(L)n be
the full subcategory of consisting of the representations with all irreducible subquotients
1somorphic to IT.

Theorem 11.7. — Let B € Ban?ﬂ‘?(L) be of finite length with all irreducible subquotients
wsomorphic to T1 and let m(B) = HomgQ/’ (A% \V7(B)) then

V(B) = m(B) Dy V.

Moreover, the functor B +— m(B) induces an anti-equivalence of categories between Baniﬂi‘?'ﬂ (L) and
the category of Rg -modules of finite length.
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Proof. — Let B be the block corresponding to V, so that if V is absolutely irre-
ducible then ®B = {rr}, where 7 is a supersingular representation of G, with V(i) = Y%
and if V= x, @ xo, then B consists of all the irreducible subquotients of the principal
series representations Indg’ X1 ® xow~ ! and Indg’ X2 ® xiw~ !, and let Z be the centre
of the category €(0)®. Let ® be an open bounded G-invariant lattice in 1, and let
TI denote the semi-simplification of ® /zr®. The isomorphism V(IT) =V implies that
V(1) = V. This implies that IT is an object ofBan‘dm(L)sB and ©7 is an object of €(0)®.
The action of Z on ©? induces a ring homomorphlsm x: Z[1/p] = Endg(IT) = L, and
we let n be the kernel of x. Let Banadm 1(L)® be the full subcategory of Ban“l“1 (L)® con-
sisting of all Banach space representatlons of finite length, which are killed by some power
of n. We note that IT is in Ban?ﬁ? (L)n% by construction of n. Moreover, it follows from
Corollaries 6.8, 8.14, 9.35 and 9.36 and Proposition 10.107(ii1) that IT is the only irre-
ducible object in the category. Hence, Banddm (L)® = Ban¥™ ﬂ(L)H The second part of
the Corollaries referred to above says that Banddm HL)2 s antl -equivalent to the category
of modules of finite length over the n-adic completlon of Z[1/p]. To prove the theorem
we need to write out how this equivalence is realized.

If V is absolutely irreducible we let 77 be supersingular representation of G, with
V(@) ZV. IV x, @ x, then we let 7 = Indg X1 ® xow™'. Since p > 5 we may assume
without loss of generahty that x; # xow !, so that 7 is irreducible. Let P be a projec-
tive envelope of 7 in €(O) and let E = Endg(o) (P) The action of Z on P induces a
homomorphism of rings Z — E. If 7 is supersingular, or 7 is a principal series with
X1 # X2 then this map is an isomorphism, see Proposition 6.3, Corollary 8.11 and Propo-
sition B.17, Corollary 10.78 and Theorem 10.87. If m = Ind}(f X ® xw~! then B = {r}
and so Z is the centre of E.

The functor B — m(B) = HOH]Q(O)(? ®7)1, where © is any open bounded

G-invariant lattice in B, is faithfull when restricted to Banadmf1

(L)p: since  appears
as a subquotient of TI, Lemma 4.13 implies that m(IT) # 0 and the assertion fol—
lows from the exactness of m, see Lemma 4.9. Since Ban“dmﬂ(L)n = Banadm(L)%

m is faithfull, it follows from Theorem 4.36 that m 1nduces an anti- equwalence of

i
categories between Banadm

(L) and the category of modules of finite length of the
n-adic completion of E[l /p] The imverse functor m — II(m) is defined in Defini-
tion 4.26. So that for B € Banadmﬂ(L)n and ® an open bounded G-invariant lat-
tice in B, we have ®¢ = HomQ(@)(P o7 )®EP Lemma 5.53 implies that V(@d) =
Homg o) (P, Ok )®EV(P). Since 7 occurs in B with finite multiplicity, Lemma 4.15 im-
plies that Homg (o) (P, ©7) is a free O-module of finite rank. In particular, it is finitely
generated over E. Since E is noctherian, the module is finitely presented and hence we
may replace ® with ®. Hence, V(B) = m(B) Q5 V(’ﬁ) As m(B) 1s killed by a power
of n we may replace E with the n-adic completion of E[l /p] and V(P) with the n-adic
completion of \V’(rﬁ)L.
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To finish the proof we only have to relate the n-adic completion of E[1/ p] to R{lf
and the n-adic completlon of V(P)L to V". Assume that 7 2 IndP X ® xw~! for any
character x, so that E is commutative. In this case we know that V(P) is the universal
deformation with determinant € of a 2-dimensional representation p, and Ex Rg 18
the deformation ring representing this deformation problem, where p = V() if 7 is
supersingular and p is a non-split extension of x, by x; if 7 = Indg’ X1 ® xow™ !, see
Proposition 6.3, Corollary 8.7, Theorem 10.71, Corollary 10.72. Since V = \v7(1_[) =
L ®z, \v/'(?) [39, (2.3.5)] implies that the n-adic completion of R"’[l / p] 1s isomorphic to
R\%, and the n-adic completion of V(P)L is isomorphic to V*. Hence, V(B) m(B) ®Rw

Viforall B e Banz‘g?'ﬁ (), and Corollary 11.6 implies that m(B) = HomgQ/} V-, V(B)).

We assume that 7 = Ind§ x ® xw™!, for some character x, so that V= x @ x.
Let Rpw be the deformation ring parameterizing 2-dimensional pseudocharacters of
Go w1th determinant ¥ = &¢ lifting tr V, and let T': Gg, — Rf \;/f be the universal pseu-
docharacter with determinant v lifting tr V. In this case E is isomorphic to the oppo-
site ring of Rt < [[QQ ,11/], where J is a closed two-sided ideal generated by the elements
gv —T(@g+ Y (g) forallg e QQ/], and Z = Rf:vw, see Section 9.3. Moreover, V(P) isa frEe
E-module of rank 1, see Section 9.1. It follows from (144) that if m is a compact right E-

module then V(m ®E P) m®E V(P) m, where the action of gQ , On m is induced by
the natural homomorphism Gg, — R™: [[Gg,]1/J. In particular, V(P) = R™Y [[Gg, 11/J
with Gg , acting on the left. Since the spe(:lahzatlon of T at n 1s the trace of V, the n-adic
completion of Rp is isomorphic to Rm/ .

Let &€ be the n-adic completion of E[1/ p]. Corollary 9.29 implies that & is isomor-
phic to the ring of 2 x 2 -matrices over Rf:{,w. Lete= ( ) then ¢€ is a free RtrV -module
of rank 2 with a continuous Gg ,-action. Since for every invertible 2 x 2-matrix A we
have A + (det A)A™! = (tr A) Id, the trace of Go ,-Tepresentation on ¢€ is equal to T, and
the trace of Gg -representation on L Bt ¢€ is equal to trV. Since V is irreducible,
this implies ¢£ is a deformation of V to R{f{}/’, which induces a ring homomorphism
R$ — Ri{v. Moreover, the composition R]::{,‘// — R$ — Rfj’v‘?, where the first arrow is
induced by taking a trace of a deformation of V, is the identity map. Since V 1s absolutely
irreducible the first arrow is an isomorphism by [50], and hence the second arrow is an
isomorphism, which implies that ¢£ = V". Since the same argument applies with 1 — ¢
instead of ¢, we deduce that the n-adic completion of V(P), is isomorphic to V' @ V"
as a Gg ,-representation, and & is the ring of 2 x 2-matrices over R'\lﬁ. Thus the rings R{lﬁ
and £ are Morita equivalent, which implies that V(B) = Homng Vv, \V’(B)) ®R\¢7 V" for
all B € Bang 7" (L)n. O
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Remark 11.8. — Since Banf{7"(L)? = Ban{?"(L)n, it follows from Proposi-
tion 5.36 and Theorem 4.36 that the category Bang%‘;'ﬂ(L)n is a direct summand of

Ban"(‘i‘;‘ﬂ(L). Concretely this means that every admissible unitary L-Banach space rep-

resentation B, which is of finite length and has a central character ¢ decomposes as
B = B, @ By, where all the irreducible subquotients of B; are isomorphic to IT and none
of the irreducible subquotients of By is isomorphic to IT.

Remark 11.9. — We note that one may also prove an analog of Theorem 11.7,
when V is reducible. Let ¥, ¥ : Q; — L™ be unitary characters satisfying ¥,y = €¢.
Let x1, X2 : Q) — £ be their reduction modulo @ . Let B be the block corresponding
to x1 @ X2, Z the centre of €(O)® and n the maximal ideal of Z[1/p] corresponding
to the pseudocharacter ¥, 4+ V5. Then it follows from Corollaries 8.15, 9.37 and Propo-

sition 10.107 that the irreducible representations of Ban"éd";"ﬁ(L)n% are precisely the irre-

ducible subquotients of (Indlg’ Y1 @ Voe ™) s (Indg’ Yo @ Y& 1), Since Banﬁﬁ‘;'ﬂ(L)?
is closed under subquotients and extensions in Baniﬁ}n (L), it is uniquely determined by its
irreducible objects. One then can reinterpret the anti-equivalence of categories between
Banzfifl'ﬂ(L)n% and the category of modules of finite length over certain n-adic comple-
tions, see Corollaries 8.13, 9.35 and Proposition 10.107(i), (i) and Remark 10.96 in terms
of the Galois side.

For example, if Y19, '+ ¢*! 1, so that both unitary principal series representa-
tions are irreducible and distinct, then Theorem 11.7 holds if we replace V" with Vi @ V3,
and RY, with Endggp (V] @ V3), where VY is the universal deformation of the non-split
extension ¥, by ¥, and Vj is the universal deformation of the non-split extension ¥,
by ¥, with determinant €¢. Our assumptions imply that the extensions are unique up
to isomorphism. If x;xy "4 1, 0% then the assertion follows from Proposition B.26,
Corollary 8.13 and [39, (2.3.5)]. If x; = xow™' then one may show the assertion using
Remarks 10.96 and 10.97 instead. If x; = X9 then one has to do some work to show
that the n-adic completion of V(P) is isomorphic to V| @ Vj. We leave the details to the
interested reader.

12. Unitary completions

We determine all the absolutely irreducible admissible unitary completions of ab-
solutely irreducible locally algebraic L-representations of G with p > 5. Such repre-
sentations are of the form m ®;, W, where 7 is a smooth absolutely irreducible L-
representation of G, that is a stabilizer of v 1s an open subgroup of G for all v € 7,
and W, = det’ ® Sym* ™' L, see [53]. The study of such completions was initiated by
Breuil [17], [18] and our results confirm his philosophy, see [18, §1.3]. We deduce the
main result of this section, Theorem 12.7, by combining Theorem 11.4 with some deep
results of Colmez.
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Lemma 12.1. — If m = n o det is a character then w @1, W, ;. admits a unitary completion
fand only if k =1 and val(n(p)) = —L.

Progf: — This 1s well known, see for example [57, Lem. 7.3]. 0J

Lemma 12.2. — Let x1, x2 = Q) — L™ be smooth characters. If the representation
(Indg’ K1 ® X2l o |7 sm ® Wit admits a unitary completion then

(1) —(k+ D <val(x,(p)), val(x2(p)) < —[ and
(i) val(x1(p)) + val(xa2(p)) = —(k + 20).

Proof: — See [57, Lem 7.9], [28, Lem. 2.1]. OJ

Theorem 12.3. — Suppose that 7 = (Ind$ x| ® Xo| « | e satisfies the conditions of
Lemma 12.2 then the uniwersal unitary completion of 7 @ W s an admussible absolutely irre-
ducible L-Banach space representation. Moreover, the universal completion s ordinary if and only if

val(x1(p)) = =L or val(xo(p)) = —L.

Progf. — Since by assumption 7 is irreducible, x; x5 ' # |+ |*! and so

(Ind§ x1 ® X2l «17"), = (Ind§ o ® 11+ 17") .-

We may assume that val(x,(p)) < val(x2(p)). Suppose that val(xq(p)) < —/ then if
X1 # Xo the assertion is a deep result of Berger-Breuil [7, 5.3.4], if x; = xo then
the assertion follows from [55]. If val(xo(p)) = —( then it follows from [19, 2.2.1]
that the universal unitary completion is isomorphic to (Indg V) eont, Where 1//((8 fl)) =
xo(@)d xi(d)d| = d*"

Lemma 12.4. — Let f : P — L™ be a continuous character and let Py be a compact open
subgroup of P. Then Homp, (W, W) is at most 1-dimensional and 1s non-zero if and only if

v ((50) =dd™" forall (5 ;) € Po.

Progf. — The restriction of ¥ to U is trivial, since U is contained in the derived
subgroup of P. We identify W, with the space of homogeneous polynomials in x and
y of degree £ — 1 with G-action given by (‘j Z) . P(x,») = (ad — be)'P(ax + ¢y, bx + dy).
The space of U N Py-coinvariants of W, is 1-dimensional, spanned by the image of y*~!.
Since (8 g)yk_l = d*~'(ad)'y*~! we obtain the assertion. U

Lemma 12.5. — Let f : P — L* be a continuous unitary character and let T1 :=
ndy ¥) e If TI¥8 £ 0 then TI*8 = (Indy X1 ® X2)sm ® Wi and ¥ ((54))
x1(a)d xo(d)d* "=, for some smooth characters X1, Xs Q}j — L™ and wntegers k, [ with k > 0.



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 175

Proof. — Let T be a smooth L-representation of G and W = W, ;. for some integers
k, [, then

Homg(t ® W, IT) = Homg (7, Homy (W, TT))
= Homg (7, Homy (W, I1)™),

where Homyp (W, IT)*" denotes smooth vectors for the action of G on Homp (W, IT) by
conjugation; explicitly it is the union of Homy (W, IT) for all compact open subgroups
H of G. If Homg (r ® W, IT) # 0 there exists a compact open subgroup Hy of G such
that Homy, (W, IT) # 0. Frobenius reciprocity and Lemma 12.4 imply that 1//((3 fl)) =
d'd*'=! for all (8 :,) € Hy N P. Hence, ¥ = ¥4V, where ¥, : P — L™ is a smooth
character, trivial on Hy NP and I//.dlg((g 5)) = d/d™'=! for all (8 Z) € P. Lemma 12.4 im-
plies that if (/, &) # ({, k) then Homg(t @ W, v, IT) = 0 for all smooth representations 7.
It follows from [53] that 1% = Homy (W, IT)*™ @ W. We identify W with the space ho-
mogeneous polynomials in x and y of degree £ — 1. The map f P [g+— f(9)P(c, d)],
forall g = (‘; Z) € G induces an injection (Indg’ Yan)sm @ W — I1, and hence an injection
(Indg’ Yan)sm < Homyp, (W, IT)*". It follows from Lemma 12.4 and Frobenius reciprocity
that for all open subgroups H C Hj, the space of H-invariants in the source and the target
have the same dimension equal to |[H\G/P|. Hence, the injection is an isomorphism. []

Lemma 12.6. — Let 1) : Q7 — L be a continuous unitary character. If (S; ®nodet)™s #
0 then 1 s locally algebraic and (S/i) ® n o det)s = Sp ®n o det.

Progf: — Since the surjection ¢ : (Indg’ N N)wm — S}) ® n o det admits a P-
equivariant splitting, [23, VI.2.3] implies that ¢ induces a surjection on locally algebraic
vectors. The assertion follows from Lemma 12.5. ]

Theorem 12.7. — Suppose that the central character of 1 @ W ;. is unitary and either v 1s
special series and k > 1 or 7w is supercuspidal. Then 7 @ W ;. admils precisely P' (1) non-isomorphic
absolutely irreducible admissible unitary completions.

Proof. — Let IT be an absolutely irreducible admissible unitary L-Banach space
representation of G containing w ® W, ; as a G-invariant dense subspace. Since 7 @ W/,
is dense in IT, the central character of IT is equal to the central character of 7 @ W.
It follows from Lemmas 12.5 and 12.6 that IT is not ordinary. Hence, V :=V(II) is an
absolutely irreducible 2-dimensional L-representation of Gg , by Theorem 11.4. Since TI
contains a locally algebraic representation 7 ® W, ;, V is de Rham [23, VI.6.13], with
Hodge-Tate weights a < b, [23, VI.5.1], where b — a = k (the precise formula for a and 4
depends on the normalization of the correspondence). Since V is de Rham, it is poten-
tially semistable and to V one may associate a 2-dimensional Weil-Deligne representa-
tion WD(V), see for example [36]. Colmez has shown that [T = LL(WD(V)) ® W,
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[23, Thm. 0.21], where LL denotes the classical (modified) local Langlands correspon-
dence [23, §VI.6.11]. In the supercuspidal case the proof was conditional on the results
of Emerton, which have now appeared in [32, §7.4|. Thus determining all the isomor-
phism classes of the absolutely irreducible admissible unitary completions of 7 @ W is
equivalent to determining all the isomorphism classes of the absolutely irreducible 2-
dimensional potentially semistable L-representations V of Gg, with Hodge-Tate weights
a < b, such that Homg (r, LL(WD(V))) # 0. If 7 is special series then (after twisting
by a smooth unitary character) it follows from [23, VI.6.50] that the set of such V con-
sists of a family of semi-stable non-crystalline representations indexed by the L-invariant
L € L and one crystalline representation. If 77 is supercuspidal then the last condition is
equivalent to LL(WD(V)) = 7 and the assertion follows from [36]. O
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Appendix A: Two dimensional pseudocharacters

We recall some standard facts about 2-dimensional pseudocharacters. We refer the reader
to [3, §1] for more information. Let G be a profinite group and (A, m) a local artinian
O-algebra. We assume that p > 2. A 2-dimensional A-valued pseudocharacter is a con-
tinuous function T : G — A satisfying: (1) T'(1) = 2; (2) T(gh) = T(hg) for all g,/ € G;
(3) the relation

T()TR)T ) = T(@)T(hk) + T(h)T(gk) + Tk)T(gh) — T(ghk) — T (gkh)

for all g, 2,k € G. One may show that if p : G — GLy(A) is a continuous representa-
tion then trp is a 2-dimensional pseudocharacter. Given a 2-dimensional pseudochar-

acter T : G — A one may show, [22, Prop. 1.29], that the function D(g) := w
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defines a continuous group homomorphism G — A*. It is shown in [22, 1.9, 1.29]
that T+ (T, D) induces a bijection between 2-dimensional pseudocharacters and pairs
of functions (T, D), where D : G — A* is a continuous group homomorphism and
T:G — Ais a continuous function satisfying: T(1) = 2, T(gh) = T(hg), D(9)T(g™'h) —
T(@)T(h)+T(gh)=0forallg,heg.

Let p : G — GLy(k) be a continuous representation and let D” be the functor
from local artinian augmented O-algebras with residue field £ to the category of sets,
such that DP(A) is the set of all 2-dimensional A-valued pseudocharacters T, such that
T =trp (mod my). If for every open subgroup H of G, Hom™(H,F,) is a finite di-
mensional F,-vector space then the functor D is pro-represented by a complete local
noetherian O-algebra. We note that this finiteness condition is satisfied if G is the absolute

Galois group of a local field. We usually work with a variant: fix a continuous character
Y 1 G — O lifting detp and let DY be a subfunctor of D such that T € D"V (A)

if w is equal to (the image of ) ¥ (g) for all g € G. We will refer to
DV as a deformation problem with a fixed determinant. One may show that if DP* is

if and only

pro-represented by R then DPV is pro-represented by a quotient of R.

Lemma A.1. — Let G be a finite group, let S = k[G]/], where ] s the two sided ideal in k[ G]
generated by g* — 2g + 1 for all g € G. Then the image of G in S* is a p-group.

Progf: — Suppose not then there exists a prime [ # p and g € G such that the image
of g in S* has order /. Since the greatest common divisor of ' — 1 and (x — 1)? in £[x]
equal to x — 1 we may find polynomials a(x), b(x) € k[x] such that (x' — 1)a(x) + (x —
1)?b(x) = x — 1. Since the images of g — 1 and g° — 2g + 1 are equal to 0 in S, we deduce
that the image of g in S is trivial. 0

Let p : G — GLy(k) be a continuous representation, /C be the kernel of p, K(p)
the maximal pro-p quotient of K and H the kernel of K — K(p). We note that H is a
normal subgroup of G.

Let (A, m) be a local artinian O-algebra with residue field £. Let T : G — A be a
continuous 2-dimensional pseudocharacter lifting tr p. Since A is finite and T'is continu-
ous Ker'T':={he G :T(gh) =T(g), Vg € G} is an open subgroup of G.

Proposition A.2. — H C KerT.

Progf: — Choose an open normal subgroup N of G contained in N KerT. Let
G :=G/N and let ] be the two sided ideal in A[G] generated by elements g> — T(g)g +
TWTE for all g € G and let S := A[G]/]. We claim that the image of K in $* is a -
group. Since the kernel of S* — (S/mS)* is a p-group, it is enough to show that the image
of I in (S/mS)* is a p-group. Since S/mS is a quotient of k[ G]/(g* — tr p(g)g + det p(g) :
g € G) the claim follows from Lemma A.1. For each g € G we denote the image of g in S



178 VYTAUTAS PASKUNAS

by g. It follows from the claim that 2 = 1 for all 4 € H. We may extend T : G — A linearly
to T : A[G] — A, which factors through T : A[G] — A as N/ C Ker T, and then factors
through T': S — A and so we have T(g) = T(g) for all g € G. In particular, if 4 € H then
T(gh) =T(gh) =T(g) =T(g) forallge G. O

Corollary A.3. — The inclusion DP;/H C Dy is an isomorphism of functors.

Progf. — 1t follows from Proposition A.2 that for all artinian local O-algebras
(A, m) with residue field £ we have DZS/H (A) =Dg(A). O

Suppose that DES/H is pro-represented by a complete local noetherian O-algebra
(R,m), then Df is also pro-represented by (R, m) by Corollary A.3. Let T: G —
G/H — R be the universal pseudocharacter lifting tr p. Let J (resp. J') be a closed two-
sided ideal in R[[G]] (resp. R[[G/H]]) generated by the elements g* — T(g)g + @
forall g€ G (resp. g € G/H).

Corollary A.4. — The natural map R[[G11/] — RI[G/H]I1/] is an isomorphism.

Proof. — If N is an open normal subgroup of G and n > 1 let a(N, n) be the
kernel of R[[G]] = R/m"[G/N]. The ideals a(N, n) for all open normal subgroups N
and all > 1 form a system of open neighbourhoods of 0 in R[[G]]. It follows from the
proof of Proposition A.2 that for each n > 1 we may choose an open normal subgroup
N, of G such that for all open normal subgroups N of G contained in N, the image of
H in RIG11/(J + a(N, n)) is rivial. Thus RI[GI/(J + m'RI[GI]) = RIG/HII/(J +
m"R[[G/H]]) for all n > 1, which yields the claim. O

Appendix B: Some deformation rings

Letw:Gg, — F) — £ be the cyclotomic character modulo p. It follows from local Tate
duality and Euler characteristic that Ext;p[gw](a), 1) is one dimensional. Let 0 - 1 —
p — @ — 0 be a non-split extension. This determines p up to isomorphism. The purpose
of this appendix is to describe explicitly various deformation rings of p, by spelling out
what a general result of Bockle in [9], says in this particular case. We then show using
results of Bellaiche [2] that the universal deformation ring of p is isomorphic to the
universal deformation ring of tr p. In Section B.1 we consider the easier, generic reducible
case. We assume p > 5 until Section B.1, and p > 3 in Section B.1.

We may think of p as a group homomorphism p : gQﬁ — GLy(F,) — GLy(%),
g ((l) Z%)) ) Let H be the image of Gg, in GLy(£) and let U be the p-Sylow subgroup of
H. Since p is non-split U is non-trivial, hence U =F,, let G be the subgroup of diagonal
matrices in H, then G = F, and H=U x G. Let L be the fixed field of Ker p and let
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F =L". Then F is the fixed field of Kerw and hence is equal to Q,(up), where p, is
the group of p-th roots of unity. We identify Gal(F/Q ,) with G. Let Gy be the absolute
Galois group of F.

If pa: gQﬁ — GLy(A) is a deformation of p to (A, m) then po(Gy) is contained
n (li;m | fm), and hence p, factors through Gal(F(p)/Q ,), where F(p) is the composi-
tum of all finite extensions of p power order of I in Qp. Now Gal(F(p)/F) = Gp(p) the
maximal pro-p quotient of Gy. Since the order of G = Gal(F/Q,) is prime to p, we
may choose a splitting of exact sequence 1 — Gp(p) — Gal(F(p)/Q,) — G — 1, so that
Gal(F(9)/Q,)) = Ge(p) % G.

We will recall some facts about Demuskin groups, see for example [49, §II1.9]
for details. A finitely generated pro-p group P is a Demuskin group, if H*(P, F,) is one
dimensional and the cup product H' (P, F,) x H'(P, F) S (P, F,) is a non-degenerate
bilinear form. If p > 2 a Demuskin group P is uniquely determined up to isomorphism
by two parameters n = n(P) the dimension of H'(P, F,) and ¢ = ¢(P) the number of
elements in the torsion subgroup of P“, and is isomorphic to a pro-p group generated
by n elements x, ..., x, and one relation x{(x;, x)(x3, x;) ... (x,_1, X,), where (x,9) =
x~ 'y 'xp. We note that since p > 2 the non-degeneracy of bilinear form implies that n is
even and it follows from the presentation of P that P* = ZZ‘I ® Z/qZ. 1t is well known,
see for example [49, 7.5.8], that if F is a finite extension of Q , containing f,, then Gy(p)
is a Demuskin group with n=[F: Q ,] 4+ 2 and ¢ equal to the number of p power order
roots of unity in F. In our situation F =Q ,(u,) andson=p+ 1 and ¢ = p.

Following [9] we are going to construct a universal deformation of p using the
presentation of Gg(p). For a p-group P we define a filtration P, =P, P,y = Pf(Pl-, pP),
where (P;, P) denotes a closed subgroup generated by the commutators, and let gr; P :=
P;/P;;1. We let F be a free pro-p group on p+ 1 generators, and we choose a surjection
¢ : F — Gp(p). Since Gp(p) is a Demuskin group there exists an element r € F such that
Ker ¢ is the smallest normal closed subgroup of F containing r. Since the order of G is
prime to p, we may let G act on F so that ¢ is G-equivariant, see Lemma 3.1 in [9]. We
denote by @ : G — Z the Teichmiiller lift of w.

Lemma B.1. — We may choose generators x, . . ., x, of F so that

(1) gng‘l = x?@i,ﬁ)rg eGand0<i1<p;
(i1) the image of r in gry F is equal to the image of

r= X/f(xl, xp—1) (X2, %p—2) . . . (x,%], X@)(Xp, X0)-

Progf: — The assertion follows from [42, Prop. 3], where the cup product is de-
scribed in terms of the image of 7 in gr, . We know that

gr, F = gr, Ge(p) =F, ® i1, O F,[G]
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as a representation of G, see Theorems 4.1 and 4.2 in [9]. Moreover, the summand u,, is
the image of the torsion subgroup of Gr(p)® under the natural map Gp(p)* — gr, Gr(p).
We fix & € , C gr, Gr(p), which generates p, as F,[G]-module. Now H' (Gr(p), F)=
Hom™ (Gr(p), F,) = (gr, Gr(p))* as a G-representation, Hence, we may find an F,-basis
X0s -5 Xp Of H'(Gr(p), F,) such that G acts on y; by o™, x1(&) # 0, x,(61) = 0 and,
since the cup product defines a non-degenerate bilinear pairing and G acts on H*(Gy, F,)
by w™!, we have x; U x; =0 unless i +j =1 (mod p — 1). Further, by replacing x; by a
scalar multiple A x;, with A € pr , we may achieve that 7(x, U xo) = l and (), U x,—;) =1
for 1 <i<(p—1)/2, where 7: H*(Gr(p), F,) = F, is the isomorphism defined in [42,
Prop 3]. Let &, ..., &, be an F,-basis of gr, Gr(p) dual to xo, ..., x,. Then G acts on §; by
the character o'. Since the order of G is prime to p, we may find x; € F satisfying (i) and
mapping to &; in gr, F. Since the images of x, ..., x, form a basis of gr, F, they generate
F . Part (ii) follows by construction from the Proposition 3 in [42]. OJ

Let R be the ring

(B.1) R :— Olla, ar, ¢, ¢1, dy, d1]]
. (peo + cody + c1dp)

Let P be a pro-p subgroup of GLy(R) generated by the matrices m; for 0 < ¢ < p, where
m;=11f:%£0,£1 (mod p— 1), and

I 1 1 O
my—9 = 0o 1)’ My (p—1)j = G 1)

(et 0
=y 0 (+a)(+d)2)

mq=OMMj=LkammGL»GMm%gH(@@yomhmg%*:m%ﬁm
all 0 <7 < p and hence x; = m; defines a G-equivariant homomorphism o« : 7 — P and
hence a group homomorphism o« : F X G — GLy(R).

Proposition B.2. — There exists a continuous group homomorphism

¢ FxG—» Gal(F(p)/Qp)
such that ¢'(g) = ¢ (2) (mod Gg(p)s3), and a commutative diagram:

o

FxG GLy(R)

p

/ Gal(F(p)/Q,).

12
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Progf: — Let us observe that for j = 0 and j = | the commutator

1 0
(m1+([)—1)j’ m(/:—l)(l—j)) = ( 1)

G-
and (m;,m,_;)) =11f1# 1,0 (mod p — 1) hence
B.2) o gy ) ) (it mesa ) g ) = |

as pco + cody + ¢1dp = 0 in R. Since a(x;) = m;, we get that a(+’) = 1, where 7’ is defined
in Lemma B.1. Since r =7 (mod JF3) we deduce that «(r) € a(F3) and the assertion
follows from Proposition 3.8 in [9]. Namely, it is shown there that there exists an element
n € Kera N F(F,F), such that 5 =r (mod F3), and G acts on r; by a character.
It follows Lemma B.1(ii) that the character is equal to @. Let R be the smallest closed
normal subgroup of F containing 7, and set D := F/R. Since a(r) = 1 and G acts on
n by a character, we deduce that « factors through o : D x G — GLy(R).

We claim that D x G = Gal(F(p)/Q,). Since r, =7 =7 (mod F3), D is a De-
muskin group with #(D) = p + 1 and ¢(D) = p, see [49, 3.9.17]. Hence, we know that
D = Gal(F(p)/F). To see that we may choose this isomorphism G-equivariantly we ob-
serve that since r =7 (mod F3) Proposition 3 in [42] implies that the diagram:

H!(D.F,) x H(D,F,) H!(D,F,)

T: ;la

H!(F,F,) x H'(F,F,) F,

~ ~ -

H'(Gr(p). F,) x H'(Ge(p). F,)—~H2(Gr (). F,)

commutes and is G-equivariant. The claim follows from Theorem 3.4 in [9]. UJ

Theorem B.3 (/9]). — R s the unwersal deformation ring of p and the equivalence class of p,
defined in Proposition B.2, is the universal deformation.

Progf. — We note that since  # 1, Endyg, 1(0) =k and hence the deformation
functor Def,, is representable. Moreover, local Tate duality implies that

H*(Gq,, Ad p) = H’(Gg,, Hom(Ad p, ®)) = Homg, (0, p ® @)

1s 1-dimensional and hence HI(QQ[, ,Adp) is 6-dimensional by local Euler-Poincaré
characteristic. We have a natural transformation of functors n : kg — Def,, which
maps a homomorphism ¥ : R — A to the equivalence class of the representation

pa : Gal(F(p)/Q,,) —'5> GLy,(R) % GLy(A). Moreover, one may check directly that this
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induces an isomorphism /g (k[€]) = Def, (k[€]). Hence, we obtain a surjection R, = R,
where R, is the ring representing Def,,. It is shown in Theorem 6.2 of [9] that this map
is an isomorphism. [

Corollary B.4. — Let x € Spec R[1/p] be a maximal ideal with residue field E. The corre-
sponding representation p. : G, — GLo(E) is reducible if and only if ¢y and ¢, are O in E..

Progf: — Let a be the ideal of R generated by ¢ and ¢. It follows from the con-

struction of the universal deformation / that the image of Gg, A GLy(R) — GLy(R/a)
1s contained in the subgroup of upper triangular matrices. Hence, if the image of ¢, and
¢) in E is zero then p, is reducible. Conversely, suppose that p, is reducible then for all
g heGg , the matrix p,(g) p. () — p.(h) p(g) is nilpotent. In particular, forj =0 andj = 1
the matrix 0,(@" (¥14(p—1)) P (@' (%)—2)) — P(@"(%)—2)) P (@' (x11(,-1y;)) is nilpotent. Since it

is equal to
L Oy /1 1Yy (1 1\(1 O0\_(—-¢ O
g 1/\0 1 0 1)\ 1) \0 g
we deduce that ¢; the image of ¢; in E is zero. O

Let ¢ : Gg, — O be a continuous character, lifting w and let Def‘/f be subfunctor
of Def, parameterizing the deformations with determinant equal to .

Corollary B.5. — The functor Def‘lf is represented by

RV =~ O[[COvCthadl]]
(pCO + Codl + 1 do) '

Proof. — Let Lo, Ay € @O such that ¥ (¢'(x;,-1))) =1+ A, forj=0 and j = 1.
By construction we have detm; =1, if 2 £ 0 (mod p — 1), and detm;,—1) =1 + ;. We
deduce that Def‘,f is represented by R/(ay — Ay, @ — A}), which implies the claim. ]

Corollary B.6. — Let t = RY N ("), m, where the intersection is taken over all maximal ideals
of RV[1/p] such that p, is reducible. Then v = (co, ¢1). In particular,

@) RY/v=Olldy, d\11;
(1) let n be the maximal ideal of RZ/ /%, then for all i > O there exists a surjection of RY -
modules: v/t — .

Proof. — Corollary B.4 implies that (¢, ¢;) is contained in v and the image of ©
in R /(co, ¢1) is equal to the intersection of all the maximal ideals of RY /(co, c1)[1/p].
Since RY /(cy, ¢1) = Ol[dy, d,]1] by Corollary B.5, we deduce that t = (¢, ¢;). Now R}f =
kllco, c1s do, di11/ (cody + doer). Let S = K[[co, ¢1, do, di]] and we denote by b the ideal of S
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generated by ¢, ¢;. Then gr, S is isomorphic to a polynomial ring in two variables over
klldy, d\1]. The element ¢ = ¢yd, + dyc, 1s pure of grade 1. Since RZ/ = S/tS, and t; is
the image of b, we have an exact sequence 0 — grj, 'S — gri S — ti/ti"" — 0 for all
i > 1, where the first non-trivial arrow is given by multiplication by z. Now gr, S is a
free k[[dy, d,]]-module with monomials in ¢, and ¢, of homogeneous degree 7 as a basis.
Sending ¢y — dy, ¢, = —d, induces a surjection of £[[dy, d,]]-modules gr% S — n’. Since
this map kills ¢ the surjection factors through ti/t/"" — n'. U

Remark B.7. — We will deduce in the course of the proof of Proposition 10.70 that

the map in (ii) is an isomorphism.

Remark B.8. — We note that in the definition of t it is enough to consider the ideals
with residue field L, since it follows from Lemma 9.22 that such ideals are Zariski dense

in O[[dy, d\11[1/p].

Lemma B.9. — Suppose that the representations p, and p, corresponding to maximal ideals x
and y of RV[1/p] with residue field 1 are reducible and have a common subquotient then x = y.

Progf. — Since the determinant is fixed we deduce that p, and p, have the same
semisimplification § @ 8~ ', where 8 : Gg, — L* is a continuous character, lifting the
trivial character 1: Ggo , = k. If p, 1s semisimple then the action of Go , on p, factors
through ggﬁ, and hence the action of Gg, on any stable O-lattice of p, factors through
Qgp, and hence the same holds for the reduction of any stable O-lattice modulo @ . Since
the action of Ggo , on p does not factor through Qgﬁ we deduce that both p, and p, are not

semisimple. Since the reduction of §*¢ ! modulo @ is equal to @' and p > 5, § 2!
cannot be equal to the trivial or the cyclotomic character. This implies Extngp (€871, 8) is
1-dimensional. Hence, p, = p, and so x = ). [

Corollary B.10. — The intersection of all the maximal ideals of RY[1/p] such that p, is
wrreducible 1s zero.

Proof. — Let S = Ollco, ¢1, doy, di1] and g = pcy + ¢1dy + ¢ody and f € S, not divisible
by g. It is enough to construct ¢ : S — va such that ¢(f) # 0, ¢(g) = 0 and ¢(¢) # 0,
since the last condition implies that the representation associated to ker ¢ is irreducible
via Corollary B.4.

Substituting ¢} 1= ¢; — dy we get g = dg + ¢\ dy + cody + pey. Hence, we may write
S = qg+r,where r = dyfi + /5, with fi, 5 € Ollco, ¢}, d11], see [44, IV§9]. The polynomial
X2+ ¢\ X + ¢ody + pey is irreducible over O[[e, ¢}, d;]] and hence also over its quotient
field. As r # 0 we deduce that & :=f; — ¢\fify + (codi + peo)f;* # 0. We may choose
¢ : Ollco, ¢}, di1] — Qp such that ¢(¢p) # 0 and @(#) # 0, see Lemma 9.22. We may
extend it to S so that ¢(g) = 0. If (f) = 0 then ¢(f))p(dy) + ¢ (fy) = 0, and since ¢(dy)
is a root of X? 4+ ¢(¢))X + ¢(cod; + pey), we would obtain that ¢ (k) = 0. [
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Let DY, be the deformation functor parameterizing all the 2-dimensional pseu-

docharacters of Gg, lifting tr p. We know that DY, is pro-represented by a complete

local noetherian O-algebra (S, mg). Trace induces a morphism of functors Def, — D},
and hence homomorphism of local Q-algebras 6 : S — R. It follows from [40, 1.4.4]
that 0 is surjective. We note that this can also be deduced from Theorem B.3, since we
have written down the universal deformation explicitly. We are going to show that 6 is an

isomorphism.

Lemma B.11. — Trace induces a bijection Def, (k[x]/(x*)) 3 Db, (k[x]/ (x%)).

Progf: — Since 6 is surjective we already know that the map is an injection. Hence
to show surjectivity it is enough to show that both spaces have the same dimension as
k-vector spaces. It follows from [2, Thm 2] that dim; D}, (k[x]/(x*)) = 6, which is also
the dimension of Def,, (k[x]/(x?)). ]

Let F:= Ollay, ai, co, ¢1, do, di]] it follows from Lemma B.11 that there exist surjections

F5S 5 R, which induce isomorphisms on the tangent spaces. We may assume that the
composition k o 6 is the one used to present R in (B.1). Given a local O-algebra (R, m)
we denote R:= R/w R, and let R, := R/(m" + @ R).

Let B : F — k[x]/(x*) be a homomorphism of O-algebras such that ay, a;, ¢y, d; >
0, ¢1,dy = x. Let pg : F X G — GLy(k[x]/ (x7)) be a representation defined by the same
formulas used to define o in Proposition B.2.

LemmaB.12. — Let h € F % G be such that tr pg(hg) = tr pg(g) forallg € F X G then
Py =1.

Progf. — Since 1 # w, tr pg(g) determines the diagonal entries of pg(g) for all g €
F 1 G, see (B.3) below. In particular, for all ¢ € F % G the diagonal entries of pg(gh) are
equal to the diagonal entries of pg(g). Let x; € F be the generators defined in Lemma B. 1.
Applying the last observation to g = xy, g = x,—» we deduce that pg(/) is unipotent upper-
triangular, and to g = x, we deduce that pg(h) = 1. ]

Lemma B.13. — The surjection k : F5 — S; is not an somorphism.

Progf. — Suppose K is injective then F3 = S3. We may consider trp as a pseu-
docharacter of F x G and let D’ be the deformation functor parameterizing 2-dimensio-
nal pseudocharacters of F x G lifting tr p. Corollary A.3 says that every 2-dimensional
pseudocharacter of Ggo , lifting tr p is a pseudocharacter of Gal(F(p)/Q,,) and thus using
Proposition B.2 we may consider DI, as a subfunctor of D’. Using [2, Thm. 2] we de-
duce that dim; D'(k[x]/(x?)) = 6. Thus if S3 = Fy then D'(k[x]/(x*)) = Di, (k[x]/(x*)).
This would mean that every 2-dimensional pseudocharacter of F x G lifting trp is
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automatically a pseudocharacter of Gal(F(p)/Q ,). This would mean that there exists
T € Dy, (k[x]/(x”)), such that T(¢'(g)) = tr pp(g) for all g € F x G. The equality would
imply that for all 4 € Kerg’ and g € F x G we have tr pg(hg) = tr pg(g). Lemma B.12
implies that Ker ¢’ is contained in Ker pg. However, as B(pcy + c1dy + ¢1dy) = x* # 0 we
obtain a contradiction to the universality of the representation constructed in Proposi-

tion B.2. U
Lemma B.14. — The map 6 induces an isomorphism Ss = R.

Proof: — Since S5 — Ry is surjective it is enough to show the equality of dimensions
as k-vector spaces. We have dim; R; < dim; S; < dim; I3 = dim; R3 + 1, where the strict
inequality follows from Lemma B.13 and the equality from (B.1). 0J

Theorem B.15. — The map 6 : S — R is an isomorphism.

Proof. — Since R is O-torsion free it is enough to show that @ : S — R is an iso-
morphism. Let / = ¢yd, + ¢1d) € F, so that R = F/(f) and let m be the maximal ideal
of F. It is enough to show that « (f) = 0. It follows from Lemma B.14 that there exists
g €m?, such that k() = k(g). Thus 8 (k(g)) = 0 an so there exists 4 € F such that g = fh.
Now /4 cannot be a unit as g € m* and / ¢ m®. Hence 4 € m and so 1 — /4 is a unit. Since
k(f(1 =h)=«(f) —k(g) =0and | — A 1s a unit we deduce that k (/) = 0. U

Corollary B.16. — Let {r : Go , — O™ be a continuous character lifting det p and let SV and
RY be the rings pro-representing functors Df’:};// and Def‘éf then trace induces an isomorphism SV = RV .

B.1 Generic reducible case. — Let x1, 2 : Gg , —> k* be continuous characters, such
that x;x, '#£1, w*'. We assume that p > 3. This assumption and a standard calcula-
tion with local duality and local Euler-Poincare characteristic imply that both subspaces

1 1 . .
Extk[ngJ(Xl, X9) and Eth[ng](XQ, x1) are 1-dimensional. Let

0— x1 = pi2—> x2— 0, 0— xo—=> poar—> x1—>0

be non-split extensions. From now on the indices 7,7 will mean either (z,5) = (1,2) or
(z,7) = (2, 1). Since Ext,i[gqp](xj, X:) is 1-dimensional, such p; exists and is unique up
to isomorphism. Since ; 7# xo we have Endep (pj) = k thus the universal deformation
problem D, for p; is (pro-)representable by a ring R;;. Our assumptions x1 x5 "4 1, 0%
imply that H*(Gg ,»Adp;) =0 and H'(Go ,»Ad p;) is 5-dimensional. Hence, R; is for-
mally smooth of relative dimension 5 over O. Let p; be the universal deformation of
Pi-

' Let G be the image of ng in £ x £ under the map g (x1(g), x2(g)) and let
P be the maximal pro-p quotient of the kernel of this map. Since the order of G is prime
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to p after choosing some splitting we may assume that the action of Gg, on p; factors
through P X G. Let x, and Xy be the Teichmiiller lifts of x; and s respectively.

Let x be the trace of py, so that x = x; + x2 and let DI be the functor parameter-
izing all the 2-dimensional pseudo-characters lifting x. The functor is represented by a
ring RI*. Trace induces a morphism of functors D,, — D¥* and hence a ring homomor-
phism 6 : RI* — R;.

Proposition B.17. — Trace induces an isomorphism 6 : R = R;.

Progf. — "The map is surjective by [40, 1.4.4]. Now the tangent space of R is at
most 5-dimensional by Theorem 2 in [2], alternatively the Proposition can be deduced
from [2] Theorem 4 and Remark 3. Since R; is formally smooth of relative dimension 5
over O, we deduce that the map is an isomorphism. 0J

Corollary B.18. — Let T : Gg , — RY* be the universal 2-dimensional pseudocharacter lifting
X then tr p1o(g) = T(g) = tr Py1 (9), for all g € G,

Let ¢ be the residubility ideal in R in the sense of [3, Def. 1.5.2]. It is uniquely
determined by the following universal property: an ideal J of RI* contains v if and only
if T (mod J) =T, + Ty, where T}, Ty : Gg, — RP/J, are deformations of x; and o,
respectively, to RP/J, see [3, Prop. 1.5.1]. We note that since x; # x2, T1 and Ty are
determined uniquely by T (mod J) by the formulas:

1
(B.3) Ti(g) = @Zx;%m(hg) (mod J).

heG

Proposition B.19. — RY /v is formally smooth of relative dimension 4 over O.

Proof. — Let D,, and D,, be the universal deformation problems for x; and xo,
respectively. A standard argument shows that they are represented by formally smooth
O-algebras R, R,,, which are of relative dimension 2 over O. The functor D,, x D,,
is represented by the ring R,, ® R,,, which is formally smooth of relative dimension
4 over O. By the definition of the reducibility ideal, the map «: D,, x D,, = D,,
(Ty, T9) = Ty + T factors through the map a: Dy, x Dy, > Hom(RP/t, ). Itis triv-
ially injective, when the functors are evaluated, and it follows from (B.3), that is also
surjective. Hence, a is an isomorphism of functors and so RF'/t =R, ®oR,,. 0J

Corollary B.20. — The reducibility ideal v is a principal ideal.

Progf: — In fact we prove a stronger statement. It follows from Proposition B.17
that RP* is formally smooth of relative dimension 5 over O. Thus we may deduce from
Proposition B.19 that v is generated by an element contained in the maximal ideal of RI?,



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 187

but not contained in the square of the maximal ideal. Alternatively, one could use [3,
Prop. 1.7.1]. [

Since the order of G is prime to p, we may choose a basis {vl, vQ} of p;, such that
G acts on v1 by the character ¥, and on v} by the character . Fixing a basis allows us

to think about p; as a continuous group homomorphism p; : Gg , = GLy(R;), so that
x1 0

,012=(o Xr)) and py; = (* Xz)

Lemma B.21. — EndeP (0j) =R

Progf. — Since the characters x; and xo are distinct Endeﬁ (0;) € Endg(p;) =
{(g 2) AU E Ry} Since p; is non-split, there exist g € gQ» such that either the en-
try (1, 2) or the entry (2, 1) of p;(g) is a unit in R;. The only elements of Endg(5;)
commuting with p;(g) are scalar matrices, which then commute with everything. UJ

Defination B.22. — For (1,7) = (1, 2) and (2,7) = (2, 1), let v be the ideal of Ry; generated
by the (j, i)-entry of p;(g), for all g € Gg .

Proposition B.23. — The isomorphism 6 of Proposition B.17 maps ¢ to ;.

*

Progf. — Since pjo = ()f)l xz) and p9 = ()S o ) the ideal t; is contained in the
maximal ideal of R;;. By construction of t;, the representation p; (mod t;) is reducible.
Hence, its trace is a direct sum of two characters, which are deformations of x; and y» to
R;;/v;. Thus, v is contained in ! (vj), and so O(v) C v;.

Let K be the quotient field of RF*/v. If for some g € Gq, the (, 1)-entry of p;(g)
(mod 6(v)) is non-zero, then the representation p; ®g; K is absolutely irreducible. How-
ever, this is impossible as the trace of p; ®g; K is a sum of two characters. This implies

that v; C 0(v). O

We fix a generator ¢ of the ideal t. It follows from Proposition B.23 that 6(¢) is a
generator of t1,. Let of, : Go , = GLy(Ryy) be the representation defined by

1
s0r=("0 o ("9 )

A priori the image of p{, lands in the GL; of the quotient field of Ry, but since R}y =
0 (c)"'t1y, the image is contained in GLy(R)5).
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Proposition B.24. — The representation pfy is a deformation of poy to Ryy. The induced map
a : Roy = Ry is an isomorphism, making the following diagram:

o
RQI > RIQ

] e
R~ RV

commule.

Progf. — The reduction of pj, modulo the maximal ideal of R,y is of the form
(%)) Since Rjy = 0(c)"'vyo, there exists ¢ € P, such that x(g) # 0. This implies that
the extension is non-split. Since Ext(leﬁ (X1, x2) 1s one dimensional, we deduce that the
reduction of pf, modulo the maximal ideal of R,y is isomorphic to po;. Hence, pf, is a
deformation of py; to Rjy. This induces the map « : Ry; — Ryy. Since trpj, =tr pjp =
tr p9; we obtain a commutative diagram as above. Since 6 is an isomorphism, we deduce

from the diagram that « is also an isomorphism. U
Corollary B.25. — Homg, (0y» P5i) 15 a free RY: module of rank 1.

Proof. — It follows from the Proposition B.24 that p{, = 091 ®r,,,« Ri2. Hence, it is
enough to show that Homng (P12, P1y) is a free Rjp-module of rank 1. If we think of 0,9,
P}, as representations of Gg , on Ry9v,? ® Rj9v,%, then inside the ring of 2 x 2-matrices

over the quotient field of R;;, we have equalities of R;-modules:

- e 0(c) O -
<B.4> HomgQﬁ (,012, p12) = ( O 1) Endeﬁ (/012)’
B.5 H 0¢5, P1o) = End 0 ! 0
(B.3) omg, (P1y: P12) =En g, (P12) | 90 )
The assertion follows from Lemma B.21. O

Proposition B.26. — The centre of the ring Endgy, (0; ® ;) ts tsomorphic to REY. Moreover,
Endgy , (07 ® £5) is a fee RY:-module of rank 4.

Proof. — The ring Endg, (65 @ 05) is isomorphic to
Endep (,51;) HomgQ/’ (/52]9 [5;1) R}; lz REJ(S(D,]
Homgg, (1. 7)  Endgg, (7)) RF®, RPL

where ®; is described in Corollary B.25. It follows from Corollary B.25 that ®;0 ®; = 1,
and ®;;0®; = 1;. Since Rl;s is an integral domain we deduce that o1, +8®; +y ®; +41;
is central if and only if =y =0 and o = 4. O

12

(B.6)



THE IMAGE OF COLMEZ’S MONTREAL FUNCTOR 189

Corollary B.27. — Let ¢ be a generalor of the reducibilily ideal © in RY:. Then Endg,, (0; @
Pi)[1/c] is isomorphic to the ring of 2 X 2 matrices over R‘;S[l /cl.

Proof. — The isomorphism is induced by sending ((1) 8) = 1, (8 (1)) = @, ((1) 8) >
O

¢! @jand () > 1;.

Remark B.28. — Let ¥ : Ggo , O be a continuous character, congruent to x; xo
modulo @ . The results of this section hold if instead of working with an unrestricted
deformation problem, we consider only those deformations with determinate equal to
Y. The proofs carry over word for word, except that one has to subtract 2 from every
dimension, and in the proof of Proposition B.19 one obtains an isomorphism R*V /¢ =
R,,, since the determinant condition imposes the relation T, Ty = v, and hence T’ is
uniquely determined by T}.
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