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ABSTRACT

We prove exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal
maps (with arbitrary combinatorics), in any even degree d. We then conclude that orbits of renormalization are asymp-
totic to the full renormalization horseshoe, which we construct. Our argument for exponential contraction is based on a
precompactness property of the renormalization operator (“beau bounds”), which is leveraged in the abstract analysis of
holomorphic iteration. Besides greater generality, it yields a unified approach to all combinatorics and degrees: there is no
need to account for the varied geometric details of the dynamics, which were the typical source of contraction in previous
restricted proofs.
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1. Introduction

1.1. Renormalization Conjecture and Regular or Stochastic Theorem. — The Renormal-
ization Conjecture formulated in mid 1970’s by Feigenbaum [F] and independently by
Coullet and Tresser [TC] has been a focus of research ever since. Roughly speaking, it
says that a certain “renormalization operator” is hyperbolic in an appropriate infinite-
dimensional functional space. It explains remarkable universality properties on various
families of dynamical systems (see [Cv] for a collection of early papers on the subject).
More recently, it has played a central role in the measure-theoretical analysis of one-
dimensional dynamical systems, particularly in the proofs of the Regular or Stochastic
Dichotomy in the real quadratic family [L4] and more general spaces of quasiquadratic
unimodal maps [ALM].

Here we will consider the renormalization operator R in the space C R
d of real

unicritical polynomial-like maps of an arbitrary even degree d ≥ 2. Hyperbolicity of R
was proven for bounded combinatorics by Sullivan, McMullen and one of the authors in
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[S, McM2, L3], and then for all combinatorics in the quadratic case [L4]. Our goal is to
generalize the latter result to an arbitrary even degree d .

In this paper we will prove that the renormalization operator R has an invariant
horseshoe A and is exponentially contracting on the corresponding hybrid lamination.
In the forthcoming paper we will deal with the transverse unstable direction. Together
with the previous analysis of non-renormalizable unimodal maps [ALS], this will prove
the Regular or Stochastic Dichotomy in any unicritical family pc : x �→ xd + c (with d ≥ 2
even): For almost any real c (for which pc has an invariant interval), the map pc is either
regular (i.e., it has an attracting cycle) or stochastic (i.e., it has an absolutely continuous
invariant measure).

Besides supplying a more general version of the Renormalization Theorem, our
goal is to address the issue of exponential contraction along hybrid leaves in a novel
unified way, which does not involve fine geometric considerations (highly dependent on
the combinatorics and degree). Our approach simplifies the previously known proofs
in the quadratic-like case, even for the renormalization with bounded combinatorics.
Namely, we will derive the desired result from the previously known beau bounds for real
maps [S, LvS, LY], and basic facts of functional analysis and topology.

1.2. Statement of the result. — Let us now formulate our main result more precisely.
To this end we need a few basic definitions that we now outline; a more detailed back-
ground will be supplied in the main body of the paper.

A unicritical polynomial-like map of degree d is a degree d branched covering
f : U → V between two topological disks U � V that has a single critical point. We nor-
malize f so that f (z) = zd + c + O(zd+1) at the origin. Note that this normalization sur-
vives rotations through 2πk/(d − 1), k ∈ Z/(d − 1)Z: conjugating a normalized map by
such a rotation, we obtain a normalized map with rotated c.

The (filled) Julia set K(f ) is the set of non-escaping points. It is either connected or
a Cantor set depending on whether 0 ∈ K(f ) or not. If f is a polynomial-like map with
connected Julia set then the corresponding polynomial-like germ is defined as the class of
polynomial-like maps f̃ with the same Julia set and such that f̃ |K(f̃ ) = f |K(f ).

Let C = Cd stand for the space of normalized polynomial-like germs of degree d

with connected Julia set. It intersects the polynomial family pc : z �→ zd + c, c ∈ C, by the
Multibrot set M = Md (defined as the set of c for which the Julia set K(pc) is connected).

Two polynomial-like germs are called hybrid equivalent if they have representatives
f : U → V and f̃ : Ũ → Ṽ that are conjugate by a quasiconformal homeomorphism
h : V → Ṽ such that ∂̄h = 0 almost everywhere on K(f ). The corresponding equivalence
classes are called hybrid classes. According to the Douady-Hubbard Straightening Theo-
rem [DH], any hybrid class in C intersects the Multibrot set M by an orbit of the rotation
group Z/(d − 1)Z.

A unicritical polynomial-like germ f is called renormalizable if there is a disk � � 0
and a p ≥ 2 such that the map f p |� is unicritical polynomial-like with connected Julia
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set (subject of a few extra technical requirements—see Section 2.10). Appropriately nor-
malizing this polynomial-like germ, we obtain the renormalization of f . If p is the smallest
period for which f is renormalizable, then the corresponding renormalization is denoted
Rf .

We can now naturally define infinitely renormalizable polynomial-like germs. Let I R stand
for the space of real infinitely renormalizable polynomial-like germs (that is, the germs
preserving the real line), and let I (R) stand for the space of polynomial-like germs that
are hybrid equivalent to the real ones. The renormalization operator R naturally acts in
both spaces preserving the hybrid partition. In what follows, this partition will serve as
the stable lamination:

Main Theorem. — There is an R-invariant precompact set A ⊂ I R (the renormalization

horseshoe) such that R | A is topologically conjugate to the two-sided shift in infinitely many symbols,

and any germ f ∈ I (R) is attracted to some orbit of A at a uniformly exponential rate, in a suitable

“Carathéodory metric”.

See Theorem 9.2 for a slightly more detailed formulation.

Remark 1.1. — Our approach to exponential contraction also applies to certain
non-real renormalization combinatorics (for which the appropriate beau bounds have
been established, see [K, KL1, KL2]). See Theorem 5.1.

1.3. Outline of the proof. — We start with the argument for exponential contraction
along hybrid classes. To fix ideas, let us consider first the case of a fixed hybrid leaf Hc (the
connected component of the hybrid class of pc) so that every time we iterate the same
renormalization operator R.

Hybrid lamination. — In Section 4 we endow hybrid leaves with a path holomorphic

structure and show that all of them are bi-holomorphically equivalent. The path holomor-
phic structure endows these spaces with Carathéodory pseudo-metrics and we prove that they
are Carathéodory hyperbolic, i.e., these pseudo-metrics are, in fact, metrics.

The Schwarz Lemma. — The renormalization operator, as a map from one hybrid
leaf to another, is holomorphic with respect to their path holomorphic structure. This
puts us in a position to apply the Schwarz Lemma to the analysis of its iterates: its weak
form (see Section 3) already implies that renormalization is weakly contracting with respect
to the Carathéodory metric.

Beau bounds in Hc mean by definition that there exists a compact set K ⊂ C such
that for every f ∈ Hc, Rnf ∈ K for any n sufficiently large (depending only on the quality
of the analytic extension of f ), see Section 5.

For real maps with stationary combinatorics, beau bounds were proved by Sullivan
(see [S, MvS]) in early 1990’s, for complex maps with primitive stationary combinatorics,
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they have been recently established by Kahn [K]. (Note that this result covers all real
stationary combinatorics except the period doubling.) Exponential contraction can be
easily concluded from beau bounds through the entire complex hybrid leaf Hc:

The Strong Schwarz Lemma shows that holomorphic endomorphisms are strongly
contracting with respect to the Carathéodory metric, provided the image is “small” in
the range, in the sense that the diameter is less than 1,1 see Section 3. Beau bounds
imply that for any compact set Q ⊂ Hc there exists N such that Rn(Q) contained in the
(universal) compact set K for n ≥ N. By selecting Q ⊃ K sufficiently large, we fulfill the
smallness condition of K inside Q, and can conclude that RN | Q is strongly contracting
(Section 5).

We will now give a different argument for stationary real combinatorics that relies
only on the beau bounds for real maps. It makes use of one general idea of functional
analysis:

Almost periodicity. — The beau bounds for real maps (and even just for real polyno-
mials) imply that the cyclic semigroup {Rn}∞

n=0 is precompact in the topology of uniform
convergence on compact sets of Hc. (Such semigroups are called almost periodic, see
[Lju1, Lju2].) Then the ω-limit set of this semigroup is a group. Its unit element is a re-
traction P : Hc → Z = Fix P.

Remark 1.2. — More directly, the precompactness of {Rn} allows us to find
nearby iterates Rn and Rm with n > 2m. It follows that Rn−m is close to the identity in
Im Rm ⊃ Im Rn−m. Taking limits we get a map P which is exactly the identity in Im P, so
that P is a retraction.

Let PR : HR
c → Z R be the restriction of P to the real slice.

Topological argument and analytic continuation (Section 7). — The beau bounds for real
maps imply that the real slice Z R is compact. By the Implicit Function Theorem, Z R is
a finite-dimensional manifold. But one can show that the space HR

c is contractible (see
Lemma 2.1 and Theorem 2.2), and hence the retract Z R is contractible as well. But
the only contractible compact finite dimensional manifold (without boundary) is a single
point. So, PR collapses the real slice HR

c to a single point f∗. Since P is holomorphic, it
collapses the whole space Hc to f∗ as well.

Since P is constant it follows that Rn → P uniformly on compact subsets of Hc, and
we can conclude exponential contraction through the strong Schwarz Lemma as before.

This completes the argument for the case of stationary combinatorics.

1 We gauge the Carathéodory metric so that any space has diameter at most 1. Condition that the diameter of K
in Q is less than 1 means that “K is well inside of Q”.
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Unbounded combinatorics. — Beau bounds for arbitrary real maps were established in
[LvS, LY]. For complex maps, they have been recently established for a fairly big class of
combinatorics in [KL1, KL2] (see also [L2] for earlier results). Our first argument that
uses the beau bounds for complex maps extends to the unbounded combinatorics case in
a straightforward way, using the leafwise Carathéodory metric on the hybrid lamination
(Section 5). The second argument based on almost periodicity requires an extension of
this idea from semigroups to cocycles (or grupoids). This is carried out in Section 8.1.

Horseshoe. — Once contraction is proved, the horseshoe is constructed in the fa-
miliar way (see [L4]) using rigidity of real maps [L2, GS, KSS]. It is automatically semi-
conjugate to the full shift. A further argument based on the analysis of the analytic con-
tinuation of anti-renormalizable maps (which becomes substantially more involved in the
higher degree case, see Appendix A) yields the full topological conjugacy.

1.4. Comparison with earlier approaches. — In the case of stationary combinatorics,
two approaches were previously used to construct the fixed point f∗ and to prove con-
vergence to f∗ in the hybrid class H(f∗). The first one, due to Sullivan, is based on ideas
of Teichmüller theory (see [S, MvS]); the other one, due to McMullen, is based on a
geometric theory of towers and their quasiconformal rigidity [McM2].

The Teichmüller approach, albeit beautiful and natural, faces a number of subtle
technical issues. Also, it does not seem to lead to the exponential contraction.2 The ge-
ometric tower approach can be carried out all the way to prove exponential contraction
[McM2]. On the other hand, in [L3], exponential contraction was obtained by combin-
ing towers rigidity (as a source of contraction, but without the rate) with the Schwarz
Lemma in Banach spaces.

Both approaches generalize without problem to the bounded combinatorics case.
The tower approach can be carried further to “essentially bounded” combinatorics [Hi].
The remaining “high” combinatorics case (as well as the oscillating situation) was handled
in [L4] using the geometric property of growth of moduli in the Principal Nest of the
Yoccoz puzzle [L2]. This is a powerful geometric property which is valid only in the
quadratic case. So, this method is not sufficient in the higher degree case (at least, it
would require further non-trivial geometric analysis).

The approaches developed in this paper use much softer geometric input (only
beau bounds) and treat all the combinatorial cases in a unified way.

Remark 1.3. — There are also computer-assisted methods going back to the clas-
sical paper by Lanford [La], as well as approaches that do not rely on holomorphic dy-
namics [E, Ma2]. These methods can be important for dealing with the case of fractional
degree d . The almost periodicity idea can possibly contribute to it, too.

2 It has been suggested that this relates to the fact the Teichmüller approach naturally deals with conformal (rather
than affine) equivalence between the polynomial-like germs. However, our Schwarz Lemma argument seems to work
equally well for conformal classes.
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1.5. Basic Notation. — D = {z : |z| < 1} is the unit disk,
Dr = {z : |z| < r} is the disk of radius r,
and T = {z : |z| = 1} is the unit circle;
pc : z �→ zd + c is the unicritical polynomial family.

We assume the reader’s familiarity with the basic theory of quasiconformal (“qc”)
maps. We let Dil h be the dilatation of a qc map.

2. Hybrid classes, external maps, and renormalization

The theory of polynomial-like maps was laid down in [DH] and further developed,
particularly in the quadratic-like setting, in [McM1, L3]. In this section we will refine the
basic theory in the case of unicritical polynomial-like maps of arbitrary degree.

2.1. Holomorphic motions. — Given a domain D ⊂ C with a base point λ0 and a set
X0 ⊂ C, a holomorphic motion of X0 over D is a family of injections hλ : X0 → C, λ ∈ D,
such that hλ0 = id and hλ(z) is holomorphic in λ for any z ∈ X0. Let Xλ = hλ(X0).

We will summarize fundamental properties of holomorphic motions which are usu-
ally referred to as the λ-lemma. It consists of two parts: extension of the motion and trans-
verse quasiconformality, which will be stated separately.

Extension λ-Lemma (See [Sl]). — A holomorphic motion hλ : X0 → Xλ of a set X0 ⊂ C
over the disk D admits an extension to a holomorphic motion ĥλ : C → C of the whole complex plane

over D.

Remark 2.1. — We will usually keep the same notation, hλ, for the extended motion.

Quasiconformality λ-Lemma (See [MSS]). — Let hλ : U0 → Uλ be a holomorphic motion of

a domain U0 ⊂ C over the disk D, based on 0. Then over any smaller disk Dr , r < 1, all the maps hλ

are K(r)-qc, where K(r) = 1+r

1−r
.

2.2. Polynomial-like maps and germs. — A polynomial-like map (“p-l map”) of degree
d ≥ 2 is a holomorphic branched covering f : U → V of degree d between quasidisks
U � V. Its filled Julia set is K(f ) = ⋂

n≥0 f −n(U), and the Julia set is J(f ) = ∂K(f ). In
what follows, the letter d will be reserved for the degree of f .

A p-l map is called unicritical if it has a unique critical point (of local degree d ).
We will normalize unicritical polynomial-like maps so that 0 ∈ U is the critical point and
f (z) = zd + c + O(zd+1) near 0. In what follows, polynomial-like maps under considera-
tion will be assumed unicritical. The annulus V � U is called the fundamental annulus of a
p-l map f : U → V (the corresponding open and closed annuli, V � Ū and V̄ � U will
also be called “fundamental”).
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Basic examples of p-l maps are provided by appropriate restrictions of unicritical
polynomials pc : z �→ zd + c, e.g., pc : Dr → pc(Dr) for r > 1 + |c|.

The Basic Dichotomy asserts that the (filled) Julia set of f is either connected or a
Cantor set, and the former happens iff 0 ∈ K(f ).

Given a polynomial-like map f with connected Julia set, the corresponding
polynomial-like germ is an equivalence class of polynomial-like maps f̃ such that K(f ) =
K(f̃ ) and f = f̃ in a neighborhood of 0 (hence, by analytic continuation, also in a neigh-
borhood of K(f )). We will not make notational distinction between polynomial-like maps
and the corresponding germs. Let

mod f = sup mod(V � U),

where the supremum is taken over all p-l representatives U → V of f .
We let C = Cd be the set of all polynomial-like germs with connected Julia set.
A unicritical polynomial pc : z �→ zd + c defines an element of C if and only if c

belongs to the Multibrot set M = {c ∈ C : sup |pn
c (0)| < ∞}. Those are the only (normal-

ized) germs with infinite modulus.
We will use superscript R for the real slice of a certain space. For instance C R stands

for germs of real polynomial-like maps f : U → V (with connected Julia set), i.e., such that
f preserves the real line and domains U, V are R-symmetric.

2.3. Topology. — For a quasidisk U ⊂ C, let BU stand for the Banach space of
functions holomorphic in U and continuous in Ū. The norm in this space will be denoted
by ‖ · ‖. Let BU(f , ε) stand for the Banach ball in BU centered at f of radius ε.

We introduce a topology in C as follows. We say that fn → f if there exists a qua-
sidisk neighborhood W of K(f ) such that (some representatives of) the germs fn are de-
fined on W̄ for sufficiently large n, and fn converges to (an appropriate restriction of a
representative of) f in the Banach space BW. The topology in C is defined by declaring its
closed sets to be the ones which are sequentially closed. It is easy to see that K(f ) depends
upper semi-continuously (in the Hausdorff topology) on f ∈ C , while its boundary J(f )
depends lower semi-continuously.

We let C(ε) be the set of all f ∈ C with mod(f ) ≥ ε. Then C(ε) is compact, and
any compact subset K of C is contained in some C(ε) (see [McM1]).

2.4. Hybrid classes. — Notice that the Multibrot set M has rotational symmetry of
order d − 1 coming from the fact that polynomials pc and pεc are affinely equivalent for
ε = e2π i/(d−1). In fact, the moduli space of unicritical polynomials of degree d (that is, the
space of these polynomial moduli affine conjugacy) is the orbifold C/〈ε〉 with order d −1
cone point at the origin.

We say that two polynomial-like germs f , g ∈ C are hybrid equivalent if there exists a
quasiconformal map h : C → C, such that h(K(f )) = K(g), h ◦ f = g ◦ h in a neighbor-
hood of K(f ) (for any representatives of f and g), and ∂h = 0 on K(f ). We call h a hybrid

conjugacy between f and g.
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By the Douady-Hubbard Straightening Theorem, every f ∈ C is hybrid conjugate to
some pc with c ∈ M. However, in the higher degree case (d > 2) c may not be uniquely
defined. Indeed, polynomials pc and pεc are affinely equivalent, so they belong to the same
hybrid class. Vice versa, one can show that hybrid equivalent polynomials pb and pc are
affinely equivalent, so b = εkc for some k ∈ Z/(d − 1)Z. We will see later how to define
a single polynomial straightening associated to each germ (the resolution of the apparent
ambiguity involves global considerations).

We let H̃c be the hybrid class containing pc.

2.4.1. Beltrami paths. — A path fλ ∈ C , λ ∈ Dr , is called a Beltrami path if there exists
a holomorphic motion hλ : C → C over Dr , based on 0, that provides a hybrid conjugacy
between f0 and fλ (the continuity of λ �→ fλ is in fact automatic). In this case, the pair
(fλ, hλ) is called a guided Beltrami path. The guided Beltrami paths with a fixed initial point
f0, are in one-to-one correspondence with holomorphic families of Beltrami differentials
μλ = ∂̄hλ/∂hλ on C such that μ0 ≡ 0, and the differentials μλ vanish a.e. on K(f0) and
are f0-invariant near K(f0). So, in what follows our treatment of Beltrami paths will freely
switch from one point of view to the other.

Obviously, any Beltrami path lies entirely in a path connected component of a
hybrid class.

2.4.2. Hybrid leaves. — Given maps f0, f ∈ H̃c, let us consider a hybrid conju-
gacy h : C → C between them. Let μ be the Beltrami differential of h with L∞-norm
κ = ‖μ‖∞ < 1. The family of Beltrami differentials λμ, |λ| < 1/κ , generates a guided
Beltrami path (fλ, hλ) in H̃c, with f1 affinely conjugate to f . In particular each map in C
can be connected to one of its straightenings by a Beltrami path.

Let Hc be the path connected component of H̃c containing pc. The Hc will be
called hybrid leaves. By the previous discussion, H̃c is the union of the hybrid leaves Hεk c,
k ∈ Z/(d − 1)Z. We will later see that for c �= 0, the hybrid leaves Hεk c, k ∈ Z/(d − 1)Z
(which by definition either coincide or are disjoint), are in fact all distinct.

2.5. Expanding circle maps. — A real analytic circle map g : T → T is called expanding

if there exists n ≥ 1 such that |Df n(z)| > 1 for every z ∈ T.
Let E = Ed be the space of real analytic expanding circle maps g : T → T of degree

d normalized so that g(1) = 1. Such a map admits a holomorphic extension to a covering
U → V of degree d , where U � V are annuli neighborhoods of T. Such extensions will
be called annuli representatives of g and will be denoted by the same letter. We define

mod(g) = sup mod(V \ (U ∪ D))

where the supremum is taken over all annuli representatives g : U → V.
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Lifting a map g ∈ E to the universal covering of T, we obtain a real analytic func-
tion g̃ : R → R such that g̃(x) = d x + φ(x) where φ(x) is a 1-periodic real analytic func-
tion with φ(0) = 0. Let A be the space of all such functions, and let An be the subspace of
the φ that admit a holomorphic extension to the strip | Im z| < 1/n continuous up to the
boundary. As the latter spaces are Banach, A is realized as an inductive limit of Banach
spaces, and we can endow it with the inductive limit topology. It induces a topology on
the space E . In this topology, a sequence gn ∈ E converges to g ∈ E if there is a neigh-
borhood W of T such that all the gn admit a holomorphic extension to W, and gn → g

uniformly on W.
Let E R stand for the subspace of R-symmetric expanding circle maps g : T → T

(i.e., commuting with the complex conjugacy z �→ z̄).

Lemma 2.1. — The spaces E and E R are contractible.

Proof. — Let us work with the lifts g : R → R of the maps g ∈ E without making a
notational difference between them. Let E1 stand for the set of g ∈ E such that |Dg| > 1
through R. This is a convex functional space, so it can be contracted to a point through
the affine homotopy.

The space E1 contains the set E∗ of maps g ∈ E preserving the Lebesgue measure,
so E∗ can be contracted through E1.

To deal with the whole E , let us make use of the fact (see, e.g., [KS]) that any g ∈ E
has an absolutely continuous invariant measure dμ = ρ dθ with real analytic density
ρ(θ) > 0. Let us consider a real analytic circle diffeomorphism fixing 0

h(t) =
∫ t

0
ρ(θ) dθ

such that h∗(dμ) = dθ . Then the map G = h ◦ g ◦ h−1 preserves the Lebesgue measure, so
G ∈ E∗. So, we obtain a projection π : E → E∗, g �→ G.

But the space F of diffeomorphisms h fixing 0 is identified with the space of den-
sities ρ, which is also convex, and hence contractible. It follows that E∗ is a deformation
retract for E , and the conclusion follows.

In case of E R, just notice that all the above homotopies can be made equivariant
(with respect to the complex conjugacy). �

2.6. External map, mating and product structure. — Given f ∈ C , let ψ : C \ D →
C \ K(f ) be the Riemann mapping. The map g = ψ−1 ◦ f ◦ ψ induces (by the Schwarz
reflection) an expanding circle endomorphism of degree d called the external map of f . It
is unique up to conjugacy by a circle rotation, so it can be normalized so that g ∈ E . For
d = 2, this normalization is unique, but in the higher degree case, there are generally
d − 1 ways of normalizing g. Irrespective of this issue, it is clear that the quality of the
analytic extensions of the germ and of its external map are related by mod(f ) = mod(g).
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Remark 2.2. — Maps with symmetries have fewer normalizations, e.g., z �→ zd has
the maximal possible symmetry group Z/(d − 1)Z and hence has a unique normaliza-
tion. Note that this is the external map of any polynomial pc, c ∈ M.

Left inverses to the external map construction are provided by the matings between
polynomials pc, c ∈ M, and expanding maps g ∈ E . It goes as follows. Choose a quasicon-
formal homeomorphism h : C � D̄ → C � K(pc) such that h ◦ g = pc ◦ h near the circle.
Consider the Beltrami differential μ equal to ∂̄h−1/∂h−1 on C � K(pc) and vanishing on
K(pc). It is invariant under pc on some Jordan disk D containing K(f ). Let φ : C → C
be the solution of the Beltrami equation ∂̄φ/∂φ = μ. Then the map f = φ ◦ pc ◦ φ−1 is
polynomial-like on some neighborhood of φ(K(pc)), with filled Julia set φ(K(pc)), so up
to normalization, it defines a germ in C .

It is possible to show that, except for the normalization, the germ f does not de-
pend on the various choices made in the construction, and it depends continuously on
g ∈ E and c ∈ M (see Lemma 2.4 below). In Section 2.7 we will carry out formally the
details of the construction, to obtain the following result:

Theorem 2.2. — There is a canonical choice of the straightening χ(f ) ∈ M and an external

map π(f ) ∈ E associated to each germ f ∈ C and depending continuously on f . It has the following

properties:

(1) For each c ∈ M, the hybrid leaf Hc is the fiber χ−1(c), and the external map π restricts

to a homeomorphism Hc → E , whose inverse is denoted by ic and called the (canonical)

mating,

(2) (π,χ) : C → E × M is a homeomorphism,

(3) (Compatibility between matings and Beltrami paths) For c, c′ ∈ M, if fλ is a Beltrami path

in Hc then ic′ ◦ i−1
c (fλ) is a Beltrami path in Hc′ .

(4) External map, straightening and mating are equivariant with respect to complex conjugation.

Except for the need to introduce some novelties to handle Z/(d −1)Z-ambiguities,
the argument follows the quadratic case [L3].

One way to resolve these ambiguities (that show up in both the external map and
the mating constructions) is to introduce markings. Each germ f ∈ C has d − 1 distinct β-

fixed points, which do not disconnect K(f ), and a marking of f is just a choice of a preferred
β-fixed point. The external map of a marked germ inherits a marking as well, that is, one
of its fixed points is distinguished. Reciprocally, mating a marked expanding map with a
marked polynomial leads to a well defined marked polynomial-like germ. Marking also
allows us to resolve the ambiguities inherent to the straightening, since the straightening
of a marked germ is a marked polynomial.

Both expanding maps and polynomials have “natural markings”: for expanding
maps we choose 1 as the preferred fixed point, and for polynomials we choose the land-
ing point of the external ray of angle 0. As it turns out, the natural marking of polynomials
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can be extended continuously, in a unique way, through the entire C (this global property
is related to the simple topology of E , see Lemma 2.1). Thus, keeping in mind the natural
marking, we end up with natural external map, mating, and straightening constructions.
By design, the mating construction provides an inverse to the external map and straight-
ening constructions, so that the connectedness locus C inherits a product structure from
E × M.

We will discuss markings in more details later in Section 2.8 (as they are not for-
mally needed for the proof of Theorem 2.2).

The reader who is mostly interested in the quadratic case can skip the next two
sections.

2.7. Proof of Theorem 2.2. — For c ∈ M, let ξc : C \ D → C \ K(pc) be the univa-
lent map tangent to the identity at ∞: it satisfies ξc ◦ p0 = pc ◦ ξc on the complement of
K(p0) = D.

Define the canonical mating ic(g) ∈ Hc between any polynomial pc, c ∈ M, and
any expanding map g ∈ E as follows. Choose a continuous path gt , t ∈ [0,1] connecting
g0 : z �→ zd to g1 = g, and a continuous family of quasiconformal maps ht : C\D → C\D,
with continuously depending Beltrami differentials νt , satisfying h0 = id and ht ◦ g0 = gt ◦ht

near the circle T.3 Let μt be the extension of the Beltrami differential of ht ◦ ξ−1
c to

the whole complex plane, obtained by letting it be 0 on K(pc). It is invariant under pc

in a neighborhood of K(pc). Let φt : C → C be the solution of the Beltrami equation
∂̄φt/∂φt = μt . By invariance of μt , ft = φt ◦ pc ◦ φ−1

t is holomorphic in a neighborhood
of K(ft) = φt(K(pc)), and if φt is appropriately normalized it defines a germ in H̃c. We
choose the normalization so that φt depends continuously on t and φ0 = id.

Let us check that gt is an external map of ft for every t ∈ [0,1]. Let ψt : C \ D →
C \ K(ft) be the continuous family of univalent maps normalized so that ψ0 = ξc, and
g̃t := ψ−1

t ◦ ft ◦ ψt (which extends analytically across the circle by the Schwarz reflection)
fixes 1, hence g̃t is an external map of ft . Then σt := ψ−1

t ◦ φt ◦ ξc : C \ D → C \ D
is a quasiconformal map conjugating g0 to g̃t whose Beltrami differential coincides with
that of ht . Hence λt := σt ◦ h−1

t is a rotation conjugating gt to g̃t . Since 1 is a fixed point
of gt , λt(1) is one of the fixed points of g̃t for any t ∈ [0,1]. But λ0 = id, so by continuity,
λt(1) = 1 (which is one of the fixed points of g̃t ) for all t ∈ [0,1]. We conclude that λt = id
and hence gt = g̃t for every t.

Next, we will show that the germ f = f1 depends only on c and g, but not on the
various choices we have made, which would allow us to define the mating by ic(g) = f .
Let us first show that once the connecting path gt is chosen, the path ft does not depend
on the choice of the conjugacies ht . Indeed, let h′

t be another choice, with the Beltrami

3 Such a family ht can be constructed as follows. For large n, gt is close to gk/n, for every k ∈ 0, . . . , n − 1 and
t ∈ [k/n, (k + 1)/n]. Considering persistent fundamental annuli for the gk/n, define a conjugacy hk,t , t ∈ [k/n, (k + 1)/n],
between gk/n and gt (first on the fundamental domain, then extended by pulling back) satisfying hk,k/n = id and the continuity
requirements. Then ht can be defined in each interval [k/n, (k + 1)/n] by ht = hk,t ◦ hk−1,k/n ◦ · · · ◦ h0,1/n.
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differential ν ′
t , so that the map ρt := h−1

t ◦ h′
t commutes with g0 near T. Then the map

ζt := ξc ◦ ρt ◦ ξ−1
c commutes with pc near K(pc) (outside it). Let us extend ζt to the entire

plane by setting ζt|K(pc) = id.

Lemma 2.3. — The map ζt is a quasiconformal homeomorphism.

Proof. — This is a version of the pullback argument, see e.g., [MvS], Chapter 6,
Section 4. Choose a quasidisk V ⊃ K(pc) such that U = p−1

c (V) � V and ζt ◦ pc = pc ◦ ζt

on U. Consider a continuous family of quasiconformal maps ζ
(0)
t : C → C, such that

ζ
(0)

0 = ζ0 = id, ζ (0)
t = ζt outside U, and ζ

(0)
t = id near K(pc). We can then set by induction

ζ
(k+1)
t as the unique lift (under pc) of ζ

(k)
t such that ζ

(k+1)
t = id near K(pc). Clearly ζ

(k)
0 = id,

and by continuity in t, we see that ζ
(k)
t = ζt outside p−k

c (U) for every k. Hence ζ
(k)
t → ζt

pointwise. Since the dilatations of the ζ
(k)
t do not depend on k, they form a precompact

family of quasiconformal maps. It follows that the limit map ζt is quasiconformal. �

Remark 2.3. — By the Bers Lemma (see [DH], Lemma 2, p. 303), in order to show
that ζt is quasiconformal, it is enough to check its continuity, i.e., that the points z ∈ C \
K(pc) near K(pc) are not moved much by ζt . This can be verified directly by a hyperbolic
contraction argument (using that ζt commutes with pc): in fact, the hyperbolic distance (in
the complement of K(pc)) between z and ζt(z) remains bounded as z approaches K(pc),
see (see [DH], Lemma 1, p. 302).

We let μ′
t = (ξc)∗ν ′

t outside K(pc) and μ′
t ≡ 0 on K(pc). Since νt = (ρt)∗ν ′

t , we have:
μt = (ζt)∗μ′

t (outside K(pc) and, obviously, on it). Hence μ′
t is the Beltrami differential for

φ′
t := φt ◦ ζt . It follows that the map f ′

t := φ′
t ◦ pc ◦ (φ′

t)
−1 is the mating of pc and gt cor-

responding to the conjugacy h′
t . But since ζt commuted with pc near K(pc), we conclude

that f ′
t = ft near K(ft), as was asserted.
Let us now show that the endpoint f = f1 does not depend on the choice of the path

gt connecting g0 and g. Since E is simply connected, given another connecting path g′
t , we

can fix a homotopy (fixing endpoints) gs
t with g0

t = gt and g1
t = g′

t . The mating construction
then provides germs f s

t ∈ C , and it also allows us to choose hybrid conjugacies φs
t between

pc and f s
t depending continuously on s and t. By the previous discussion, g is an external

map representative of f s
1 for every s, and in fact there is a continuous family ψ s

1 : C\D →
C \ K(f s

1 ) of univalent maps conjugating f s
1 to g. Define ζ s : C → C by ζ s = ((ψ s

1)
−1 ◦

φs
1)

−1 ◦ ((ψ0
1 )−1 ◦ φ0

1) outside K(pc) and ζ s = id on K(pc). Then ζ s commutes with pc in
an outer neighborhood of K(pc), and by the same argument as in Lemma 2.3, we see that
ζ s is a global quasiconformal homeomorphism. Hence

τ s := φs
1 ◦ ζ s ◦ (φ0

1)
−1 = ψ s

1 ◦ (ψ0
1 )−1

is a hybrid conjugacy between f 0
1 and f s

1 which is also conformal outside K(f 0
1 ), so it is

affine. Moreover, note that 1) τ s is the identity at s = 0 and 2) the germs f s
1 are normalized,
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so for each s ∈ [0,1], there is k ∈ Z/(d − 1)Z such that τ s is tangent to z �→ e2π ik/(d−1)z

at 0. We conclude that τ s = id for all s. Hence f s
1 = f 0

1 for all s, and in particular f 1
1 = f 0

1 ,
so the mating ic(g) = f is indeed well defined.

Lemma 2.4. — The mating (g, c) �→ ic(g) is a homeomorphism E × M → C .

Proof. — Let us begin with continuity of the mating. It is easy to see that it is
continuous in g, uniformly with respect to c. Also, it satisfies mod(ic(g)) = mod(g).

So, it is enough to show that for a given g ∈ E , it is continuous with respect to c.
Consider a sequence cn → c ∈ M. Choose a path gt connecting g0 : z → zd to g1 = g in E .
Passing to a subsequence, we may assume that the paths ft,n = icn

(gt) converge uniformly
to a path ft .

Then ft is a path in Hc. Indeed, since the mod(ft,n) are bounded away from 0,
the ft,n are K-qc conjugate to f0,n (with some K independent of t). Compactness of the
space of K-qc maps implies that the ft are K-qc conjugate to f0. Let us show that ft is
actually hybrid conjugate to f0 = pc. If this is not the case then pc must be qc conjugate
to a unicritical polynomial (any straightening of ft ) which is not itself hybrid conjugate
to pc, i.e., c is not qc rigid. But this implies that K(pc′) moves holomorphically for c′ in a
neighborhood of c, K(pc′) = hc′(K(pc)). It follows that the characteristic function of K(pcn

)

converges in measure to that of K(pc),4 which readily implies that the limit H of hybrid
conjugacies Hn between pcn

and ft,n must be a hybrid conjugacy between pc and ft (since
∂̄Hn → ∂̄H weakly in L2).

Let ψt,n : C \ D → C \ K(ft,n) be as in the above construction of the external map,
i.e., it is the continuous family of conformal maps such that ψ−1

t,n ◦ ft,n ◦ ψt,n = gt and
ψ0,n = ξcn

. Then t �→ ψt,n is clearly uniformly continuous in t (with respect to the topol-
ogy of uniform convergence on compact subsets). So we can take a limiting continuous
family ψt : C \ D → C \ K(ft) (though K(ft,n) need not converge to K(ft), any limit is
contained in K(ft) and its boundary contains J(ft) = ∂K(ft), which is enough here). Then
ψ−1

t ◦ ft ◦ ψt = gt , and ψ0 = ξc, i.e., gt is a path that determines the external map of ft . So
ft = ic(gt) and hence lim icn

(g) = lim f1,n = f1 = ic(g). This proves continuity.
Let us now show that the mating is bijective. Notice first that each polynomial

pc has a single preimage (p0, c), since it can only be obtained by mating with its single
external map representative.

Consider a path ft connecting pc and an arbitrary map f in Hc. Then ft = ic(gt)

where gt is the determination of the external map constructed above. Since i−1
c (pc) =

{p0}, this path lifting property implies that each ic : E → Hc is a bijection. In particular,
Hc = ic(E ) contains a single polynomial, ic(p0) = pc, so all hybrid leaves are distinct. Since
C is the union of hybrid leaves, this implies that the mating is bijective.

4 To check it, use the following: since hc as an element of the Sobolev space W1,2 depends holomorphically on c,
Jac hc = |∂hc|2 − |∂̄hc|2 depends continuously on c weakly in L1.
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Since the mating is continuous and bijective, it restricts to a homeomorphism
E (ε) × M → C(ε) for each ε > 0, by compactness, and this implies that the mating
is a homeomorphism E × M → C . �

We obtain the canonical external map π and the canonical straightening χ by
setting (π,χ) as the inverse of the mating. All constructions are clearly equivariant with
respect to complex conjugation. One also checks directly that ic′ ◦ i−1

c takes Beltrami paths
in Hc to Beltrami paths in Hc′ . �

2.8. Marking. — Let us take a polynomial-like map f : U → V with connected
Julia set. Let A = V̄ � U and let � = ∂U. Select an arc γ0 ⊂ A connecting a point
a−1 ∈ f (�) = ∂V to one of its preimages, a0 ∈ �. It can be lifted to an arc γ1 ⊂ f −1A con-
necting a point a1 ∈ f −1(�) to a0. In turn, this curve can be lifted to an arc γ−2 ⊂ f −2A
connecting some point a2 ∈ f −2(�) to a1. Continuing this way we obtain a sequence of
arcs γn concatenating a curve γ ⊂ V̄ � K(f ) such that f (γ ∩ Ū) = γ (we will refer to
such a curve as “invariant”). A standard hyperbolic contraction argument shows that this
curve can accumulate only at fixed points, and hence lands at some “preferred” fixed
point of g. Fixed points that arise in this way are called β-fixed points. A marking of g is a
choice of such an invariant curve up to equivariant homotopy. This notion descends to
germs, by identifying markings of polynomial-like representatives of g which coincide up
to truncation.

If c ∈ M, we can mark the corresponding germ pc with an invariant external ray of pc.
No two invariant external rays can land at the same point,5 so those markings are indeed
distinct. On the other hand, it is easy to see that any invariant curve is equivariantly ho-
motopic to some invariant external ray. Since such a ray has external argument k/(d −1)

with k ∈ Z/(d −1)Z, this procedure shows that there are exactly d −1 different markings,
and that markings are in bijection with the β-fixed points.

Since a hybrid equivalence between polynomial-like maps gives a correspondence
between the markings, the bijection between markings and β-fixed points holds through
C as well. The family of β-fixed points depends continuously through C ,6 so each β-
fixed point (or equivalently, each choice of marking) of a germ admits an unique local
continuation to every sufficient small connected neighborhood a germ.

Similarly to polynomial-like maps, a circle map g : U → V of class E can be marked

by choosing an invariant curve γ ⊂ V � D up to equivariant homotopy. Such a curve
lands at a fixed point of g which depends only on the marking. Vice versa, a fixed point
determines the marking, so there are exactly d − 1 distinct markings of any circle map
g ∈ E .

5 Otherwise the sector bounded by those two rays and which does not contain the critical point would be invariant
by the maximum principle (notice that the image of the sector does not contain the critical value).

6 By means of straightening, we can restrict attention to polynomials, for which it is readily checked that repelling
β-fixed points are persistent, and repelling non-β-fixed points are persistent as well. Thus a discontinuity might only arise
at a parabolic bifurcation, where both candidates to be a β-fixed point are close.
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The marking of g ∈ E corresponding to the fixed point 1 is called natural. It provides
us with a continuous global marking of the space E .

Due to the product structure C ≈ E × M, the natural marking of E can be pulled
back to a natural marking of C .

2.9. Control of quasiconformal dilatation. — We say that two polynomial-like germs
f , f̃ ∈ C are (C, ε)-close if there exist polynomial-like representatives f : U → V and
f̃ : Ũ → Ṽ with mod(V \ U) > ε, mod(Ṽ \ Ũ) > ε, and a quasiconformal homeomor-
phism h : C \ U → C \ Ũ respecting the natural marking of f and f̃ 7 with Dil(h) < C
such that h ◦ f = f̃ ◦ h on ∂U. Notice that (C, ε)-closeness only depends on the (canoni-
cal) external maps π(f ) and π(f̃ ).

Standard arguments (c.f. the proof of Lemma 2.3) yield:

Lemma 2.5. — If f and f̃ are (C, ε)-close by means of h and are hybrid equivalent, then h

extends, in a unique way, to a hybrid conjugacy between f and f̃ with dilatation bounded by C.

By compactness one has:

Lemma 2.6. — For every ε0 > ε > 0 there exists C > 1 such that if f , f̃ ∈ C(ε0) then f and

f̃ are (C, ε)-close.

For nearby germs, the constant C can be taken close to 1:

Lemma 2.7. — Let fn, f̃n ∈ C be converging sequences with the same limit. Then there exists

ε > 0 and Cn ↘ 1 such that fn and f̃n are (Cn, ε)-close for every n sufficiently large.

Proof. — Let f = lim fn = lim f̃n. By definition of convergence, there exists a
polynomial-like representative f : U → V such that fn extends holomorphically to U for
every n sufficiently large, fn|U converges uniformly to f , and fn → f uniformly on U.

Let W be the quasidisk bounded by the equator (i.e., the simple closed hyperbolic
geodesic) of V \ U, and let � := f −1(W), �n := f −1

n (W) and �̃n = f̃ −1
n (W). Then the

Jordan curves ∂�n and ∂�̃n converge in C∞ topology to the curve ∂�. It follows that
for n sufficiently large, the maps fn : �n → W and f̃n : �̃n → W are polynomial-like, and
the mod(W \ �n), mod(W \ �̃n) approach 2ε := mod(W \ �). Hence there exist C∞

diffeomorphisms hn : C → C, such that hn |C \ W = id and fn ◦ hn = f̃n ≡ hn ◦ f̃n on ∂�n,
approaching the identity in the C∞ topology. Thus Dil hn → 1. Moreover hn, being close
to the identity, preserves the natural marking and we are done. �

7 This condition makes sense since the marking of f can be given by a curve γ ⊂ V̄ � U connecting a point z ∈ ∂U
to its image f (z) ∈ ∂V up to homotopy rel the endpoints.
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2.10. Renormalization and a priori bounds. — A unicritical polynomial-like map
f : U → V (of degree d ) is called renormalizable with period p > 1 if there exists a topo-
logical disk W � 0 with the following properties:

R1 The map g = f p |W is a unicritical polynomial-like map of degree d (onto its image
W′); it is called the pre-renormalization of f .

R2 The little Julia set K(g) is connected;
R3 K(g) does not touch its images f m(K(g)), m = 1, . . . , p − 1, except perhaps at one of
its β-fixed points.

Note that these images are also Julia sets K(gm) for appropriate degree d

polynomial-like restrictions gm : Wm → W′
m of f p. They are also referred to as “little Julia

sets of f ”.
By [McM1, Theorem 5.11], the polynomial-like germ of the pre-renormalization

is well defined: it does not depend on the choice of the domain W above.
In fact, there is a standard combinatorial choice of the domain W. Namely, let us

consider the little Julia set K(g1) around the critical value f (0). Among its β-fixed points,
there is a dividing point β1, i.e., the landing point of more than one external rays8 for f

(see [Mi, Theorems 1.2 and 1.4]). Two of these rays bound a sector containing f (0),
the characteristic sector S1. The renormalization range W′

1 is obtained by truncating S1 by
an equipotential and slightly “thickening” it (see [D] or [Mi, Section 8]). The domain
W1 � f (0) is the pullback of W′

1 by f p. The domains W′ ⊃ W � 0 are the pullbacks of the
W′

1 ⊃ W1 under f .
Note that the dividing fixed point β1 is uniquely defined. Indeed, as the character-

istic sector S1 has size less than 1/d ,9 it does not contain the critical point 0 and hence
∂S1 separates 0 from f (0). Since the little Julia set K(g1) � f (0) is connected and the rays
landing at the β-fixed points of g1 do not cut through K1(g), there cannot be more than
one separating point.

We will mark β1 on the little Julia set K(g1) and the corresponding fixed point
β = f p−1(β1) ∈ f −1(β1) on the little Julia set K(g). Notice that if f ∈ C R, these points lie
in the real line (by symmetry).

Now, the renormalization of f is obtained by normalizing the pre-renormalization
with minimal possible period,

Rf (z) = λ−1g(λz) : z �→ c + zd + h.o.t.

There is no ambiguity in the choice of normalization since the pre-renormalization g is
marked with the β-fixed point. In case f ∈ C R, we have Rf ∈ C R as well, since β is real.

The renormalization is called primitive if the little Julia sets K(gm) do not touch, and
is called satellite otherwise.

8 External rays for polynomial-like maps are defined by means of the straightening.
9 In fact, S1 is the minimal sector into which the rays landing on orbβ1 divide the plane.
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The set of angles of the external rays (defined with help of the canonical straight-
ening of f ) landing at the distinguished β-fixed points of g determine the “renormaliza-
tion combinatorics”.10 A classical theorem by Douady and Hubbard [DH] asserts that
the renormalizable unicritical polynomials pc with the same combinatorics form a “little
copy M′ of the Multibrot set” (or “M-copy”), except that the roots of M′ may or may
not be renormalizable. Thus, the renormalization combinatorics can be labeled by the
little copies themselves.

In case of a renormalizable real map, all the above notions can be described in
purely real terms. The real traces of the little Julia sets are intervals that are permuted un-
der the dynamics. The order of these intervals on the line describes the renormalization
combinatorics. The set of renormalizable maps with a given combinatorics is a parame-
ter interval M′ ∩ R called the renormalization window. Note that the boundary points of a
renormalization window renormalize to a map with either parabolic (more precisely, it has
a parabolic fixed point with multiplier 1) or Ulam-Neumann (in this case, f 2(0) is the β-
fixed point, such maps are also called Chebyshev) combinatorics. In particular, the boundary

maps are not twice renormalizable. (In case of doubling renormalization, the parabolic bound-
ary map is not renormalizable in the complex sense, but can be viewed as renormalizable
on the real line.)

A polynomial-like germ f ∈ C is called renormalizable, if it has a renormalizable
representative. The renormalization descends naturally to the level of germs. Whether a
germ is renormalizable or not, and even its renormalization combinatorics, only depends
on its hybrid leaf. The renormalization operator acts nicely at the level of hybrid leaves:11

Lemma 2.8. — The renormalization operator maps hybrid leaves into hybrid leaves, and takes

Beltrami paths to Beltrami paths.

Proof. — It is enough to prove the last statement. Let (fλ, hλ) be a guided Beltrami
path in a renormalizable hybrid leaf. Let f0 : U0 → V0 be a p-l representative of f0. We
may assume that V0 is small enough so that μλ = ∂hλ/∂hλ is f0-invariant for every λ ∈ D.
Let g0 = f

p

0 : U′
0 → V′

0 be a pre-renormalization of f0. Then μλ is g0-invariant for ev-
ery λ ∈ D. It follows that hλ ◦ g0 ◦ h−1

λ is a pre-renormalization of fλ : hλ(U0) → hλ(V0).
If A0 is the affine map conjugating g0 and Rf0, there is a unique holomorphic contin-
uation Aλ which normalizes gλ, which is readily seen to conjugate gλ and Rfλ. Thus
(Rfλ,Aλ ◦ hλ ◦ A−1

0 ) is a guided Beltrami path. �

One can now naturally define n times renormalizable maps, including n = ∞. The
combinatorics of an infinitely renormalizable map can be labeled by a sequence of little

10 An alternative point of view is the following. The relative positions of the little Julia sets K(gm) inside the big one,
K(f ), can be described in terms of a graph called the Hubbard tree. This graph determines the renormalization combina-
torics up to symmetry.

11 As for the hybrid classes, we notice that affinely conjugate renormalizable germs have the same renormalization.
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Mandelbrot copies M′
n, n ∈ N (describing the combinatorics of the consecutive renor-

malizations). It incorporates the sequence {pn} of the (relative) renormalization periods.
This can be an arbitrary sequence of natural numbers > 1. We say that f has a bounded

combinatorics if the sequence of periods pn is bounded.
We say that an infinitely renormalizable germ f has a priori bounds if its renormal-

izations Rnf have definite moduli: mod(Rnf ) ≥ ε > 0.
Let us note, for further use, a simple consequence (Lemma 2.10) of the a priori

bounds. We will need the following topological preparation:

Lemma 2.9. — Let f ′ : U′ → V′ be a p-l representative of a pre-renormalization (not necessar-

ily the first) of the p-l map f : U → V, of total period q. If V′ ⊂ V then f k(U′) ⊂ U for 0 ≤ k < q

and f ′ = f q|U′.

Proof. — The connected component of f −q(V′) containing 0 is a simply connected
domain taken by f q onto V′ as a proper map which coincides with f ′ near K(f ′). By
analytic continuation, such connected component must coincide with U′ and we have
f ′ = f q|U′. �

Lemma 2.10. — Let f ∈ C be infinitely renormalizable with a priori bounds, and let fn be the

sequence of pre-renormalizations (of total period qn). Then there exist C > 0, λ < 1 (only depending

on the a priori bounds) such that

max
m∈Z/qnZ

diam Km(fn) ≤ Cλn.

Proof. — We are going to show that there exists δ > 0, only depending on the a
priori bounds, such that for every m,m′, n, n′ such that n′ > n and Km(fn) ⊃ Km′(fn′), the
Hausdorff distance between Km(fn) and Km′(fn′) is at least δ diam(Km(fn)). This clearly
implies that there exists k > 0 such that

diam(Km′(fn′)) < diam(Km(fn))/2

provided n′ ≥ n + k, and the exponential decay follows.12

Let f : U → V and fn′ : U′ → V′ be polynomial-like representatives, with

mod(V \ U) ≥ mod(V′ \ U′) = ε.

Up to replacing ε by ε/dt and (U′,V′) by (f −t
n′ (U′), f −t

n′ (V′)) (with t only depending on ε)
we may assume that V′ ⊂ V. By Lemma 2.9, fn′ = f qn′ |U′.

12 Indeed, we can choose mj ∈ Z/qn+jZ, 0 ≤ j ≤ k with m0 = m and mk = m′, such that the Kmj
(fn+j) are nested.

After suitable translation and rescaling by diam(Km(fn))
−1, one gets k + 1 compact subsets of the closed unit disk which

are pairwise δ/2-separated in the Hausdorff metric. Since the set of compact subsets of the closed disk is compact, k is
bounded in terms of δ.
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Then f qn′ has a single critical point in Ũ = f m′
(f −1

n′ (U′)), where we represent m′ in
the range 1 ≤ m′ ≤ qn′ . For each 1 ≤ l ≤ qn′ , there exists a unique zl ∈ Kl(fn′) such that
f qn′−l(zl) = 0. It follows that Ũ contains at most one of the zl . Since Km(fn) contains at
least two distinct zl , we conclude that Km(fn) �⊂ Ũ. But mod(Ũ \ Km′(fn′)) ≥ ε/d , so Ũ is
a δ diam(Km′(fn′))-neighborhood of Km′(fn′), with δ only depending on ε. �

3. Path holomorphic spaces, the Carathéodory metric and the Schwarz
Lemma

A path holomorphic structure on a space X is a family Hol(X) of maps γ : D → X,
called holomorphic paths, which contains the constants and is invariant under holo-
morphic reparametrizations: for every γ ∈ Hol(X) and every holomorphic (in the usual
sense) map φ : D → D, γ ◦ φ ∈ Hol(X). Natural examples of path holomorphic spaces
are complex Banach manifolds, where holomorphic paths are taken as the paths which
are holomorphic in the usual sense.

If X,Y are path holomorphic spaces, a map � : X → Y is called path holomorphic
if for every holomorphic path γ : D → X, � ◦ γ : D → Y is a holomorphic path. Let
Hol(X,Y) be the space of path holomorphic maps from X to Y. Notice that Hol(D,X) =
Hol(X). In case of complex Banach manifolds, this coincides with the usual notion of
being holomorphic, as long as the maps are continuous. Obviously, composition of path
holomorphic maps is path holomorphic.

Given a path holomorphic space X, any subset Y ⊂ X can be naturally considered
as a path holomorphic space: if i : Y → X is the inclusion, then Hol(Y) consists of all
φ : D → Y with i ◦ φ ∈ Hol(X).

Let h(x, y) be the hyperbolic metric on D (normalized to be twice the Euclidean
metric at 0). Introduce a metric d(x, y) on D by taking d = eh−1

eh+1 (this is a metric by con-
vexity). This is the unique metric invariant under the group of conformal automorphisms
of D and such that d(0, z) = |z|.

By the usual Schwarz Lemma, any holomorphic map φ : D → D weakly con-
tracts d , i.e., d(φ(x),φ(y)) ≤ d(x, y).

Let X be a path holomorphic space. Then we can define the following Carathéodory

pseudo-metric:

(3.1) dX(x, y) = sup
φ∈Hol(X,D)

d(φ(x),φ(y)).

(Obviously, in this definition we can consider only φ normalized so that φ(x) = 0.) By the
usual Schwarz Lemma we have

(3.2) dD(x, y) = d(x, y).

If Y ⊂ X, we let diamX Y denote the diameter of Y in the pseudo-metric dX. We
say that Y is small in X if diamX Y < 1.
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The Carathéodory pseudo-metric dX is a metric if and only if the set of bounded
path holomorphic functions X → C separates points. In this case, X is called Carathéodory

hyperbolic.
The definitions immediately imply:

Schwarz Lemma (Weak form). — Any path holomorphic map � : X → Y is weakly contract-

ing:

(3.3) dY(�(x),�(y)) ≤ dX(x, y).

It follows that any subset of a Carathéodory hyperbolic space is Carathéodory
hyperbolic.

The universal class of Carathéodory hyperbolic spaces are given by Banach balls:

Lemma 3.1. — The unit ball B(1) in a complex Banach space B is Carathéodory hyper-

bolic and dB1(x,0) = ‖x‖. A path holomorphic space X is Carathéodory hyperbolic if and only if X
holomorphically injects into a Banach ball.

Proof. — Normalized linear functionals φ ∈ B∗
1 are holomorphic maps B1 → D.

By definition of the Carathéodory metric and the Hahn-Banach Theorem,

dB1(x,0) ≥ sup
φ∈B∗(1)

|φ(x)| = ‖x‖.

The opposite inequality is obtained by applying the Schwarz Lemma to the embedding
D → B1, λ �→ λx/‖x‖ at λ = ‖x‖.

The Schwarz Lemma shows that a space which is not Carathéodory hyperbolic
can not inject into one that is. Vice versa, assume X is Carathéodory hyperbolic. Let
S ⊂ Hol(X,D) be any subset which separates points (e.g., S = Hol(X,D)). Then X holo-
morphically injects into the unit ball of �∞(S), the Banach space of bounded functions
S → C, via the map x �→ (φ(x))φ∈S. �

Small subsets of a hyperbolic space X have “definitely stronger” Carathéodory
metrics:

Lemma 3.2. — Let X be a path holomorphic space and let Y ⊂ X. Then for any x, y ∈ Y,

(3.4) dX(x, y) ≤ diamX(Y)dY(x, y).

Proof. — Let r > diamX Y. By the weak Schwarz Lemma for any path holomor-
phic function φ : (X, x) → (D,0) we have φ(Y) ⊂ Dr . Hence the function φ̃ := r−1φ |Y
belongs to Hol(Y,D), and we obtain:

dY(x, y) ≥ sup
φ

|φ̃(y)| = 1
r

dX(x, y).

The conclusion follows. �
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Putting this together with the weak Schwarz Lemma, we obtain:

Schwarz Lemma (Strong form). — Any path holomorphic map � : Y → X with small image

is strongly contracting:

dX(�(x),�(y)) ≤ diamX(�(Y)) · dY(x, y).

Proof. — Decompose � as i ◦ �0 where i : �(Y) → X is the inclusion, �0 =
� : Y → �(Y). Then apply the weak Schwarz Lemma to �0 and Lemma 3.2 to i. �

Remark 3.1. — One can consider the (stronger) Kobayashi metric on path holo-
morphic spaces as well. Though the Kobayashi hyperbolicity is a more general notion,
the spaces of interest in this paper turn out to be already Carathéodory hyperbolic.
More importantly, the Carathéodory metric is much better adapted to our purposes,
since strong contraction can be derived from a very simple smallness criterion.

4. Hybrid leaves as Carathéodory hyperbolic spaces

4.1. Path holomorphic structure on hybrid leaves. — For any c ∈ M, we introduce a path
holomorphic structure on the hybrid leaf Hc as follows. A continuous family

(fλ : Uλ → Vλ) ∈ Hc, λ ∈ D,

is said to be a holomorphic path if there exists a holomorphic motion hλ : C → C based at the
origin such that hλ(K(f0)) = K(fλ)), ∂hλ = 0 a.e. on K(f0) (which makes sense since the
hλ are qc by the Quasiconformality λ-Lemma) and hλ ◦ f0 = fλ ◦ hλ on K(f0) (equivariance

property).
Clearly every Beltrami path is a holomorphic path. Though the notion of a Bel-

trami path is in principle stronger, they coincide at least locally. Indeed, let fλ be a holo-
morphic path and let hλ be the corresponding motion of K(fλ). For each λ0 ∈ D, we can
make a choice of a fundamental annulus Vλ \Uλ which moves holomorphically with λ in
a small disk D around λ0. This holomorphic motion can be then extended (using the Ex-
tension λ-Lemma) to C \ Uλ and then (uniquely) to a holomorphic motion on C \ K(fλ)

that is equivariant on Uλ �K(f ). Matching it with the original motion of K(fλ) we obtain
a holomorphic motion of C over D, which provides a hybrid conjugacy.

Remark 4.1. — Yet another way to look at holomorphic paths is the following:
a continuous family fλ ∈ Hc, λ ∈ D, is a holomorphic path if and only if the map
(λ, z) �→ fλ(z) extends to a holomorphic map in a neighborhood of

⋃

λ∈D

{λ} × K(fλ).

However, this point of view will play no role in our analysis of hybrid classes.
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Through the local characterization of holomorphic paths as Beltrami paths, we
can translate Theorem 2.2 (item 3) and Lemma 2.8 to path holomorphicity statements:

Lemma 4.1. —

(1) All hybrid leaves are path holomorphically equivalent: For every c, c′ ∈ M, ic′ ◦ i−1
c : Hc →

Hc′ is path holomorphic.

(2) The renormalization operator is leafwise path holomorphic: if Hc and Hc′ are such that

R(Hc) ⊂ Hc′ then R : Hc → Hc′ is path holomorphic.

4.2. Carathéodory hyperbolicity.

Theorem 4.2. — For every c ∈ M, Hc is Carathéodory hyperbolic.

Proof. — In order to prove Carathéodory hyperbolicity of the hybrid leaves, it is
enough, by Lemma 4.1, to prove it for any one of them. The most convenient one will be
H0, since in this case the Julia set traps a “definite domain of holomorphicity”:

(4.1) D1/4 ⊂ K(f ) if f ∈ H0.

Indeed, there exists a univalent map ψf from int K(f ) onto D (the Böttcher coordinate),
such that ψf (f (z)) = ψf (z)

d and Dψf (0) = 1,13 and this implies (4.1) by the Koebe-1/4
Theorem.

We will now show that H0 holomorphically injects in a Banach ball, which is equiv-
alent to Carathéodory hyperbolicity by Lemma 3.1. As the target space, we take BDρ

(the
space of bounded holomorphic functions on Dρ which are continuous up to the bound-
ary) for an arbitrary 0 < ρ < 1/4.

Clearly the restriction operator Iρ : H0 → BDρ
is injective, by analytic continua-

tion. It is also bounded: the branch of the d-th root of f | int K(f ) tangent to the identity
at 0 restricts to a univalent map on D1/4, so that f |Dρ can be bounded in terms of ρ. Let
us show that

(4.2) fλ(z) is holomorphic in (λ, z) ∈ D × D1/4 if fλ is a holomorphic path in H0,

as this clearly implies that Iρ is path holomorphic.
Indeed, if fλ is a holomorphic path in H0 then there exists a holomorphic motion

hλ : C → C centered on 0 such that hλ(K(f0)) = K(fλ), hλ is holomorphic on int K(f0),
and hλ conjugates f0 and fλ on their filled Julia sets. By separate holomorphicity, we see
that (λ, z) �→ (λ, hλ(z)) is holomorphic in D × int K(f0) → ⋃

λ∈D{λ} × int K(fλ). This
implies (4.2), since we can write fλ(z) = hλ ◦ f0 ◦ h−1

λ (z). �

13 One way to obtain the Böttcher coordinate is by restricting a hybrid conjugacy between f and p0. The fact that
the derivative at 0 can be taken as 1 is immediate from the normalization.
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4.3. Carathéodory vs Montel. — The following discussion is not actually needed
for our proofs of exponential contraction of renormalization with respect to the
Carathéodory metric, but allows us to reinterpret this result in more familiar terms (the
Montel metrics of [L3]).

A compact subset K ⊂ C is called sliceable if there exist an open quasidisk W and
C > 0 such that

⋃
f ∈K K(f ) ⊂ W and every f ∈ K has a holomorphic extension to W

bounded by C. Notice that if L � W is a neighborhood of 0, then the uniform metric
on C0(L) induces a distance on K, and different choices of L lead to Hölder equivalent
distances, by Hadamard’s Three Circles Theorem. In particular, all those distances define
the same topology on K, which is easily seen to coincide with the natural topology of K
(as a subset of C ).

A metric d defined on a compact subset K ⊂ C will be called Montel if on each
sliceable subset of K, it is Hölder equivalent to the uniform metric on all sufficiently
small compact neighborhoods of 0. Notice that it is enough to check this last condition
on any family of sliceable subsets whose K-interiors cover K. Thus Montel metrics can
be constructed by gluing appropriately metrics on finitely many sliceable subsets. They
are all Hölder equivalent and compatible with the topology.

Remark 4.2. — We need to go through sliceable subsets since two different germs
f , f̃ ∈ C may coincide in a neighborhood of 0 (which cannot happen when f and f̃ are in
the same sliceable set).

Example 4.1. — Let us sketch a construction of a pair of quadratic-like germs
f± ∈ C that coincide in a neighborhood of 0: indeed f+ and f− are restrictions of the same
analytic map defined in K(f+) ∪ K(f−).

Let us start with the map

F : T → T, z �→ exp(π(z − z−1)/2), or θ �→ π sin θ,

where z = eiθ ∈ T.

The upper and lower half-circles T± are invariant under F, and the unimodal maps
F |T± admit quadratic-like extensions that are hybrid equivalent to the Chebyshev map
z �→ z2 − 2.

Let us now consider the analytic real-symmetric immersion φ : T → C satisfying

1
2π 2

φ(z)2 = 1 + F(z), φ(−1) = 2π.

Its image S is a real-symmetric and 0-symmetric “figure eight” with double point at 0.
The map F lifts to an analytic real-symmetric map f : S → S, f ◦φ = φ ◦F. The segments
S± := φ(T±) are invariant under f and the maps f |S± admit quadric-like extensions that
are hybrid equivalent to the Chebyshev map. So, they define two different quadratic-like
germs in H−2.
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However, they define the same germ at 0.

Theorem 4.3. — For every ε > 0, dHc
defines a Montel metric on Hc(ε), for each c ∈ M.

Moreover those metrics are uniformly Hölder equivalent to the restriction of any fixed Montel metric on

C(ε).

We will need two preliminary results:

Lemma 4.4. — For every ε > 0, there exists δ > 0 such that dHc(δ) defines a Montel metric on

Hc(ε), for each c ∈ M. Moreover those metrics are uniformly Hölder equivalent to the restriction of any

fixed Montel metric on C(ε).

Proof. — By Theorem 4.2 and the Schwarz Lemma, Hc(δ) is Carathéodory hyper-
bolic, so that dHc(δ) is a metric.

Given δ > 0, there exists ρ > 0 such that all f ∈ C(δ) extend holomorphically to a
holomorphic function on Dρ bounded by ρ−1. It then follows, by analytic continuation,
that for every c ∈ M and z ∈ Dρ the function f �→ f (z) is holomorphic on Hc(δ). This
shows that 2ρ−1dHc(δ) dominates a Montel metric on each sliceable subset K ⊂ Hc(δ)

(take the Montel metric given by the uniform distance on each sufficiently small neigh-
borhood L of 0).

Let us now show that if δ > 0 is sufficiently small, then for each f ∈ Hc(ε), dHc(δ)

is Hölder dominated by a Montel metric in an Hc(ε)-neighborhood of f . In a neighbor-
hood of f there exist open quasidisks V � V′ such that if f0, f1 ∈ Hc(ε) are γ close with
respect to the Montel metric, then they are Cγ θ close over V′ and there are polynomial-
like extensions f0 : U0 → V and f1 : U1 → V with modulus uniformly bounded from
below by some κ > 0. For small γ , this implies the existence of a quasiconformal home-
omorphism h : C → C which is the identity outside V and conjugates f0 : ∂U0 → ∂V
and f1 : ∂U1 → ∂V. Moreover the Beltrami differential of h has L∞ norm bounded by
C′γ θ .14 If f0 and f1 are hybrid equivalent, we conclude (via the pullback argument) that h

can be turned into a hybrid conjugacy preserving the natural marking. This yields a Bel-
trami path parametrized by DC′−1γ −θ connecting f0 to f1. This Beltrami path, restricted to
DC′−1γ −θ /2, lies in Hc(κ/3), by the Quasiconformality λ-Lemma. By the Schwarz Lemma,
if δ ≤ κ/3 we get dHc(δ)(f0, f1) ≤ 2C′γ θ , as desired.

The uniformity on c is clear from the argument. �

Lemma 4.5. — For every ε > 0, dH0 is a Montel metric on H0(ε).

Proof. — By the Schwarz Lemma dH0 is dominated by the Montel metric dH0(δ)

for δ > 0. For fixed 0 < ρ < 1/4, the restriction Iρ : H0 → BDρ
is a bounded path holo-

14 To see this, consider the holomorphic family fλ = f0 + λf1 over a disk of radius (C′γ θ )−1 around 0 and apply the
Schwarz Lemma to the map λ �→ μλ where μλ is the Beltrami differential of the holomorphic motion of the fundamental
annulus.
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morphic map for (c.f. the proof of Theorem 4.2), so another application of the Schwarz
Lemma shows that dH0 dominates a multiple of the uniform metric on Dρ , which is Mon-
tel. �

Proof of Theorem 4.3. — Since both dH0 and dH0(δ) are Montel over H0(ε), they
are Hölder equivalent. Since ic ◦ i−1

0 is a biholomorphic map (H0(ε), H0(δ), H0) →
(Hc(ε), Hc(δ), Hc), dHc

and dHc(δ) are also Hölder equivalent (with the same constants).
Since the latter is (uniformly) Montel, the former is as well. �

5. From beau bounds to exponential contraction

A priori bounds are called beau (over a family F of infinitely renormalizable maps
under consideration) if there exists ε0 > 0 such that for any δ > 0 there exists a moment
nδ such that for any f ∈ F with mod(f ) ≥ δ we have: mod(Rnf ) ≥ ε0 for n ≥ nδ .

The works [K, KL1, KL2] supply a big class of infinitely renormalizable maps
with beau bounds. In this class the little M-copies M′

n describing the combinatorics
should stay away from the “main molecule” of M (which comprises the main cardioid
of M and all hyperbolic components obtained from it via a cascade of bifurcations). For
instance, this class contains all infinitely renormalizable maps of bounded primitive type
and all real infinitely renormalizable maps with all renormalization periods pn �= 2. Let
us emphasize that the approach to the Main Theorem we will develop in Sections 6–8
does not rely at all on [K, KL1, KL2] (and it will cover all real combinatorics, including
period doubling, in a unified way).

We will show that beau bounds through complex hybrid classes imply exponential
contraction of the renormalization:

Theorem 5.1. — Let F ⊂ C be a family of infinitely renormalizable maps with beau bounds

which is forward invariant under renormalization. If F is a union of entire hybrid leaves then there exists

λ < 1 such that whenever f , f̃ ∈ F are in the same hybrid leaf, we have

dHcn
(Rn(f ),Rn(f̃ )) ≤ Cλn, n ∈ N,

where cn = χ(Rn(f )) = χ(Rn(f̃ )) and C > 0 only depends on mod(f ) and mod(f̃ ).

Remark 5.1. — We will actually show that C(f , f̃ ) is small when f is close to f̃ , and
indeed if mod(f ),mod(f̃ ) ≥ δ we can take

(5.1) C(f , f̃ ) = C(δ)dHc(δ)(f , f̃ ).

The proof is based on the Schwarz Lemma and the following easy “smallness”
estimate.
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Lemma 5.2. — For every ε > 0 there exist δ ∈ (0, ε) and γ < 1 such that for all c ∈ M,

we have:

(5.2) diamHc(δ) Hc(ε) < γ.

Proof. — There exists r = r(ε) < 1 with the following property (see Lemmas 2.5
and 2.6). For any p-l germs f , f̃ ∈ Hc(ε), there exist p-l representatives f : U → V,
f̃ : Ũ → Ṽ and a hybrid conjugacy (respecting the natural marking) h : C → C between
f and f̃ such that mod(V\U) > ε

2 and the Beltrami differential μ = ∂̄h/∂h has L∞-norm
bounded by r(ε).

Let us consider a Beltrami path Dρ → Hc,

(5.3) λ �→ fλ = hλμ ◦ f ◦ h−1
λμ, where ρ = ρ(ε) = 1 + r

2r
∈

(

1,
1
r

)

,

where hλμ is a suitably normalized solution of the Beltrami equation ∂̄h/∂h = λμ.
As ‖λμ‖∞ ≤ (1 + r)/2, we have

Dil hλμ ≤ K = K(ε) = r + 3
1 − r

, λ ∈ Dρ.

Hence the fundamental annulus of fλ has modulus at least δ = δ(ε) := ε/2K, so
fλ ∈ Hc(δ). By the (weak) Schwarz Lemma, dHc(δ)(f , f̃ ) ≤ dDρ

(0,1) = ρ−1. �

Proof of Theorem 5.1. — Let ε0 > 0 be the “beau bound” for F , so that for every
δ > 0 there exists nδ such that mod(Rn(f0)) ≥ ε0 whenever f0 ∈ F , mod(f0) ≥ δ and n ≥ nδ .

Using Lemma 5.2, choose 0 < δ0 < ε0 and λ < 1 such that

diamHc(δ0) Hc(ε0) < λnδ0

for every c ∈ M.
The Schwarz Lemma gives for f , f̃ ∈ Hc(δ)

dHcn
(Rn(f ),Rn(f̃ )) ≤ min{dHc(δ)(f , f̃ ), dHcn (δ0)(R

n(f ),Rn(f̃ ))},
dHcn (δ0)(R

n(f ),Rn(f̃ )) ≤ dHc(δ)(f , f̃ ), n ≥ nδ,

dHcn (δ0)(R
n(f ),Rn(f̃ )) ≤ λnδ0 dHcn−nδ0

(δ0)(R
n−nδ0 (f ),Rn−nδ0 (f̃ )), n ≥ nδ0 + nδ,

which combined yields the result with Cf ,f̃ as in (5.1). (Check it first for n = knδ0 + nδ ,
k = 1,2, . . . , and then for the intermediate moments.) �
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6. From beau bounds for real maps to uniform contraction

It is a difficult problem to prove beau bounds for complex maps. However, it is
more tractable for real maps: in that case, the beau bounds were established a while ago
(see [S, MvS] for bounded combinatorics and [LvS, LY] for the general case).

Theorem 6.1 (Beau bounds for real maps). — There exists ε0 > 0 with the following property.

For every δ > 0 there exist ε = ε(δ) > 0 and N = N(δ) such that for any f ∈ C R(δ), we have

Rn(f ) ∈ C(ε), n = 0,1, . . . and

Rn(f ) ∈ C(ε0), n = N,N + 1, . . . .

From the point of view of the previous discussion, the main shortcoming of this
result is that it does not provide enough compactness for complex maps, which is crucial
for the Schwarz Lemma application. In this section we will overcome this problem using
some ideas from functional analysis and differential topology (Theorem 6.1 remaining
the only ingredient from “hard analysis”), by proving:

Theorem 6.2 (Beau bounds and macroscopic contraction for complex maps in the real hybrid

classes). — There exists ε0 > 0 with the following property. For any γ > 0 and δ > 0 there exists

N = N(γ, δ) such that for any two maps f , f̃ ∈ C(δ) in the same real-symmetric hybrid leaf we have

Rnf ,Rnf̃ ∈ C(ε0), and dHcn
(Rnf ,Rnf̃ ) < γ, n ≥ N,

with cn = χ(Rnf ) = χ(Rnf̃ ).

The proof of this result will take this and the next two sections.
Through the sequel, let I be the subspace of infinitely renormalizable p-l maps

in C , and let I(δ) = I ∩ C(δ). Let C (R) be the space of polynomial like maps with con-
nected Julia set which are hybrid equivalent to real p-l maps. We will use superscript (R)

for the slices of various spaces by C (R), e.g., I (R)(δ) := I ∩ C (R)(δ).

6.1. Cocycle setting. — We will now abstract properties of the renormalization op-
erator that will be sufficient for Theorem 6.2.

Let S be a semigroup, and let Q = {(m, n) ∈ N × N : n > m}. An S -cocycle is a map
G : Q → S , (m, n) �→ Gm,n, such that Gm,nGl,m = Gl,n.

Letting Fn := Gn,n+1 ∈ S , we obtain

(6.1) Gm,n = Fn−1 ◦ · · · ◦ Fm,

and vice versa, any sequence Fn ∈ S determines a cocycle by means of (6.1).
Let Hol(H0, H0) be the semigroup of continuous path holomorphic maps

F : H0 → H0. Let HolR(H0, H0) be the sub-semigroup of those F such that F(HR
0 ) ⊂ HR

0 .
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Theorem 6.3. — Let G be a family of cocycles with values in HolR(H0, H0) satisfying:

H1. A priori bounds for complex maps: For every δ > 0, there exists ε = ε(δ) > 0 such that

If f ∈ H0(δ) then Gm,n(f ) ∈ H0(ε)

for every G ∈ G and (m, n) ∈ Q.

H2. Beau bounds for nearly real maps: There exists ε0 > 0 such that for every δ > 0, there

exists N = N(δ) and η = η(δ) > 0 such that:

If f ∈ HR
0 (δ), f̃ ∈ H0(δ) and dH0(f , f̃ ) ≤ η

then Gm,n(f̃ ) ∈ H0(ε0)

for every G ∈ G and (m, n) ∈ Q with n − m ≥ N.

Then we have:

C1. Macroscopic contraction: For every δ > 0 and γ > 0 there exists N = N(δ, γ ) such that

if f , f̃ ∈ H0(δ) then

dH0(G
m,n(f ),Gm,n(f̃ )) < γ

for every G ∈ G and (m, n) ∈ Q with n − m ≥ N.

C2. Beau bounds for complex maps: For every δ > 0 there exists N = N(δ) such that

Gm,n(H0(δ)) ⊂ H0(ε0)

for every G ∈ G and (m, n) ∈ Q with n − m ≥ N.

6.2. Reduction to the cocycle setting. — Let � = i0 ◦ π : C → H0, so that for each
c ∈ M, � restricts to a homeomorphism Hc → H0 which is path holomorphic and pre-
serves the modulus. For each infinitely renormalizable hybrid leaf Hc, we can associate a
cocycle G = Gc with values in Hol(H0, H0), by the formula

(6.2) Gm,n(�(f )) = �(Rn−m(f )), f ∈ Hcm
,

where cm = χ(Rm(pc)).
Let G be the set of all such cocycles which correspond to real-symmetric hybrid

leaves. Once we show that hypothesis (H1–H2) of Theorem 6.3 are satisfied for G , the
conclusions (C1–C2) translate precisely into beau bounds and macroscopic contraction
in real hybrid classes (Theorem 6.2).

Let us start with (H1):

Lemma 6.4. — For every δ > 0 there exists ε = ε(δ) > 0 such that:

If f ∈ I (R)(δ) then Rnf ∈ C(ε), n = 0,1, . . . .
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Proof. — Let g = pc : z �→ zd + c, c ∈ R, be the straightening of f , and let gn denote its
nth pre-renormalizations. Let qn be the corresponding periods, that is, gn is a p-l restriction
of gqn .

By Lemmas 2.5 and 2.6, there exist p-l representatives g : U′ → V′, f : U → V with
mod(V′ \ U′),mod(V \ U) > δ/2 and a C-qc map h : (C,U) → (C,U′) with C = C(δ)

conjugating f to g, h ◦ f = g ◦ h in U. Since mod(V′ \ U′) > δ/2,

inf
y∈∂U′ inf

x∈K(g)
|y − x| ≥ A diam K(g),

for some A = A(δ) > 0.
By the a priori bounds for real maps, there exists η > 0, depending only on the de-

gree d , such that

mod gn ≥ η, n = 0,1, . . . .

It follows from compactness of C(η) that we can select η′ = η′(A, η) > 0 so small that
each germ gn has a (non-normalized) p-l representative Un → Vn with mod(Vn \ Un) > η′

and

sup
y∈∂gk(Un)

inf
x∈gk(K(gn))

|y − x| ≤ A diam gk(K(gn))

≤ A diam K(g), k = 0,1,2, . . . , qn − 1.

We conclude that gk(Un) ⊂ U′ for 0 ≤ k ≤ qn − 1. Consequently, the p-l map

h−1 ◦ gn ◦ h : h−1(Un) → h−1(Vn)

is a (non-normalized) representative of the n-th pre-renormalization of f . Since

mod(h−1(Vn) \ h−1(Un)) > η′/C,

we obtain a priori bounds for f with ε = η′/C. �

In order to show that hypothesis (H2) is satisfied, we will use the following.

Lemma 6.5. — Let fn, f̃n ∈ I and χ(fn) = χ(f̃n). Assume that the sequences fn and f̃n converge

to the same limit f . If kn → ∞ then lim infn→∞ mod(Rkn(fn)) = lim infn→∞ mod(Rkn(f̃n)).

Proof. — It is enough to show that for every ε > 0,

if lim inf
n→∞ mod(Rkn(fn)) > ε then lim inf

n→∞ mod(Rkn(f̃n)) > ε.

Let fn : Un → Vn and f̃n : Ũn → Ṽn be p–l representatives of the germs fn and f̃n
that Carathéodory converge to a p-l map f : U → V. By Lemma 2.7, there exist Cn → 1
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and Cn-qc maps hn : Vn → Ṽn conjugating fn to f̃n (maybe after a slight adjustment of the
domains).

Let f ′
n : U′

n → V′
n be p-l representatives of the kn-th pre-renormalizations of the fn

with lim inf mod(V′
n \ U′

n) > ε and filled Julia sets Kn. By Lemma 2.10, diam(Kn) → 0,
so we may choose V′

n contained in Vn. By Lemma 2.9, f ′
n = f

qkn
n |U′

n.
Let Ũ′

n = hn(U′
n) and Ṽ′

n = hn(V′
n). Then the map f̃

qkn
n : Ũ′

n → Ṽ′
n is a well de-

fined p-l representative of the kn-th pre-renormalization of f̃n. Moreover, mod(Ṽ′
n � Ũ′

n) >

mod(V′
n \ U′

n)/Cn, and the conclusion follows. �

Take ε0 from Theorem 6.1. If (H2) does not hold for ε0/2, we can find a δ > 0
and sequences fn ∈ I R ∩ C(δ), f̃n ∈ Hχ(fn)(δ), kn → ∞, with dHχ(fn)

(fn, f̃n) → 0 such that
Rkn f̃n /∈ C(ε0/2). Passing to a subsequence, we can assume that the fn converge, and
thus the f̃n must converge to the same limit. By the previous lemma, it follows that
lim inf mod(Rkn fn) ≤ ε0/2, contradicting Theorem 6.1.

We have reduced Theorem 6.2 to Theorem 6.3.

6.3. Retractions and the proof of Theorem 6.3. — Recall that a continuous map
P : X → X in a topological space X is called a retraction if P2 = P. In other words, there
exists a closed subset Y ⊂ X (a “retract”) such that P(X) ⊂ Y and P |Y = id. Linear
retractions in topological vector spaces are called projections. A retraction is naturally
called constant if its image is a single point.

The proof of Theorem 6.3 has two main parts. The first shows, using (H1), that
lack of uniform contraction in the leafwise dynamics allows one to construct a retraction
towards a non-trivial “attractor”:

Theorem 6.6. — Let G be a family of cocycles with values in Hol(H0, H0). Assume that prop-

erty (H1) holds but (C1) fails. Then there exist sequences Gk ∈ G , (mk, nk) ∈ Q with nk − mk → ∞,

and a non-constant retraction P ∈ Hol(H0, H0) such that Gmk,nk

k (f ) → P(f ) for every f ∈ H0.

The second shows, in general, that non-trivial real-symmetric retractions cannot
be “too compact” in the real direction.

Theorem 6.7. — Let P ∈ HolR(H0, H0) be a retraction, and assume the following compact-

ness property for nearly real maps:
(P) There exists a compact set K ⊂ H0 such that if fn ∈ H0 is a sequence converging to

f ∈ HR
0 , then P(fn) ∈ K for n large.

Then P is constant.

Those two results put together imply Theorem 6.3:
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Proof of Theorem 6.3. — Let G be a family of cocycles with values in HolR(H0, H0)

such that (H1) and (H2) hold, but (C1) does not. By Theorem 6.6, there exist a se-
quence Gk ∈ G and (mk, nk) ∈ Q with nk − mk → ∞, and a non-constant retraction
P ∈ Hol(H0, H0), such that Gmk,nk

k (f ) → P(f ) for every f ∈ H0. It satisfies the hypoth-
esis of Theorem 6.7: since each Gmk,nk

k preserves HR
0 , P also does, while (H2) immediately

gives

(P′) For any f ∈ HR
0 (δ) and f̃ ∈ H0(δ) with dH0(f̃ , f ) < η we have P(f̃ ) ∈ H0(ε0)

which clearly implies the crucial property (P). By Theorem 6.7, P is constant, yielding the
desired contradiction.

This concludes the proof of (C1). Together with (H2), it implies (C2). �

The essentially independent proofs of Theorems 6.7 (of differential topology na-
ture) and 6.6 (dynamical) will be given in the next two sections.

7. Triviality of retractions

7.1. Plan of the proof of Theorem 6.7. — Let us describe the plan of the proof of
Theorem 6.7. Let PR = P | HR

0 . Let Z R = Im PR = Fix PR. By Property (P), Z R ⊂ K,
and hence Z R = P(K ∩ HR

0 ), which is compact. We will complete the argument in three
consecutive steps:

Step 1. Z R is a finite-dimensional topological manifold (by the Implicit Function Theo-
rem),

Step 2. Z R is a single point (by a Brower-like topological argument),
Step 3. Z := Im P = Fix P is a single point, too (by analytic continuation).

The first and third steps would be immediate to carry out if we were dealing with
Banach spaces. For instance, corresponding to the first step we have:

Lemma 7.1 (See [Ca]). — Let B be a complex (respectively, real) Banach space and let P be a

holomorphic (respectively, real analytic) map from an open set of B to B such that P(0) = 0. Assume

that DP(0) is compact and P2 = P near 0. Then for any sufficiently small open ball B around 0 in B,

P(B) is a complex (respectively, real analytic) finite-dimensional manifold.

Proof. — This is a particular case of [Ca] but we will give the argument for the
reader’s convenience. Let h = id−DP(0) − P. Since P2 = P, we have DP(0) = DP(0)2

and hence Dh(0)2 = id, so h is a local diffeomorphism near 0. Obviously h ◦ P = DP(0) ◦
h, so P(B) = h−1(DP(0)(h(B))) if B is a sufficiently small ball around 0. Since DP(0) is
compact and DP(0) = DP(0)2, it has finite rank so DP(0) · h(B) is an open subset of a
finite dimensional subspace. �
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In order to translate this more familiar analysis to our context, we will use Banach

slices (first introduced in [L3]).

7.2. Banach slices. — Let f ∈ H0. We call an open quasidisk W f -admissible if
W ⊃ K(f ) and f extends holomorphically to W and continuously to the boundary. Let
B∗

W ⊂ BW be the Banach space of all holomorphic maps w : W → C such that w(z) =
O(zd+1) near 0 and w extends continuously to the boundary.

The set of f -admissible quasidisks can be partially ordered by inclusion. This par-
tial order is directed in the sense that any finite set has a lower bound, thus it makes sense
to speak of “sufficiently small” f -admissible W.

Let BW,r be the open ball around 0 in B∗
W of radius r. The following lemma is a

straightforward consequence of the definition of the topology in H0.

Lemma 7.2. — For every ε > 0, and f ∈ H0(ε), for every sufficiently small f -admissible W,

for every r > 0, there exists a neighborhood V of f in H0(ε) such that for every f ′ ∈ V , W is f ′-
admissible and f ′ − f ∈ BW,r .

It is easy to see that there exists ε0 = ε0(f ,W) and r0 = r0(f ,W) > 0 such that if
w ∈ BW,r0 then f ′ = f + w admits a polynomial-like restriction f ′ : U → V with K(f ′) ⊂
U ⊂ W and mod(V \ U) > ε0. Since f ′(0) = 0, f ′ defines a germ in H0(ε0) denoted by
jf ,W,r0(w). The map jf ,W,r0 : BW,r0 → H0 is readily seen to be continuous and injective.

Theorem 7.3. — Let f , W and r0 be as above, and let λ �→ wλ be a continuous map

D → BW,r0 . Then λ �→ wλ is holomorphic if and only if fλ = jf ,W,r0(wλ) is a holomorphic path

in H0.

For the proof, we will need a preliminary result. As in the proof of Theorem 4.2,
for 0 < R < 1/4 we let IR : H0 → BDR be the restriction operator, which is well defined
by (4.1).

Lemma 7.4. — Let 0 < R < 1/4 and let λ �→ fλ be a continuous map D → H0. Then fλ
is a holomorphic path in H0 if and only if λ �→ IR(fλ) is a holomorphic path in BDR .

Proof. — The only if part (equivalent to the path holomorphicity of IR) was estab-
lished in the proof of Theorem 4.2.

Assume that IR(fλ) is a holomorphic path in BDR . Since fλ is assumed to be con-
tinuous, in order to show that it is a holomorphic path, it is enough to construct a
holomorphic motion hλ : int K(f0) → int K(fλ) such that for each λ, hλ is holomorphic
and conjugates f0 and fλ: by the Extension λ-Lemma Theorem, it extends to a holo-
morphic motion C → C, which, by continuity, conjugates f0|K(f0) and fλ|K(fλ). For the
construction, we will make use of the Böttcher coordinate (c.f. proof of Theorem 4.2)
ψf : int K(f ) → D associated to any map f ∈ H0: the desired holomorphic motion is
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then given by hλ = ψ−1
fλ

◦ ψf0 . It is obviously injective and holomorphic in z, and conju-
gates f0 and fλ, for each λ ∈ D, so we just need to show that ψ−1

fλ
(z) is a holomorphic

function D × D → C.
Holomorphicity of IR(fλ) implies that fλ(z) is a holomorphic function

D × DR → C. By the Koebe-1/4 Theorem, if z ∈ DR3 then ψfλ(z) ∈ DR2 , so
ψfλ(z)

d ∈ DR4 , and (again by the Koebe-1/4 Theorem), fλ(z) = ψ−1
fλ

(ψfλ(z)
d) ∈ DR3 . It

follows that f n
λ (z) ∈ DR3 ⊂ DR for every z ∈ DR3 , n ≥ 1. By holomorphicity of the itera-

tion we conclude that for every n ≥ 1, f n
λ (z) is holomorphic in (λ, z) ∈ D × DR3 .

Let ψfλ,n : int K(fλ) → C be such that ψfλ,n(z)
dn = f n

λ (z) and Dψfλ,n(0) = 1. It is easy
to see that ψfλ,n converges to ψfλ uniformly on compacts of int K(fλ) (actually one usually
constructs the Böttcher coordinate ψfλ directly as the limit of the ψfλ,n). Over (λ, z) ∈
D × DR3 , the holomorphicity of f n

λ (z) implies, successively, that ψfλ,n(z) and ψfλ(z) are
also holomorphic.

By the Koebe-1/4 Theorem, ψ−1
fλ

(DR4) ⊂ DR3 , and it follows that ψ−1
fλ

(z) is a holo-
morphic function of (λ, z) ∈ D × DR4 . Since for each fixed λ ∈ D, ψ−1

fλ
is a holomorphic

function of D, Hartog’s Theorem implies that ψ−1
fλ

(z) is in fact a holomorphic function
of (λ, z) through D × D. �

Proof of Theorem 7.3. — Assume that fλ is a holomorphic path in H0, and let us show
that for every bounded linear functional L : B∗

W → C, λ �→ L(wλ) is holomorphic: since
wλ takes values in a ball, this implies that λ �→ wλ is holomorphic. By (4.1), fλ(z), and
hence wλ(z) = fλ(z)− f (z), is holomorphic in D × D1/4. By Hartog’s Theorem, it is then
holomorphic in D × W, and since it is continuous in z up to ∂W, and bounded in both
variables, we see that λ �→ fλ(z) is a holomorphic function for every z ∈ W. By Riesz’s
Theorem, there exists a complex measure of finite mass μ, supported on W, such that
L(w) = ∫

w(z) dμ(z), so λ �→ L(wλ) is holomorphic.
Assume now that λ �→ wλ is holomorphic. Since jf ,W,r0 is continuous, λ �→ fλ is

continuous as well. Fix 0 < R < 1/4. By (4.1), D1/4 ⊂ K(f ) ⊂ W, hence the restriction
operator IR,W : B∗

W → BDR is holomorphic. Since wλ ∈ B∗
W depends holomorphically

on λ, it follows that IR(fλ) = IR(f ) + IR,W(wλ) ∈ BR also depends holomorphically on λ.
By Lemma 7.4, fλ is a holomorphic path. �

7.3. Proof of Theorem 6.7. — We will carry out the three steps of the plan of proof
described in Section 7.1. We will use the notation introduced therein.

Let ε > 0 be such that K ⊂ H0(ε). Let f ∈ Z R. Let us consider a neighborhood U
of f in H0(ε/2). If it is small enough then all the maps g ∈ Ū are well defined on some
admissible neighborhood of W ⊃ K(f ) (see Section 7.2), so Ū naturally embeds into some
Banach ball Br := BW,r . Let J : Ū → Br(f ), J(g) = g − f |W denote this embedding. Since
H0(ε/2) is compact, J(Ū ) is compact as well.
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On the other hand, by Property (P) and continuity of P, there is a ρ > 0 such that
P(jf ,W,ρ(Bρ)) ⊂ U . Hence Pf := J◦P◦ jf ,W,ρ : Bρ → Br is a compact Banach holomorphic
retraction.

Let us consider its real-symmetric part PR
f : BR

ρ → BR
r . It is a compact real ana-

lytic Banach retraction, so by Lemma 7.1, the set Fix PR
f near f is a real analytic finite-

dimensional submanifold of Bρ . But since Z R is compact, the topology induced on it
from the Banach ball coincides with its own topology (induced from the whole space H0).
Hence Z R is a finite-dimensional topological manifold near f . Since f ∈ Z R is arbitrary,
the first step of the proof is completed.

By Lemma 2.1, the space E R is contractible. Since HR
0 is homeomorphic to it,

it is also contractible. Since Z R is a retract of HR
0 , it is contractible as well. (If ht is a

homotopy that contracts HR
0 to a point, then P ◦ ht : Z R → Z R does the same to Z R.)

But the only contractible compact finite-dimensional manifold (without boundary) is a
point (since otherwise the top homology group Hn(M) is non-trivial.) This concludes the
2nd step.

Thus, Pf (BR
ρ ) = {0}. Since Pf : Bρ → Br is holomorphic (as a Banach map),

Pf (Bρ) = {0}.
Let us show that a small neighborhood V of f in Z is contained in the neigh-

borhood U ⊂ H0(ε/2) considered above. Otherwise f ∈ cl(Z � U ). Since the notion of
closedness in H0 is given in terms of sequences, there would exist a sequence fn ∈ Z � U
converging to f . By Property (P), the maps fn = Pfn would eventually belong to H0(ε/2),
and hence to the neighborhood U —contradiction.

Thus, we have V ⊂ U ⊂ Br . Shrinking V if needed, we make J(V ) ⊂ Bρ and hence

J(V ) = J(P(V )) ⊂ Pf (Bρ) = {0}.
Since J is injective, V = {f }. Thus, f is an isolated point in Z . But since Z = P(H0) is
connected, we conclude that Z = {f }, which completes the last step of the proof. �

8. Almost periodicity and retractions

We now turn to the dynamical construction of retractions. The presence of enough
compactness, together with the non-expansion of the Carathéodory metric, allows us to
implement the notion of Almost Periodicity (adapted appropriately to the cocycle setting).

8.1. Almost periodic cocycles. — We will now discuss cocycles with values in a Haus-
dorff topological semi-group S . Since we aim to eventually take S = HolR(H0, H0), we
allow for the possibility that S is not metrizable, neither satisfy the First Countability Ax-
iom, however we will always assume that S is sequential in the sense that the notions of
continuity, closedness and compactness can be defined in terms of sequences.
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A subcocycle is the restriction Gkm,kn of a cocycle G to a subsequence of N. More
formally, it is a pullback of G under a strictly monotone embedding k : N → N.

The ω-limit set of a cocycle, ω(G), is the set of all existing lim Gm,n as m → ∞ and
n − m → ∞.

A cocycle is called almost periodic if the family {Gm,n}(m,n)∈Q is precompact in S . The
ω-limit set of an almost periodic cocycle is compact.

We say that a cocycle converges if there is the limit Gm,∞ := limn→∞ Gm,n for every
m ∈ N. The cocyclic rule extends to the limits of converging cocycles:

Gm,∞ = Gn,∞ Gm,n, (m, n) ∈ Q.

We say that a cocycle double converges if there exists the limit G∞,∞ := limm→∞ Gm,∞.
The cocyclic rule extends to the limits of double converging cocycles:

Gm,∞ = G∞,∞ Gm,∞, G∞,∞ = (G∞,∞)2.

In particular, G∞,∞ is an idempotent.

Lemma 8.1. — An almost periodic cocycle has a double converging subcocycle.

Proof. — A converging subcocycle is extracted by means of the diagonal process.
Selecting then a converging subsequence of the Gm,∞, we obtain a double converging
subcocycle. �

Corollary 8.2. — The ω-limit set of an almost periodic cocycle contains an idempotent.

We endow the space of cocycles with the pointwise convergence topology:

Gk → G if Gm,n
k → Gm,n for all (m, n) ∈ Q.

The shift T in the space of cocycles is induced by the embedding N → N,
n �→ n + 1. In other words, (TG)m,n = Gm+1,n+1, (m, n) ∈ Q.

If G is almost periodic then all its translates {TnG}∞
n=0 form a precompact family of

cocycles.
Given a function ρ : S → R≥0, we say that a cocycle is uniformly ρ-contracting if for

any γ > 0 there exists an N such that ρ(Gm,n) < γ for any (m, n) ∈ Q with n − m ≥ N.
A continuous function ρ : S → R≥0 is called Lyapunov

ρ(FlFFr) ≤ ρ(F) for any F,Fl,Fr ∈ S.

The next assertion will not be directly used but can serve as a model for what follows:

Proposition 8.3. — Let G be an almost periodic cocycle and let ρ be a Lyapunov function. If

ρ(e) = 0 for any limit idempotent e ∈ ω(G) then the cocycle is uniformly ρ-contracting.
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We leave it as an exercise.
We will need a more general form of the above proposition. Assume that we have

two continuous functions, ρ ′ ≥ ρ ≥ 0 on S , which are not assumed to be individually
Lyapunov, but rather possess a joint Lyapunov property (adapted to the cocycle):

(8.1) ρ(Gl,n) ≤ ρ(Gl,m) and ρ(Gl,n) ≤ ρ ′(Gm,n) for any l < m < n.

We call it a Lyapunov pair for the cocycle.
We will also need a uniform version of the above lemma, over a family of cocycles.

Let G be a family of cocycles Gs labeled by an element s of some set �. We say that
G is uniformly almost periodic if the whole family Gm,n

s , s ∈ �, (m, n) ∈ Q, is precompact
in S . Then ω(G) ⊂ S stands for the set of the limits of all converging sequences Gmk,nk

sk
as

mk → ∞ and nk − mk → ∞.
We say that the family is uniformly ρ-contracting if for any γ > 0 there exists an N

such that ρ(Gm,n
s ) < γ for any s ∈ �, m ∈ N and n ≥ m + N.

Lemma 8.4. — Let G be a uniformly almost periodic family of cocycles. Let (ρ,ρ ′) be a

Lyapunov pair for all cocycles in G . If ρ ′(e) = 0 for any limit idempotent e ∈ ω(G) then G is uniformly

ρ-contracting.

Proof. — Otherwise there exists a γ > 0, a sequence sk ∈ � and two non-decreasing
sequences qk ∈ N and nk → ∞ such that ρ(Gqk,qk+nk

sk
) ≥ γ . Since G is uniformly almost

periodic, the sequence of cocycles Tqk Gsk
admits a converging subsequence. Let G be a

limit cocycle. Then ρ(G0,n) ≥ γ > 0 for any n > 0 (by continuity of ρ and the first part
of (8.1)). By the second part of (8.1), we have ρ ′(Gm,n) ≥ γ for all (m, n) ∈ Q. Hence
ρ ′(φ) ≥ γ for all φ ∈ ω(G). In particular, ρ ′(e) > 0 for any idempotent e ∈ ω(G) from
Lemma 8.2. Since ω(G) ⊂ ω(G), we arrive at a contradiction. �

8.2. Tame spaces. — Let X be a (sequential) topological space endowed with a con-
tinuous metric d : X×X → R≥0 that is compatible with the topology on compact subsets
of X (but not necessarily on X). We say that X is tame if the following properties hold:

(1) There exists a filtration of compact subsets, X1 ⊂ X2 ⊂ · · · ⊂ X such that⋃
Xi = X;

(2) Each compact set in X is contained in some Xi ;
(3) A set is open in X if and only if its intersection with any compact subset of X is

relatively open.

A family of continuous maps Fs : X → X′, s ∈ �, between tame spaces (with met-
rics d and d ′ respectively) is called equicompact if for every compact set K ⊂ X there exists
a compact set K′ ⊂ X′ such that Fs(K) ⊂ K′ for all s ∈ �.

• An equicompact family {Fs} is called equicontinuous on compact sets if for every com-
pact set K ⊂ X, for every x ∈ K and ε > 0 there exists δ = δ(K, x, ε) > 0 (in fact,
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by compactness of K, one may take δ = δ(K, ε) here) such that for every s ∈ �,
we have

if d(x, y) < δ and y ∈ K then d ′(Fs(x),Fs(y)) < ε.

• A sequence {Fn} is called uniformly converging on compact sets if {Fn} is equicompact
and there exists a continuous map F : X → X′ such that for every compact set
K ⊂ X, we have

lim
n→∞ sup

x∈K
d ′(Fn(x),F(x)) = 0.

Notice that in this case Fn is necessarily equicontinuous on compact sets.
• A family of cocycles Gs, s ∈ �, is called uniformly contracting on compact sets if for

any compact subset K ⊂ X and any γ > 0, there exists a compact set K′ and an
N such that

Gm,n
s (K) ⊂ K′ and diam(Gm,n

s (K)) < γ

for all s ∈ �, m ∈ N and n ≥ m + N.

The space of continuous maps F : X → X′ between two tame spaces is endowed
with the topology of uniform convergence on compact subsets.

Lemma 8.5. — A sequence of maps Fn : X → X′ between tame spaces is precompact if and

only if it is equicontinuous on compact sets.

Proof. — In the non-trivial direction, it follows from the Ascoli-Arzela’s Theorem
on each Xi and the diagonal argument. �

Given a tame space X, let S ≡ SX be the topological semigroup of all continuous
weak contractions of X (endowed with the topology of uniform convergence on compact
subsets). Idempotents in this semigroup are retractions.

Lemma 8.6. — Let X be a tame space, and let G be a uniformly almost periodic family of

cocycles Gm,n
s , s ∈ �, with values in the semigroup SX. If all limit retractions P ∈ ω(G) are constants,

then G is uniformly contracting on compact sets.

Proof. — Since G is uniformly almost periodic, the family of maps Gm,n
s is equicom-

pact: for any i ∈ N there exists j = j(i) ≥ i such that Gm,n
s (Xi) ⊂ Xj for all s ∈ �,

(m, n) ∈ Q.
Let ρi : S → R≥0 be defined as ρi(G) = diam G(Xi). Obviously, these functions

are continuous and form a monotonically increasing sequence. Moreover, for any i ∈ N,
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the functions ρ := ρi and ρ ′ := ρj(i) form a Lyapunov pair for any cocycle G ∈ G . Indeed,
for any l < m < n we have:

ρ(Gl,n) = diam Gl,n(Xi) ≤ diam Gl,m(Xi) = ρ(Gl,m)

(where the estimate holds since the semigroup S consists of weakly contracting maps)

ρ(Gl,n) = diam Gl,n(Xi) ≤ diam Gm,n(Xj) = ρ ′(Gm,n).

(where the estimate holds since Gl,m(Xi) ⊂ Xj ).
Since all retractions P ∈ ω(G) are constants, we have ρ ′(P) = 0 for any of them.

By Lemma 8.4, the family G of cocycles is uniformly ρ-contracting, so for any γ > 0,
there exists an N such that diam Gm,n

s (Xi) < γ as long as n ≥ m + N.
Since i is arbitrary, we are done. �

8.3. Proof of Theorem 6.6. — Notice that H0, with the Carathéodory metric, is tame
in the sense of Section 8.2 (take, e.g., Xi := H0(2−i) as a filtration). By the Schwarz
Lemma, Hol(H0, H0) is a sub-semigroup of SH0 , which turns out to be closed:

Lemma 8.7. — If Fn ∈ Hol(H0, H0) converges uniformly on compact sets to a map F then

F ∈ Hol(H0, H0).

Proof. — We have to show that if γ : D → H0 is a holomorphic path then F ◦ γ is
a holomorphic path as well. Let 0 < ρ < 1/4, and let Iρ : H0 → BDρ

be the restriction
operator (c.f. (4.1)). The sequence of maps {Iρ ◦ Fn ◦ γ }n converges uniformly on compact
sets to Iρ ◦F◦γ . By Lemma 7.4, each Iρ ◦Fn ◦γ is holomorphic in the usual Banach sense,
so the limit Iρ ◦F◦γ is holomorphic as well. By Lemma 7.4, F◦γ is path holomorphic. �

Property (H1) implies that the family G is uniformly almost periodic. If (C1) does
not hold then by Lemma 8.6, there exists a sequence Gk ∈ G and (mk, nk) ∈ Q with
nk − mk → ∞, such that Gmk,nk

k converges uniformly on compact sets to a non-constant
retraction P ∈ SH0 . By Lemma 8.7, P is path holomorphic, concluding the proof. �

9. Horseshoe

9.1. Beau bounds and rigidity yield the horseshoe.

9.1.1. Complex case. — Let F be a family of disjoint little Multibrot sets Mk (en-
coding certain renormalization combinatorics). We say that beau bounds are valid for F , if
they are valid for the family of infinitely renormalizable maps f whose renormalizations
Rnf have combinatorics M̄ = (Mn)

∞
n=0 with Mn ≡ Mkn

∈ F . (We will loosely say that
“M̄ is in F ”.)
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We say that F is rigid if for any combinatorics M̄ in F , there exists a unique
polynomial pc : z �→ zd + c which is infinitely renormalizable with this combinatorics.15

Remark 9.1. — It is conjectured that any family F is in fact rigid (which would
imply that the Multibrot set is locally connected at all infinitely renormalizable parameter
values, and hence would prove MLC, for all unicritical families).

In [Ch], it is shown that beau bounds implies rigidity for a large class of com-
binatorics, and in fact for all combinatorics for which beau bounds have been proved
[K, KL1, KL2].

Remark 9.2. — In the quadratic case, this rigidity result had been established
in [L2]. The work [Ch] makes use of recent advances: a new version of the Pullback

argument developed in [AKLS].

A semi-conjugacy between two dynamical systems F : X → X and G : Y → Y is a
continuous surjection h : X → Y such that h ◦ F = G ◦ h.

Let � ≡ �F = F Z be the symbolic space with symbols from F , and let σ : � → �

be the corresponding two-sided shift. A map h : � → C is called combinatorially faithful if
for any combinatorics M̄ = (Mn)

∞
n=−∞ ∈ �, the image f = h(M̄) is renormalizable with

combinatorics M0, and h semi-conjugates σ and R|A.

Theorem 9.1. — Assume a family F has beau bounds and is rigid. Then there exists a precom-

pact R-invariant set A ⊂ C and a combinatorially faithful semi-conjugacy h : � → A. Moreover, R is

exponentially contracting along the leaves of the hybrid lamination of A, with respect to the Carathéodory

metric.16

Proof. — Since F has beau bounds, there exists ε > 0 such that

mod Rnp ≥ ε, n = 0,1, . . .

for any polynomial p : z �→ zd +c which is infinitely renormalizable with combinatorics F .
Let M = (Mn)n∈Z ∈ �. For any −n ∈ Z−, there exists a polynomial pcn

which is
infinitely renormalizable with combinatorics (M−n, M−n+1, . . . ). Then for any l ∈ Z,
l ≥ −n, the germ fn,l := Rn+lpc−n

∈ C(ε) is infinitely renormalizable with combinatorics
(Ml, Ml+1, . . . ). As this family of germs is precompact, for any l we can select a sub-
sequence fn(i),l converging to some fl ∈ C(ε) as n(i) → −∞. This map is infinitely renor-
malizable with combinatorics (Ml, Ml+1, . . . ).17 Using the diagonal procedure (going

15 Note that according to our definition (see Sect. 2.10) affinely conjugated renormalizable maps are distinguished
by the combinatorics of the first renormalization.

16 It follows from rigidity that the hybrid lamination of A consists of all infinitely renormalizable maps whose renor-
malizations have combinatorics in F .

17 This actually needs a little check-up: compare the argument four paragraphs down.
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backwards in l) we ensure that Rfl−1 = fl . Thus, we obtain a bi-infinite sequence of maps
fl ∈ C(ε) such that fl is renormalizable with combinatorics Ml and Rfl−1 = fl .

Assume there exist two such sequences, (fl)l∈Z and (f̃l)l∈Z. Since F is rigid, the
hybrid class of any fl is uniquely determined by the renormalization combinatorics
(Ml, Ml+1, . . . ), so for any l ∈ Z, the germs fl and f̃l are hybrid equivalent. But
by Theorem 5.1, the renormalization is exponentially contracting with respect to the
Carathéodory metric in the hybrid lamination. Hence there exist C > 0 and λ ∈ (0,1)

such that

(9.1) dχ(f0)(f0, f̃0) ≤ C(ε)λndχ(fn)(f−n, f̃−n).

Letting n → ∞ we see that f0 = f̃0. For the same reason, fl = f̃l for any l ∈ Z.
Thus, we obtain a well defined equivariant map h : M �→ f , where f ≡ f0 is a

polynomial-like germ for which there exists a bi-infinite sequence fl ∈ C(ε), l ∈ Z, such
that fl is renormalizable with combinatorics Ml . Let A ⊂ C consist of all such germs,
which makes h surjective by definition.

To see that h is continuous, consider a sequence M(k) → M in �, and let f
(k)

l =
h(σ l(M(k)

)). We need to show that h(M(k)
) → h(M). By passing through an arbitrary

subsequence, we may assume that for each l ∈ Z, f
(k)

l converges in C(ε) to some fl . By
definition of convergence in �, for each l ∈ Z and for each k sufficiently large, f

(k)

l is
renormalizable with combinatorics in Ml , i.e., χ(f

(k)

l ) ∈ Ml .
Let us show that fl is renormalizable with combinatorics Ml . If Ml is a primitive

copy, then it is closed, which readily implies that χ(fl) ∈ Ml . If Ml is a satellite copy, its
closure is obtained by adding the root, so we also need to guarantee that χ(f

(k)

l ) does not
converge to the root. But for k large, χ(f

(k)

l ) belongs to a subcopy of Ml (consisting of
those polynomials in Ml whose renormalization has combinatorics Ml+1), which is at
definite distance from the root of Ml , so we can again conclude that χ(fl) ∈ Ml .

By continuity of any renormalization operator with fixed combinatorics, we also

conclude Rfl = fl+1. By the definition of h, h(M) = f0 = lim f
(k)

0 = lim h(M(k)
), as de-

sired. �

9.1.2. Real horseshoe. — Let F R stand for the family of all real renormalization
combinatorics with minimal periods. Let σ : � → � be the corresponding shift. While
neither beau bounds, nor (complex) rigidity have been established for F R,18 the proven
beau bounds and rigidity for real-symmetric germs is enough to construct the renormal-
ization horseshoe. Moreover, we will show that in this case, the combinatorially faithful
semi-conjugacy h is actually a homeomorphism:

18 They have been established, however, for the family of primitive real combinatorics [KL1], which covers all real
combinatorics except period doubling.
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Theorem 9.2. — For the family F R, there is an R-invariant set A ⊂ C R and a combinato-

rially faithful homeomorphism h : � → A. Moreover, R is exponentially contracting along the leaves

of the hybrid lamination of A (endowed with the Carathéodory metric), which contains all infinitely

renormalizable real-symmetric germs.

Proof. — The construction of the horseshoe A, along with the combinatorially
faithful semi-conjugacy h, is basically the same as in Theorem 9.1, with the following
adjustments:

(1) The polynomials pcn
should be selected to be real, cn ∈ R;

(2) Theorem 6.1 (beau bounds for real maps) provides the needed compactness for the
construction of the maps fl ;

(3) Rigidity of F is replaced with rigidity for real polynomials, obtained in [L2, GS]
(quadratic case) and in [KSS] (arbitrary degree)19: any real renormalization
combinatorics determines a single real-symmetric hybrid leaf;

(4) Exponential contraction is obtained by combining Theorems 6.2 and 5.1.

The injectivity of h follows from the injectivity of the renormalization operator acting on
real p-l maps [MvS, p. 440]. What is left, is to verify continuity of h−1. Since convergence
in � means coordinatewise convergence, it is equivalent to the following statement:

Lemma 9.3. — Let (M̄(j))∞
j=1 be a sequence of symbolic strings M̄(j) = (M(j)

n )n∈Z in �

such that the corresponding germs fj ≡ h(M̄(j)) converge to some f∞ ∈ A. Then for any n ∈ Z, the

combinatorics M(j)
n of Rnfj eventually coincides with that of Rn(f∞).

Notice that Lemma 9.3 is clear for n = 0: a real perturbation of a twice renormal-
izable real map is renormalizable (at least once) with the same combinatorics (since on
the boundary of the renormalization windows the maps are not twice renormalizable,
see Section 2.10). Since the renormalization operator acts continuously on A, we have
for any n ≥ 0 that Rnfj → Rnf∞ as j → ∞. It follows that Lemma 9.3 holds for all n ≥ 0
as well.

In order to prove it inductively for n < 0, it is enough to show that the hypoth-
esis of Lemma 9.3 imply that R−1fj → R−1f∞. To this end, it is sufficient to prove that
the renormalization combinatorics of the germs R−1fj are bounded. Indeed, in this case any limit
g of these germs is renormalizable and Rg = f∞. By injectivity of the renormalization
operator, g = R−1f∞, and the conclusion follows.

Boundedness of the renormalization combinatorics follows from an analysis of the
domain of analyticity of limits of renormalized germs:

19 This result also follows from the combination of [AKLS] (dealing with at most finitely renormalizable maps) and
[Ch] (dealing with the infinitely renormalizable situation).
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Lemma 9.4. — Let f̃j ∈ C R, j ≥ 1, be a sequence of renormalizable germs. If the renormal-

ization periods of the f̃j go to infinity, then any limit of the renormalizations Rf̃j is either a unicritical

polynomial or its real trace has a bounded domain of analyticity.

See Appendix A for a proof (unlike the previous parts of this paper, it relies on the
fine combinatorial and geometric structure of one renormalization).

Let us apply Lemma 9.4 to f̃j = R−1fj . Notice that f∞ = lim Rf̃j cannot be a unicrit-
ical polynomial since those are never anti-renormalizable. Moreover, since f∞ is infinitely

anti-renormalizable with a priori bounds, it is well known (see [McM2], Sect. 7.3) that its
real trace extends analytically to R: If f∞ is the n-th pre-renormalization of f(n), then f∞ ex-
tends explicitly to K(f(n))∩R (as an appropriate iterate of f(n)), and

⋃
n K(f(n)) contains R,

as diam K(f(n)) is growing exponentially with n (by Lemma 2.10), while the distance from
the critical point to the boundary of K(f(n)) ∩ R remains comparable with diam(K(f(n)))

(since, up to normalization, f(n) belongs to a compact subset of C R). So, both options
offered by Lemma 9.4 are impossible in our situation, and hence the renormalization
periods of the germs f̃j must be bounded. This concludes the proof of Lemma 9.3, and
thus of Theorem 9.2. �
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Appendix A: Analytic continuation of the first renormalization

A.1 Principal nest and scaling factors. — Through this section, we consider a renor-
malizable unimodal map f : I → I, of period p, with a polynomial-like extension in C R(ε0)

for some fixed ε0 > 0. For simplicity of notation, we will also assume that f is even. We
will also assume that we can write f (x) = ψ(xd) for some diffeomorphism ψ with non-
positive Schwarzian derivative. All arguments below can be carried out without the extra
assumptions with only technical changes, but in the situation arising in our application
(f is infinitely anti-renormalizable with a priori bounds) they are indeed automatically
satisfied.

Below C > 1 stands for a constant which may only depend on ε0.
Recall that a closed interval T ⊂ I which is symmetric (i.e., f (∂T) is a single point)

is called nice if f k(∂T) ∩ int T = ∅, k ≥ 1. If the critical point returns to the interior of a
nice interval T, then we let T′ be the central component of the first return map to T. We
let λ(T) = |T′|/|T| be the scaling factor.
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We define the principal nest In, n ≥ 0 as follows. Since f is renormalizable, it has
a unique orientation reversing fixed point ρ. Its preimage {ρ,−ρ} bounds a nice inter-
val, which we denote I0. Then we define In+1 inductively as I′

n, i.e., In+1 is the central
component of the first return map to In.

Let us assume from now on that p > 2. Under this condition, In+1 � int In for every
n ≥ 0. Let λn = |In+1|/|In| be the corresponding scaling factors.

Let gn be the first return map to In. We say that gn is central if gn(0) ∈ In+1. We define
a sequence (jk)k≥0 inductively so that j0 = 0 and jk+1 is the minimum n > jk such that gn−1

is non-central. Since f is renormalizable, gn is central for all sufficiently large n, so the
sequence (jk) terminates at some N = jκ . We call κ the height of f .

We have the following basic estimates on the scaling factors (see [Ma1]):

A priori bounds. — We have: λjk ≤ 1 − C−1 for every k. Moreover. the maps gjk : Ijk+1 → Ijk

are compositions of power maps x �→ xd and diffeomorphisms with bounded distortion.

Corollary A.1. —

λn+1 ≤ Cλ1/d
n ,

λjk+1 ≤ C
∏jk+1−1

n=jk
λ1/d

n .

Let vn be the principal return times, i.e. f vn|In+1 = gn. In particular, vN = p is the renor-
malization period. We let g = f p. Then g : J → J is the unimodal pre-renormalization of f ,
where J = ⋂

n≥0 In.
We say that n ≥ 0 is admissible if f n(0) ∈ I0. For admissible n, let Tn be the closure

of the connected component of f −n(int I0) containing 0. In particular T0 = I0. More
generally, letting wn = ∑n−1

k=0 vk , we obtain Twk
= Ik .

Lemma A.2. — We have Tp ⊂ Imax{0,N−1}.

Proof. — If κ = 0 then clearly Tp = I1 ⊂ I0.
Assume that κ ≥ 1 and hence N ≥ 1. The interval Tp is the smallest interval con-

taining 0 whose boundary is taken by f p to the boundary of I0. Hence it is enough to
show that f p(∂IN−1) ⊂ ∂I0.

It is easy to see that for k ≥ 1 we have

f svjk−1 (0) ∈ Ijk−s \ Ijk+1−s for 1 ≤ s ≤ jk − jk−1.

We conclude that

vjk ≥ vjk−1−1 + (jk − jk−1)vjk−1 =
jk−1∑

n=jk−1−1

vn = vjk−1 +
jk−2∑

n=jk−1−1

vn, for jk ≥ 2,



214 ARTUR AVILA, MIKHAIL LYUBICH

which implies inductively that

(A.1) vjk ≥
jk−2∑

n=0

vn for jk ≥ 2.

Letting k = κ (so that jκ = N and vN = p) we obtain:

t := p −
N−2∑

n=0

vn ≥ 0.

Since f vn(∂In+1) ⊂ ∂In, it follows that f p(∂IN−1) ⊂ f t(∂I0) ⊂ ∂I0. �

A.2 Transition maps. — The geometric considerations made below are all con-
tained in [L1], though we do not need the finest part of that argument, dealing with
growth of geometry for Fibonacci-like cascades (with or without saddle-node subcas-
cades), which is not valid in higher degree anyway.

If n is admissible we let An : Tn → I be the orientation preserving affine homeo-
morphism, where I = [−1,1].

We say that Tn is a pullback of Tm if n > m and f n−m(0) ∈ Tm. In this case, f n−m

restricts to a map (Tn, ∂Tn) → (Tm, ∂Tm), and we let Gn,m = Am ◦ f n−m ◦ A−1
n , which we

call a transition map.
We say that Tn is a kid of Tm if Tn is a pullback of Tm but is not a pullback of

any Tk with m < k < n. Notice that in this case, f n−m−1|f (Tn) extends to an analytic
diffeomorphism onto Tm. If Tn is a kid of Tm, the transition map Gn,m is called short,
otherwise it is called long.

A short transition map Gn,m is called δ-good if f n−m−1|f (Tn) extends to an analytic
diffeomorphism onto a δ|Tm|-neighborhood of Tm. The usual Koebe space argument (see
[MvS]) yields:

Lemma A.3. — For every δ > 0, any δ-good transition map belongs to a compact set

K = K(δ, ε0) ⊂ Cω(I, I), only depending on ε0 and δ.

Here Cω stands for the space of analytic maps, with the usual inductive limit topol-
ogy.

There is a unique canonical decomposition of a long transition map into short transition
maps: letting m = n1 < · · · < nl = n be the sequence of moments such that f n−nj (0) ∈ Tnj

,
then Tnj+1 is a kid of Tnj

for 0 ≤ j ≤ l − 1 and Gn,m = Gn2,n1 ◦ · · · ◦ Gnl ,nl−1 .
A central cascade is a sequence Tn1, . . . ,Tnl

such that Tnj+1 is the first kid of Tnj
and

f nj+1−nj (0) ∈ Tnj+1 for 1 ≤ j ≤ l − 1. Notice that in this case nj+1 − nj is independent of
j ∈ [1, l − 1]. If n2 − n1 < p then we distinguish the saddle-node and Ulam-Neumann types of
central cascades according to whether 0 /∈ f n2−n1(Tn2) or 0 ∈ f n2−n1(Tn2).
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A long transition map is called saddle-node/Ulam-Neumann if its canonical
decomposition Gn2,n1 ◦ · · · ◦ Gnl ,nl−1 is such that Tn1, . . . ,Tnl

is a saddle-node/Ulam-
Neumann cascade.

We say that a long transition map Gnl ,n1 is δ-good if all the components Gnj+1,nj
of its

canonical decomposition are δ-good. Notice that if Gnl ,n1 is central then this is equivalent
to δ-goodness of the top level Gn2,n1 .

Besides δ-goodness, an important role is also played by two parameters associated
to a long transition map of saddle-node type: the scaling factors of the top and bottom
levels, λtop = |Tn2|/|Tn1 | and λbot = |Tnl

|/|Tnl−1|.
Lemma A.4. — For every 0 < λ < λ < 1, δ > 0, any δ-good long transition maps of saddle-

node type with parameters λbot, λtop ∈ [λ,λ] belongs to a compact set K(λ,λ, δ, ε0) ⊂ Cω(I, I).

Proof. — For such a transition map Gn,m, let us consider a maximal saddle-node
cascade Tn1, . . . ,TnL such that m = n1 and n = nl for some l ≤ L.

By Lemma A.3, we only risk losing compactness when l, and hence L, is large,
which is related to the presence of a nearly parabolic fixed point in Tn2 for F = f n2−n1 (since
there is in fact no fixed point, the terminology means that a parabolic fixed point appears
after a small perturbation of F). In this case we have the basic geometric estimate, due to
Yoccoz:

(A.2)
|Tni

|
|Tni+1|

− 1 ∼ max{i,L − i}−2, 1 ≤ i ≤ L − 1

(the implied constants depending on the bounds λ,λ on scaling factors). See [FM], Sec-
tion 4.1, for a discussion of almost parabolic dynamics and the statement of Yoccoz’s
Lemma.

In particular, either l is bounded (and we are fine) or L − l is bounded. Assum-
ing that l ≥ 4, F3(Tnl

) is contained in a connected component J of Tnl−3 \ TnL−1 . Since
Lemma A.3 provides bounds on F3|Tnl

, we just have to show that Fl−4|J is under control.
But the map Fl−4 maps J onto a connected component of Tn1 \ TnL−l+3 , and extends ana-
lytically to a diffeomorphism onto a connected component J′ of Tδ

n1
\ TnL−l+4 , where Tδ

n1

is a δ|Tn1|-neighborhood of Tn1 . By (A.2), J′ is a δ′|Fl−4(J)|-neighborhood of Fl−4(J) for
some δ′ > 0, so Fl−4|J is under Koebe control. �

A.3 Small scaling factors. — In [L1], several combinatorial properties are shown to
yield small scaling factors. We will need somewhat simpler estimates, which we will obtain
from the following:

Lemma A.5. — For every ε > 0, there exists δ = δ(ε, ε0) > 0 with the following property.

Assume that the postcritical set intersects a connected component D of the first landing map to Ijk+1 such

that D ⊂ Ijk \ Ijk+1 and |D|/|Ijk | < δ. Then |Ijκ+1|/|Ijk | < ε.
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Proof. — We may assume that λjk is not small and that κ − k is bounded. Let r > 0
be minimal such that f r(0) ∈ D. For definiteness, we will discuss in detail only the case
k > 0, and will then indicate how to treat the simpler case k = 0.

We will use the well known combinatorial fact that each branch of the first landing
map to Ijk extends analytically to a diffeomorphism onto Ijk−1 . Notice that if f s : U → Ijk

is a branch of the first return map to Ijk and U′ is the connected component of f −s(Ijk−1)

containing U, then U′ ⊂ Ijk . In this setting we get, in particular:

• If V ⊂ Ijk is an interval much smaller than Ijk , then the connected component
of f −s(V) contained in U is much smaller than U′, and hence much smaller
than Ijk .

In order to deal with central cascades, we will use a variation of this estimate:

• If 1 ≤ l ≤ jk+1 − jk − 2, V ⊂ Ijk+1 \ Ijk+2 is an interval much smaller than Ijk and
V′ is a connected component of f −lvjk (V) contained in Ijk+l , then |V′| is much
smaller than |Ijk |.

Indeed, f lvjk |V′ extends analytically to a diffeomorphism from a connected component
L′ of Ijk+l \ Ijk+l+2 onto a connected component L of Ijk \ Ijk+2. Then V is small compared
to both connected components of L \ V, so that |V′| is small compared to |L′| ≤ |Ijk |.

We now proceed by considering two distinct cases. Assume first r < vjk+1 , i.e., orb 0
lands in D before landing in Ijk+1 .

Let 0 < r1 < · · · < ru = r be the successive landing times of orb 0 in Ijk \ Ijk+1 up to
the first entry in D. If u is bounded, we can use repeatedly the above estimates (a bounded
number of times) to conclude that the connected component of f −r(D) containing 0, is
much smaller than Ijk . This concludes, since under the hypothesis r < vjk+1 , this connected
component is just Ijk+1+1. If u is large, let Ui , 1 ≤ i ≤ u, be the component of the domain
of the first return map to Ijk containing f ri(0).

Denoting by Ũi the connected component of Ijk \ Ijk+1 containing Ui , we claim that
Ui has definite Koebe space inside Ũi , i.e., each of the connected components of Ũi \ Ui

are not much smaller than |Ui|. Indeed, let si be the return time of Ui to Ijk , and let Zi be
the connected component of f −si(Ijk−1) containing Ui . Let Z be the connected component
of f −vjk (Ijk−1) containing Ijk+1. Then Zi and Z are contained in Ijk , Ui has definite Koebe
space in Zi and Ijk+1 has definite Koebe space in Z. In particular, the distance from Ui

to ∂Ijk is not too small compared with |Ui|. If Zi does not intersect Ijk+1 then we can also
conclude that the distance from Ui to ∂Ijk+1 is not too small compared with |Ui|. But if Zi

intersects Z then either Zi ⊂ Z \ int Ijk+1 or Z ⊂ Zi \ int Ui (according to whether si > vjk

or si < vjk ).
20 In particular, if Zi intersects Ijk+1 then Z does not intersect Ui . Since Ijk+1 has

20 Recall that there are intervals Z′
i ⊃ f (Zi) and Z′ ⊃ f (Z) such that f si−1 : Z′

i → Ijk−1 and f
vjk

−1 : Z′ → Ijk−1 are
diffeomorphisms. Assume, say, that si < vjk

, the other case being analogous (by the assumption that Zi intersects Z, vjk
= si

would imply Zi = Z and hence Ui = Ijk+1 which is impossible). Since Ijk−1 is nice, Z′ ⊂ Z′
i , and we need to show that
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definite Koebe space in Z, we conclude that the distance from Ui to ∂Ijk+1 is not too small
compared with |Ijk+1|, which is comparable to |Ijk | ≥ |Ui|. This concludes the claim.

Let Di ⊂ Ui be the component of the domain of the first landing map to Ijk+1

containing f ri(0). Then f ri+1−ri : Di → Di+1 extends to a diffeomorphism onto Ũi+1 for
1 ≤ i ≤ u − 1. Let D̃j be the connected component of f r1−rj (Ũj) containing D1. Then
D1 ⊂ D̃u, D̃j ⊃ D̃j+1 for 1 ≤ j ≤ u − 1, and D̃1 = Ũ1. Moreover, for 1 ≤ j ≤ u − 1,
f rj−r1 : D̃j → Ũj is a diffeomorphism taking Ũj+1 inside Uj , so that D̃j+1 has definite Koebe
space inside D̃j . It follows that |D1|/|Ijk | is exponentially small in u. Since u is large, |D1| is
indeed small and we can then apply the previous case, replacing D by D1 (which replaces
u by 1), to conclude.

Assume now that r > vjk+1 , i.e., orb 0 lands in Ijk+1 before landing in D. Let s ∈ (0, r)

be its last landing moment in Ijk+1 before landing in D. Then

f s(0) ∈ Ijk+1 � Ijk+1+1, for otherwise f r−s(0) ∈ f r−s(Ijk+1+1) ⊂ D,

contradicting the minimality of r.
Let � be the pullback of D under f r−s containing f s(0) (which is the component

of the domain of the first return map to Ijk+1 containing f s(0)). Applying the previous
argument, one sees that |�| is much smaller than |Ijk |, and hence much smaller than
|Ijk+1 |. All the more, the component �′ of the domain of the first landing map to Ijk+2

containing f s(0) is small compared with Ijk+1 . We can now start the procedure over with
k replaced by k + 1 and D replaced by �′. Since κ − k is assumed to be bounded, this
process must eventually produce a small scaling factor.

Let us now sketch how the argument can be modified to handle the case k = 0.
Notice first that we can assume that v0 is bounded (otherwise I1 is readily seen to be
small). Any branch of the first landing map to I0 extends to a diffeomorphism onto the
connected component I′ of I \ {f (0)} containing 0, and I0 has definite Koebe space in I′,
which gives some distortion control.

Assume first r < vj1 . If D has lots of Koebe space inside the connected component
of I0 \ I1 containing it, we just pullback the Koebe space. Otherwise, D must be close to
either ∂I0 or ∂I1. Let 0 < r1 < · · · < ru = r and Dj,Uj, sj , 1 ≤ j ≤ u, be defined as before. If
r = r1, we can use the distortion control to show that the connected component of f −r(D)

containing 0, i.e., Ij1+1, is small, which allows us to conclude. If u > 1, the distortion
control allows one to show that Du−1 and f su−1(Du−1) are small. If f su−1(Du−1) is contained
in I1, then this implies that Du−1 has lots of Koebe space in Uu−1, which allows us to
conclude. Otherwise, we can still get that Du−1 has lots of Koebe space in Uu−1 unless D
is close to ∂I0. If Du−1 is not close to ∂I0, we conclude then by repeating the argument
with Du−1 instead of D. If Du−1 is also close to ∂I0, then Uu−1 is a connected component

f si−1(Z′) does not intersect int Ijk
. If it did intersect, then 0 ∈ Ijk

⊂ f si−1(Z′) (since both f si−1(Z′) and Ijk
are connected

components of preimages of the nice interval Ijk−1 ), so that f
vjk

−1|Z′ is not a diffeomorphism, contradiction.
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of the domain of the first return map to I0 which is adjacent to one of the boundary
points of I0 (i.e., su−1 = 2). This shows that if Du−1 is close to ∂I0, then it must be even
closer to ∂I0 then D was. Moreover Du−1 is not bigger than the (small) distance of D to
∂I0. Then either the sequence Du, . . . ,D1 gets always closer to ∂I0, and we can conclude
by replacing D with D1, or at some point we get some small Dj away from ∂I0, and we
can conclude by replacing D with Dj .

If r > vj1 , we conclude (as in the original argument) that there is a connected com-
ponent �′ ⊂ Ij1 \ Ij1+1 of the domain of the first landing map to Ij2 which intersects the
postcritical set and is much smaller than Ij1 . Replacing D by �′, we get in the case k > 0
and the result follows. �

One important situation in our analysis corresponds to the critical orbit hitting
deep inside a long central cascade.

More precisely, we say that Tm is k-deep (k ≥ 2) inside a central cascade if there is a
central cascade Tn1, . . . ,Tnl=m ,Tnl+1 = T′

m, . . . ,TnL such that k ≤ l ≤ L − k. We say that
the critical orbit hits Tm if there is r ≥ 0 such that f r(0) �∈ T′

m, but f r+n2−n1(0) ∈ Tm \ T′
m.

Lemma A.6. — For every ε > 0 there exists k = k(ε, ε0) > 0 with the following property. As-

sume that the critical orbit hits some Tm which is k-deep inside a central cascade. Then |Ijκ+1|/|Tm| < ε.

Proof. — It is no loss of generality to assume that Tn1 = Iji for some i (since between
any interval Tn and its kid T′

n, there must be an interval of the principal nest).
We may assume that λji is not small. Let D′ be the component of the domain of

the first landing map to Iji+1 containing f r+n2−n1(0). Then |D′|/|Iji | is small, see (A.2). Let
s < r + n2 − n1 be maximal with f s(0) ∈ Iji \ Iji+1. Let D be the component of the domain
of the first landing map to Iji+1 containing f s(0). Pulling back the Koebe space, we get
|D|/|Iji | small. The result follows from Lemma A.5. �

A simpler situation involves long Ulam-Neumann cascades:

Lemma A.7. — For every ε > 0 there exists k = k(ε, ε0) > 0 with the following property. Let

Tn1, . . . ,Tnk
be a central cascade of Ulam-Neumann type. Then there exists It ⊂ Tnk

such that λt < ε.

Proof. — As in Lemma A.6, we may assume that Tn1 = Iji . Due to the long Ulam-
Neumann cascade, λji+1−1 is close to 1, see [L2, Lemma 8.3]. In particular, the domain
D of the first landing map to Iji+1 containing f vji (0) has lots of Koebe space in Iji . Pulling
back by f vji , we conclude that |Iji+1+1|/|Iji+1| is small, which implies that λji+1 is small. �

We will also need the following easy criterion. Let us say that Tn is δ-safe if the
postcritical set does not intersect a δ|Tn|-neighborhood of ∂Tn. Notice that if Tn is δ-safe
and Tm is a kid of Tn then Gm,n is δ-good.
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Lemma A.8. — For every ε > 0, there exists δ > 0 such that if 0 ≤ k ≤ κ is such that Ijk is

not δ-safe, then |Ijκ+1|/|Ijk | < ε.

Proof. — Consider first the case of “postcritical set inside”, i.e., for some r > 0,
f r(0) ∈ Ijk is near ∂Ijk . Let D be the component of the first landing map to Ijk+1 contain-
ing f r(0). Since it has Koebe space inside Ijk (the landing map D → Ijk+1 extends to a
diffeomorphism Ijk ⊃ D′ → Ijk ), |D|/|Ijk | is small, so the result follows from Lemma A.5.

Consider now the case of “postcritical set outside”, i.e., for some r > 0, f r(0) /∈ Ijk

is near ∂Ijk . We may assume that k > 0 (otherwise applying f once produces “postcritical
set inside” reducing to the previous case). We may assume further that λjk is not small
(otherwise the result is obvious), and that if jk − jk−1 is large then this is due to a saddle-
node cascade (otherwise we can apply Lemma A.7). Letting r′ = r + (jk − jk−1 − 1)vjk−1 , it
follows that f r′(0) is just outside ∂Ijk−1+1. Let D be the connected component of the first
landing map to Ijk containing f r′(0). Since it has Koebe space inside Ijk−1 \ Ijk−1+1, this
implies that |D|/|Ijk−1 | is small, and the result follows from Lemma A.5. �

A.4 Main precompactness.

Lemma A.9. — Let us consider a composition of transition maps Gm2,m1 ◦ · · · ◦ Gmr ,mr−1 ,

where each Gmj+1,mj
is either short or saddle-node. Assume that Tm1 is δ-safe, λ(Tm1) < 1 − δ and

|Tmr
|/|Tm1 | > δ. Assume also that whenever Gmj+1,mj

is saddle-node of length at least l then Tmj+1

is not l-deep inside a central cascade. Then there exists δ′ = δ(ε0, δ, l, r) > 0 and a compact subset

K = K(ε0, δ, l, r) ⊂ Cω(I, I) such that for 2 ≤ j ≤ r we have

(1) Tmj
is δ′-safe,

(2) λ(Tmj
) < 1 − δ′,

(3) Gmj ,mj−1 ∈ K.

Proof. — Induction reduces considerations to the case r = 2.
Notice that if we show that Gm2,m1 is in a compact class, it will follow that Tm2 is

δ′-safe, as any postcritical set near ∂Tm2 would be taken by f m2−m1 to postcritical set near
∂Tm1 . Moreover, it will also follow that λ(Tm2) < 1 − δ′: the map f m2−m1 takes T′

m2
into

a connected component of the first landing map to T′
m1

and any such component must
have Koebe space inside Tm1 since λ(Tm1) < 1 − δ.

Thus we just have to show that Gm2,m1 is in a compact class. Notice that Gm2,m1 is δ-
good. If Gm2,m1 is short, the conclusion follows from Lemma A.3. If Gm2,m1 is saddle-node,
this will follow from Lemma A.4 once we show that λtop and λbot are bounded away from
0 and 1. Clearly both are at least δ and moreover λtop = λ(Tm1) < 1 − δ.

Let Tn1=m1, . . . ,Tns=m2, . . . ,TnL be the maximal central cascade starting at Tn1 . As
in Lemma A.4, see (A.2), we see that if λbot is close to 1 then s and L − s are large. But by
hypothesis min{s,L − s} ≤ l, giving the result. �

The following two similar estimates will be proved simultaneously:
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Lemma A.10. — For ε > 0 there exists a compact subset K = K(ε, ε0) ⊂ Cω(I, I) with

the following property. Assume that |Ijκ+1|/|Ijk | > ε. Then Gwjk
+p,wjk

∈ K.

Lemma A.11. — For ε > 0 and b0 ∈ N, there exists a compact subset K = K(ε, ε0, b0) ⊂
Cω(I, I) with the following property. Assume that |Ijκ+1|/|I0| > ε. If 0 ≤ b < min{p, b0} is such

that p − b is admissible then Gp−b,0 ∈ K.

A.4.1 Proof of Lemmas A.10 and A.11. — The proofs of both lemmas follow a basi-
cally parallel path. In both cases we need to estimate a map of type Gwjk

+p−b,wjk
, where in

the setting of Lemma A.10 we set b = 0, while in the setting of Lemma A.11 we set k = 0.
Write it as a composition of a minimal number of either short transition maps or long
transition maps of Ulam-Neumann or saddle-node type. Clearly the number of elements
of this decomposition is bounded in terms of κ − k, which in turn is bounded in terms
of ε.

Let us now consider a finer decomposition Gm2,m1 ◦ · · · ◦Gmr ,mr−1 , where we split the
Ulam-Neumann pieces into short transition maps (so that each Gmj+1,mj

is either short or
saddle-node). The Ulam-Neumann cascades have bounded length (by Lemma A.7), so r

is also bounded.
In order to conclude, it is enough to show that the conditions of Lemma A.9 are

satisfied. Since Tm1 = Ijk , λ(Tm1) is indeed bounded away from 1, and it is δ-safe by
Lemma A.8. So we just have to check that for 1 ≤ j ≤ r − 1, if Gmj+1,mj

is saddle-node with
big length then Tmj+1 is not too deep inside a central cascade.

The following combinatorial estimate will be key to the analysis.

Lemma A.12. — Suppose that Gmj+1,mj
is saddle-node, and let Tn1=mj

, . . . ,Tnl=mj+1 be the

associated cascade. If l ≥ 4 + b then f mr−mj (0) /∈ Tn4+b
.

Proof. — Let jk + 1 ≤ s ≤ jκ be minimal such that Tmj
⊃ Is. It follows that

(A.3) mj − m1 ≤
s−1∑

n=jk

vn.

Since Is ⊂ Tn1 ⊂ int Is−1, it follows that Is+1 ⊂ Tn2 ⊂ int Is and Tn3 ⊂ int Is+1. Then
n3 − n2 ≥ vs ≥ n2 − n1, and since nt+1 − nt = n2 − n1 for 1 ≤ t ≤ l − 1, we see that
n2 − n1 = vs.

Assume first that s = jt for some k < t ≤ κ . Then (A.1) and (A.3) imply
mj − m1 ≤ 2vs, so that mj − m1 + bvs ≤ (2 + b)vs. Thus,

p = mr − m1 + bvs = (mr − mj) + (mj − m1) + bvs

= (mr − mj) + q, where q ≤ (2 + b)vs.
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If x := f mr−mj (0) ∈ Tn3+b
then f nvs(x) ∈ f vs Tn2 for n ≤ 2+b. Hence f p(0) = f q(x) is either in

f vs(Tn2) or it is outside Tn1 . In any case, it can not belong to the renormalization interval⋂
n≥1 In—contradiction.

Assume now that jt + 1 = s < jt+1 for some k ≤ t < κ . Arguing as before, we see
that mj − m1 ≤ 3vs, and if f mr−mj (0) ∈ Tn4+b

we arrive at a similar contradiction.
Assume now that jt + 2 ≤ s < jt+1 for some k ≤ t < κ . Then the map f n2−n1 has a

unimodal extension to the interval Is−1 ⊃ Tn1 . Hence Tn1 is a kid of the interval Tn0 ⊂ Is−2

of depth n0 = 2n1 − n2. But then Gmj+1,mj
is not a maximal saddle-node transition map in

the decomposition of Gmr ,m1 , contradicting the definition of mj . �

Let Tn1=mj
, . . . ,Tnl=mj+1, . . . ,TnL be the maximal continuation of the saddle-node

cascade associated to Gmj+1,mj
, and assume that l and L − l are large. By Lemma A.12,

f mr−mj (0) /∈ Tn4+b
, which implies that f mr−mj+1(0) ∈ Tns

\ Tns+1 for some l ≤ s ≤ l + 2 + b.
Indeed, f mr−mj+1(0) ∈ Tmj+1 = Tnl

, but f mr−mj+1(0) �∈ Tnl+3+b
, for otherwise

f mr−mj (0) = f mj+1−mj (f mr−mj+1(0)) ∈ f nl−n1(Tnl+3+b
) ⊂ Tnb+4 .

On the other hand, since Gmj+1,mj
is a maximal saddle-node cascade in the decom-

position of Gmr ,m1 , we must have f mr−mj+1+n1−n2(0) /∈ Tns+1 . We can then apply Lemma A.6
to conclude that |Ijκ+1|/|Ijk | is small, contradiction. This establishes that either l or L − l

must be small, as desired. �

A.5 Proof of Lemma 9.4. — We may assume that the sequence fn = f̃n converges to
some f∞. Let pn be the period of fn. Let �n be the affine map such that �n ◦ (fn)

pn ◦ �−1
n is

normalized.
Assume first that the pre-renormalization intervals of fn do not have length

bounded from below: following the terminology of Corollary A.1 we will say that the
combinatorics of the fn is not essentially bounded. Then either infλN(fn)(fn) = 0 or
supκ(fn) = ∞ by [L1].

If infλN(fn)(fn) = 0 then f∞ is a unicritical polynomial [L1].
Consider now the case infλN(fn)(fn) > 0 and supκ(fn) = ∞. We may assume that

limκ(fn) = ∞. Passing through a subsequence we may assume that for each k ≥ 0,
�n(Ijκ(fn)−k

(fn)) converges to a closed interval Dk . Clearly each Dk is a bounded inter-
val (scaling factors minorated) and

⋃
Dk = R (scaling factors bounded away from 1). We

may also assume that �n(Twjκ(fn)−k
+pn

(fn)) converges to a closed interval D′
k . Then D′

k ⊂ D1

by Lemma A.2. By Lemma A.10, for every k ≥ 0, f∞ has an analytic extension D′
k → Dk

which is proper. It follows that f∞ has a maximal analytical extension to
⋃

k≥0 D′
k ⊂ D1.

Assume now that fn has essentially bounded, but unbounded, combinatorics. We
may assume that pn → ∞. Let 0 = β0

n < β1
n < · · · be the sequence of admissible mo-

ments, i.e., such that f β i
n

n (0) ∈ I0(fn). Clearly β i+1
n − β i

n ≤ β1
n (since the critical point re-

turns to I0 no earlier than any other point x ∈ I0). Moreover, β1
n is bounded (otherwise the

combinatorics is close to the Chebyshev one and we would already have inf |I1(fn)| = 0).
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Notice that if 0 ≤ β i
n < pn, then f pn

n (∂Tβ i
n
) is the orientation reversing fixed point of fn. Let

ln ≥ pn/β
1
n be such that pn = β ln

n , and for 0 ≤ i ≤ ln, let bi
n = pn − β ln−i

n . Then bi
n ≤ iβ1

n and
f pn
n has at least 2i − 1 critical points in Tpn−bi

n
(fn) (counted with multiplicity) for 1 ≤ i ≤ ln.

We may assume that the intervals �n(Tpn−bi
n
) converge to intervals Di for each i.

Clearly
⋃

Di is a bounded interval. By Lemma A.11, f∞ has an analytic extension to⋃
Di , and restricted to each Di it has at least 2i − 1 critical points. So f∞ cannot extend

beyond
⋃

Di . �
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