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1. Introduction

The goal of this paper is two-fold. First, we introduce and analyze a new rela-
tionship between (Zariski-dense) abstract subgroups of the groups of F-rational points of
two connected semi-simple algebraic groups defined over a field F, which we call weak

commensurability. This relationship is expressed in terms of the eigenvalues of individual
elements, and does not involve any structural connections between the subgroups. Nev-
ertheless, it turns out that weakly commensurable S-arithmetic subgroups always split
into finitely many commensurability classes, and that in certain types of groups, any two
weakly commensurable S-arithmetic subgroups are actually commensurable. Second, we
use results and conjectures in transcendental number theory to relate weak commensu-
rability with interesting differential geometric problems on length-commensurable, and
isospectral, locally symmetric spaces, and to settle a series of open questions in this area
by applying our results on weakly commensurable arithmetic (and more general) sub-
groups. These applications lead us to believe that the notion of weak commensurability
is likely to become a useful tool in the theory of Lie groups and related areas.

We begin with the definition of weak commensurability.

Definitions 1.1. — Let G1 and G2 be two semi-simple groups defined over a field F.
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1. Elements gi ∈ Gi(F), where i = 1,2, are weakly commensurable if there exist max-
imal F-tori Ti of Gi such that gi ∈ Ti(F), and for some characters χi of Ti (defined over
an algebraic closure F of F), we have

χ1( g1) = χ2( g2) �= 1.1

2. (Zariski-dense) subgroups �i of Gi(F), for i = 1,2, are weakly commensurable if
given a semi-simple element γ1 ∈ �1 of infinite order, there is a semi-simple element
γ2 ∈ �2 of infinite order which is weakly commensurable to γ1, and given a semi-simple
element γ2 ∈ �2 of infinite order, there is a semi-simple element γ1 ∈ �1 of infinite order
which is weakly commensurable to γ2.

The following theorems (1 and 2) provide two basic results about weakly commen-
surable Zariski-dense subgroups.

Theorem 1. — Let G1 and G2 be two connected absolutely almost simple algebraic groups

defined over a field F of characteristic zero. Assume that for i = 1,2, there exist finitely generated Zariski-

dense subgroups �i of Gi(F) which are weakly commensurable. Then either G1 and G2 are of the same

Killing-Cartan type, or one of them is of type Bn and the other is of type Cn.

(We notice that split groups G1 and G2 of types Bn and Cn respectively indeed
contain weakly commensurable arithmetic subgroups, cf. Example 6.7.)

Theorem 2. — Let G1 and G2 be two connected absolutely almost simple algebraic groups defined

over a field F of characteristic zero. For i = 1,2, let �i be a finitely generated Zariski-dense subgroup of

Gi(F), and K�i
be the subfield of F generated by the traces Tr Adγ , in the adjoint representation, of

γ ∈ �i . If �1 and �2 are weakly commensurable, then K�1 = K�2 .

Most of the results of this paper are on arithmetic subgroups. In fact, the central
issue for us is what can be said about two connected absolutely simple groups defined
over number fields given that these groups contain weakly commensurable Zariski-dense
S-arithmetic subgroups. To give the precise statements (see Theorems 3–6), we need to
describe our set-up more carefully. Let G be a connected absolutely almost simple al-
gebraic group defined over a field F of characteristic zero, G be its adjoint group, and
π : G → G be the natural isogeny. Now, suppose we are given a number field K, an
embedding K ↪→ F, and an algebraic K-group G such that the F-group FG obtained
from it by extension of scalars K ↪→ F, is F-isomorphic to G (in other words, G is an
F/K-form of G). Then we have an embedding ι:G (K) ↪→ G(F), which is well-defined
up to an F-automorphism of G. Next, let S be a finite set of places of K which con-
tains the set VK

∞ of all archimedean places, but does not contain any nonarchimedean

1 In other words, the subgroup of F
×

generated by the eigenvalues(in a faithful representation of G) of g1 intersects
the subgroup generated by the eigenvalues of g2 nontrivially.
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place where G is anisotropic. We let OK(S) denote the ring of S-integers in K (with
OK = OK(VK

∞) denoting the ring of algebraic integers in K), and let G (OK(S)) be
the S-arithmetic subgroup defined in terms of a fixed K-embedding G ↪→ GLn, i.e.,
G (OK(S)) = G (K) ∩ GLn(OK(S)). A subgroup � of G(F) such that π(�) is com-
mensurable with σ(ι(G (OK(S)))), for some F-automorphism σ of G, will be called a
(G ,K,S)-arithmetic subgroup.2 As usual, (G ,K,VK

∞)-arithmetic subgroups will simply be
called (G ,K)-arithmetic.

Now, let Gi , for i = 1,2, be a connected absolutely almost simple F-group, and
let πi: Gi → Gi be the isogeny onto the corresponding adjoint group. We will say that
the subgroups �i of Gi(F) are commensurable up to an F-isomorphism between G1 and
G2 if there exists an F-isomorphism σ : G1 → G2 such that σ(π1(�1)) is commensurable
with π(�2) in the usual sense, i.e., their intersection is of finite index in both of them.
(If G1 = G2 =: G, which was the situation considered in earlier versions of this paper,
then we talk about commensurability up to an F-automorphism of G or G.) Let now
�i be a Zariski-dense (Gi,Ki,Si)-arithmetic subgroup of Gi(F). The key question for us
is when does the fact that �1 and �2 are weakly commensurable imply that they are
commensurable up to an F-isomorphism between G1 and G2, i.e., K1 = K2, S1 = S2 and
G1 and G2 are K-isomorphic (cf. Proposition 2.5)? Theorems 3–5 address this question.

Theorem 3. — Let G1 and G2 be two connected absolutely almost simple algebraic groups

defined over a field F of characteristic zero. If Zariski-dense (Gi,Ki,Si)-arithmetic subgroups �i of

Gi(F) are weakly commensurable for i = 1,2, then K1 = K2 and S1 = S2.

Examples 6.5, 6.6 and 6.7 show that the existence of weakly commensurable S-
arithmetic subgroups does not guarantee that G1 and G2 are always isomorphic over
K := K1 = K2. In the next theorem we list the cases where it can be asserted that G1

and G2 are K-isomorphic, and then give a general finiteness result for the number of
K-isomorphism classes.

Theorem 4. — Let G1 and G2 be two connected absolutely almost simple algebraic groups

defined over a field F of characteristic zero, of the same type different from An, D2n+1, with n > 1,

D4 and E6. If for i = 1,2, Gi(F) contain Zariski-dense weakly commensurable (Gi,K,S)-arithmetic

subgroups �i , then G1 � G2 over K, and hence �1 and �2 are commensurable up to an F-isomorphism

between G1 and G2.

In earlier versions of this paper, the case of groups of type D2n in Theorem 4 was
left open. This case was recently settled in [35] using techniques of the current paper in

2 This notion of arithmetic subgroups coincides with that in Margulis’ book [21] for absolutely simple adjoint
groups. Notice that if G is anisotropic over Kv , where v is a nonarchimedean place of K, then G (OK(S)) is commensurable
with G (OK(S ∪ {v})), so the classes of S- and (S ∪ {v})-arithmetic subgroups coincide. Thus, the above assumption on S
is necessary if one wants to recover S from a given S-arithmetic subgroup.
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conjunction with new results on embedding of fields with involutive automorphisms into
simple algebras with involutions.

Theorem 5. — Let G1 and G2 be two connected absolutely almost simple groups defined over

a field F of characteristic zero. Let �1 be a Zariski-dense (G1,K,S)-arithmetic subgroup of G1(F).
Then the set of K-isomorphism classes of K-forms G2 of G2 such that G2(F) contains a Zariski-

dense (G2,K,S)-arithmetic subgroup weakly commensurable to �1 is finite. In other words, the set

of all Zariski-dense (K,S)-arithmetic subgroups of G2(F) which are weakly commensurable to a given

Zariski-dense (K,S)-arithmetic subgroup of G1(F) is a union of finitely many commensurability classes.

A noteworthy fact about weak commensurability is that it has the following impli-
cation for the existence of unipotent elements in arithmetic subgroups (even though it is
formulated entirely in terms of semi-simple ones).

Theorem 6. — Let G1 and G2 be two connected absolutely almost simple algebraic groups

defined over a field F of characteristic zero. For i = 1,2, let �i be a Zariski-dense (Gi,K,S)-arithmetic

subgroup of Gi(F). Assume that �1 and �2 are weakly commensurable. Then rkK G1 = rkK G2 (in

particular, if G1 is K-isotropic, then so is G2). If G1 and G2 are of the same type, then the Tits indices of

G1/K and G2/K, and for every place v of K, the Tits indices of G1/Kv and G2/Kv , are isomorphic.

(For a description of Tits index of a simple algebraic group, see §7.)
The following result asserts that a lattice3 which is weakly commensurable with an

S-arithmetic group is arithmetic.

Theorem 7. — Let G1 and G2 be two connected absolutely almost simple algebraic groups

defined over a nondiscrete locally compact field F of characteristic zero, and for i = 1,2, let �i be a

Zariski-dense lattice in Gi(F). Assume that �1 is a (K,S)-arithmetic subgroup of G1(F). If �1 and

�2 are weakly commensurable, then �2 is a (K,S)-arithmetic subgroup of G2(F).

The proofs of these theorems use a variety of algebraic and number-theoretic tech-
niques. One of the key ingredients is a new method for constructing elements with special
properties in a given Zariski-dense subgroup of a semi-simple algebraic group developed
in our papers [31–33] to answer questions of Y. Benoist, G.A. Margulis, R. Spatzier et al.
arising in geometry. This method is described in Section 3 below in a considerably mod-
ified form required for the proofs of Theorems 1–7. Among other important ingredients
of our proofs are Tits’ classification of semi-simple algebraic groups over nonalgebraically
closed fields (cf. [44]), and results on Galois cohomology of semi-simple groups over lo-
cal and global fields. As a by-product of our argument, we obtain an almost complete
solution of the old problem whether an absolutely simple group over a number field is

3 A discrete subgroup � of a locally compact topological group G is said to be a lattice in G if G/� carries a finite
G -invariant Borel measure, see [36].
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determined by the set of isomorphism classes of its maximal tori (cf. Theorem 7.5). It is
our belief that the notion of weak commensurability, and the techniques involved in its
analysis, in conjunction with the results of [31–33], will have numerous applications in
the theory of Lie groups, ergodic theory, and (differential) geometry. In fact, the results
on weak commensurability stated above were motivated by, and actually enabled us to
settle, some problems about the lengths of closed geodesics in, and isospectrality of, arith-
metically defined locally symmetric spaces. We now proceed to describe these geometric
applications.

For a Riemannian manifold M, the length spectrum L(M) (resp., the weak length spec-

trum L(M)) is defined to be the set of lengths of closed geodesics in M with multiplicities
(resp., without multiplicities), cf. [19]. The following question has received considerable
attention: to what extent do L(M), L(M), or the spectrum of the Laplace-Beltrami op-
erator on M, determine M? It turns out that all these sets are interrelated: for example,
two compact hyperbolic 2-manifolds are isospectral4 if and only if they have the same
length spectrum, cf. [22]; two hyperbolic 3-manifolds are isospectral if and only if they
have the same complex-length spectrum, cf. [13]. Furthermore, it is known that isospectral
compact locally symmetric spaces, with nonpositive sectional curvatures, have the same
weak length spectrum, see Theorem 10.1 below. The first examples of isospectral but
not isometric (although commensurable5) compact hyperbolic 2- and 3-manifolds were
given in [45]. Recently, in [20], noncommensurable isospectral locally symmetric spaces
have been constructed. On the other hand, in 1985 Sunada [42] described a general
method for producing examples of nonisometric (but commensurable) isospectral mani-
folds. A variant of Sunada’s construction has been used in [19] to give examples of hy-
perbolic manifolds with equal weak length spectra but different volumes. Earlier, in [38],
the same approach was used to produce nonisometric hyperbolic 3-manifolds with equal
weak length spectra. It should be pointed out that Sunada’s construction, which is the
only known general method for constructing manifolds with the same (weak) length, or
Laplace-Beltrami operator, spectra, always produces commensurable manifolds (in par-
ticular, the examples in [19] and [38] are commensurable). So the following question was
raised (cf., for example, [38]):

(1) Let M1 and M2 be two (hyperbolic) manifolds (of finite volume or even compact). Suppose

L(M1) = L(M2). Are M1 and M2 necessarily commensurable?

One may generalize this question by introducing the notion of length-commensurability,
which in particular allows us to replace the manifolds under consideration with commen-
surable ones: we say that M1 and M2 are length-commensurable if Q · L(M1) = Q · L(M2).
Now, (1) can be reformulated as follows:

4 Two compact Riemannian manifolds are said to be isospectral if their Laplace-Beltrami operators have the same
eigenvalues with the same multiplicities, cf. Section 10.

5 Two manifolds are called commensurable if they admit a common finite-sheeted cover.
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(2) Suppose M1 and M2 are length-commensurable. Are they commensurable?

In [38], an affirmative answer (to (1)) was given for arithmetically defined hyperbolic
2-manifolds, and very recently in [8] a similar result has been obtained for hyperbolic
3-manifolds. The results of this paper, combined with those of [35], §9, for groups of type
D2n, provide an affirmative answer to (2) for arithmetically defined hyperbolic manifolds
of dimensions 2n and 4n + 7 for n � 1, but a negative answer for hyperbolic manifolds of
dimension 4n+1, and for complex hyperbolic manifolds. In fact, we analyze the problem
in the general context of arithmetically defined locally symmetric spaces.

For i = 1,2, let Gi be a connected adjoint semi-simple real algebraic subgroup of
SLn, Gi = Gi(R) considered as a Lie group, and Ki be a maximal compact subgroup of Gi .
Then Xi = Ki\Gi is the symmetric space of Gi . Given a discrete torsion-free subgroup �i

of Gi , the quotient X�i
= Xi/�i is a locally symmetric space. For i = 1 or 2, we say that X�i

is arithmetically defined if �i is an arithmetic subgroup of Gi (cf. [21], Chap. IX). According
to the following theorem, length-commensurability of locally symmetric spaces is closely
related to weak commensurability of the corresponding discrete subgroups.

Theorem 8.12. — If �1 and �2 are not weakly commensurable, then, possibly after interchang-

ing them, the following assertions hold.

(i) If G1 and G2 are of real rank 1, and either there exists a number field K ⊂ R such that both

�1 and �2 can be conjugated into SLn(K), or G1 � G2, then there exists λ1 ∈ L(X�1)

such that for any λ2 ∈ L(X�2), the ratio λ1/λ2 is irrational.

(ii) If there exists a number field K ⊂ R such that both �1 and �2 can be conjugated into

SLn(K), and Schanuel’s conjecture holds, then there exists λ1 ∈ L(X�1) which is alge-

braically independent from any λ2 ∈ L(X�2).

In either case, (under the above assumptions) X�1 and X�2 are not length-commensurable.

We would like to emphasize that while our results for rank one locally symmetric spaces (which

include hyperbolic spaces of all types) are unconditional, the results for spaces of higher rank depend on the

validity of the well-known conjecture in transcendental number theory due to Schanuel (see Section 8 for

the statement); needless to say that the results in Sections 2–7, 9 on weak commensurability (in particular,

Theorems 1–7) do not involve any transcendental number theory.

In the sequel, we will refer to the following situation as the exceptional case:

(E) One of the locally symmetric spaces, say, X�1 , is 2-dimensional and the corre-
sponding discrete subgroup �1 cannot be conjugated into PGL2(K), for any
number field K ⊂ R, and the other space, X�2 , has dimension > 2.

Theorem 8.12 implies the following.

Corollary 8.14. — Let G1 and G2 be connected absolutely simple real algebraic groups, and

let X�i
be a locally symmetric space of finite volume, of Gi = Gi(R), for i = 1,2. Assume that we are
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not in the exceptional case (E). If X�1 and X�2 are length-commensurable, then �1 and �2 are weakly

commensurable.

Now, applying Theorems 1, 2 and 7 we obtain the following:

Theorem 8.15. — Let G1 and G2 be connected absolutely simple real algebraic groups, and let

X�i
be a locally symmetric space of finite volume, of Gi , for i = 1,2. Assume that X�1 and X�2 are

length-commensurable, and we are not in the exceptional case (E). Then (i) either G1 and G2 are of

same Killing-Cartan type, or one of them is of type Bn and the other is of type Cn, (ii) K�1 = K�2 .

Combining Corollary 8.14 with Theorems 4 and 5, we obtain

Theorem 8.16. — Let G1 and G2 be connected absolutely simple real algebraic groups, and let

Gi = Gi(R), for i = 1,2. Then the set of arithmetically defined locally symmetric spaces X�2 of G2,

which are length-commensurable to a given arithmetically defined locally symmetric space X�1 of G1, is

a union of finitely many commensurability classes. It in fact consists of a single commensurability class if

G1 and G2 have the same type different from An, D2n+1, with n > 1, D4 and E6.

Furthermore, Theorems 6 and 7 imply the following rather surprising result which
has so far defied attempts to prove it purely geometrically.

Theorem 8.19. — Let G1 and G2 be connected absolutely simple real algebraic groups, and let

X�1 and X�2 be length-commensurable locally symmetric spaces of G1 and G2 respectively, of finite vol-

ume. Assume that at least one of the spaces is arithmetically defined and that we are not in the exceptional

case (E). Then the other space is also arithmetically defined, and the compactness of one of the spaces

implies the compactness of the other.

In Section 9, we present a general cohomological construction which, in particu-
lar, enables us to give examples of length-commensurable, but not commensurable, arith-
metically defined locally symmetric spaces associated to an absolutely simple Lie group
of any of the following types: An, D2n+1 (n > 1), or E6, see Construction 9.15 (thus, the
second assertion of Theorem 8.16 definitely cannot be extended to these types). Towards
this end, we establish a new local-global principle for the existence of an embedding of a
given K-torus as a maximal torus in an absolutely simple simply connected K-group (for
the precise assertion, see Theorem 9.5). Using this local-global principle, we show that
there exist nonisomorphic K-forms G1 and G2 of an absolutely simple K-group of each
of the types An, D2n+1 (n > 1), and E6, such that (i) G1 is isomorphic to G2 over Kv , for
all places v of K (so G1(AK) is isomorphic to G2(AK) as a topological group, where AK is
the adèle ring of K), and (ii) given a maximal K-torus Ti of Gi , there is an isomorphism
Gi → G3−i whose restriction to Ti is defined over K. Such K-forms are likely to be of
interest in the Langlands program. Given nonisomorphic K-forms G1 and G2 with the
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above properties, any arithmetic subgroup �1 of G1(K) is weakly commensurable, but
not commensurable, to any arithmetic subgroup �2 of G2(K), and the associated locally
symmetric spaces X�1 and X�2 are length-commensurable but not commensurable (see
Proposition 9.14 and Construction 9.15).

We assume now that both G1 and G2 are connected absolutely simple adjoint real
algebraic groups, and for i = 1,2, �i is a torsion-free discrete cocompact subgroup of
Gi , and X�i

is the associated compact locally symmetric space. As a consequence of our
previous results, and Theorem 10.1, we obtain the following theorem, which answers
Mark Kac’s famous question “Can one hear the shape of a drum?” for arithmetically
defined compact locally symmetric spaces.

Theorem 10.4. — Assume that X�1 and X�2 are isospectral, and at least one of the subgroups

�1 and �2 is arithmetic. Then G1 = G2 =: G. Moreover, unless G is of type An, D2n+1 (n > 1), D4

or E6, the spaces X�1 and X�2 are commensurable.

Notation and conventions. Unless stated otherwise, all our fields will be of characteristic
zero. For a number field K, we let VK (resp., VK

∞ and VK
f ) denote the set of all places

(resp., the subsets of archimedean and nonarchimedean places). For a torus T, we let
X(T) denote the character group, and for a morphism π : T1 → T2 between two tori, we
let π∗: X(T2) → X(T1) denote the induced homomorphism of the character groups. If
T is defined over K, then KT will denote the (minimal) splitting field of T over K and
X(T) will be considered as a module over the Galois group Gal(KT/K).

In the sequel, all number fields are assumed to be contained in the field C of
complex numbers. For a subfield K (resp., Ki ) of C, K (resp., Ki ) will denote its algebraic
closure in C. For a place v of a number field K (resp., Ki ), Kv (resp., Kiv ) will denote an
algebraic closure of the completion Kv (resp., Kiv ) of K (resp., Ki ) at v. In particular, Q p

will denote an algebraic closure of Q p.
Every algebraic K-group occurring in this paper will be assumed to be linear in

terms of some K-embedding of the group in GLn. We will use the adjoint representation
to realize a semi-simple adjoint group as a linear group. For an algebraic K-subgroup
G of GLn, and a subring R of a commutative K-algebra C, G(R) will denote the group
G(C) ∩ GLn(R).

2. Preliminaries

Let G1 and G2 be two semi-simple algebraic groups defined over a field F. We
begin with a simple comment on the notion of weak commensurability of semi-simple
elements.

Lemma 2.1. — For i = 1,2, let γi ∈ Gi(F) be a semi-simple element. The following condi-

tions are equivalent:
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(1) γ1 and γ2 are weakly commensurable, i.e., there exist maximal F-tori Ti of Gi for i = 1,2
such that γi ∈ Ti(F) and χ1(γ1) = χ2(γ2) �= 1 for some characters χi ∈ X(Ti);

(2) for any maximal F-tori Ti of Gi with γi ∈ Ti(F), there exist characters χi ∈ X(Ti) such

that χ1(γ1) = χ2(γ2) �= 1.

While (2) trivially implies (1), the opposite implication follows from the fact that
if Ci is the Zariski-closure in Gi of the subgroup generated by γi , then for any torus Ti

containing Ci , the restriction map X(Ti) → X(Ci) is surjective (cf. [3], 8.2).

Corollary 2.2. — For i = 1,2, let Ki be a subfield of F, Gi be an F/Ki -form of Gi , and

γi ∈ Gi(Ki) ↪→ Gi(F) be a semi-simple element. Then γ1 and γ2 are weakly commensurable if and

only if there exist maximal Ki -tori Ti of Gi such that χ1(γ1) = χ2(γ2) �= 1 for some χi ∈ X(Ti).

This follows from the above lemma because every semi-simple γi ∈ Gi(Ki) is con-
tained in a maximal Ki-torus of Gi .

We will now prove two elementary lemmas on weak commensurability of sub-
groups. The first lemma enables one to replace each of the two weakly commensurable
subgroups with a commensurable subgroup.

Lemma 2.3. — For i = 1,2, let �i and �2 be a finitely generated Zariski-dense subgroups of

Gi(F). We assume that �1 and �2 are weakly commensurable. If for i = 1,2, 
i is a subgroup of

Gi(F) commensurable with �i , then the subgroups 
1 and 
2 are weakly commensurable.

Proof. — We recall that a subgroup 
 of GLn(K) is neat if for every δ ∈ 
, the
subgroup of K

×
generated by the eigenvalues of 
 is torsion-free. According to a result

proved by Borel (cf. [36], Theorem 6.11) every finitely generated subgroup of GLn(K)

contains a neat subgroup of finite index. We fix a neat subgroup � of �1 ∩ 
1 of finite
index, then [
1 : �] < ∞. Given a semi-simple element δ1 ∈ 
1 of infinite order, we
can pick n1 � 1 so that γ1 := δ

n1
1 ∈ �. Since �1 and �2 are weakly commensurable, there

exists a semi-simple element γ2 ∈ �2 of infinite order so that

χ1(γ1) = χ2(γ2) �= 1,

where for i = 1,2, χi is a character of a maximal F-torus Ti of Gi such that δ1 ∈ T1(F)
and γ2 ∈ T2(F). Now, pick n2 � 1 so that δ2 := γ

n2
2 ∈ �2 ∩ 
2. Then

(n2χ1)(γ1) = ((n1n2)χ1)(δ1) = χ2(δ2).(1)

It remains to observe that since χ1(γ1) �= 1 belongs to the subgroup generated by the
eigenvalues of γ1, which is torsion-free, it is not a root of unity. This implies that the
common value in (1) is �= 1, and therefore δ1 and δ2 are weakly commensurable. Thus,
every semi-simple δ1 ∈ 
1 of infinite order is weakly commensurable to some semi-simple
δ2 ∈ 
2 of infinite order, and by symmetry, every semi-simple δ2 ∈ 
2 of infinite order is
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weakly commensurable to some semi-simple δ1 ∈ 
1 of infinite order, which makes 
1

and 
2 weakly commensurable. �

The next lemma shows that in the analysis of weak commensurability of subgroups,
one can replace the ambient algebraic groups with isogenous groups.

Lemma 2.4. — For i = 1,2, let πi: Gi → G′
i be an F-isogeny of connected semi-simple

algebraic F-groups, and let �i be a finitely generated Zariski-dense subgroup of Gi(F). Then �1 and

�2 are weakly commensurable if and only if their images �′
1 = π1(�1) and �′

2 = π2(�2) are weakly

commensurable.

Proof. — One direction is almost immediate. Namely, suppose �′
1 and �′

2 are weakly
commensurable. Then for a given semi-simple element γ1 of �1 of infinite order, there
exists a semi-simple element γ2 ∈ �2 of infinite order so that for i = 1,2, there exist a
maximal F-torus T′

i of G′
i , and a character χ ′

i of T′
i , such that πi(γi) ∈ T′

i(F), and

χ ′
1(π1(γ1)) = χ ′

2(π2(γ2)) �= 1.

Then, for i = 1,2, Ti := π−1
i (T′

i) is a maximal F-torus of Gi , γi ∈ Ti(F), and for their
characters χi = π∗

i (χ
′
i ) we have

χ1(γ1) = χ2(γ2) �= 1.

This, combined with a “symmetric” argument, implies that �1 and �2 are weakly com-
mensurable.

Conversely, suppose that �1 and �2 are weakly commensurable, and for i = 1,2,
pick neat subgroups 
i of �i of finite index. By Lemma 2.3, it is enough to show that
π1(
1) and π2(
2) are weakly commensurable. Let δ1 be a nontrivial semi-simple ele-
ment of 
1. Then there exists a semi-simple element δ2 ∈ 
2 such that for i = 1,2, there
exist a maximal F-torus Ti of Gi , with δi ∈ Ti(F), and a character χi of Ti , so that

χ1(δ1) = χ2(δ2) �= 1.(2)

Set T′
i = πi(Ti). Then πi(δi) ∈ T′

i(F). If m = | kerπ1| · | kerπ2|, then there exist characters
χ ′

i ∈ X(T′
i) such that mχi = π∗

i (χ
′
i ). Since 
1 is neat, the common value in (2) is not an

m-th root of unity, and then

χ ′
1(π1(δ1)) = χ ′

2(π2(δ2)) = χ1(δ1)
m �= 1.

This, together with a “symmetric” argument, implies that π1(
1) and π2(
2) are weakly
commensurable. �

Next, we prove the following (known) proposition which characterizes commen-
surable S-arithmetic subgroups. Since we have not been able to find a reference for its
proof, we give a complete argument.
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Proposition 2.5. — Let G1 and G2 be connected absolutely almost simple algebraic groups

defined over a field F of characteristic zero, and for i = 1,2, let �i be a Zariski-dense (Gi,Ki,Si)-

arithmetic subgroup of Gi(F). Then �1 and �2 are commensurable up to an F-isomorphism between

G1 and G2 if and only if K1 = K2 =: K, S1 = S2, and G1 and G2 are K-isomorphic.

Proof. — It is obvious from the definition of various terms involved in the propo-
sition that to prove it we can replace Gi by its adjoint group Gi , which enables us to
assume in the rest of the proof that for i = 1,2, Gi = Gi . Then, for i = 1,2, we can fix an
F-isomorphism ιi:F Gi → Gi so that �i is commensurable with ιi(Gi(OKi

(Si))). One im-
plication is obvious. Namely, suppose K1 = K2 =: K, S1 = S2 =: S, and let τ :G1 → G2 be
a K-isomorphism. Then τ(G1(OK(S))) is commensurable with G2(OK(S)), and σ := ι2 ◦
τ ◦ ι−1

1 is an F-isomorphism between G1 = G1 and G2 = G2. Clearly, σ(ι1(G1(OK(S))))
is commensurable with ι2(G2(OK(S))), implying that σ(�1) is commensurable with �2,
as required.

Conversely, suppose σ : G1 → G2 is an F-isomorphism such that σ(�1) and �2 are
commensurable. Set �′

1 = �1 ∩ σ−1(�2) and �′
2 = σ(�1) ∩ �2. Then σ(�′

1) = �′
2, so

the subfield K�′
1

of F generated by Tr AdG1 γ for γ ∈ �′
1 coincides with the subfield K�′

2

generated by Tr AdG2 γ for γ ∈ �′
2. Since �′

i is (Gi,Ki,Si)-arithmetic for i = 1,2, the
assertion that K1 = K2 is an immediate consequence of the following lemma.

Lemma 2.6. — Let G be a connected absolutely almost simple algebraic group defined over a

field F of characteristic zero, and � be a Zariski-dense (G ,K,S)-arithmetic subgroup of G(F). Then

the subfield K� of F generated by Tr AdG γ for γ ∈ � coincides with K.

Proof. — We will assume (as we may) that the group G is adjoint. By definition, there
exists an F-isomorphism ι:F G � G such that � is commensurable with ι(G (OK(S)). Set


 = ι−1(�) ⊂ G (F).

Then 
 is a Zariski-dense S-arithmetic subgroup of G (F). As G is of adjoint type,

 is contained in G (K) (see, for example, Proposition 1.2 of [4]). This implies that
Tr AdG(�) = Tr AdG (
) ⊂ K, hence the inclusion K� ⊂ K. To prove the reverse in-
clusion, we observe that according to Theorem 1 of Vinberg [46], there exists a basis of
the Lie algebra g of G (which we fix) with respect to which 
 is represented by matrices
with entries in K� , and G admits K� as its field of definition. Let A ⊂ Endg be the linear
span of 
. (Note that as the action of G , and so of 
, on g is absolutely irreducible, A
in fact equals Endg.) Then A is invariant under conjugation by 
, hence by G , so we
can consider the corresponding (faithful) representation ρ:G → GL(A). Let A be the
K�-linear span of 
. Any subgroup 
′ of 
 of finite index has the same Zariski-closure
as 
 (viz., G ), and hence the same K�-linear span (viz., A ). Since for any g ∈ G (K),
the intersection 
 ∩ ( g−1
g) is of finite index in 
, we see that A is invariant under
conjugation by G (K), and therefore, in terms of a basis of A contained in A , ρ(G (K))
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is represented by matrices with entries in K� . Hence, G (K�) = G (K), and the lemma is
implied by the following.

Lemma 2.7. — Let G be a reductive algebraic group of positive dimension defined over an infinite

field K . Then for any nontrivial extension L /K , we have G (K ) �= G (L ).

Proof. — We may (and do) assume that G is connected. It is known that G is uni-
rational over K (cf. [3], Theorem 18.2), i.e., there exists a dominant K -rational map
f : An → G from the affine space An. We pick a line � in An, defined over K , such that f

restricts to a nonconstant map on �. Let C be the Zariski-closure of f (�(K )). Then
C is a curve defined over K ; furthermore, by Lüroth’s theorem, C is rational over
K , i.e., it is K -isomorphic to an open subvariety of A1. This immediately implies that
C (K ) �= C (L ), and our claim follows. �

To complete the proof of Proposition 2.5, consider the F-isomorphism τ = ι−1
2 ◦

σ ◦ ι1 between FG1 and FG2. We can obviously choose subgroups 
i of Gi(OKi
(Si)) of

finite indices so that σ(ι1(
1)) = ι2(
2), and then τ(
1) = 
2. Since 
i is a Zariski-
dense subgroup of Gi(K), where K := K1 = K2, we see that τ is in fact defined over K.
Next, take any v /∈ S1. Since the closure of 
1 in G1(Kv) is compact, we obtain that the
closure of 
2 = τ(
1) in G2(Kv) is also compact. If we assume that v ∈ S2, then G2(Kv)

is noncompact, and the fact that 
2 is a lattice in
∏

w∈S2
G2(Kw), yields a contradiction.

Thus, v /∈ S2, proving the inclusion S2 ⊂ S1. The opposite inclusion is proved similarly,
so S1 = S2. �

Remark 2.8. — The assertion of Lemma 2.7 remains true also over a finite field
K for any connected reductive group G which is not a torus. Indeed, in this case G is
quasi-split over K (cf. [3], Proposition 16.6), and therefore it contains a 1-dimensional
split torus C . Clearly, C (K ) �= C (L ), implying that G (K ) �= G (L ).

Let now G = T be a torus over K = Fq, and let L = Fqm with m > 1. It follows
from ([47], 9.1) that

|T (K )| =
d∏

i=1

(q − λi) and |T (L )| =
d∏

i=1

(qm − λm
i ),

where λi are certain complex roots of unity and d = dimT . We have

|q − λi| � q + 1 and |qm − λm
i | � qm − 1,

so if qm − q > 2, which is always the case unless q = 2 = m, then |T (L )| > |T (K )|.
Suppose now that q = 2 = m. Clearly, |T (K )| = |T (L )| is possible only if |q − λi| =
q + 1, i.e., λi = −1, for all i. This means that T � (R(1)

L /K (GL1))
d , where R(1)

L /K (GL1)

is the norm one torus associated with the extension L /K = F4/F2. For these tori we
have T (K ) = T (L ), and our argument shows that these are the only exceptions to
Lemma 2.7 over finite fields.
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3. Results on irreducible tori

A pivotal role in the proof of Theorems 1–7 is played by a reformulation of The-
orem 3 of [32]. To explain this reformulation, we need to introduce some additional
notation.

Let K be an infinite field and G be a connected absolutely almost simple algebraic
K-subgroup of GLn. Let T be a maximal K-torus of G. As usual, � = �(G,T) will
denote the root system of G with respect to T, and W(�), or W(G,T), the Weyl group
of �. We shall denote by KT the (minimal) splitting field of T in a fixed separable closure
K of K. Then there exists a natural injective homomorphism θT: Gal(KT/K) → Aut(�).
The following result is a strengthening of Theorem 3(i) of [32], which does not require
any significant changes in the proof.

Theorem 3.1. — Let G be a connected absolutely almost simple algebraic group defined over

a finitely generated field K of characteristic zero, and L be a finitely generated field containing K. Let

r be the number of nontrivial conjugacy classes of the Weyl group of G, and suppose that we are given

r inequivalent nontrivial discrete valuations v1, . . . , vr of K such that the completion Kvi
is locally

compact and contains L, and G splits over Kvi
, for i = 1, . . . , r. There exist maximal Kvi

-tori T(vi)

of G, one for each i ∈ {1, . . . , r}, with the property that for any maximal K-torus T of G which is

conjugate to T(vi) by an element of G(Kvi
) for all i = 1, . . . , r, we have

θT(Gal(LT/L)) ⊃ W(G,T),(3)

where LT = KTL is the splitting field of T over L so that Gal(LT/L) can be identified with a subgroup

of Gal(KT/K).

We will now derive two corollaries that will be used in the subsequent sections.

Corollary 3.2. — Let G, K and L be as in Theorem 3.1, and let V be a finite set of nontrivial

valuations of K such that for every v ∈ V, the completion Kv is locally compact. Suppose that for each

v ∈ V we are given a maximal Kv-torus T(v) of G. Then there exists a maximal K-torus T of G for

which (3) holds and which is conjugate to T(v) by an element of G(Kv), for all v ∈ V.

Proof. — Let r denote the number of nontrivial conjugacy classes in the Weyl group
of G. Enlarging L if necessary, we assume that G splits over L. By Proposition 1 of [32],
there exists an infinite set � of rational primes such that for each p ∈ � there exists an
embedding ιp: L → Q p. It follows that one can pick r distinct primes p1, . . . , pr ∈ � so
that for the valuations vi of K obtained as pullbacks of the pi-adic valuations vpi

on Q pi
,

the set R = {v1, . . . , vr} is disjoint from V. Now, let T(vi), for i = 1, . . . , r, be the tori as
in Theorem 3.1. Since the completions Kv for v ∈ R ∪ V are locally compact, it follows
from the Implicit Function Theorem that the tori in the G(Kv)-conjugacy class of T(v)

correspond to points of an open subset of T (Kv), where T is the variety of maximal tori
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of G. Since T has the weak approximation property (cf. [26], Corollary 3 in §7.2), there
exists a maximal K-torus T of G which is conjugate to T(v) by an element of G(Kv) for
all v ∈ R∪V. It follows from our construction that this torus has the desired properties. �

To reformulate the above results for individual elements instead of tori, we need
the following lemma.

Definition 3.3. — A subset of a topological group is called solid if it intersects every open subgroup

of that group.

Lemma 3.4. — Let v be a nontrivial valuation of K with locally compact completion Kv , and

let T be a maximal Kv-torus of G. Consider the map

ϕ: G × T −→ G, ( g, t) �→ gtg−1.

Then

U (T, v) := ϕ(G(Kv),Treg(Kv)),

where Treg is the Zariski-open subvariety of T of regular elements, is a solid open subset of G(Kv).

Proof. — Indeed, one easily verifies that the differential d( g,t)ϕ is surjective for any
( g, t) ∈ G(Kv)×Treg(Kv), so the openness of U (T, v) follows from the Implicit Function
Theorem. Furthermore, for any open subgroup � of G(Kv), the set T(Kv)∩� is Zariski-
dense in T (cf. [26], Lemma 3.2), and therefore it contains an element of Treg(Kv). So,
U (T, v) ∩ � �= ∅. �

Corollary 3.5. — Let G, K, L and r be as in Theorem 3.1. Furthermore, let v1, . . . , vr be r

valuations of K with the properties specified in Theorem 3.1, and let

δ: G(K) ↪→
r∏

i=1

G(Kvi
) =: G

be the diagonal embedding. Then there exists a solid open subset U ⊂ G such that any γ ∈ G(K) with

δ(γ ) ∈ U is regular semi-simple, and for the torus T = ZG(γ )◦, condition (3) holds.

Indeed, let T(vi), where i = 1, . . . , r, be the tori given by Theorem 3.1. Then it is easy to
see that the set

U =
r∏

i=1

U (T(vi), vi)

(notations as in Lemma 3.4), satisfies all our requirements.
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In [31], a K-torus T was called K-irreducible if it has no proper K-subtori, which
is equivalent to the condition that the absolute Galois group Gal(K/K) acts irreducibly
on the Q-vector space X(T) ⊗Z Q. It follows that, in our previous notation, a maximal
K-torus T of G such that θT(Gal(KT/K)) ⊃ W(G,T) is K-irreducible (cf. [7], Chap. VI,
§1, n◦ 2). If T is a K-irreducible torus, then the cyclic group generated by any element of
T(K) of infinite order is Zariski-dense in T.

We will use the following general fact about K-irreducible tori.

Lemma 3.6. — Let T be a K-irreducible torus, and KT be its splitting field over K. Let

t ∈ T(K) be an element of infinite order, and χ ∈ X(T) be a nontrivial character. Then for λ := χ(t),

the Galois conjugates σ(λ), with σ ∈ Gal(KT/K), generate KT over K.

Proof. — We need to show that if τ ∈ Gal(KT/K) is such that

τ(σ (λ)) = σ(λ) for all σ ∈ Gal(KT/K),

then τ = id. For such a τ we have

σ−1τσ (χ(t)) = (σ−1τσ (χ))(t) = χ(t).

Hence, the character σ−1τσ (χ) − χ takes the value 1 at t, and therefore, τ(σ (χ)) =
σ(χ) because t generates a Zariski-dense subgroup of T. But the fact that T is K-
irreducible implies that the characters σ(χ), for σ ∈ Gal(KT/K), span X(T) ⊗Z Q ,
so τ = id. �

4. Proof of Theorem 1 and the Isogeny Theorem

In this section, K will be a field of arbitrary characteristic and Ks a fixed separable
closure of K. Let G be a connected absolutely almost simple algebraic K-group. Let T
and T′ be two maximal tori of G, and L any field extension of K such that both the
tori are defined and split over it. Given systems 
 ⊂ �(G,T) and 
′ ⊂ �(G,T′) of
simple roots, there exists g ∈ G(L) such that the corresponding inner automorphism ig of
G maps T onto T′, and the induced homomorphism i∗g : X(T′) → X(T) of the character
groups maps 
′ onto 
. Such a g is determined uniquely up to an element of T(L),
which implies that the identification 
 � 
′ induced by i∗g is independent of the choice
of g. We will always employ this identification of 
 with 
′ in the sequel.

Now let T be a maximal K-torus of G. Fix a system 
 ⊂ �(G,T) of simple
roots. Then for any σ ∈ Gal(Ks/K), there exists a unique wσ ∈ W(G,T) such that
wσ(σ(
)) = 
. The correspondence α �→ wσ(σ(α)) defines an action of Gal(Ks/K)

on 
, which is called the ∗-action (cf. [43]).
The following lemma describes some properties of the ∗-action, and of the afore-

mentioned identification of 
 with 
′, which will be used later in the paper.
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Lemma 4.1.

(a) Let T and T′ be two maximal K-tori of G, and let 
 ⊂ �(G,T) and 
′ ⊂ �(G,T′)
be two systems of simple roots. Pick g ∈ G(Ks) so that ig(T) = T′ and i∗g (


′) = 
.

Then i∗g intertwines the ∗-action of Gal(Ks/K) on 
′ and 
 respectively. In particular, it

carries the orbits of the ∗-action on 
′ to the orbits of the ∗-action on 
.

(b) The following conditions are equivalent:

(i) G is an inner form (i.e., an inner twist of a split group) over K;

(ii) ∗-action is trivial for some (equivalently, any) maximal K-torus T and a system of

simple roots 
 ⊂ �(G,T);

(iii) θT(Gal(KT/K)) ⊂ W(G,T) for some (equivalently, any) maximal K-torus T
of G.

(c) The minimal Galois extension L of K over which G becomes an inner form admits the

following (equivalent) characterizations:

(i) L = (Ks)H, where H is the kernel of the ∗-action;

(ii) L = (KT)
HT , where HT = θ−1

T (θT(Gal(KT/K)) ∩ W(G,T)).

Proof. — (a): Let σ ∈ Gal(Ks/K), and pick wσ ∈ W(G,T) and w′
σ ∈ W(G,T′) so

that wσ(σ(
)) = 
 and w′
σ (σ (
′)) = 
′. We need to show that

i∗g (w
′
σ (σ (α′))) = wσ(σ(i∗g (α

′))) for all α′ ∈ 
′.(4)

Since both T and T′ are defined over K, we have g−1σ( g) ∈ NG(T), and we let uσ denote
the corresponding element of W(G,T). Then

σ(i∗g (α
′)) = uσ (i

∗
g (σ (α′))).

Now, we observe that both i∗g ◦ w′
σ ◦ σ and wσ ◦ σ ◦ i∗g = wσ ◦ uσ ◦ i∗g ◦ σ take 
′ to 
.

This means that

w̃ := (i∗g )
−1 ◦ u−1

σ ◦ w−1
σ ◦ i∗g ◦ w′

σ

leaves the system of simple roots σ(
′) invariant. On the other hand, w̃ ∈ W(G,T′). So,
w̃ = 1, and (4) follows.

(b): It follows from (a) that if the ∗-action is trivial on some 
 ⊂ �(G,T) for some
maximal K-torus T, then it is trivial on any 
′ ⊂ �(G,T′) for any maximal K-torus T′.
On the other hand, it follows from the description of the ∗-action on 
 ⊂ �(G,T) that
its triviality is equivalent to the following:

θT(Gal(KT/K)) ⊂ W(G,T).(5)

This shows that (ii) and (iii) are equivalent. It remains to show that (i) is equivalent to
the inclusion (5). For this, we assume, as we clearly may, that G is adjoint. Let G0 be the
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K-split adjoint group of the same type as G, and T0 be a K-split maximal torus of G0.
Pick an isomorphism ϕ: G0 → G such that ϕ(T0) = T. Then

ασ = ϕ−1 ◦ σ(ϕ) for σ ∈ Gal(Ks/K),

defines a 1-cocycle α ∈ Z1(K,Aut G0) associated to G. For any χ ∈ X(T) we have χ ◦ϕ ∈
X(T0), and therefore, σ(χ ◦ϕ) = χ ◦ϕ as T0 is K-split. An easy computation then shows
that

σ(χ) = χ ◦ (ϕ ◦ α−1
σ ◦ ϕ−1).(6)

Next, (i) amounts to the assertion that α is cohomologous to a Int G0(Ks)-valued Galois-
cocycle β : σ �→ βσ , σ ∈ Gal(Ks/K), i.e., there exists γ ∈ Aut G0 such that ασ = γ −1 ◦
βσ ◦ σ(γ ), for all σ ∈ Gal(Ks/K). Let us show that then in fact

ασ ∈ Int G0 for all σ ∈ Gal(Ks/K).(7)

Indeed, it is well-known that

Aut G0 = Int G0 � �(T0,B0),

where �(T0,B0) is a subgroup of the group of all K-rational automorphisms of G0 that
leave invariant T0 and a Borel K-subgroup B0 containing T0. Since all the elements
of �(T0,B0) are K-rational, by writing γ in the form γ = δ ◦ ψ with δ ∈ Int G0 and
ψ ∈ �(T0,B0), we obtain that

ασ = ψ−1 ◦ (δ−1 ◦ βσ ◦ σ(δ)) ◦ ψ.

So, since Int G0 � Aut G0, we obtain (7). In addition, since both T0 and T are defined over
K, we have ασ (T0) = T0, and therefore for �σ := ϕ ◦ α−1

σ ◦ ϕ−1(∈ Aut G), �σ (T) = T.
Thus, if G is an inner form, then �σ is an inner automorphism of G which leaves T
invariant. Then its restriction �σ |T is given by an element of the Weyl group W(G,T),
so (6) yields the inclusion (5). Conversely, (5) in conjunction with (6) implies that �σ |T is
induced by an element of W(G,T). But then �σ itself is inner, which implies that G is an
inner form.

(c): Characterization (i) immediately follows from part (b). For (ii), let F = (KT)
HT .

Since G is an inner form over L and splits over KT, by (b), for LT = KT we have

θT(Gal(LT/L)) ⊂ W(G,T),

implying that F ⊂ L. On the other hand, using the definition of F we see that

θT(Gal(FT/F)) ⊂ W(G,T).

Then, again by (b), G is an inner form over F, and therefore L ⊂ F. Thus, L = F, as
claimed. �
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Proof of Theorem 1. — Pick a finitely generated field K so that both G1 and G2 are
defined and split over K, and in addition �i ⊂ Gi(K) for i = 1,2. Using the proof of
Theorem 2 in [32] we can see that there exists a regular semi-simple element γ1 ∈ �1 of
infinite order with the following property: if T1 is the maximal K-torus of G1 containing
γ1 and KT1 is its splitting field over K, then

θT1(Gal(KT1/K)) ⊃ W(G1,T1)(8)

(we notice that the inclusion in (8) is in fact an equality as G1 splits over K, hence is an
inner form, cf. Lemma 4.1). Our assumption that �1 and �2 are weakly commensurable
implies the existence of a semi-simple element γ2 ∈ �2 such that if T2 is a maximal K-
torus of G2 containing γ2, then for some characters χi of Ti ,

χ1(γ1) = χ2(γ2) := λ �= 1.

It follows from Lemma 3.6 that KT1 is generated over K by all the Galois conjugates σ(λ)

with σ ∈ Gal(K/K). On the other hand, since γ2 ∈ T2(K), all these conjugates belong to
KT2, hence the inclusion KT1 ⊂ KT2. Since G2 is an inner form over K, by Lemma 4.1,
we have the inclusion

θT2(Gal(KT2/K)) ⊂ W(G2,T2),

comparing which with (8) we obtain that |W(G1,T1)| divides |W(G2,T2)|. By symme-
try, we obtain that actually |W(G1,T1)| = |W(G2,T2)|. Our claim now follows since,
as is well-known, the order of the Weyl group of a reduced and irreducible root system
determines the pair consisting of the root system and its dual. �

Theorem 4.2 (Isogeny Theorem). — Let G1 and G2 be two connected absolutely almost simple

algebraic groups defined over an infinite field K, and let Li be the minimal Galois extension of K over

which Gi becomes an inner form of a split group. Suppose that for i = 1,2, we are given a semi-simple

element γi ∈ Gi(K) contained in a maximal K-torus Ti of Gi . Assume that (i) G1 and G2 are either of

the same Killing-Cartan type, or one of them is of type Bn and the other is of type Cn, (ii) γ1 has infinite

order, (iii) T1 is K-irreducible, and (iv) γ1 and γ2 are weakly commensurable. Then

(1) there exists a K-isogeny π : T2 → T1 which carries γ
m2
2 to γ

m1
1 for some integers

m1,m2 � 1;

(2) if L1 = L2
6, then π∗: X(T1) ⊗Z Q → X(T2) ⊗Z Q has the property that

π∗(Q ·�(G1,T1)) = Q ·�(G2,T2). Moreover if G1 and G2 are of the same Killing-

Cartan type different from B2 = C2, F4 or G2, then a suitable rational multiple of π∗

maps �(G1,T1) onto �(G2,T2), and if G1 is of type Bn and G2 is of type Cn, with

n > 2, then a suitable rational multiple λ of π∗ takes the long roots in �(G1,T1) to the

short roots in �(G2,T2) while 2λ takes the short roots in �(G1,T1) to the long roots in

�(G2,T2).

6 Cf. Theorem 6.3(2).
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Proof. — By Lemma 2.1, there exist characters χi ∈ X(Ti) such that

χ1(γ1) = χ2(γ2) =: λ �= 1.

Now to prove the first assertion of the theorem, we observe that the argument given in
the proof of Theorem 1 yields the inclusion KT1 ⊂ KT2, and hence a surjective homo-
morphism

G := Gal(KT2/K) −→ Gal(KT1/K),

which allows us to view X(T1) as a G -module. We wish to show that there is an isomor-
phism

ρ: X(T2) ⊗Z Q −→ X(T1) ⊗Z Q

of Q[G]-modules that takes χ2 to χ1. For this, we consider the maps

νi: Q[G] → X(Ti) ⊗Z Q ,
∑

aσσ �→
∑

aσσ (χi);
clearly, νi(Z[G]) ⊂ X(Ti). The K-irreducibility of T1 implies that ν1 is surjective. Now
we assert that

Kerν1 ⊃ Kerν2.(9)

To prove this assertion, we observe that given a = ∑
aσσ ∈ Z[G], we have

ν1(a)(γ1) =
∏

σ(χ1)(γ1)
aσ =

∏
σ(λ)aσ =

∏
σ(χ2)(γ2)

aσ = ν2(a)(γ2),

and as γ1 generates a Zariski-dense subgroup of T1(K), the above computation shows
that if ν2(a) = 0, then ν1(a) = 0, and (9) follows. In turn, (9) implies that there exists a
natural surjective homomorphism

ρ : Imν2 → Imν1 = X(T1) ⊗Z Q.

Since dim T1 = dim T2, we conclude that Imν2 = X(T2) ⊗Z Q, and hence ρ is an iso-
morphism. Clearly, ρ(χ2) = χ1.

The subgroup � := ν1(Z[G]) has finite index, say d, in X(T1). Then multiplica-
tion by d followed by ρ−1 gives a homomorphism

π∗: X(T1) → ν2(Z[G]) ⊂ X(T2)

of G -modules such that π∗(χ1) = dχ2. Let π : T2 → T1 be the K-isogeny corresponding
to π∗. Then χ1(π(t)) = χ2(t)

d for every t ∈ T2, and in particular,

χ1(π(γ2)) = χ2(γ2)
d = χ1(γ

d
1 ).
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Applying the elements of G, we see that χ(π(γ2)) = χ(γ d
1 ) for all χ ∈ �, and therefore,

χ(π(γ2)
d) = χ(γ d2

1 ) for every χ ∈ X(T1).

Thus, π(γ2)
d = γ d2

1 , so the first assertion of the theorem holds with m1 = d2, m2 = d.

The second assertion of Theorem 4.2 will be deduced from:

Lemma 4.3. — For i = 1,2, let �i be an irreducible reduced root system contained in, and

spanning, the Q-vector space Vi . We assume that either �1 and �2 are isomorphic, or �1 is of type

Bn and �2 is of type Cn for some n > 2 so that there exists an isomorphism μ: W(�1) → W(�2)

of the corresponding Weyl groups. If λ: V1 → V2 is a linear isomorphism compatible with μ (i.e.,

λ(w(v)) = μ(w)(λ(v)) for all v ∈ V1 and w ∈ W(�1)), then

(1) λ(Q · �1) = Q · �2.

Moreover,

(2) if �1 and �2 are isomorphic but not of type B2 = C2, F4 or G2, then a suitable rational

multiple of λ maps �1 onto �2;

(3) if �1 is of type Bn and �2 is of type Cn with n > 2, then a suitable rational multiple λ′ of

λ maps the long roots of �1 to the short roots of �2, while 2λ′ maps the short roots of �1

to the long roots of �2.

Proof. — We equip Vi with a positive definite W(�i)-invariant inner product, and
note that as Vi is an absolutely irreducible W(�i)-module, any two W(�i)-invariant
inner products on Vi are multiples of each other, see [7], Chap. VI, §1, Proposition 7.
This implies, in particular, that λ is a multiple of an isometry. For a root α ∈ �1, let
wα ∈ W(�1) be the corresponding reflection. Then μ(wα) is the reflection of V2 with
respect to λ(α). On the other hand, μ(wα) ∈ W(�2), so it follows from ([7], Chap. V, §3,
Cor. in n◦ 2) that μ(wα) = wᾱ for some ᾱ ∈ �2. So, λ(α) = tαᾱ for some tα ∈ Q , and our
first assertion follows.

To prove the second assertion in the case where �1 and �2 are isomorphic, we
scale the inner products on V1 and V2 so that the short (long) roots in �1 and �2 have
the same length in the respective spaces. Next, we fix an arbitrary (resp., an arbitrary
long) root α0 ∈ �1 if all roots have the same length (resp., if �1 contains roots of unequal
lengths). Replacing λ with t−1

α0
λ, we assume that λ(α0) = ᾱ0. If all roots have the same

length, then W(�1) · α0 = �1 and W(�2) · ᾱ0 = �2 ([7], Chap. VI, §1, Proposition 11),
yielding λ(�1) = �2. It remains to consider the situation where both �1 and �2 are of
type either Bn or Cn with n > 2. Then W(�1) · α0 is the subset �

long
1 of all long roots,

and W(�2) · ᾱ0 is either �
long
2 or �short

2 depending on whether ᾱ0 is long or short (cf. loc.

cit.). But for the types under consideration, |�long
1 | �= |�short

2 |, and therefore, λ(�long
1 ) =

�
long
2 . Since α0 and λ(α0) have the same length, λ is an isometry. If β0 ∈ �short

1 and
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λ(β0) = tβ0 β̄0, then β̄0 cannot be a long root (as λ is a linear isomorphism). So, β̄0 is
short, tβ0 = ±1, and it follows that λ(�1) = �2.

Finally, let �1 be of type Bn and �2 be of type Cn with n > 2. We scale the inner
products so that the squared-length of long roots in �1 equals the squared-length of
short roots in �2. We fix α0 ∈ �

long
1 and scale λ so that ᾱ0 = λ(α0) ∈ �2. Since |�long

1 | �=
|�long

2 |, we conclude that ᾱ0 is short, hence λ(�
long
1 ) = �short

2 and λ is an isometry. Let
now β0 ∈ �short

1 and λ(β0) = tβ0 β̄0 where, obviously, β̄0 ∈ �
long
2 . Since the ratio of the

squared-lengths of α0 and β0, and of β̄0 and ᾱ0 is 2, we see that tβ0 = ±1/2, and therefore,
2λ(�short

1 ) = �
long
2 , as required. �

We will now prove the second assertion of Theorem 4.2. Set L := L1 = L2. Then
it follows from Lemma 4.1 that

θT1(Gal(LT1/L)) = W(G1,T1) and θT2(Gal(LT2/L)) ⊂ W(G2,T2).

Since KT1 = KT2, LT1 = LT2, and we see that the composite map

μ: W(G1,T1)
θ−1

T1−→ Gal(LT1/L) = Gal(LT2/L)
θT2−→ W(G2,T2)

is an isomorphism of the Weyl groups compatible with π∗: Q ⊗Z X(T1) → Q ⊗Z X(T2).
Now, the second assertion of Theorem 4.2 follows from Lemma 4.3. �

Remark 4.4. — Let us assume that π∗ from Theorem 4.2(2) can be, and has
been, scaled so that π∗(�(G1,T1)) = �(G2,T2). Then it induces a K-isomorphism
π̄ : T2 → T1 of the corresponding tori in the adjoint groups Gi , which still has the prop-
erty π̄(γ̄

m̄2
2 ) = γ̄

m̄1
1 for some integers m̄1, m̄2 � 1, where γ̄i is the image of γi in Ti(K).

Furthermore, if Yi is the dual in Vi (where Vi is as in Lemma 4.3) of the lattice Xi

spanned by �i , then Yi is the character group of the maximal K-torus T̃i , corresponding
to the maximal torus Ti , of the simply connected cover G̃i of Gi , and π∗ induces an iso-
morphism Y1 → Y2, which in turn induces a K-isomorphism π̃ : T̃2 → T̃1. Both π̃ and
π̄ extend to Ks-isomorphisms G̃2 → G̃1 and G2 → G1. Also, if 
1 is a system of simple
roots in �(G1,T1), and 
2 = π∗(
1), then π∗ intertwines the ∗-action of Gal(Ks/K)

on 
1 and 
2 respectively.
We also note the “symmetric” version of the concluding part of Theorem 4.2(2): if

G1 is of type Cn and G2 is of type Bn with n > 2, then a suitable rational multiple λ of π∗

takes the short roots in �(G1,T1) to the long roots in �(G2,T2), while (1/2)λ takes the
long roots in �(G1,T1) to the short roots in �(G2,T2).

5. Proofs of Theorems 2, 3 and 7

We begin this section with the following two auxiliary propositions, the first of
which is a variant of Proposition 1 of [32].
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Proposition 5.1. — Let F1 � F2 ⊂ E be a tower of finitely generated fields of characteristic

zero, and let R ⊂ E be a finitely generated subring. Then there exists an infinite set of rational primes �

such that for each p ∈ �, there are embeddings ι(1), ι(2):E → Q p with the following properties:

(1) both ι(1)(R) and ι(2)(R) are contained in Zp;

(2) ι(1)|F1 = ι(2)|F1, but ι(1)|F2 �= ι(2)|F2.

Proof. — First, we observe that there exists a transcendence basis t1, . . . , tn of E over
Q such that for K := Q(t1, . . . , tn) we have K F1 �= K F2. Indeed, let t1, . . . , tn1 be an
arbitrary transcendence basis of F1 over Q , and tn1+1, . . . , tn2 be a transcendence basis
of F2 over F1 such that

F2 �= F1(tn1+1, . . . , tn2).

Then, for K0 := Q(t1, . . . , tn2), we have

K0F1 = F1(tn1+1, . . . , tn2) �= F2.

Now, let tn2+1, . . . , tn be a transcendence basis of E over F2. Then, of course,
(K0F1)(tn2+1, . . . , tn) �= F2(tn2+1, . . . , tn), and therefore,

K F1 = (K0F1)(tn2+1, . . . , tn) �= F2(tn2+1, . . . , tn) = K F2,

as required.
Obviously, E is a finite extension of K F1. Let M denote the Galois closure of E

over K F1. Then there exists σ ∈ Gal(M /K F1) which acts nontrivially on K F2, and
hence on F2. Let R0 be the subring generated by R and σ(R). Since M is a finitely
generated field and R0 is a finitely generated ring, by Proposition 1 of [32], one can find
an infinite set of rational primes � such that, for every p ∈ �, there exists an embedding
ιp:M → Q p with the property ιp(R0) ⊂ Zp. Then, for p ∈ �, the embeddings

ι(1) = ιp|E and ι(2) = (ιp ◦ σ)|E
satisfy both of our requirements. �

Proposition 5.2. — Let G be a connected absolutely simple adjoint algebraic group defined over

a field L of characteristic zero. Suppose � is a Zariski-dense subgroup of G(L), and let K� denote the

subfield of L generated by the traces Tr Adγ , in the adjoint representation, of all γ ∈ �. For i = 1,2,

let ι(i): L → Q p be an embedding, G(i) be the algebraic Q p-group obtained by the extension of scalars

given by ι(i), and ρ(i): G(L) → G(i)(Q p) be the homomorphism induced by ι(i). If

(a) ρ(i)(�) is relatively compact for i = 1,2,

(b) ι(1)|K� �= ι(2)|K� ,
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then the closure of the image of the diagonal homomorphism

ρ:� → G(1)(Q p) × G(2)(Q p), γ �→ (ρ(1)(γ ), ρ(2)(γ )),

is open.

We begin by showing that the image of ρ is Zariski-dense in G(1) × G(2).

Lemma 5.3. — For i = 1,2, let G(i) be a connected simple adjoint algebraic group defined

over a field K of characteristic zero, and let ρ(i):� → G(i)(K) be a homomorphism of a group � with

Zariski-dense image. Then either

G(1) � G(2) and Tr AdG(1) ρ(1)(γ ) = Tr AdG(2) ρ(2)(γ ) for all γ ∈ �,(10)

where AdG(i) is the adjoint representation of G(i), or the image of the homomorphism

ρ:� → G(1)(K) × G(2)(K), γ �→ (ρ(1)(γ ), ρ(2)(γ )),

is Zariski-dense in G(1) × G(2).

Proof. — Let H be the Zariski-closure of ρ(�) in G(1) × G(2), and assume that H �=
G(1) × G(2). Since both ρ(1) and ρ(2) have Zariski-dense images, for the corresponding
projections we have

pri(H) = G(i), i = 1,2.

Let Hi = H ∩ G(i). Then H1 is a normal subgroup of G(1), and therefore it either equals
G(1) or is trivial. Furthermore, if it equals G(1), then as pr2(H) = G(2), we easily see that
H = G(1) × G(2). Similarly, H2 either equals G(2) or is trivial, and in the former case
H = G(1) × G(2). Thus, since H �= G(1) × G(2), we see that Hi is trivial for i = 1,2. Since
the ground field is of characteristic zero, this means that pri induces an isomorphism
εi: H → G(i) for i = 1,2. Then σ := ε2 ◦ ε−1

1 is an isomorphism between G(1) and G(2),
and

H = {( g, σ ( g)) | g ∈ G(1)}.
It follows that ρ2 = σ ◦ ρ1, which implies (10). �

We will now prove Proposition 5.2. Denote by H the closure of ρ(�) in
G(1)(Q p) × G(2)(Q p) in the p-adic topology. Then H is a p-adic Lie group (cf. [7],
Chap. III, §8, Théorème 2), and we let h denote its Lie algebra. It follows from condition
(b) that (10) does not hold, and hence by Lemma 5.3, ρ(�) is Zariski-dense in G(1) ×G(2).
This immediately implies (cf. [26], Proposition 3.4) that h is an ideal of g(1) × g(2), where
g(i) is the Lie algebra of G(i)(Q p) as a p-adic Lie group. If the projection of h to, say, g(1),
is zero, then the image of ρ(1) would be discrete, hence finite (in view of condition (a)),
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which is impossible. Thus, h has nonzero projections to both components, and therefore,
being an ideal of g(1) × g(2), must coincide with g(1) × g(2) since g(i) is simple for i = 1,2.
But this means that H is open in G(1)(Q p) × G(2)(Q p). �

We are now in a position to prove Theorem 2. We assume (as we may, see
Lemma 2.4) that the groups G1 and G2 are adjoint. Since �i is finitely generated, it is con-
tained in GLn(Fi) for some finitely generated subfield Fi of F. Then the field Ki := K�i

is a subfield of Fi , and therefore it is finitely generated, for i = 1,2. By symmetry, it is
enough to establish the inclusion K1 ⊂ K2. Assume the contrary, and set K = K1K2. Ac-
cording to the results of Vinberg [46], the group Gi is defined over Ki and �i ⊂ Gi(Ki),
for i = 1,2. Now, pick a finite extension L of K over which both G1 and G2 split, and a fi-
nitely generated subring R of L such that �1 ⊂ G1(R). Let r be the number of nontrivial
conjugacy classes of the Weyl group of G1. Since L is finitely generated, by Proposi-
tion 1 of [32], there exist rational primes p1, . . . , pr and embeddings ιj : L → Q pj

such that
ιj(R) ⊂ Zpj

. Let ρj :�1 → G1(Zpj
) be the corresponding homomorphisms. Then accord-

ing to Lemma 2 of [32], the closure of the image of the homomorphism

δ:�1 → G1(Zp1) × · · · × G1(Zpr
), γ �→ (ρ1(γ ), . . . , ρr(γ )),

is open. Moreover, by Corollary 3.5, there exists a solid open subset U ⊂ G1(Zp1)× · · ·×
G1(Zpr

) such that any γ ∈ �1 (⊂ G1(K1)), with δ(γ ) ∈ U, is regular semi-simple, and for
the L-torus T = ZG1(γ )◦, we have

θT(Gal(LT/L)) ⊃ W(G1,T),(11)

where LT is the splitting field of T over L.
Next, applying Proposition 5.1 to the tower

K2 � K ⊂ L

we find a prime p /∈ {p1, . . . , pr} such that there exists a pair of embeddings ι(1), ι(2): L →
Q p that have the same restriction to K2, but different restrictions to K, hence to K1,
and also satisfy ι(i)(R) ⊂ Zp, for i = 1,2. Now, we let G(i)

1 denote the algebraic Q p-
group obtained from the K1-group G1 by extension of scalars ι(i)|K1: K1 → Q p, and let
ρ(i):�1 → G(i)

1 (Zp) be the resulting homomorphism. Since ι(1) and ι(2) have different re-
strictions to K1 = K�1 , by Proposition 5.2, the closure of the image of the homomorphism

�1 → G(1)
1 (Zp) × G(2)

1 (Zp), γ �→ (ρ(1)(γ ), ρ(2)(γ )),

is open in G(1)
1 (Zp)×G(2)

1 (Zp). Since p /∈ {p1, . . . , pr}, it easily follows then that the closure
of the image of

ρ:�1 → G1(Zp1) × · · · × G1(Zpr
) × G(1)

1 (Zp) × G(2)
1 (Zp),
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γ �→ ρ(γ ) := (ρ1(γ ), . . . , ρr(γ ), ρ(1)(γ ), ρ(2)(γ ))

= (δ(γ ), ρ(1)(γ ), ρ(2)(γ )),

is open as well (cf. the proof of Lemma 2 in [32]). Since L ⊂ Q p, the group G(1)
1 splits

over Q p, and we fix a Q p-split maximal Q p-torus T(1) of G(1)
1 . According to [26], Theo-

rem 6.21 (for a different proof, see [9], §2.4), G(2)
1 contains a Q p-anisotropic maximal Q p-

torus T(2). Let U(i) = U (T(i), vp) in the notation of Lemma 3.4 for (G,T) = (G(i)
1 ,T(i)),

where vp is the p-adic valuation on Q p and i = 1,2. Since the open sets U, U(1) and U(2)

are solid in the corresponding groups, it follows from our preceding observation about
the openness of the closure of Imρ that there exists γ1 ∈ �1 such that

ρ(γ1) ∈ U × U(1) × U(2).(12)

Then T1 := ZG1(γ1)
◦ is a maximal K1-torus of G1 as γ1 ∈ �1 ⊂ G1(K1). Since �1 and

�2 are weakly commensurable, there exist a maximal K2-torus T2 of G2, and γ2 ∈ �2 ∩
T2(K2) such that

χ1(γ1) = χ2(γ2) =: λ �= 1

for some characters χi ∈ X(Ti). As γi ∈ Ti(Ki) for i = 1,2, the element λ is algebraic
over both K1 and K2. For i = 1,2, let Ki be the field generated over Ki by the conjugates
σ(λ) with σ ∈ Gal(Ki/Ki), and let L be the field generated over L by the conjugates
σ(λ) with σ ∈ Gal(L/L). We claim that

K1L = L = K2L.(13)

By looking at the minimal polynomials of λ over Ki and L, we immediately see that
L ⊂ KiL for i = 1,2. For the opposite inclusion, we first observe that as δ(γ1) ∈ U, it
follows from (11) that T1 is L-irreducible, and therefore by Lemma 3.6, L coincides with
LT1 , the splitting field of T1 over L. Hence, we conclude again from (11) that

|Gal(L /L)| � |W(G1,T1)|.(14)

On the other hand, for both i = 1,2, the field KiL is contained in the splitting field LTi

of Ti over L, and since Gi is of inner type over L (as it splits over L), we obtain from
Lemma 4.1(b) that θTi

(Gal(LTi
/L)) ⊂ W(Gi,Ti). Theorem 1 implies that W(G1,T1) ∼=

W(G2,T2). So

|Gal(KiL/L)| � |W(G1,T1)|;
combining this with (14), we obtain (13).

To complete the argument, we let v1 and v2 denote the valuations of K1 obtained
by pulling back the p-adic valuation on Q p under the embeddings ι(1)|K1 and ι(2)|K1, of
K1 into Q p, respectively. Then, of course, the completion K1vi

can be identified with Q p
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for i = 1,2. It follows from (12) and the construction of the open sets U(i) (cf. Lemma 3.4)
that over K1v1 , the torus T1 is isomorphic to T(1), hence is split, and over K1v2 , it is
isomorphic to T(2), hence is anisotropic. Therefore, given a nontrivial character χ ∈
X(T1), there exists σ ∈ Gal(K1v2/K1v2) such that σ(χ) �= χ . Then, in view of the Zariski-
density of the subgroup generated by γ1, we have

σ(χ)(γ1) = σ(χ(γ1)) �= χ(γ1),

and consequently,

χ(γ1) /∈ K1v2 for any nontrivial χ ∈ X(T1).(15)

Now, we extend our original embeddings ι(1), ι(2): L → Q p to embeddings ι̃(1), ι̃(2):L →
Q p. As T1 splits over K1v1 ,

σ(λ) = σ(χ1)(γ1) ∈ K1v1 for all σ ∈ Gal(K1/K1),

and therefore, ι̃(1)(K1) ⊂ Q p. Then ι̃(1)(L ) ⊂ Q p, which, in view of (13), implies
that ι̃(1)(K2) ⊂ Q p. On the other hand, it follows from (15) that ι̃(2)(K1) �⊂ Q p, so
ι̃(2)(K2) �⊂ Q p. But ι̃(1) and ι̃(2) have the same restriction to K2, and since K2/K2 is a
Galois extension, the restrictions ι̃(1)|K2 and ι̃(2)|K2 differ by an element of Gal(K2/K2),
which shows that the assertions

ι̃(1)(K2) ⊂ Q p and ι̃(2)(K2) �⊂ Q p

are incompatible. A contradiction, which shows that our assumption that K1 �⊂ K2 is
false, and therefore, K1 ⊂ K2. This proves Theorem 2. �

Remark 5.4. — As we will prove soon, weakly commensurable Zariski-dense S-
arithmetic subgroups share not only the field of definition, but also many other impor-
tant characteristics (cf. Theorems 3, 4 and 6). For arbitrary finitely generated Zariski-
dense subgroups, however, we cannot say much beyond Theorem 2. One of the reasons
is that at this point, classification results for semi-simple groups over general fields are
quite scarce. Here is one intriguing basic question in this direction: Let D1 and D2 be two

quaternion division algebras over a field K. Assume that D1 and D2 are weakly isomorphic, i.e., have

the same maximal subfields. Are they isomorphic? The answer is easily seen to be positive when
K is a global field. On the other hand, M. Rost informed us that over large fields (like
those used in the proof of the Merkurjev-Suslin theorem), the answer can be negative
(as we learned later, this was also observed by A. Wadsworth and some others). Recently,
Saltman [40] has shown that if the unramified Brauer group Bru(K) is trivial, then the
answer to the above question is in the affirmative. This result (and its variants) yield an
affirmative answer for K = k(x1, . . . , xr), a purely transcendental extension of a number
field k. However, for finitely generated fields (and the fields that arise in the context of
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the present paper are finitely generated), the question remains wide open. If the answer
turns out to be negative in general, we would like to know if every class of weakly iso-
morphic quaternion algebras splits into finitely many isomorphism classes (for a finitely
generated field K). Of course, we can ask similar questions for other types of algebraic
groups (defining two K-forms of the same group to be weakly isomorphic if they have the
same maximal K-tori).

Proof of Theorem 3. — For i = 1,2, let �i be a Zariski-dense (Gi,Ki,Si)-arithmetic
subgroup of Gi(F), and assume that �1 and �2 are weakly commensurable. Since the �i’s
are finitely generated (cf. [26], Theorem 6.1), we can use Theorem 1 to conclude that
either G1 and G2 are of same Killing-Cartan type, or one of them is of type Bn and the
other is of type Cn.

By Lemma 2.6, the field K�i
generated by Tr AdGi

γ for γ ∈ �i , coincides with Ki .
From Theorem 2 we now deduce that

K1 = K�1 = K�2 = K2 =: K.

In view of the obvious symmetry, to prove that S1 = S2, it is enough to prove the
inclusion S1 ⊂ S2. Suppose there exists v0 ∈ S1 \ S2. Our restrictions on S1 implies that
the group G1 is Kv0 -isotropic, so there exists a maximal Kv0 -torus T (v0) of G1 which is
Kv0 -isotropic. Then by Corollary 3.2, there exists a maximal K-torus T1 of G1 for which

θT1(Gal(KT1/K)) ⊃ W(G1,T1),(16)

and which is conjugate to T (v0) under an element of G1(Kv0), hence is Kv0 -isotropic.
Clearly, T1 is K-anisotropic, so the quotient T1S1/T1(OK(S1)) is compact, where

T1S1 = ∏
v∈S1

T1(Kv) (cf. [26], Theorem 5.7), which implies that the quotient of T1(Kv0)

by the closure C of T1(OK(S1)) in T1(Kv0) is also compact. But as T1 is Kv0 -isotropic,
the group T1(Kv0) is noncompact, and we conclude that C is noncompact as well. Since
T1(OK(S1)) is a finitely generated abelian group (cf. [26], Theorem 5.12), this implies
that there exists γ1 ∈ T1(OK(S1)) such that the closure of the cyclic group 〈γ1〉 in T1(Kv0)

is noncompact. We can in fact assume that γ1 ∈ �1 ∩ T1(OK(S1)). By our assumption,
γ1 is weakly commensurable to a semi-simple element γ2 of �2. Let T2 be a maximal K-
torus containing γ2. Then according to Theorem 4.2, there exists a K-isogeny π :T2 →
T1 such that π(γ

m2
2 ) = γ

m1
1 for some integers m1,m2 � 1, which induces a continuous

homomorphism πv0 :T2(Kv0) → T1(Kv0). But since v0 /∈ S2 and �2 is S2-arithmetic, the
subgroup 〈γ2〉 has compact closure in T2(Kv0), and we obtain that 〈γ m1

1 〉, and hence 〈γ1〉,
has compact closure in T1(Kv0); a contradiction. �

Proof of Theorem 7 7. — We will assume (as we may) that for i = 1,2, Gi is adjoint
and is realized as a linear group via the adjoint representation on its Lie algebra gi . Sup-
pose that �1 is (G1,K,S)-arithmetic; then K(⊂ F) is a number field, G1 is a K-form of

7 Of course, if rkF G � 2, then �2 is automatically arithmetic by Margulis’ Arithmeticity Theorem (cf. [21],
Chap. IX), so we only need to consider the case rkF G = 1. Our argument, however, does not depend on rkF G.
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G1, and as G1 is adjoint, �1 ⊂ G1(K) (see, for example, [4], Proposition 1.2). Let v0 be the
valuation of K obtained as the pullback of the normalized valuation on F using the em-
bedding K ↪→ F. Then of course Kv0 ⊂ F. Furthermore, v0 ∈ S. Indeed, if v0 /∈ S, then v0

is nonarchimedean and the group G1(OK(S)) is relatively compact in G1(Kv0). Since �1 is
commensurable with G1(OK(S)), it would then be relatively compact in G1(Kv0), and so
in G1(F). However, as �1 is discrete, it would be finite, which would contradict its Zariski-
density. Moreover, being commensurable with �1, the subgroup G1(OK(S)) is discrete in
G1(Kv0). Combining this with the fact that G1(OK(S)) is a lattice in G1S := ∏

v∈S G1(K1v),
we obtain that the group G1(Kv) is compact for all v ∈ S \ {v0} (so, in particular, K1v = R
for all archimedean v ∈ S \ {v0}). Because of our convention regarding S, we see that
there are in fact only two possibilities: (1) S = VK

∞, or (2) v0 is nonarchimedean, and
S = VK

∞ ∪ {v0}. Furthermore, as we have seen above, �1 is relatively compact in G1(Kv)

for all v /∈ S. Thus, for any γ1 ∈ �1, the cyclic subgroup 〈γ1〉 is relatively compact in
G1(Kv) for all v ∈ VK \ {v0}.

Let K�i
denote the field generated by the traces of all elements γ ∈ �i . Being

lattices, �1 and �2 are finitely generated (cf. [36], 13.21, for the real case), and therefore
Theorem 2 applies. Combining the latter with Lemma 2.6, we conclude that

K�1 = K = K�2 .

By Vinberg’s theorem [45], there exists a basis of g2 in which �2 is represented by matrices
with entries in K; we fix such a basis for the rest of the proof. Then G2 has a K-form G2

such that �2 ⊂ G2(K). In the sequel, the groups of points of G2 over subrings of K will
be understood in terms of the realization of G2 as a matrix group using the basis of g2

fixed above. We will show that �2 is commensurable with G2(OK(S)), which will prove
the theorem. For this it is enough to establish the following two assertions:

(a) G2(Kv) is compact for all v ∈ VK
∞ \ {v0};

(b) �2 is bounded in G2(Kv) for all v ∈ VK
f \ {v0}.

Indeed, since �2 is finitely generated, and therefore it is contained in G2(Ov) for all but
finitely many v ∈ VK

f , we derive from (b) that, in either possibility for S,

[�2 : �2 ∩ G2(OK(S))] < ∞;
in particular, �2 ∩ G2(OK(S)) is a lattice in G2(F), and hence in G2(Kv0). On the other
hand, it follows from (a) that, in either of the two possibilities for S, the subgroup
G2(OK(S)) is a lattice in G2(Kv0), implying that [G2(OK(S)) : �2 ∩ G2(OK(S))] < ∞.

Let v ∈ VK \ {v0} be such that at least one of the assertions (a) and (b) fails. We will
then find a regular semi-simple element γ2 ∈ �2 of infinite order such that the closure of
〈γ2〉 in G2(Kv) is noncompact and for the unique maximal K-torus T2 of G2 containing
γ2 we have

θT2(Gal(KT2/K)) ⊃ W(G2,T2).(17)
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Let us assume for a moment that such a γ2 exists. Then since �1 and �2 are weakly com-
mensurable, there exists a semi-simple element γ1 ∈ �1 which is weakly commensurable
to γ2. Then, if T1 is a maximal K-torus of G1 containing γ1, by Theorem 4.2 there ex-
ists a K-isogeny π :T1 → T2 which carries γ

m1
1 to γ

m2
2 for some integers m1,m2 � 1. The

isogeny π induces a continuous group homomorphism 〈γ m1
1 〉 → 〈γ m2

2 〉 of the closures of
the cyclic subgroups generated by γ

m1
1 and γ

m2
2 in G1(Kv) and G2(Kv) respectively. As we

observed above, 〈γ m1
1 〉 is compact, so 〈γ m2

2 〉 must also be compact, a contradiction.
To find a γ2 ∈ �2 with the desired properties we will use the results of [32]. Let us

consider first the case where v ∈ VK
∞ \ {v0} and G2(Kv) is noncompact (or, equivalently,

rkKv
G2 > 0). It has been shown in [32] (cf. the proof of Theorem 2) that there exists a

regular R-regular8 semi-simple element γ2 ∈ �2 for which the corresponding torus T2

satisfies (17). Since the fact that γ2 is R-regular clearly implies that the closure of 〈γ2〉 is
noncompact, we see that γ2 has the required properties.

Assuming now that v ∈ VK
f \ {v0} and �2 is unbounded in G2(Kv), we will prove

the existence of a γ2 ∈ �2 with the desired properties. For this, we will use the results of
[32] in conjunction with the following result of Weisfeiler ([48], Theorem 10.5): there ex-
ists a finite subset S of VK containing VK

∞ such that (i) the subgroup �̃2 := �2 ∩G2(O(S))

is Zariski-dense in G2, (ii) for every v ∈ VK \ S , the closure of �̃2 in G2(Kv) is open, and
(iii) for any v ∈ S \ VK

∞, the subgroup �̃2 is discrete in G2(Kv). Pick such a set S , and
first consider the case where v ∈ S \ VK

∞. Since �̃2 is Zariski-dense, by [32], there exists
a regular semi-simple element γ2 ∈ �̃2 of infinite order such that the corresponding torus
T2 satisfies (17). But since �̃2 is discrete in G2(Kv), the subgroup 〈γ2〉 is automatically
unbounded. Now, let v ∈ VK \ S , and suppose that �2 is unbounded in G2(Kv). Then
G2 is Kv-isotropic and the closure of �2 in G2(Kv) is unbounded and open, so it contains
the normal subgroup G2(Kv)

+ of G2(Kv) generated by the unipotent elements (cf. [28]),
which is known to be an open subgroup of G2(Kv) of finite index (cf. [26], Theorem 3.3
and Proposition 3.17). Now we fix a maximal Kv-torus T v

2 of G2 which contains a maxi-
mal Kv-split torus of the latter. Consider the solid open subset U = U (T v

2 , v) of G2(Kv)

provided by Lemma 3.4 for G = G2 and T = T v
2 . Then �v

2 := U ∩ G2(Kv)
+ is a non-

empty open subset of G2(Kv)
+. Hence, �2 ∩�v

2 is dense in �v
2. Pick a y ∈ �2 ∩�v

2. Then
an argument similar to the one used to prove Theorem 2 in [32] (where instead of us-
ing Lemma 3.5 of [29], we use Proposition 2.6 of [27]) shows that there exists x ∈ �2

such that, for a suitable large positive integer n, γ2 := xyn is regular Kv-regular, and for
the unique maximal K-torus T2 of G2 containing γ2, (17) holds. At the same time, since
γ2 is Kv-regular, the subgroup 〈γ2〉 is unbounded in G2(Kv). Thus, γ2 has the required
properties. This completes the proof of Theorem 7. �

Remark 5.5. — Let � be a torsion-free Zariski-dense subgroup of G(F). For any
positive integer m, the normal subgroup �(m) of �, generated by the m-th powers of the

8 Given a connected semi-simple algebraic group G defined over a local field L, an element x ∈ G(L) is called
L-regular if the number of eigenvalues, counted with multiplicity, of modulus 1 of Ad x is minimum possible.
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elements in �, is weakly commensurable with �. On the other hand, it is known that
in some situations there exists an integer m such that �(m) is of infinite index in �: this
is the case when, for example, � is of finite index in SL2(Z) or SL2(Od), where Od is
the ring of algebraic integers in the imaginary quadratic field Q(

√−d), d � 1, or � is a
cocompact lattice in a real semi-simple Lie group of real rank 1, see [24]. This shows that
the requirement that �2 be a lattice in Theorem 7 cannot be omitted in case G is of F-
rank 1.9 The question whether or not a (discrete) subgroup weakly commensurable to an
irreducible lattice (which is, of course, automatically arithmetic) in a real semi-simple Lie
group of real rank > 1, is itself a lattice, remains open. (Of course, the same question can
be asked for irreducible higher rank lattices in the products of real and p-adic semi-simple
Lie groups; for example, we do not know whether a subgroup 
 of � = SL2(Z[ 1

p
]), which

is weakly commensurable to �, is necessarily of finite index.) We would like to point out,
however, that no variant of the above method for constructing counter-examples is likely
to work in the higher rank case.

More precisely, let again � be a torsion-free Zariski-dense subgroup of G(F). Given
a map ϕ:� → N, we let �ϕ denote the subgroup of � generated by γ ϕ(γ ) for all γ ∈ �.
This subgroup is obviously weakly commensurable to � for any choice of ϕ. However, in
contrast to the case of cocompact lattices in rank one groups discussed in the previous
paragraph, or even finite index subgroups of SL2(Z), where the subgroup �(m) (which
corresponds to ϕ ≡ m) has infinite index in � for a suitable m, the subgroup �ϕ always
has finite index in � if � is “boundedly generated” (this fact was pointed out to us by
Thomas Delzant). Several non-cocompact arithmetic lattices in the higher rank case are
known to be boundedly generated (see [12], [23] for the definition of, and most recent
results on, “bounded generation”), and for them considering subgroups of the form �ϕ

will never lead to a weakly commensurable subgroup of infinite index.

We conclude this section with a discussion of the following question: Let F be a

nondiscrete locally compact field, and let G1 and G2 be two semi-simple algebraic group over F. Given

9 In the rank one case, the group �(m) is typically infinitely generated for sufficiently large m. So, we outline a
construction of a finitely generated subgroup of infinite index in � = SL2(Z) which is weakly commensurable to � (a similar
construction works for � = SL2(Od)). Set u+(α) = (

1 α

0 1
), u−(β) = (

1 0

β 1
), and let 
m,n denote the subgroup of � = SL2(Z)

generated by u+(m) and u−(n), where m, n are even integers � 4. It is well-known that 
m,n is of infinite index in �. To
show that 
m,n is weakly commensurable to � it is enough to show that

�(mn) ⊂
⋃

g∈GL2(Q)

g
m,ng
−1,(18)

where �(mn) is the congruence subgroup of � of level mn. To prove (∗), we first observe that for γ ∈ �(mn) we have
Trγ ≡ 2(mod mn); in particular Trγ �= −2. If Trγ = 2 and γ �= 1, then γ is conjugate in GL2(Q) to u+(m) (and u−(n)).
Hence, we may assume that Trγ �= ±2. Then it is enough to find δ ∈ 
m,n with Tr δ = Trγ , for which it suffices to show
that Tr(
m,n) contains all t ∈ Z satisfying t ≡ 2(mod mn). A direct computation shows that

Tr u+(α)u−(β) = 2 + αβ.

So, if t = 2 + mns, then Tr u+(m)su−(n) = t, as required. Finally, we would like to mention in connection with (∗) that
D. Morris showed us a construction of an infinitely generated subgroup of the free group F� (which then necessarily has
infinite index) whose conjugates in F� fill up all of F�.
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weakly commensurable Zariski-dense subgroups �i of Gi(F) for i = 1,2, is it true that discreteness of

one of them implies that of the other? The following proposition provides an affirmative answer
to this question in some situations.

Proposition 5.6. — Let G1 and G2 be connected absolutely almost simple algebraic groups

defined over a nonarchimedean locally compact field F of characteristic zero, and let �i be a finitely

generated Zariski-dense subgroups of Gi(F) for i = 1,2. Assume that �1 is discrete. If �1 and �2 are

weakly commensurable, then �2 is also discrete.

Proof. — We may (and we will) assume that for i = 1,2, Gi is adjoint and is realized
as a matrix group via the adjoint representation on its Lie algebra gi . By Theorem 1,
either both G1 and G2 are of the same Killing-Cartan type, or one of them is of type Bn

and the other of type Cn. Furthermore, by Theorem 2, the traces of the elements of �1

and of those of �2 generate the same subfield K of F. Then, according to the results of
Vinberg [46], for i = 1,2, the group Gi is defined over K and �i ⊂ Gi(K). Moreover,
since �1 and �2 are finitely generated, we can find a finitely generated subring R of K
such that �i ⊂ Gi(R), for i = 1,2. Finally, F is a finite extension of Q p for some prime
p, and after replacing it with the closure of K, we assume that F is generated over Q p by
the traces of the elements of �2. Let v0 be the restriction to K of the natural valuation on
F; then F coincides with the completion Kv0 .

The main observation is that if �2 is not discrete, then its closure �2 in G2(F)
is open. In order to apply the theory of p-adic Lie groups, we introduce the group
H = RF/Q p

(G2) obtained by restriction of scalars, so that G2(F) � H(Q p) as topolog-
ical groups. Then �2 considered as a subgroup of H(Q p) is Zariski-dense in H. This
fact is implicitly contained in the proof of Theorem 10.5 in [48], but for the reader’s
convenience we will give a complete argument. We need the following.

Lemma 5.7. — Let F be a finite separable field extension of a field E, and let 
 be a multiplica-

tive subsemi-group of the matrix algebra Mn(F), where n � 1, that spans Mn(F) over F. If the traces

Tr δ for δ ∈ 
 generate F over E then 
 spans Mn(F) over E.

Proof. — It is enough to show that 
 spans Mn(F) ⊗E E =: A over E. We have
F ⊗E E � ⊕m

i=1 Ei , where m = [F : E], Ei = E for all i, and A � ⊕m

i=1 Mn(Ei). Let B be
the E-subalgebra of A generated by 
 (which, of course, coincides with the E-span of 
).
Since 
 spans Mn(F) over F, the projection of B to each Mn(Ei) is surjective. Let I be
a maximal subset of {1,2, . . . ,m} for which the projection prI: B → ⊕

i∈I Mn(Ei) =: AI

is surjective. If I = {1,2, . . . ,m}, then B = A, as claimed. So, assume that I is a proper
subset. Then for any j ∈ {1,2, . . . ,m} \ I, the image prj(B ∩ (ker prI)) is a proper two-
sided ideal of Mn(Ej), hence is zero. This shows that prI is an isomorphism between B
and AI, and we let ε denote its inverse. Fix j ∈ {1,2, . . . ,m} \ I and set θ = prj ◦ ε. Since
prj : B → Aj is surjective, there exists a unique i ∈ I for which the restriction of θ yields an
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isomorphism between Mn(Ei) and Mn(Ej), and then for any i′ ∈ I \ {i}, the restriction of
θ to Mn(Ei′) is zero. So, for all b ∈ B, prj(b) = θ(pri(b)), and hence,

Tr pri(b) = Tr θ(pri(b)) = Tr prj(b).

This contradicts the fact that the traces of elements of 
 generate F over E, hence F⊗E E
over E. �

Now, since G2 is absolutely simple and �2 is Zariski-dense in G2(F), we see that �2

acts (absolutely) irreducibly on g2, and hence it spans EndF g2(F) over F. Since the traces
of the elements of �2 generate F over Q p, by Lemma 5.7, the group �2 spans EndF g2(F)
over Q p. It follows that g2(F) (� h(Q p), where h is the Lie algebra of H) does not contain
a proper �2-invariant Q p-subspace as such a subspace would be an F-subspace, hence
would coincide with g2(F). Thus, �2 acts on h(Q p) irreducibly. Letting C denote the
Zariski-closure of �2 in H and observing that for the Lie algebra c of C, the subspace
c(Q p) ⊂ h(Q p) is �2-invariant, we see that c = h and hence C = H since H is connected,
as required. Let now l denote the Lie algebra of �2 as a p-adic Lie group. Then, since �2

is Zariski-dense in H, l is an ideal of h(Q p) (cf. [26], Proposition 3.4), hence l = h(Q p)

as H is Q p-simple. Thus, �2 is open in H(Q p) � G(F).
According to [26], Theorem 6.21, or [9], §2.4, there exists a maximal F-torus

T0 of G which is anisotropic over F. We let U0 := U (T0, v0) denote the solid open set
as in Lemma 3.4 for (T, v) = (T0, v0). Let r be the number of nontrivial conjugacy
classes of the Weyl group of G. By Proposition 1 of [32], we can find r distinct rational
primes p1, . . . , pr , different from p, such that there exist embeddings ιi: K → Q pi

satisfying
ιi(R) ⊂ Zpi

. Let vi be the pull-back of the pi-adic valuation under ιi . By Lemma 2 of [32],
the closure of the image under the diagonal embedding �2 ↪→ ∏r

i=1 G(Kvi
) =: G is open.

Since p /∈ {p1, . . . , pr} and �2 is open, the closure of the image under the diagonal em-
bedding δ:�2 ↪→ G(F) × G is also open (cf. the proof of Lemma 2 in [32]). Let U ⊂ G
be the solid open subset, constructed in Corollary 3.5, such that every γ ∈ �2 ∩ U is
regular semi-simple, and for T = ZG(γ )◦, we have θT(Gal(KT/K)) ⊃ W(G,T). There
exists γ2 ∈ �2 of infinite order for which δ(γ2) ∈ U0 × U , and we let T2 = ZG(γ2)

◦. By
our assumption, γ2 is weakly commensurable to a semi-simple γ1 ∈ �1 of infinite order.
Let T1 be a maximal K-torus of G1 containing γ1. It follows from the Isogeny Theo-
rem 4.2 that T1 and T2 are K-isogenous. But by our construction T2 is F-anisotropic,
which forces T1 to be F-anisotropic. Then T1(F) is compact, so invoking the discreteness
of �1, we see that the intersection T1(F) ∩ �1 is finite. Thus, γ1 ∈ T1(F) ∩ �1 has finite
order, a contradiction. �

With obvious modifications, the proof of Proposition 5.6 applies to the situation
where F = R and G2 contains an R-anisotropic maximal R-torus. For general real semi-
simple groups, the above question remains open.
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6. The invariance of rank and the proofs of Theorems 4 and 5

In view of Theorem 3, weakly commensurable Zariski-dense S-arithmetic sub-
groups necessarily have the same field of definition K and correspond to the same set of
places of K. So now the focus of our study of such subgroups shifts to identifying common
characteristics of the K-forms Gi used to construct them.

In the rest of this paper G1 and G2 will denote two connected absolutely almost
simple algebraic groups defined over a field F of characteristic zero.

Proposition 6.1. — Let V0 be a finite set of places of K. Let �i be a Zariski-dense (Gi,K,S)-
arithmetic subgroup of Gi(F) for i = 1,2. Let Li be the smallest Galois extension of K over which

Gi is inner. If �1 and �2 are weakly commensurable, then there exists a maximal K-torus T1 of G1

which contains a maximal Kv0-split torus of G1 for all v0 ∈ V0, a maximal K-torus T2 of G2, and

a K-isogeny π : T2 → T1. Moreover, if L1 = L2 and both G1 and G2 are of the same type different

from B2 = C2, F4 or G2, then we can assume that π is an isomorphism, and π∗(�(G1,T1)) =
�(G2,T2).

Proof. — Using Corollary 3.2, we can find a maximal K-torus T1 of G1 which
contains a maximal Kv-split torus of G1 for every v ∈ S ∪ V0, and for which

θT1(Gal(KT1/K)) ⊃ W(G1,T1).

Then the group T1S := ∏
v∈S T1(Kv) is noncompact, and since the quotient

T1S/T1(OK(S)) is compact as T1 is K-anisotropic, we infer that T1(OK(S)) is infinite.
Therefore, �1 ∩ T1(K) contains an element γ1 of infinite order. By our assumption, γ1

is weakly commensurable to some semi-simple γ2 ∈ �2 ∩ G2(K). Let T2 be a maximal
K-torus of G2 that contains γ2. According to Theorem 4.2, there exists a K-isogeny
π :T2 → T1. The second assertion of the proposition follows from Theorem 4.2 and
Remark 4.4. �

Theorem 6.2. — Let �i be a Zariski-dense (Gi,K,S)-arithmetic subgroup of Gi(F) for i =
1,2. If �1 and �2 are weakly commensurable, then

rkKv
G1 = rkKv

G2 for all v ∈ VK.

Proof. — Fix v0 ∈ VK. By symmetry, it is enough to show that

rkKv0
G1 � rkKv0

G2.

Applying the preceding proposition to V0 = {v0}, we can find a maximal K-torus Ti of
Gi , for i = 1,2, such that T1 contains a maximal Kv0 -split torus of G1, and there is a
K-isogeny π : T2 → T1. From this we see that

rkKv0
G1 = rkKv0

T1 = rkKv0
T2 � rkKv0

G2. �
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For a connected absolutely simple algebraic group G defined over a number field
K, we let �(G ,K) (resp., �q(G ,K)) be the set of places v of K such that G is split (resp.,
is quasi-split but not split) over Kv (of course, �q(G ,K) is empty if G is an inner form of
a split group over K).

Theorem 6.3. — Let �i be a Zariski-dense (Gi,K,S)-arithmetic subgroup of Gi(F) for i =
1,2. If �1 and �2 are weakly commensurable, then

(1) �(G1,K) = �(G2,K);

(2) if Li is the minimal Galois extension of K over which Gi becomes an inner form (of a split

group), then L1 = L2;

(3) �q(G1,K) = �q(G2,K).

Proof. — By Theorem 1, the groups G1 and G2 have the same absolute rank, so
assertion (1) immediately follows from the preceding theorem. To prove (2), by symmetry
it is enough to show that L1 ⊂ L2. Assume, if possible, that L1 is not contained in L2. Then
L1L2 is a Galois extension of K that properly contains L2. It follows from Chebotarev’s
Density Theorem that there are infinitely many v ∈ VK

f which split completely in L2

but not in L1. Also, G2 is quasi-split over Kv for all but finitely many v ∈ VK
f , cf. [26],

Theorem 6.7. So there exists a v ∈ VK
f which splits completely in L2 but not in L1, and

G2 is quasi-split over Kv . Then G2 actually splits over Kv , i.e., v ∈ �(G2,K), but since v

does not split in L1, we have v /∈ �(G1,K), this contradicts assertion (1). Since assertion
(3) is vacuous if one of the groups is of type Bn and the other of type Cn, we can assume, in
view of Theorem 1, that G1 and G2 are of the same type. Then, as the equality L1 = L2

has already been established, assertion (3) follows at once from Theorem 6.2. �

Remark 6.4. — In the case where G1 and G2 are of the same type, Theorem 6.2 and
Theorem 6.3, parts (1) and (3), can be viewed as formal consequences of the assertion in
Theorem 6 (to be proved in the next section) that in the situation at hand, the Tits indices
of G1 and G2 over Kv are identical, for all v ∈ VK. So, we would like to point out that
Theorems 6.2 and 6.3 are actually used in the proof of Theorem 6, and, on the other
hand, all theorems except Theorem 6 can be obtained without using the Tits index. At the
same time, in contrast to Theorem 6, Theorems 6.2 and 6.3 apply in the situation where
one of the groups is of type Bn and the other of type Cn.

Before we proceed to the proofs of Theorems 4 and 5, we briefly recall the classifi-
cation of absolutely simple algebraic groups of a given type over a field K (cf. [39], [44]).
Any such group is an inner twist of a K-quasi-split group of the given type. So, fix a K-
quasi-split group G . Notice that G is completely determined by specifying (in addition to
its type) the minimal Galois extension L/K over which it splits; this extension necessarily
has degree 1 (which means that G splits over K) if the type is different from An (n > 1), Dn

(n � 4), or E6, can have degree 1 or 2 for the types An, Dn and E6, and can also be either
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a cyclic extension of degree 3 or a Galois extension with the Galois group S3 for type D4.
Furthermore, the K-isomorphism classes of inner twists of G correspond bijectively to
the elements lying in the image of the natural map

H1(K,G ) −→ H1(K,AutG ),

where G is the adjoint group of G identified with its group of inner automorphisms.
When K is a number field, one considers the natural “global-to-local” map

H1(K,G )
ω−→

⊕

v∈VK

H1(Kv,G ),

and also the truncated maps

H1(K,G )
ωS−→

⊕

v /∈S

H1(Kv,G ),

for every finite subset S of VK. It is known that ω is injective (cf. [26], Theorem 6.22) and
KerωS is finite (cf. [39], Theorem 7 in Chap. III, §4.6).

Proof of Theorem 4. — When G1 and G2 are of type D2n, n > 2, Theorem 4 is
Theorem 9.1 of [35],10 therefore to prove the theorem we assume that G1 and G2 are not
of type A, D or E6.

Let G be the K-split form of G. For the groups of the types under consideration
we have AutG = G , so the group Gi , for i = 1,2, is obtained from G by twisting with
a Galois-cocycle representing an appropriate element ξi of H1(K,G ). We need to show
that ξ1 = ξ2. For this we notice that according to Theorem 6.2, we have rkKv

G1 = rkKv
G2,

for all v ∈ VK. But for the types currently being considered this implies that

G1 � G2 over Kv.(18)

Indeed, for v real, this follows from the classification of real forms of absolutely simple
Lie algebras/real algebraic groups (cf. [17], Chap. X, §6, or [44]). Now let v be nonar-
chimedean. For the groups under consideration, the center Z of the corresponding sim-
ply connected group is a subgroup of μ2, the kernel of the endomorphism x �→ x2 of GL1.
In view of the bijection between H1(Kv,G ) and H2(Kv,Z ) (cf. [26], Corollary to Theo-
rem 6.20), we see that H1(Kv,G ) � H2(Kv,Z ) = Br(Kv)2, and hence, |H1(Kv,G )| � 2,
which means that there exists at most one nonsplit form, and therefore the equality of
ranks implies the isomorphism between the forms. If we now let

ωv: H1(K,G ) −→ H1(Kv,G )

10 When G1 and G2 are of the same type, by passing to the corresponding adjoint groups and enlarging the field F,
we can actually assume that G1 = G2 =: G, which is the case considered in [35].
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denote the restriction map, then the isomorphism (18) implies that ωv(ξ1) = ωv(ξ2), for
all v ∈ VK. Then, ω(ξ1) = ω(ξ2), and therefore, ξ1 = ξ2, as required. �

Proof of Theorem 5. — Let Li be the minimal Galois extension of K over which Gi

becomes an inner form, and let

Vi = VK \ (�(Gi,K) ∪ �q(Gi,K))

be the set of places v of K where Gi is not quasi-split. It is well-known that Vi is finite
(cf. [26], Theorem 6.7). By Theorem 6.3, the fact the (Gi,S,K)-arithmetic subgroups,
for i = 1,2, are Zariski-dense and weakly commensurable, implies that

L1 = L2 := L and V1 = V2 := V.

Thus, by fixing G1, we get a Galois extension L and a finite set V of places such that any
K-form G2 of G2 as in the statement of the theorem has L as the minimal Galois extension
(of K) over which it becomes an inner form, and is quasi-split over Kv for all v /∈ V. Let
G be the quasi-split K-form of G2 associated with L. Then any G2 can be obtained from
G by twisting it by a Galois-cocycle that represents some ξ ∈ H1(K,G ). Furthermore, for
v /∈ V, the group G2 is quasi-split over Kv , hence it is Kv-isomorphic to G , which means
that ωv(ξ) is trivial. (Here we use the fact that for a connected absolutely simple quasi-
split adjoint group G over any field F, the map H1(F,G ) → H1(F,AutG ) has trivial
kernel, which follows from the observation that AutG is a semi-direct product over F, of
G and a finite F-group of automorphisms corresponding to the symmetries of the Dynkin
diagram.) Thus, ξ ∈ KerωV, so the finiteness of this kernel yields the finiteness of the
number of K-isomorphism classes of possible K-groups G2 with the properties described
in the theorem. �

We conclude this section with three examples. The first two demonstrate, by means
of explicit constructions, that in groups of both, inner and outer, type An, n > 1, the
collection of weakly commensurable arithmetic subgroups may consist of more than one
commensurability classes. Later, in Section 9, the idea underlying these examples will be
developed into a new general technique for constructing nonisomorphic K-groups of type
An, D2n+1 (n > 1) and E6 which contain weakly commensurable arithmetic subgroups.
The third example provides weakly commensurable S-arithmetic groups in groups G1

and G2 of type Bn and Cn respectively. So, this possibility in Theorem 1 cannot be ruled
out.

Example 6.5. — Take G1 = G2 = SLd , where d > 2, over F = R (so that G1 and
G2 are of type An with n = d − 1 > 1), and fix a number field K contained in F. Pick
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four arbitrary nonarchimedean places v1, v2, v3, v4 ∈ VK
f . Let D1 and D2 be the central

division algebras of degree d over K whose local invariants (∈ Q/Z) are respectively

n(1)
v =

⎧
⎨

⎩

0, v �= vi, i � 4,
1/d, v = v1 or v2,

−1/d, v = v3 or v4

and n(2)
v =

⎧
⎨

⎩

0, v �= vi, i � 4,
1/d, v = v1 or v3,

−1/d, v = v2 or v4.

Then as d > 2, the algebras D1 and D2 are neither isomorphic nor anti-isomorphic.
So the algebraic K-groups G1 = SL1,D1 and G2 = SL1,D2 , which are inner K-forms of
G1 and G2, are not K-isomorphic. Thus, for any finite S ⊂ VK, containing VK

∞, the
corresponding (Gi,K,S)-arithmetic subgroups �i ⊂ Gi(F) are not commensurable (cf.
Proposition 2.5). On the other hand, if D is a central division algebra of degree d over K,
then an extension L/K of degree d is isomorphic to a maximal subfield of D if and only
if for every v ∈ VK, and any extension w|v, the local degree [Lw : Kv] annihilates the
corresponding local invariant nv of D (cf. [25], Corollary b in §18.4). It follows that the
maximal subfields of either D1 or D2 are characterized as those extensions L/K of degree
d for which [Lwi

: Kvi
] = d for i = 1,2,3,4. Thus, D1 and D2 have the same maximal

subfields, which easily implies that �1 and �2 are weakly commensurable. Indeed, let
γ1 ∈ �1 be a semi-simple element of infinite order, and let T1 be a maximal K-torus of
G1 that contains γ1. Since D1 and D2 have the same maximal subfields, there exists a K-
isomorphism T1

ϕ� T2 with a maximal K-torus T2 of G2. Then the subgroup ϕ(T1(K) ∩
�1) is an S-arithmetic subgroup of T2(K), so there exists n > 0 such that γ2 := ϕ(γ1)

n ∈
�2. Let χ1 ∈ X(T1) be a character such that χ1(γ1) is not a root of unity. Then for
χ2 = (ϕ∗)−1(χ1) ∈ X(T2) we have:

(nχ1)(γ1) = χ1(γ1)
n = χ2(γ2) �= 1,

which implies that �1 and �2 are weakly commensurable.
This example can be refined in two ways. First, by picking a sufficiently large num-

ber of nonarchimedean places and modifying the above construction accordingly, one
can construct an arbitrarily large number of noncommensurable weakly commensurable
S-arithmetic subgroups of the group G1(F) = G2(F) = SLd(R). Second, suppose d > 2 is
even, and take for G1 and G2 the real algebraic group G = SLd/2,H, where H is the divi-
sion algebra of Hamiltonian quaternions. Assume that K is a number field that admits a
real embedding K ↪→ R =: F, and we let v∞ denote the real place corresponding to this
embedding. In addition to the four places v1, v2, v3, v4 ∈ VK

f fixed in the above example,
we pick a fifth place v5 ∈ VK

f \ {v1, v2, v3, v4}, and consider the central division algebras
D1 and D2 of degree d over K with the same local invariants at v1, v2, v3, v4 as above, and
having the invariant 1/2 at v∞ and v5, and 0 everywhere else. Then for any finite S ⊂ VK

containing VK
∞ (in particular, for S = VK

∞ itself), the corresponding (Gi,K,S)-arithmetic
subgroups are weakly commensurable, but not commensurable, and in addition are con-
tained in G1(F) = G2(F) = SLd/2(H). Furthermore, by increasing the number of places
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picked, we can construct an arbitrarily large number of noncommensurable weakly com-
mensurable S-arithmetic subgroups of SLd/2(H).

The above construction implemented for K = Q and d = 4 has the following geo-
metric significance. Over R, the group G is isomorphic to the spinor group of a real
quadratic form with signature (5,1), and therefore the associated symmetric space is the
real hyperbolic 5-space. So, the noncommensurable arithmetic subgroups constructed
above give rise to noncommensurable length-commensurable compact hyperbolic 5-
manifolds (cf. Remark 8.18). We will elaborate on this observation in Section 9, where, in
particular, noncommensurable length-commensurable compact hyperbolic manifolds of
dimension 4n + 1 (n � 1) will be constructed.

Example 6.6. — Let K be a number field and L be a quadratic extension of K. For
i = 1,2, let vi be a nonarchimedean place of K which splits in L, and v′

i , v
′′
i be the places

of L lying over vi . Let d > 1 be an odd integer. Let D1 and D2 be the division algebra
over L of degree d whose local invariants are respectively

n(1)
v =

{
1/d, v = v′

1 or v′
2,−1/d, v = v′′

1 or v′′
2 ,

and n(2)
v =

{
1/d, v = v′

1 or v′′
2 ,−1/d, v = v′′

1 or v′
2,

and whose local invariant at every other place of L is zero. Then for i = 1,2, the algebra
Di admits an involution σi of the second kind such that the fixed field Lσi coincides with
K. Let Gi be the absolutely almost simple K-group with

Gi(K) = {x ∈ D×
i | xσi(x) = 1, NrdDi/L(x) = 1}.

Then Gi is an outer form of type An with n = d − 1 > 1. For simplicity, let us assume
that the involutions are chosen so that G1 and G2 are quasi-split at every real place of
K which does not split in L; notice that the local invariants of the algebras are trivial at
all archimedean places, G1 and G2 automatically split at all other real places of K. Fur-
thermore, since d is odd, G1 and G2 are quasi-split at every nonarchimedean place of K
which does not split in L. Thus, it follows from Proposition A.2 of Appendix A in [30]
and the subsequent discussion (see [35], §4, for more general results which apply also
to the case of even d ) that for an extension P/L of degree d provided with an automor-
phism τ of order two which induces the nontrivial automorphism of L/K, an embedding
(P, τ ) → (Di, σi) as algebras with involution exists if and only if [Pw : Kvj

] = d for j = 1,2
and w|vj . This easily implies that the maximal σ1-invariant subfields in D1 are the same
as the maximal σ2-invariant subfields in D2, and therefore G1 and G2 have the same maxi-
mal K-tori. Then as in the previous example, we conclude that for any S, the S-arithmetic
subgroups of G1(K) and G2(K) are weakly commensurable. On the other hand, it follows
from our choice of local invariants that G1 and G2 are not isomorphic even over L, so the
above S-arithmetic subgroups are not commensurable. A suitable variant of this construc-
tion (applied to K = Q , L = Q(i)) enables one to construct length-commensurable, but



WEAKLY COMMENSURABLE ARITHMETIC GROUPS 151

not commensurable, compact complex hyperbolic (d − 1)-manifolds, providing thereby
a negative answer to Question (2) of the introduction for complex hyperbolic manifolds
of any even dimension. We will not give the details here as the general construction de-
scribed in Section 9 yields counter-examples in all dimensions.

Example 6.7. — Let K be any field, and let G1 and G2 be the split K-groups of
type Bn and Cn respectively which are either both simply connected or both adjoint. The
purpose of this example is to show that G1 and G2 have the same isomorphism classes of
maximal K-tori. The argument given in Example 6.5 shows that if K is a number field
then for any subset S of VK containing VK

∞, the (K,S)-arithmetic subgroups of G1 and
G2 are weakly commensurable. One can derive the fact that G1 and G2 have the same
maximal K-tori from the results of Kariyama [18] who gave an explicit description of
maximal tori in classical groups. However, a more efficient way to see this is to use a
cohomological parametrization of the conjugacy classes of a semi-simple K-group G and
the results of Gille [15] and Raghunathan [37]. We refer the reader to Section 9 for a sys-
tematic treatment of the aforementioned cohomological parametrization; all we need at
this point is the following. Given a semi-simple K-group G, we fix a maximal K-torus T of
G, and let N = NG(T) and W = N/T denote its normalizer and the corresponding Weyl
group. Then there exists a natural bijection between the set of G(K)-conjugacy classes of
maximal K-tori of G, and CK := Ker(H1(K,N) → H1(K,G)) (cf. Lemma 9.1). Further-
more, the natural homomorphisms induce the following maps on Galois cohomology:

θK: H1(K,N) −→ H1(K,W) and νK: H1(K,W) −→ H1(K,Aut T).

Recall that H1(K,Aut T) parametrizes classes of K-isomorphism of K-tori of dimension
equal to dim T. So, if x1, x2 ∈ CK are such that νK(θK(x1)) = νK(θK(x2)) (in particular, if
θK(x1) = θK(x2)), then the corresponding maximal K-tori of G are K-isomorphic. This
leads to the following.

Lemma 6.8. — For i = 1,2, let Gi be a semi-simple K-group, and let Ti be a fixed maximal

K-torus of Gi . Let Ni,Wi,C
(i)

K , θ
(i)
K , . . . denote the above attributes attached to Gi . Assume that

(1) there exists compatible K-isomorphisms ϕ: T1 → T2 and ψ : W1 → W2 (i.e., ϕ(w · t) =
ψ(w) · ϕ(t) for any t ∈ T1, w ∈ W1, for the action induced by conjugation);

(2) ψ induces a bijection between θ
(1)
K (C (1)

K ) and θ
(2)
K (C (2)

K ).

Then G1 and G2 have the same K-isomorphism classes of maximal K-tori.

We will now apply Lemma 6.8 in the situation described in the beginning of this
example, i.e., where G1 and G2 are either both simply connected or adjoint split K-groups
of type Bn and Cn respectively. Let Ti be a maximal K-split torus of Gi . Then it easily
follows from the description of the corresponding root systems that there exist compatible
K-isomorphisms ϕ: T1 → T2 and ψ : W1 → W2. Now, it was proved by Gille [15] and
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Raghunathan [37] that if G is quasi-split over K, and T is a maximal K-torus contained
in a Borel subgroup defined over K, then θK(CK) = H1(K,W). It follows that in the
situation at hand ψ induces a bijection between θ

(1)
K (C (1)

K ) = H1(K,W1) and θ
(2)
K (C (2)

K ) =
H1(K,W2). Invoking Lemma 6.8, we see that G1 and G2 have the same K-isomorphism
classes of maximal K-tori, as claimed.

7. Proof of Theorem 6

7.1. Tits index of a semi-simple algebraic group (cf. [44], or [41], §15.5).
Let G be a connected semi-simple algebraic K-group. To describe the Tits index of G/K,
we pick a maximal K-split torus Ts of G and a maximal K-torus T of G containing
Ts. Furthermore, we choose coherent orderings on the vector spaces X(Ts) ⊗Z R and
X(T) ⊗Z R, and let 
 ⊂ �(G,T) denote the system of simple roots associated with
the ordering on the latter. Then the Tits index of G/K is the data consisting of 
 (or
the corresponding Dynkin diagram), the subset of distinguished roots, and the ∗-action
(see Section 4). We recall that a root α ∈ 
 (or the corresponding vertex in the Dynkin
diagram) is distinguished if its restriction to Ts is nontrivial. If α ∈ 
 is distinguished, then
every root in the orbit � of α, under the ∗-action, is distinguished; this is indicated by
circling together all the vertices corresponding to the roots in �, and the latter is referred
to as a distinguished orbit. We note that rkK G equals the number of distinguished orbits,
and G is quasi-split over K if and only if every root in 
 is distinguished.

For a subset � of 
, we let P� denote the corresponding standard parabolic sub-
group which contains the centralizer of (

⋂
β∈� kerβ)◦ as a Levi subgroup. Then for a

subset � of 
, the subgroup P
\� is defined over K if and only if � is ∗-invariant and
consists entirely of distinguished roots (in other words, it is a union of distinguished orbits).
In particular, a root α ∈ 
 is distinguished if and only if for its ∗-orbit � the subgroup
P
\� is defined over K.

In the proof of Theorem 6, we will need to work with the Tits indices of a given
connected absolutely simple algebraic K-group G over various completions of K. For this
purpose, we fix a maximal K-torus T of G and a system of simple roots 
 ⊂ �(G,T).
Given a field extension L/K, we choose a maximal L-torus T′ containing a maximal
L-split torus T′

s of G, and a system of simple roots 
′ ⊂ �(G,T′) determined by some
coherent orderings on X(T′

s) ⊗Z R and X(T′) ⊗Z R. We say that α ∈ 
 corresponds to a

distinguished vertex in the Tits index of G/L if the root α′ ∈ 
′ corresponding to α, under
the identification of 
 with 
′ described at the beginning of Section 4, is distinguished.
The set of all α ∈ 
 which correspond to distinguished vertices in the Tits index of G/L
will be denoted 
(d)(L). It follows from Lemma 4.1(a), and the above discussion, that
α ∈ 
(d)(L) if and only if for the orbit � of α under the ∗-action of Gal(L/L), a suitable
conjugate of P
\� is defined over L. More generally, for an arbitrary subset � of 
, a
suitable conjugate of P
\� is defined over L if and only if � is invariant under the ∗-action
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of Gal(L/L) and contained in 
(d)(L). Thus, rkL G equals the number of orbits of the
∗-action of Gal(L/L) on 
(d)(L), and G is quasi-split over L if and only if 
(d)(L) = 
.

Let G be a connected absolutely simple algebraic group over a number field K. Fix
a maximal K-torus T of G, and a system of simple roots 
 ⊂ �(G,T). We will say that
an orbit in 
, under the ∗-action of Gal(K/K), is distinguished everywhere if it is contained in

(d)(Kv) for all v ∈ VK. The following proposition, which is proved using some results of
[34], will not only play a crucial role in the proof of Theorem 6, but is also of independent
interest.

Proposition 7.2. — An orbit under the ∗-action of Gal(K/K) on 
 is contained in 
(d)(K),

i.e., it is a distinguished orbit in the Tits index of G/K, if and only if it is distinguished everywhere.

Therefore, rkK G = r, where r is the number of orbits which are distinguished everywhere.

Proof. — Without any loss of generality, we may (and we do) assume that G is
adjoint and T contains a maximal K-split torus of G. Clearly, the distinguished orbits
in the Tits index of G/K are distinguished everywhere, yielding the inequality rkK G �
r. To prove the opposite inequality, we can assume that r � 1. Let �i1, . . . ,�ir be the
orbits in 
 which are distinguished everywhere. We will prove that these are precisely the
distinguished orbits in the Tits index of G/K. For this, we set

� = �i1 ∪ · · · ∪ �ir ,

and let P
\� be the corresponding parabolic subgroup. It will suffice to prove that the
conjugacy class of P
\� contains a subgroup defined over K. The group G is an inner
twist of a unique quasi-split K-group G0. Let T0 be the centralizer of a maximal K-split
torus Ts

0 of G0. Furthermore, let 
0 ⊂ �(G0,T0) be the system of simple roots with
respect to some coherent orderings on X(Ts

0)⊗Z R and X(T0)⊗Z R (then, in particular,
all the roots in 
0 are distinguished). Since G is an inner twist of G0, we can pick a
K-isomorphism f : G0 → G so that the associated Galois-cocycle

σ �→ ξσ := f −1 ◦ σ( f ), σ ∈ Gal(K/K),

is of the form

ξσ = igσ ,

where iz denotes the inner automorphism of G0 corresponding to z ∈ G0(K), and g :
σ �→ gσ is a Galois-cocycle with values in G0(K). After modifying f by a suitable inner
automorphism, we assume that f (T0) = T and f ∗(
) = 
0. We set �0 = f ∗(�). Then
for the parabolic K-subgroup P
0\�0 of G0, we have f (P
0\�0) = P
\�. Let H0 be a Levi
K-subgroup of P
0\�0 , and ω : H1(K,H0) → H1(K,G0) be the Galois-cohomology map
induced by the inclusion H0 ↪→ G0.
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Take an arbitrary v ∈ VK. Then as � is a union of orbits in 
(d)(Kv), there exists
av ∈ G(Kv) such that P(v)


\� := avP
\�a−1
v is defined over Kv . Set bv = f −1(av) and fv =

f ◦ ibv . Then fv(P
0\�0) = P(v)


\�, and since both P
0\�0 and P(v)


\� are defined over Kv , for
any σ ∈ Gal(Kv/Kv), the automorphism

ξ (v)
σ := f −1

v ◦ σ( fv) = i−1
bv

◦ ξσ ◦ iσ(bv) = ib−1
v gσ σ (bv)

leaves P
0\�0 invariant. As P
0\�0 coincides with its normalizer in G0 (cf. [3], The-
orem 11.16), we conclude that b−1

v gσσ (bv) lies in P
0\�0(Kv). Furthermore, since the
unipotent radical of any parabolic Kv-subgroup of a reductive Kv-group has trivial Ga-
lois cohomology, we conclude that the cocycle σ �→ b−1

v gσσ (bv) is cohomologous to a
H0(Kv)-valued Galois-cocycle h(v). Thus, the image of the cohomology class x corre-
sponding to the cocycle g, under the restriction map ρv: H1(K,G0) → H1(Kv,G0), is
equal to the image of the cohomology class in H1(Kv,H0), corresponding to h(v), under
the map H1(Kv,H0) → H1(Kv,G0).

Now, let L be the minimal Galois extension of K over which G0 splits, and set
P = L if [L : K] �= 6, and let P be any cubic extension of K contained in L otherwise.
Pick v0 ∈ VK

f which does not split in P (i.e., P ⊗K Kv0 is a field). We will assume for the
moment that �0 �= 
0 (or, equivalently, � �= 
). Then using Theorem 2 of [34], we easily
conclude that there exists y ∈ H1(K,H0) which maps to (ρv(x)) under the composite of
the following two maps

H1(K,H0)
ω−→ H1(K,G0)

ρ=(ρv)−→
⊕

v �=v0

H1(Kv,G0).

But according to Theorem 3 in [34], ρ is injective, so x = ω(y). This means that there
exists c ∈ G0(K) such that

c−1gσσ (c) ∈ H0(K) for all σ ∈ Gal(K/K).(19)

We claim that the subgroup f (c)P
\�f (c)−1 = f (cP
0\�0c
−1) is defined over K. Indeed,

for σ ∈ Gal(K/K) we have

σ( f (cP
0\�0c
−1)) = σ( f )(σ (c)P
0\�0σ(c)−1)

= f ( gσσ (c)P
0\�0σ(c)−1g−1
σ ) = f (cP
0\�0c

−1),

in view of (19), proving our claim. This proves the proposition if � �= 
. If � = 
, then,
for all v ∈ VK, G is quasi-split over Kv , and hence is isomorphic to G0 over Kv , which
implies that ρv(x) is trivial for all v. From the Hasse principle for G0 (Theorem 6.6 of
[26]) we infer that x is trivial, so G is isomorphic to G0, and hence every ∗-orbit in 
 is
distinguished. �
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Remark 7.3. — One can give an alternative proof of Proposition 7.2 using tech-
niques involving homogeneous spaces. Indeed, it is known (cf. [5], 5.24) that if � ⊂ 


is a subset invariant under the ∗-action, then the parabolic subgroups of G conjugate
to P
\� naturally correspond to the points of a projective homogeneous space P� of G
defined over K. Now, as in the proof of Proposition 7.2, we let � denote the union of
all orbits of the ∗-action which are distinguished everywhere. Then P�(Kv) �= ∅ for all
v ∈ VK. However, it was shown in [16] and reproved in [6] that projective homogeneous
spaces satisfy the Hasse principle, which yields P�(K) �= ∅. Thus, there exists a parabolic
K-subgroup conjugate to P
\�, as required.

Corollary 7.4. — Let G be an absolutely simple K-group of one of the following types: Bn

(n � 2), Cn (n � 2), E7, E8, F4 or G2. If G is isotropic over Kv for all real v ∈ VK
∞, then G is

isotropic over K. Additionally, if G is as above, but not of type E7, then

rkK G = min
v∈VK

rkKv
G.(20)

Proof. — The groups of these types do not have outer automorphisms, so given any
two maximal K-tori T and T′ of G, and systems of simple roots 
 ⊂ �(G,T) and 
′ ⊂
�(G,T′), there is a unique isomorphism between �(G,T) and �(G,T′) that carries 

to 
′. It necessarily coincides with the canonical identification as defined at the beginning
of Section 4. Using this remark and inspecting Table II in [44], we see that for the types
listed in the statement, if for every real place v of K, G is isotropic over Kv , then there
is a vertex in the Tits index of G/K which corresponds to a distinguished vertex in the
Tits index of G/Kv , for all v ∈ VK. Then it follows from the proposition that this vertex
is distinguished in the Tits index of G/K, and therefore G is K-isotropic. Moreover, if G
is not of type E7, then it follows from the tables in [44] that the total number of vertices
which are distinguished in the Tits index of G/Kv for all v ∈ VK is minv∈VK rkKv

G, so
(20) follows from the proposition. �

Proof of Theorem 6. — According to Theorem 6.2, rkKv
G1 = rkKv

G2 for every place
v of K. Moreover, as S-arithmetic groups are finitely generated, Theorem 1 implies that
either G1 and G2 are of same Killing-Cartan type, or one of them is of type Bn and the
other is of type Cn. In the latter case, using Corollary 7.4, we obtain

rkK G1 = min
v∈VK

rkKv
G1 = min

v∈VK
rkKv

G2 = rkK G2.

In particular, if G1 is K-isotropic, then so is G2.11

Now to prove the rest of Theorem 6, we can assume that F is algebraically closed
and both G1, G2 are adjoint of the same type, so in effect G1 = G2 =: G. If G is of type

11 Since for groups of type Bn and Cn over local and global fields, the relative rank completely determines the
corresponding Tits index (cf. [44]), we see that in the case at hand, the Tits index of G1/K determines that of G2/K, and
for any v ∈ VK, the Tits index of G1/Kv determines that of G2/Kv .
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B2 = C2, F4, or G2, then its Tits index over any extension L/K is uniquely determined
by its L-rank. Therefore, since rkKv

G1 = rkKv
G2 according to Theorem 6.2, and conse-

quently rkK G1 = rkK G2 by Corollary 7.4, all our assertions follow. So, we assume that G
is not of any of the above three types.

We pick a finite set V0 of places of K such that for every v /∈ V0, both G1 and G2

are quasi-split over Kv . By Theorem 6.3(2), we have L1 = L2, so we can use Proposi-
tion 6.1 to find maximal K-tori Ti of Gi such that T1 contains a maximal Kv-split torus
T v

1s of G1 for all v ∈ V0, and a K-isogeny (actually, a K-isomorphism) π :T2 → T1 such
that π∗(�(G1,T1)) = �(G2,T2). Since rkKv

G1 = rkKv
G2 for all v, we see that T2 also

contains a maximal Kv-split torus T v
2s of G2, for all v ∈ V0. Notice that if we choose

any system of simple roots 
1 in �(G1,T1) and set 
2 = π∗(
1), then as π∗ inter-
twines the action of Gal(K/K) and the corresponding Weyl groups, it also intertwines
the ∗-action of Gal(F/F) for any extension F/K. Now, let v ∈ V0, and let 
v

1 be a sys-
tem of simple roots in �(G1,T1) that corresponds to a coherent choice of orderings on
X(T v

1s ) ⊗Z R and X(T1) ⊗Z R. Then 
v
2 = π∗(
v

1) corresponds to the coherent order-
ings on X(T v

2s ) ⊗Z R and X(T2) ⊗Z R. Furthermore, since π induces an isomorphism
between T v

2s and T v
1s , we see that α ∈ 
v

1 has nontrivial restriction to T v
1s , i.e., it is dis-

tinguished in the Tits index of G1/Kv if and only if π∗(α) has nontrivial restriction to
T v

2s , i.e., it is distinguished in the Tits index of G2/Kv . This shows that the Tits indices
of G2/Kv and G2/Kv are isomorphic for all v ∈ V0. They are also isomorphic for any
v ∈ VK \ V0 because then G1 and G2 are quasi-split, which completes the proof of the
“local” part of Theorem 6.

It remains to prove that the Tits indices of G1/K and G2/K are isomorphic. For this,
we fix a system of simple roots 
1 of �(G1,T1) and set 
2 = π∗(
1). If 
′

1 ⊂ �(G1,T1)

is another system of simple roots and 
′
2 = π∗(
′

1), then the fact that π∗ commutes with
the action of the corresponding Weyl groups implies that π∗ transports the canonical
identification 
1 � 
′

1 to the canonical identification 
2 � 
′
2 (another way to see this is

to observe that according to Remark 4.4, π extends to a K-isomorphism f :G2 → G1). So,
by symmetry, it is enough to prove that if � ⊂ 
1 is an orbit of the ∗-action of Gal(K/K)

which corresponds to a distinguished orbit in the Tits index of G1/K, then π∗(�) (which
is also a ∗-orbit) corresponds to a distinguished orbit in the Tits index of G2/K. According
to Proposition 7.2, it is enough to show that

π∗(�) ⊂ 

(d)
2 (Kv)(21)

for all v ∈ VK. As 

(d)
2 (Kv) = 
2 for all v ∈ VK \ V0, we only need to establish (21) for

v ∈ V0. But since π∗ induces a bijection between distinguished vertices in 
v
1 and 
v

2 in
the above notations, we see that



(d)
2 (Kv) = π∗(
(d)

1 (Kv)),

and (21) follows. This completes the proof of Theorem 6. �
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The following interesting result is an immediate consequence of Theorems 1, 4, 5,
6, and 6.3(2).

Theorem 7.5. — Let G1 and G2 be connected absolutely simple algebraic groups defined over

a number field K. For i = 1,2, let Li be the smallest Galois extension of K over which Gi is an inner

form of a split group. If the set of isomorphism classes of maximal K-tori in G1 equals that in G2, then

either G1 and G2 are of same Killing-Cartan type, or one of them is of type Bn and the other is of type

Cn, and moreover, L1 = L2.

Now let us assume that G1 = G2 =: G. Let F be a collection of K-forms G′ of G such that

the set of K-isomorphism classes of maximal K-tori of G′ equals the set of K-isomorphism classes of

maximal K-tori of G. Then

(1) For any G′ ∈ F, the Tits indices of G/K and G′/K, and for every place v of K, the Tits

indices of G/Kv and G′/Kv , are isomorphic.

(2) If G is not of type An, D2n+1, D4 or E6, then every G′ ∈ F is K-isomorphic to G.

(3) F consists of finitely many K-isomorphism classes.

Proof. — We pick a finite set S of places of K containing all the archimedean ones
so that

∏
v∈S G1(Kv) and

∏
v∈S G2(Kv) are noncompact. For i = 1,2 let �i be an S-

arithmetic subgroup of Gi(K). As G1 and G2 have the same K-tori, it immediately follows
from the definition of weak commensurability that �1 and �2 are weakly commensurable
(cf. Example 6.5). Now, the assertion that either G1 and G2 are of same type, or one of
them is of type Bn and the other is of type Cn, follows from Theorem 1, and the assertion
that L1 = L2 is a consequence of Theorem 6.3(2).

Let us now assume that G1 = G2 = G, and fix a G′ ∈ F. Let � and �′ be S-
arithmetic groups of G(K) and G′(K) respectively, where S is chosen so that both∏

v∈S G(Kv) and
∏

v∈S G′(Kv) are noncompact. Then � and �′ are weakly commen-
surable and Zariski-dense in the respective groups. Now the assertions (1), (2) of the theo-
rem follow from Theorems 4 and 6. To prove (3), we observe that if we choose a finite set
S containing all the archimedean places of K so that

∏
v∈S G(Kv) is noncompact, then

by (1),
∏

v∈S G′(Kv) is automatically noncompact for all G′ ∈ F. Thus, the set S as above
can be chosen independent of G′ ∈ F, and then Theorem 5 yields (3). �

Remark 7.6. — In Section 9 we will show that assertion (2) of the preceding theorem
is false in general if G is of type An, D2n+1, or E6. We recall that two simply connected (or
adjoint) split K-groups G1 and G2 of type Bn and Cn respectively have the same maximal
K-tori (Example 6.7). It would be interesting to determine precisely all the pairs G1 and
G2 of simply connected (or adjoint) groups of type Bn and Cn respectively over a number
field K that have the same maximal K-tori. We observe that given such a pair, for any
v ∈ VK

f we have rkKv
G1 = rkKv

G2 (Theorem 6.2), and at the same time, rkKv
G1 � n − 1

and rkKv
G2 � n/2 if G2 is not Kv-split. Clearly, these conditions are incompatible for

n > 2, which means that G1 and G2 split over Kv for all v ∈ VK
f . In particular, for a given
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number field K, there are only finitely many pairs G1 and G2 with the above properties
(cf. the proof of Theorem 5).

8. Lengths of closed geodesics, length-commensurable locally symmetric
spaces and Schanuel’s conjecture

Let G be a connected semi-simple real algebraic group, G = G(R), and let K be
a maximal compact subgroup of G . We let g and k denote the Lie algebras of G and K
respectively, and let p denote the orthogonal complement of k in g relative to the Killing
form 〈 , 〉, so that g = k⊕p is a Cartan decomposition of g. The corresponding symmetric
space X = K\G is a Riemannian manifold with the metric induced by the restriction of
the Killing form to p (see [17] for the details).

8.1. Positive characters. — A character χ of an R-torus T is said to be positive

if for every x ∈ T(R), the value χ(x) is a positive real number. Any positive character of
T is defined over R. Given an arbitrary character χ ∈ X(T), the character χ + χ̄ , where
χ̄ is the character obtained by applying the complex conjugation to χ , satisfies

(χ + χ̄)(x) = χ(x)χ(x) = |χ(x)|2
for all x ∈ T(R). Thus, for any character χ and any x ∈ T(R), the square of the absolute
value of χ(x) is the value assumed by the positive character χ + χ̄ of T at x.

Let S be an R-split torus and T be a R-torus containing S. Then every character
of S is defined over R. Given a character α of S, let χ be a complex character of T whose
restriction to S equals α. Then the restriction of the positive character χ + χ to S is
2α. Thus every character lying in the subgroup 2X(S) of the character group X(S) of S
extends to a positive character of any R-torus containing S.

Let a be a Cartan subspace contained in p, and A = expa be the connected
abelian subgroup of G with Lie algebra a. Let S be the Zariski-closure of A. Then S is a
maximal R-split torus of G and A = S(R)◦. We fix a closed Weyl chamber a+ in a. Let
{α1, . . . , αr}, where r = rkR G = dimS, be the basis of the root system of G, with respect
to S, determined the Weyl chamber a+, and let βi = 2αi . Then β1, . . . , βr are linearly
independent positive characters. In the sequel, we will identify a with Rr by identifying
X ∈ a with (dβ1(X), . . . , dβr(X)), where, for i ∈ {1, . . . , r}, dβi denotes the differential of
βi at the identity.

We will now make some brief comments on the Lyapunov map and its relations
with weak commensurability, and will then proceed to the core issue of the lengths of
closed geodesics and length-commensurable locally symmetric spaces.

8.2. Lyapunov map. — For an element g ∈ G , we let g = gsgu be its Jordan
decomposition. For simplicity, we denote the semi-simple component gs by s. Let T be a
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maximal R-torus of G containing s. Let C be the maximal compact subgroup of T(R)

and Ts be the maximal R-split subtorus of T. Then T(R) is a direct product of C and
Ts(R)◦, so we can write s = se · sh, with se ∈ C , and sh ∈ Ts(R)◦. The elements se and sh are
called the elliptic and the hyperbolic components of s (or of g). There is an element z ∈ G
which conjugates C into K and Ts(R)◦ into A such that zshz

−1 = expX, with X ∈ a+.
The element X is the unique element of a+ such that the hyperbolic component sh of g

is a conjugate of expX, and we will denote it by �( g). Thus we get a map (the Lyapunov
map) � : G → a+. Clearly, for any g ∈ G we have �( g) = �( gs), and moreover, for any
positive integer n, �( gn) = n�( g).

Continuing with the above notations, we let χi , for i ∈ {1, . . . , r}, be the unique
positive character of T extending the character Int z−1 · βi|Ts

, and let dχi denote its dif-
ferential at the identity. Since χi(s) = χi(sh), we have

�(s) = (dχ1(Ad z−1(X)), . . . , dχr(Ad z−1(X))) = (logχ1(s), . . . , logχr(s)).

For a subgroup � of G , let �ss denote the set of semi-simple elements of �. From
the above description of the Lyapunov map, the following proposition is obvious.

Proposition 8.3. — If �1 and �2 are two discrete subgroups of G such that

Q · �(�ss
1 ) = Q · �(�ss

2 ),

then �1 and �2 are weakly commensurable.

If � is an arithmetic subgroup of G and g ∈ �, then there exists an integer n = n( g)

such that gn
u ∈ �. Then gn

s lies in �. On the other hand, if � is an irreducible nonarithmetic
lattice of G (then G is of R-rank 1), then it can be shown that there exists a positive integer
n = n(�) such that for every non-semi-simple element g of �, gn is unipotent. We conclude
that if � is lattice (arithmetic or not) of G , then Q · �(�) = Q · �(�ss).

8.4. Lengths of closed geodesics on locally symmetric spaces. — Given
a discrete torsion-free subgroup � of G , the quotient X� := X/� is a Riemannian locally
symmetric space. We first need to recall some facts about closed (or periodic) geodesics
in X� , and in particular the formula for their length, given in [33]. Closed geodesics in
X� correspond to semi-simple elements in �, and are obtained by a construction similar
to the one used to define the Lyapunov map. More precisely, let γ be a fixed semi-simple
element of �, and let T be a maximal R-torus of G containing γ . As we mentioned above,
T(R) is a direct product of C and Ts(R)◦, where C is the maximal compact subgroup of
T(R) and Ts is the maximal R-split subtorus of T. Take any z ∈ G such that zTz−1 is
invariant under the Cartan involution associated with the decomposition g = k ⊕ p, and
consequently

zCz−1 ⊂ K and zTs(R)◦z−1 ⊂ expp.(22)
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Here we do not require the inclusion zTs(R)◦z−1 ⊂ expa. Now if we write γ = γe · γh,
with γe ∈ C and γh ∈ Ts(R)◦, then γh = z−1 exp(X)z for some X ∈ p that commutes with
zγez

−1; moreover, it is obvious that X is a conjugate of �(γ ) under an element of Ad K.
With these notations, the curve c̃γ parametrized by ϕ̃: t �→ K exp(tX)z, for t ∈ R, is a
geodesic on X which passes through the point Kz. Furthermore,

ϕ̃(t) · γ = K exp(tX) · zγez
−1 · zγhz

−1 · z = K exp(tX) · exp(X) · z

= ϕ̃(t + 1),

implying that the map ϕ: R → X� , obtained by composing ϕ̃ with the natural map
π :X → X� , is periodic with period 1, and hence its smallest period is of the form 1/nγ

for some integer nγ � 1. It follows that the image cγ of c̃γ in X� is a closed geodesic, and
since

〈ϕ′(t), ϕ′(t)〉 = 〈ϕ̃′(t), ϕ̃′(t)〉 = 〈X,X〉,
for all t ∈ R, we see that the length of cγ is (1/nγ )〈X,X〉1/2.

Proposition 8.5.

(i) Every closed geodesic in X� is of the form cγ for some semi-simple γ ∈ �.

(ii) The length of cγ is (1/nγ )λ�(γ ) where nγ is an integer � 1 and λ�(γ ) is given by the

following formula:

λ�(γ )2 = 〈�(γ ), �(γ )〉 =
(∑

(log |α(γ )|)2
)
,(23)

where the summation is over all roots of G with respect to T and log denotes the natural

logarithm.

Thus,

Q · L(X�) = Q · {λ�(γ ) | γ ∈ � semi-simple},
where λ�(γ ) is given by (23).

Proof. — (i) Any closed geodesic c in X� is obtained as the image under π of a
geodesic c̃ in X. Fix a point Kz ∈ c̃. It is known that c̃ admits a parametrization of the
form

ϕ̃(t) = K exp(tX)z

for some X ∈ p (cf. [17], Theorem 3.3(iii) in Chap. IV). After replacing X by a suit-
able positive-real multiple, we can assume that π(ϕ̃(0)) = π(ϕ̃(1)), and dϕ̃(0)π(ϕ̃′(0)) =
dϕ̃(1)π(ϕ̃′(1)). Then, in particular, ϕ̃(1) = ϕ̃(0)γ for some γ ∈ �. Since the map

K × p → G, (κ,Y) �→ κ exp(Y),
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is a diffeomorphism, the element zγ z−1 can be uniquely written in the form zγ z−1 =
κ exp(Y). Then ϕ̃(1) = ϕ̃(0)γ yields X = Y, i.e.,

zγ z−1 = κ exp(X).(24)

Furthermore, the curves in X with the parametrizations

ϕ̃1(t) = ϕ̃(t) · γ and ϕ̃2(t) = ϕ̃(t + 1)

are both geodesics in X such that

ϕ̃1(0) = ϕ̃(0) · γ = ϕ̃(1) = ϕ̃2(0) =: p.

Since π(ϕ̃1(t)) = π(ϕ̃(t)), we have

dpπ(ϕ̃′
1(0)) = dϕ̃(0)π(ϕ̃′(0)) = dϕ̃(1)π(ϕ̃′(1)) = dpπ(ϕ̃′

2(0)).

Thus, ϕ̃′
1(0) = ϕ̃′

2(0), hence by the uniqueness of a geodesic through a given point in a
given direction, we get ϕ̃1(t) = ϕ̃2(t) for all t. Combining the definitions of ϕ̃, ϕ̃1 and ϕ̃2

with (24), we now obtain that

K exp(tX)κ = K exp(t(Adκ−1(X))) = K exp(tX),

which implies that κ commutes with exp(tX) for all t. Since the elements κ and exp(X)

are semi-simple, we conclude that γ = z−1(κ exp(X))z is semi-simple. Moreover, κ and
exp(X) are contained in a maximal R-torus T0 of G which is invariant under the Cartan
involution. Let T = z−1T0z. Then T(R) = z−1T0(R)z contains γ , and γe = z−1κz and
γh = z−1 exp(X)z in the notations introduced prior to the statement of the proposition. It
is now obvious that c coincides with the geodesic cγ . As we already explained, its length is
(1/nγ )〈X,X〉1/2, where nγ is the integer � 1 such that 1/nγ is the smallest positive period
of ϕ(t) = π(ϕ̃(t)).

(ii) We need to show that λ�(γ ) := 〈X,X〉1/2 (= 〈�(γ ), �(γ )〉1/2) is given by the
equation (23). Since the Killing form is invariant under the adjoint action of G on g, we
have 〈X,X〉 = 〈X′,X′〉, where X′ = Adz−1(X) so that γh = exp(X′). In a suitable basis
of g, Adγh is represented by a diagonal matrix whose diagonal entries are 1 (repeated
dim T times) and α(γh) for all α ∈ �(G,T); notice that all these numbers are real and
positive. In the same basis, ad X′ is represented by a diagonal matrix with the diagonal
entries 0 (repeated dim T times) and dα(X′) for all α ∈ �(G,T). For every α we clearly
have

|α(γ )| = |α(γh)| = exp(dα(X′)).

So,

〈X,X〉 = 〈X′,X′〉 =
∑

α∈�(G,T)

(dα(X′))2 =
∑

α∈�(G,T)

(log |α(γ )|)2,
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and (23) follows. �

In order to relate the notion of length-commensurability with that of weak com-
mensurability, we need to recast formula (23) in a slightly different form. As a root α of G
with respect to T is a character of T, |α(γ )|2 is the value assumed by a positive character
of T, and therefore,

λ�(γ )2 =
p∑

i=1

si(logχi(γ ))2,(25)

where χ1, . . . , χp are certain positive characters of T and s1, . . . , sp are positive rational
numbers (whose denominators are divisors of 4).

We will now elaborate on (25) in the rank one case.

Lemma 8.6. — Assume that rkR G = 1, and let � be a discrete torsion-free subgroup of

G = G(R). Let γ ∈ � be a semi-simple element �= 1, and let T be a maximal R-torus containing it.

Then

(1) rkR T = 1, so the group of positive characters of T is cyclic with a generator, say, χ ; and

χ(γ ) �= 1.

(2) There exists a positive rational number t (whose denominator is a divisor of 4), t depending

only on G, but not on γ , � or T, such that

λ�(γ ) = √
t| logχ(γ )|.

Proof. — (1): rkR T = 0 would imply that T(R) is compact, so the discreteness of 〈γ 〉
would imply its finiteness. Since � is torsion-free, we would get γ = 1, a contradiction.
As (Kerχ)(R) is compact, we conclude that χ(γ ) �= 1.

(2): The second assertion follows from (23) and (25) combined with the fact that
any two maximal R-tori of G of real rank one are conjugate under an element of G . �

Corollary 8.7. — Assume that rkR G = 1. Let K ⊂ R be a number field, and let G1 and G2

be two K-forms of G. For i = 1,2, let �i be a discrete torsion-free (Gi,K)-arithmetic subgroup of G .

If G1 and G2 have the same K-isomorphism classes of maximal K-tori, then

Q · λ�1(�
ss
1 ) = Q · λ�2(�

ss
2 ),(26)

and consequently, X�1 and X�2 are length-commensurable.

Proof. — We will assume (as we may) that G = G, and then �i ⊂ Gi(K), for i = 1,2.
So, any given γ1 ∈ �ss

1 \ {1} is contained in a suitable maximal K-torus T1 of G1. By our
assumption, there exists a K-isomorphism ϕ: T1 → T2 with a maximal K-torus T2 of G2.
Since �2 is arithmetic, there exists an integer m > 0 such that γ2 := ϕ(γ1)

m belongs to �2.



WEAKLY COMMENSURABLE ARITHMETIC GROUPS 163

Now, if χ(2) is a generator of the group of positive characters of T2, then χ(1) = ϕ∗(χ(2))

is a generator of the group of positive characters of T1. We obviously have χ(1)(γ1)
m =

χ(2)(γ2), so it follows from Lemma 8.6(2) that

m · λ�1(γ1) = λ�2(γ2),

yielding the inclusion

Q · λ�1(�
ss
1 ) ⊂ Q · λ�2(�

ss
2 ).

By symmetry, we get (26). The last assertion follows from (26) and Proposition 8.5. �

To deal with the higher rank case, we need the following.

Lemma 8.8. — Let G1 and G2 be two connected semi-simple real algebraic groups. For

i = 1,2, let Ti be a maximal R-torus of Gi , and γi ∈ Ti(R). Given two collections of characters

χ
(1)
1 , . . . , χ

(1)
d1

∈ X(T1) and χ
(2)
1 , . . . , χ

(2)
d2

∈ X(T2), we set

Si = {log |χ(i)
1 (γi)|, . . . , log |χ(i)

di
(γi)|}.

If γ1, γ2 are not weakly commensurable and each of the sets (of real numbers) S1 and S2 is linearly

independent over Q , then so is their union S1 ∪ S2.

Proof. — According to the above discussion, there exist positive characters
θ
(1)
1 , . . . , θ

(1)
d1

∈ X(T1) and θ
(2)
1 , . . . , θ

(2)
d2

∈ X(T2) such that

θ
(i)

j (x) = |χ(i)

j (x)|2 for all x ∈ Ti(R).

If the set S1 ∪ S2 is linearly dependent over Q , there exist integers s1, . . . , sd1 , t1, . . . , td2 ,
not all zero, such that

s1 log θ
(1)
1 (γ1) + · · · + sd1 log θ

(1)
d1

(γ1)

+ t1 log θ
(2)
1 (γ2) + · · · + td2 log θ

(2)
d2

(γ2) = 0.

Consider the characters

ψ1 = s1θ
(1)
1 + · · · + sd1θ

(1)
d1

of T1 and

ψ2 = −(t1θ
(2)
1 + · · · + td2θ

(2)
d2

) of T2.

Then ψ1(γ1) = ψ2(γ2), and hence,

ψ1(γ1) = 1 = ψ2(γ2)
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since γ1 and γ2 are not weakly commensurable. This means that

s1 log θ
(1)
1 (γ1) + · · · + sd1 log θ

(1)
d1

(γ1)

= 0 = t1 log θ
(2)
1 (γ2) + · · · + td2 log θ

(2)
d2

(γ2),

and therefore all the coefficients are zero because the sets S1 and S2 are linearly indepen-
dent. �

Some of our results depend on the validity of Schanuel’s conjecture in transcen-
dental number theory (cf. [1]), and we recall here its statement.

8.9. Schanuel’s conjecture. — If z1, . . . , zn ∈ C are linearly independent over Q ,

then the transcendence degree (over Q ) of the field generated by

z1, . . . , zn; ez1, . . . , ezn

is � n.

We will only use the fact that the truth of this conjecture implies that for algebraic
numbers z1, . . . , zn, (any values of) their logarithms

log z1, . . . , log zn

are algebraically independent once they are linearly independent (over Q ).

8.10. Notation. — For i = 1,2, let Gi be a connected semi-simple real algebraic
subgroup of SLn, Gi = Gi(R), and �i be a Zariski-dense discrete torsion-free subgroup of
Gi . Let X�i

= Xi/�i , where Xi is the symmetric space of Gi . Let K�i
be the subfield of R

generated by the traces Tr Adγ for γ ∈ �i .

Proposition 8.11. — Suppose that the nontrivial semi-simple elements γ1 ∈ �1 and γ2 ∈ �2

are not weakly commensurable.

(i) If both G1 and G2 are of real rank 1 and there exists a number field K ⊂ R such that �1

and �2 can be conjugated into SLn(K), then θ = λ�1(γ1)/λ�2(γ2) is transcendental over

Q ; if G1 = G2, then θ is irrational for arbitrary �1 and �2.

(ii) If there exists a number field K ⊂ R such that �1 and �2 can be conjugated into SLn(K),

and Schanuel’s conjecture holds, then λ�1(γ1) and λ�2(γ2) are algebraically independent

over Q.

Proof. — We fix a maximal R-torus Ti of Gi such that γi ∈ Ti(R).
(i) Using Lemma 8.6(1), we can pick a generator χ(i) of the group of positive char-

acters of Ti so that χ(i)(γi) > 1 for i = 1,2. Then by Lemma 8.6(2) we have

λ�i
(γi) = √

ti logχ(i)(γi).
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Since the elements γ1 and γ2 are not weakly commensurable, for any nonzero integers
a, b, we have

χ(1)(γ1)
a �= χ(2)(γ2)

b,

hence the ratio logχ(1)(γ1)/logχ(2)(γ2) is irrational. If there exists a number field K ⊂ R
such that �1 and �2 can be conjugated into SLn(K), then the numbers χ(i)(γi) are al-
gebraic, and therefore by a theorem proved independently by Gel’fond and Schneider
in 1934 (cf. [2]), logχ(1)(γ1)/logχ(2)(γ2), and so also θ , is transcendental over Q. If
G1 = G2, then t1 = t2, and hence θ = logχ(1)(γ1)/logχ(2)(γ2) is irrational for arbitrary
�1 and �2.

(ii) According to (25), we have the following expressions

λ�1(γ1)
2 =

p∑

i=1

s
(1)
i (logχ

(1)
i (γ1))

2 and

λ�2(γ2)
2 =

p∑

i=1

s
(2)
i (logχ

(2)
i (γ2))

2.

After renumbering the characters, we can assume that

a1 := logχ
(1)
1 (γ1), . . . , am1 := logχ(1)

m1
(γ1)

(resp., b1 := logχ
(2)
1 (γ2), . . . , bm2 = logχ(2)

m2
(γ2))

for some m1,m2 � p, form a basis of the Q-subspace of R spanned by logχ
(1)
i (γ1) (resp.,

logχ
(2)
i (γ2)) for i � p (notice that m1,m2 � 1 as otherwise the length of the corresponding

geodesic would be zero, which is impossible). It follows from Lemma 8.8 that the set of
numbers

{a1, . . . , am1; b1, . . . , bm2}
is linearly independent over Q. Since by our assumption the subgroups �1 and �2 can
be conjugated into SLn(K), the values χ

(j)

i (γj) are algebraic numbers, so it follows from
Schanuel’s conjecture that a1, . . . , am1; b1, . . . , bm2 are algebraically independent over Q.
It remains to observe that λ�1(γ1)

2 and λ�2(γ2)
2 are given by nonzero homogeneous

polynomials of degree two, with rational coefficients, in a1, . . . , am1 and b1, . . . , bm2 , re-
spectively, and therefore they are algebraically independent. �

By combining Propositions 8.5 and 8.11 we obtain the following:

Theorem 8.12. — If �1 and �2 are not weakly commensurable, then, possibly after interchang-

ing them, the following assertions hold.
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(i) If G1 and G2 are of real rank 1, and either there exists a number field K ⊂ R such that both

�1 and �2 can be conjugated into SLn(K), or G1 = G2, then there exists λ1 ∈ L(X�1)

such that for any λ2 ∈ L(X�2), the ratio λ1/λ2 is irrational.

(ii) If there exists a number field K ⊂ R such that both �1 and �2 can be conjugated into

SLn(K), and Schanuel’s conjecture holds, then there exists λ1 ∈ L(X�1) which is alge-

braically independent from any λ2 ∈ L(X�2).

In either case, (under the above assumptions) X�1 and X�2 are not length-commensurable.

Remark 8.13. — If G is a connected semi-simple real algebraic subgroup of SLn

of adjoint type such that G = G(R) does not contain any nontrivial compact normal
subgroups, and it is not locally isomorphic to either SL2(R) or SL2(C), and � is an irre-
ducible lattice in G , then there exists a number field K ⊂ R such that � can be conjugated
into SLn(K), cf. [36], 7.67 and 7.68.

The results in the rest of this section, and those of Sect. 10 (except Theorem 10.1), for locally

symmetric spaces of rank > 1 assume the truth of Schanuel’s conjecture.

Henceforth, we will assume that G1 and G2 are connected and absolutely simple.
We will refer to the following situation as the exceptional case:

(E ) One of the locally symmetric spaces, say, X�1 , is 2-dimensional and the corre-
sponding discrete subgroup �1 cannot be conjugated into PGL2(K), for any
number field K ⊂ R, and the other space, X�2 , has dimension > 2.

(In the exceptional case, G1 = PGL2, while G2 is not, and �1 cannot be conjugated into
PGL2(K), for any number field K ⊂ R.)

The following is an immediate consequence of Theorem 8.12 and Remark 8.13.

Corollary 8.14. — Let G1 and G2 be connected absolutely simple real algebraic groups, and

let X�i
be a locally symmetric space of finite volume, of Gi = Gi(R), for i = 1,2. Assume that we are

not in the exceptional case (E). If X�1 and X�2 are length-commensurable, then �1 and �2 are weakly

commensurable.

Now Theorems 1, 2 and 7 immediately imply the following.

Theorem 8.15. — Let G1 and G2 be connected absolutely simple real algebraic groups, and let

X�i
be a locally symmetric space of finite volume, of Gi , for i = 1,2. Assume that X�1 and X�2 are

length-commensurable, and we are not in the exceptional case (E). Then (i) either G1 and G2 are of

same Killing-Cartan type, or one of them is of type Bn and the other is of type Cn, (ii) K�1 = K�2 .

We will now focus on arithmetically defined locally symmetric spaces (where the excep-
tional case does not occur). First, we note that if Gi , for i = 1,2, is an absolutely almost
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simple algebraic group, and �i is a torsion-free Zariski-dense discrete subgroup of Gi , then
the fact that �1 and �2 are commensurable up to an R-isomorphism between G1 and G2

implies that the locally symmetric space X�1 and X�2 are commensurable. Combining
this with Corollary 8.14 and applying Theorems 4 and 5, we obtain the following.

Theorem 8.16. — Let G1 and G2 be connected absolutely simple real algebraic groups, and let

Gi = Gi(R), for i = 1,2. Then the set of arithmetically defined locally symmetric spaces X�2 of G2,

which are length-commensurable to a given arithmetically defined locally symmetric space X�1 of G1, is a

union of finitely many commensurability classes.12 It in fact consists of a single commensurability class if

G1 and G2 have the same type different from An, D2n+1, with n > 1, D4 and E6.

To see what this theorem means for hyperbolic spaces, we recall that the even-
dimensional real hyperbolic space H2n is the symmetric space of a group of type Bn,
the odd-dimensional real hyperbolic space H2n−1—of a group of type Dn, the complex
hyperbolic space Hn

C—of a group of type An, and the quaternionic hyperbolic space
Hn

H—of a group of type Cn+1. All these spaces are of rank one. Using Theorem 4 and
Proposition 8.11(i), we obtain the following result.

Corollary 8.17. — Let M be either the real hyperbolic space H2n, or H4n+7, or the quaternionic

hyperbolic space Hn
H, for any n � 1, and let M1 and M2 be two arithmetic quotients of M. If M1 and

M2 are not commensurable, then after a possible interchange of M1 and M2, there exists λ1 ∈ L(M1)

such that for any λ2 ∈ L(M2), the ratio λ1/λ2 is transcendental over Q.

Remark 8.18. — The construction described in 6.6 yields two nonisomorphic
anisotropic Q-forms G1 and G2 of the adjoint group G of the R-group G = SL2,H,
that have the same set of Q-isomorphism classes of maximal Q-tori. For i = 1,2, fix
a torsion-free (Gi,Q)-arithmetic subgroup �i of G . Since G � Spin(q), where q is a real
quadratic form of signature (5,1), the corresponding symmetric space X is H5. Then X�1

and X�2 are length-commensurable, but not noncommensurable, compact hyperbolic 5-
manifolds: the former follows from Corollary 8.7, and the latter from the fact that G1 and
G2 are not isomorphic. A suitable modification of Example 6.6 enables one to construct
examples of noncommensurable length-commensurable complex hyperbolic manifolds
of any even dimension. These examples will be subsumed by general constructions in
Section 9, which in particular, allow one to construct examples of this nature for real
hyperbolic manifolds of any dimension of the form 4n + 1, and for complex hyperbolic
manifolds of any dimension, cf. 9.15.

12 We note that as follows from Theorem 8.15(i), there are only finitely many possibilities for a real absolutely simple
algebraic group G2 that admits a locally symmetric space X�2 which is length-commensurable to a given X�1 . So, in effect
we obtain that there are only finitely many commensurability classes among all arithmetically defined locally symmetric
spaces of simple real algebraic groups length-commensurable to a given space.
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We now recall that given a discrete (Gi,Ki)-arithmetic subgroup �i of Gi , the
compactness of the quotient Gi/�i , and hence of the locally symmetric subspace X�i

,
is equivalent to Gi being Ki-anisotropic (cf. [26], Theorem 4.17). Combining this with
Theorems 6 and 7, we obtain the following.

Theorem 8.19. — Let G1 and G2 be connected absolutely simple real algebraic groups, and let

X�1 and X�2 be length-commensurable locally symmetric spaces of G1 and G2 respectively, of finite vol-

ume. Assume that at least one of the spaces is arithmetically defined and that we are not in the exceptional

case (E). Then the other space is also arithmetically defined, and the compactness of one of the spaces

implies the compactness of the other.

Question 8.20. — Let X�1 and X�2 be two arbitrary (i.e., not necessarily arith-
metically defined) length-commensurable locally symmetric space of G1 and G2 as in the
theorem, of finite volume. Does the compactness of one of the spaces always imply the
compactness of the other? In other words, does Theorem 8.19 remain valid without any
assumptions of arithmeticity? We recall that the non-compactness of X� is equivalent to
the existence of nontrivial unipotent elements in � for any lattice � (cf. [36], 11.13 and
11.14). So, the above question can be reformulated as follows: Let �i be a lattice in Gi

for i = 1,2, and assume that �1 and �2 are weakly commensurable. Does the existence
of nontrivial unipotent elements in �1 imply their existence in �2? Theorems 6 and 7
provide an affirmative answer if at least one of the lattices is arithmetic. We note that the
latter question is meaningful for arbitrary (finitely generated) Zariski-dense subgroups
(which are not necessarily discrete or of finite covolume).

9. Construction of nonisomorphic groups with the same tori and
noncommensurable length-commensurable locally symmetric spaces
of type An, D2n+1 and E6.

According to Theorem 7.5, if K is a number field and G1 and G2 are two K-
forms of a connected absolutely simple group of type different from An, D2n+1 (n > 1),
D4 and E6, then the fact that every maximal K-torus T1 of G1 is K-isomorphic to some
maximal K-torus T2 of G2, and vice versa, implies that G1 and G2 are K-isomorphic.
The goal of this section is to describe a general construction of nonisomorphic K-forms
of each of the types An, D2n+1, where n > 1, and E6, which have the “same” systems
of maximal K-tori in a very strong sense (see below for the definition of groups with
coherently equivalent systems of maximal K-tori). Furthermore, we show that arithmetic
subgroups of the forms we construct lead to noncommensurable length-commensurable
locally symmetric spaces, cf. Proposition 9.14. To avoid the excessive use of script letters,
in the major part of this section (through 9.14), various forms of a given group over
number fields will be denoted by ordinary (italic) letters, while we return to our standard
notations in 9.14–9.16.
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We begin by recalling the well-known Galois-cohomological parametrization of the
conjugacy classes of maximal K-tori of a given group. Let G be a connected semi-simple
simply connected algebraic group over a number field K. Fix a maximal K-torus T of G,
and let N = NG(T) and W = N/T denote respectively its normalizer and the correspond-
ing Weyl group. For any field extension K /K, we let θK : H1(K ,N) → H1(K ,W) de-
note the map induced by the natural homomorphism N → W, and let

CK := Ker(H1(K ,N) −→ H1(K ,G)).

The maximal K -tori of G correspond bijectively to the K -rational points of the va-
riety T = G/N of maximal tori of G. Furthermore, G acts on T by left multiplica-
tion (which corresponds to the conjugation action of G on the set of maximal tori), and
the elements of the orbit set G(K )\T (K ) are in one-to-one correspondence with the
G(K )-conjugacy classes of maximal K -tori of G. The following is well-known.

Lemma 9.1. — There is a natural bijection δK : CK → G(K )\T (K ).

We just recall the construction of δK . If n : σ �→ nσ , σ ∈ Gal(K /K ), is a
N(K )-valued Galois-cocycle representing an element of CK , then there exists g ∈ G(K )

such that nσ = g−1σ( g) for all σ ∈ Gal(K /K ). Then the torus T′ = gTg−1 is defined
over K , and δK carries the cohomology class of n to the G(K )-conjugacy class of T′.

We now establish a local-global principle pertaining to the description of maximal
K-tori of G. To formulate it, we observe that there is an obvious map W −→ Aut T, so
for any x ∈ H1(K ,W), one can consider the corresponding twisted K -torus xT.

Theorem 9.2. — Fix x ∈ H1(K,W) and suppose that

(i) x ∈ θKv
(CKv

) for all v ∈ VK;

(ii) X2(xT) := Ker(H2(K, xT) −→ ∏
v∈VK H2(Kv, xT)) is trivial (which holds if, for

example, there exists v0 ∈ VK such that xT is Kv0-anisotropic, cf. [26], Proposition 6.12).

Then x ∈ θK(CK).

Proof. — Applying the constructions from [39], Chap. I, §5.6, to the exact sequence

1 → T −→ N −→ W → 1,

we see that to any field extension K /K, one can associate a natural cohomology class

K (x) ∈ H2(K , xT) such that x ∈ θK (H1(K ,N)) if and only if 
K (x) is trivial. It
follows from (i) that 
K(x) ∈X2(xT), which is trivial by (ii). Thus, x = θK(y) for some
y ∈ H1(K,N). Furthermore, according to loc.cit., §5.5, for any K /K there is a natural
surjective map νK : H1(K , xT) → θ−1

K (x). For each v ∈ VK
∞, by (i), we can find zv ∈ CKv

such that θKv
(zv) = x, and then pick tv ∈ H1(Kv, xT) for which νKv

(tv) = zv . By [26],
Proposition 6.17, the diagonal map H1(K, xT) −→ ∏

v∈VK∞ H1(Kv, xT) is surjective, so
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there is t ∈ H1(K, xT) that maps to (tv)v∈VK∞ . Set z = νK(t). Then z maps onto (zv)v∈VK∞
under the diagonal map H1(K,N) −→ ∏

v∈VK∞ H1(Kv,N). Combining the fact that zv ∈
CKv

with the injectivity of the map H1(K,G) −→ ∏
v∈VK∞ H1(Kv,G) ([26], Theorem 6.6),

we obtain that z ∈ CK. Thus, x = θK(z) ∈ θK(CK), as required. �

We now turn to the comparison of the sets of maximal K-tori of two absolutely
simple simply connected K-groups G1 and G2. We assume that there exist maximal K-
tori T0

1 of G1 and T0
2 of G2, and a K-isomorphism ϕ0: G1 → G2 whose restriction to T0

1 is
an isomorphism onto T0

2 defined over K, and we fix these T0
1, T0

2 and ϕ0 for the rest of the
section. Clearly, ϕ0 induces an isomorphism between N1 = NG1(T

0
1) and N2 = NG2(T

0
2),

and hence an isomorphism ϕW
0 between the Weyl groups W1 = N1/T0

1 and W2 = N2/T0
2.

Lemma 9.3. — The map ϕW
0 : W1 → W2 is defined over K.

Proof. — Since ϕ0|T0
1 is defined over K, for any n ∈ N1(K), t ∈ T0

1(K) and any
σ ∈ Gal(K/K), we have

ϕ0(σ (ntn−1)) = σ(ϕ0(ntn−1)),

which implies that

ϕ0(σ (n))ϕ0(σ (t))ϕ0(σ (n))−1 = σ(ϕ0(n))σ (ϕ0(t))σ (ϕ0(n))
−1.

Since ϕ0(σ (t)) = σ(ϕ0(t)), we conclude that σ(ϕ0(n)) ≡ ϕ0(σ (n)) modulo T0
2(K). This

means that ϕW
0 commutes with every σ ∈ Gal(K/K), hence it is defined over K. �

Lemma 9.3 enables us to define, for any field extension K /K, the induced isomor-
phism H1(K ,W1) → H1(K ,W2), which will also be denoted by ϕW

0 . This isomorphism
will play a critical role in comparing the maximal K-tori of G1 and G2. More precisely,
for i = 1,2, we let θ

(i)

K : H1(K ,Ni) → H1(K ,Wi) be the map induced by the canoni-
cal homomorphism Ni → Wi . Furthermore, let C (i)

K = Ker(H1(K ,Ni) → H1(K ,Gi)),
and let δ(i)

K :C (i)

K → Gi(K )\Ti(K ) (where Ti is the variety of maximal tori of Gi ) be the
bijection provided by Lemma 9.1. Then the condition that G1 and G2 have the “same”
maximal K-tori is basically equivalent to the following

ϕW
0 (θ

(1)
K (C (1)

K )) = θ
(2)
K (C (2)

K ).(27)

To give a precise interpretation of (27), we need to introduce the following definition.

Definition 9.4. — Let K be a field extension of K and let T1 be a maximal K -torus of G1.

A K -embedding ι: T1 → G2 will be called coherent (relative to ϕ0) if there exists a K -isomorphism

ϕ: G1 → G2 of the form ϕ = Int h ◦ ϕ0, with h ∈ G2(K ), such that ι = ϕ|T1. Furthermore, we

say that G1 and G2 have coherently equivalent systems of maximal K -tori if every maximal K -torus

T1 of G1 admits a coherent (relative to ϕ0) K -embedding into G2, and every maximal K -torus T2

of G2 admits a coherent (relative to ϕ−1
0 ) K -embedding into G1.
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Lemma 9.5. — Let T1 be a maximal K -torus of G1, and let x1 ∈ C (1)
K be the cohomology

class that corresponds to T1 under δ
(1)
K . Then T1 admits a coherent (relative to ϕ0) K -embedding into

G2 if and only if ϕW
0 (θ

(1)
K (x1)) ∈ θ

(2)
K (C (2)

K ). Thus, (27) is equivalent to the condition that G1 and

G2 have coherently equivalent systems of maximal K-tori.

Proof. — Pick g1 ∈ G1(K ) so that T1 = g1T0
1g−1

1 . Then x1 is represented by the
N1(K )-valued Galois-cocycle σ �→ ασ := g−1

1 σ( g1), σ ∈ Gal(K /K ), and therefore,
ϕW

0 (θ
(1)
K (x1)) is represented by the cocycle

σ �→ βσ := ϕ0( g−1
1 σ( g1))T0

2 ∈ W2.(28)

Let ϕ: G1 → G2 be an isomorphism of the form ϕ = Int h ◦ ϕ0, where h ∈ G2(K ). Then
T2 := ϕ(T1) can be written in the form T2 = g2T0

2g−1
2 , where g2 = hϕ0( g1). So, T2 is

defined over K if and only if g−1
2 σ( g2) ∈ N2(K ) for all σ ∈ Gal(K /K ), in which

case the class x2 corresponding to T2 is represented by the N2(K )-valued Galois-cocycle
σ �→ g−1

2 σ( g2). Then θ
(2)
K (x2) is represented by the cocycle

σ �→ γσ := g−1
2 σ( g2)T0

2 = ϕ0( g1)
−1h−1σ(h)σ (ϕ0( g1))T0

2 ∈ W2.(29)

Finally, notice that the condition that ϕ|T1 is defined over K is equivalent to

ϕ(σ( g1tg−1
1 )) = σ(ϕ( g1tg−1

1 ))(30)

for all t ∈ T0(K ) and σ ∈ Gal(K /K ).

The left- and the right-hand sides of (30) can be expanded as follows:

ϕ(σ( g1tg−1
1 )) = hϕ0(σ ( g1tg−1

1 ))h−1 = hϕ0(σ ( g1))ϕ0(σ (t))ϕ0(σ ( g1))
−1h−1

and

σ(ϕ( g1tg−1
1 )) = σ(hϕ0( g1tg−1

1 )h−1)

= σ(h)σ (ϕ0( g1))σ (ϕ0(t))σ (ϕ0( g1))
−1σ(h)−1.

So, since ϕ0(σ (t)) = σ(ϕ0(t)), we see that (30) is equivalent to

ϕ0(σ ( g1))
−1h−1σ(h)σ (ϕ0( g1)) ∈ T0

2 for all σ ∈ Gal(K /K ).(31)

Now, suppose ϕ|T1 is defined over K , i.e., (31) holds. We claim that ϕW
0 (θ

(1)
K (x1)) =

θ
(2)
K (x2) ∈ θ

(2)
K (C (2)

K ). Indeed, combining (31) with (29) and (28), we see that

γσ = ϕ0( g1)
−1h−1σ(h)σ (ϕ0( g1))T0

2 = ϕ0( g−1
1 σ( g1))T0

2 = βσ ,

as required.
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Conversely, suppose ϕW
0 (θ

(1)
K (x1)) ∈ θ

(2)
K (C (2)

K ). This means that there exists
g2 ∈ G2(K ) such that

βσ = g−1
2 σ( g2)T0

2 for all σ ∈ Gal(K /K ).(32)

Set h = g2ϕ0( g1)
−1 and ϕ = Int h ◦ ϕ0. We need to show that ϕ|T1 is defined over K , in

other words, (31) holds. But this is obtained directly by combining (28) with (32). �

Combining Theorem 9.2 with Lemma 9.5, we obtain the following local-global
principle for the existence of a coherent K-embedding of a K-torus as a maximal torus
in a semi-simple group.

Theorem 9.6. — Let G1 and G2 be two connected semi-simple simply connected algebraic

groups over a number field K. Assume that

(∗) there exist maximal K-tori T0
1 of G1 and T0

2 of G2, and a K-isomorphism ϕ0: G1 → G2

whose restriction to T0
1 is an isomorphism onto T0

2 defined over K.

Let T1 be a maximal K-torus of G1 such that X2(T1) is trivial (which automatically holds if there

exists v0 ∈ VK such that T1 is Kv0-anisotropic). If T1 admits a coherent (relative to ϕ0) Kv-embedding

into G2 for every v ∈ VK, then it admits a coherent K-embedding into G2.

The following lemma explains why coherent embeddings of tori are easier to ana-
lyze if the ambient group is not of type D2n.

Lemma 9.7. — Assume that G1 and G2 are absolutely simple simply connected and of type

different from D2n, and let K /K be a field extension. If T1 is a maximal K -torus of G1 and

ϕ: G1 → G2 is a K -isomorphism such that ι := ϕ|T1 is defined over K , then either ι, or ι′, defined

by ι′(t) = ι(t)−1, is a coherent K -embedding of T1 into G2 (in particular, T1 admits such an

embedding). Thus, if G1 and G2 are K -isomorphic, then they have coherently equivalent systems of

maximal K -tori.

Proof. — Obviously, T2 := ϕ(T1) is defined over K . Let �2 be the root system
of G2 with respect to T2. Since G2 is not of type D2n, the quotient Aut(�2)/W(�2) is
of order � 2, and in case it is of order 2, the automorphism α �→ −α represents the
nontrivial coset. Equivalently, Aut G2/ Int G2 has order � 2, and in case it has order 2,
there is an outer automorphism τ of G2 defined over K such that τ(t) = t−1 for all
t ∈ T2. Set ϕ′ = τ ◦ ϕ, then ϕ′|T1 = ι′. Since one of ϕ and ϕ′ is of the form Int h ◦ ϕ0, the
lemma follows. �

Combined with Theorem 9.6, this lemma yields the following.

Corollary 9.8. — Let G1 and G2 be absolutely simple simply connected groups of type different

from D2n, and suppose that the condition (∗) of Theorem 9.6 holds. Assume in addition that X2 is
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trivial for all maximal K-tori of G1 and G2 (which automatically holds if there exists a place v0 of K
such that Gi is Kv0-anisotropic for i = 1,2). If G1 � G2 over Kv , for all v ∈ VK, then G1 and G2

have coherently equivalent systems of maximal K-tori.

Of course, if G1 and G2 are not of type A, D or E6, then the assumption that
G1 � G2 over Kv for all v ∈ VK implies that G1 � G2 over K, and our assertion becomes
obvious (cf. Lemma 9.7). We will use Corollary 9.8 to show that for each of the types
An, D2n+1, or E6, one can construct an arbitrarily large number of pairwise nonisomor-
phic absolutely simple simply connected K-groups of this type with coherently equivalent
systems of maximal K-tori (cf. Theorem 9.12).

Henceforth (through 9.12), G0 will denote a connected absolutely almost simple
simply connected quasi-split K-group of one of the following types: An, D2n+1 (n > 1),
and E6. We first describe a general construction of nonisomorphic inner twists G1 and
G2 of G0 which are isomorphic over Kv for all v ∈ VK. Let L be the minimal Galois
extension of K over which G0 splits, and let V0 be the set of v ∈ VK

f that split in L. We
let C denote the center of G0; clearly, C is L-isomorphic to μ�, the group of �-th roots
of unity, where � = n + 1 for G0 of type An, � = 4 for type D2n+1, and � = 3 for type E6.
Each x ∈ G0 gives the inner automorphism z �→ xzx−1 of G0. This leads to the natural
isomorphism i from the adjoint group G0 of G0 onto the group of inner automorphisms
Int G0 (⊂ Aut G0). Any automorphism g of G0 can be regarded as an automorphism of
G0, and then for every x ∈ G0, we have g ◦ i(x) ◦ g−1 = i( g(x)) in Aut G0.

For a class ζ ∈ H1(K,G0), in the sequel we will let σ �→ ζσ , σ ∈ Gal(K/K), denote
a Galois-cocycle representing ζ .

For any v ∈ VK, we have the following commutative diagram

H1(K,G0)
α−→ H1(K,Aut G0)

γv ↓ ↓ βv

H1(Kv,G0)
αv−→ H1(Kv,Aut G0),

in which α and αv are induced by i. Furthermore, for any extension K /K there is a
natural map ρK : H1(K ,G0) → H2(K ,C). We will also need the map μ: H2(K,C) →⊕

v H2(Kv,C). We will use additive notation for H2(K ,C) etc.

Lemma 9.9. — Let ξ1, ξ2 ∈ H1(K,G0).

(i) If ρK(ξ1) �= ±ρK(ξ2), then α(ξ1) �= α(ξ2).

(ii) If v ∈ VK
f and ρKv

(γv(ξ1)) = ±ρKv
(γv(ξ2)), then βv(α(ξ1)) = βv(α(ξ2)).

Proof. — Notice that Aut G0 has the following semi-direct product decomposition

Aut G0 = Int G0 � �,

where � is a K-subgroup of order two, whose nontrivial element s is defined over K and
acts on C as c �→ c−1.
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(i): Suppose α(ξ1) = α(ξ2). Then there exists g ∈ Aut G0 such that

i(ξ2σ ) = g ◦ i(ξ1σ ) ◦ σ( g)−1 for all σ ∈ Gal(K/K).

If g ∈ IntG0, then ξ1 = ξ2, and therefore, ρK(ξ1) = ρK(ξ2). Now, suppose g /∈ IntG0. Then
g = hs, h ∈ IntG0. The cohomology class ξ ′

2 in H1(K,G0) corresponding to the cocycle

σ �→ ξ ′
2σ = s(ξ1σ ), σ ∈ Gal(K/K),

clearly equals ξ2. As s(c) = c−1 for c ∈ C, we conclude that

ρK(ξ2) = ρK(ξ
′
2) = −ρK(ξ1),

a contradiction.
(ii): Recall that ρKv

is a bijection for any v ∈ VK
f (cf. [26], Corollary of The-

orem 6.20), so our claim is obvious if ρKv
(γv(ξ1)) = ρKv

(γv(ξ2)). Suppose now that
ρKv

(γv(ξ1)) = −ρKv
(γv(ξ2)). Consider the G0(K)-valued Galois-cocycle σ �→ ξ ′

2σ :=
s(ξ2σ ), and let ξ ′

2 be the associated cohomology class. Then for σ ∈ Gal(K/K) we have

i(ξ ′
2σ ) = s ◦ i(ξ2σ ) ◦ s−1 = s ◦ i(ξ2σ ) ◦ σ(s)−1,

so α(ξ ′
2) = α(ξ2). On the other hand,

ρKv
(γv(ξ

′
2)) = −ρKv

(γv(ξ2)) = ρKv
(γv(ξ1)).

Then γv(ξ
′
2) = γv(ξ1), and

βv(α(ξ1)) = βv(α(ξ
′
2)) = βv(α(ξ2)). �

Let Ĉ be the character group of C. Fix a generator χ of Ĉ(K), and let d denote its
order. For each v ∈ VK, χ induces a character

χv: H2(Kv,C) → H2(Kv,GL1) ⊂ Q/Z.

If v ∈ V0, then H2(Kv,C) � Br(Kv)� is cyclic of order �, and one can choose a generator
bv ∈ H2(Kv,C) such that χv(bv) = 1/d . Now, let V be a finite subset of VK containing
VK

∞, and suppose that for each v ∈ V we are given ξ (v) ∈ H1(Kv,G0). Fix an integer
t � 1, and pick 2(t + 1) places

v′
0, v

′′
0 , v

′
1, v

′′
1 , . . . , v

′
t , v

′′
t ∈ V0 \ (V0 ∩ V).

Let Vt = {v′
0, v

′′
0 , v

′
1, v

′′
1 , . . . , v

′
t , v

′′
t }. Now pick xv′′

0
∈ H2(Kv′′

0
,C) so that

∑

v∈V

χv(ρKv
(ξ (v))) + χv′

0
(bv′

0
) + χv′′

0
(xv′′

0
) = 0.
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Next, fix ε = (ε1, . . . , εt) ∈ Et := ∏t

i=1{±1}, and consider (x(ε)v) ∈ ⊕
v H2(Kv,C) with

the following components:

x(ε)v =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρKv
(ξ (v)), v ∈ V,

bv′
0
, v = v′

0,

xv′′
0
, v = v′′

0 ,

εjbv′
j
, v = v′

j , j � 1,
−εjbv′′

j
, v = v′′

j , j � 1,
0, for all other v.

(33)

We obviously have
∑

v χv(x(ε)v) = 0, so it follows from a theorem of Poitou-Tate (cf. [39],
Chap. II, §6, Theorem 3) that there exists x(ε) ∈ H2(K,C) such that μ(x(ε)) = (x(ε)v).
We now want to construct a maximal K-torus T0 of G0 (depending on V, ξ (v) for v ∈ V,
and Vt ) such that for each ε ∈ Et , x(ε) lifts to a class ζ(ε) ∈ H1(K,T0) whose image in
H1(Kv,G0) is ξ (v) for all v ∈ V.

For every real v, ξ (v) is given by an element gv ∈ G0(Kv) such that gvgv = 1, where
gv denotes the conjugate of gv under the nontrivial automorphism of Kv/Kv = C/R. It
follows from the uniqueness of the Jordan decomposition that the semi-simple and the
unipotent components gs

v , gu
v of gv also define cocycles. If gu

v �= 1, then the 1-dimensional
connected unipotent subgroup U generated by gu

v is defined over Kv = R. Using the
fact that H1(Kv,U) is trivial, one sees that ξ (v) is the cohomology class given by gs

v . So
we can assume that gv is semi-simple. Then gv is contained in the connected centralizer
H := ZG0

( gv)
◦ (cf. [3], Corollary 11.12), and H is defined over Kv . Hence, gv is contained

in a maximal Kv-torus T
(v)

of H which is also a maximal torus of G0. Now for each
v ∈ (V \ VK

∞) ∪ Vt , we pick a maximal Kv-torus T
(v)

of G0 which is anisotropic over Kv

(see [26], Theorem 6.21, or [9], §2.4). Using the weak approximation property for the
variety of maximal tori of G0 (cf. [26], Corollary 3 in §7.1), we can find a maximal K-
torus T0 of G0 which is conjugate to T

(v)
under an element of G0(Kv) for all v ∈ V ∪ Vt .

Let π : G0 → G0 be the natural K-isogeny, and T0 = π−1(T0).

Lemma 9.10. — For every ε ∈ Et , there exists ζ(ε) ∈ H1(K,T0) which maps onto x(ε)

under the coboundary map H1(K,T0) → H2(K,C), and whose image in H1(Kv,G0) equals ξ (v)

for all v ∈ V.

Proof. — For any real v, as T0 is conjugate to T
(v)

under an element of G0(Kv),
and ξ (v) is given by gv ∈ T

(v)
(Kv), there exists a cohomology class ξ ′(v) in H1(Kv,T0)

which maps onto ξ (v) under the natural map H1(Kv,T0) → H1(Kv,G0). On the other
hand, for every nonarchimedean v ∈ V, as T0 is anisotropic over Kv , the natural map
H1(Kv,T0) → H1(Kv,G0) is onto (see the proof of Theorem 6.20 on p. 326 of [26]),
there is a ξ ′(v) ∈ H1(Kv,T0) which maps onto ξ (v).
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We have the following commutative diagram with exact rows:

H1(K,T0)
δ1−→ H2(K,C)

δ2−→ H2(K,T0)

η1 ↓ η2 ↓ η3 ↓
⊕

v H1(Kv,T0)

1−→ ⊕

v H2(Kv,C)

2−→ ⊕

v H2(K,T0)

(notice that η2 actually coincides with μ). First, we will show that x(ε) ∈ Im δ1 = Ker δ2.
Observe that

x(ε)v ∈ Im(H1(Kv,T0) → H2(Kv,C))(34)

for all v. This is obvious if v �∈ V ∪ Vt . For any real v, this follows from the fact that
x(ε)v = ρKv

(ξ (v)), and ξ (v) is the image of ξ ′(v) ∈ H1(Kv,T0). For a nonarchimedean v ∈
V ∪ Vt , by our construction T0 is Kv-anisotropic, and it follows from the Nakayama-Tate
Theorem (cf. [26], Theorem 6.2) that H2(Kv,T0) is trivial. So the map H1(Kv,T0) →
H2(Kv,C) is surjective, and (34) is automatic. Thus, η2(x(ε)) = (x(ε)v) ∈ Im 
1, so


2(η2(x(ε))) = η3(δ2(x(ε))) = 0.

Since T0 is anisotropic at every v ∈ Vt , we have that X2(T0) = Kerη3 is trivial, and
hence δ2(x(ε)) = 0, as required. Fix ζ ′(ε) ∈ H1(K,T0) such that δ1(ζ

′(ε)) = x(ε).
For an extension K /K, we consider the natural homomorphism

λK : H1(K ,T0) → H1(K ,T0),

and for v ∈ VK, we let ζ ′(ε)(v) denote the image of ζ ′(ε) under the restriction map
H1(K,T0) → H1(Kv,T0). For each v ∈ V, the cohomology classes ζ ′(ε)(v) and ξ ′(v) have
the same image in H2(Kv,C), so there exists θ(ε)v ∈ H1(Kv,T0) such that

ξ ′(v) = λKv
(θ(ε)v) · ζ ′(ε)(v).

By ([26], Proposition 6.17), the map H1(K,T0) → ∏
v∈VK∞ H1(Kv,T0) is surjective. Pick

θ(ε) ∈ H1(K,T0) which maps onto (θ(ε)v)v∈VK∞ , and set ζ(ε) = λK(θ(ε)) · ζ ′(ε). Let
ζ(ε)(v) be the image of ζ(ε) under the map H1(K,T0) → H1(Kv,T0). Then δ1(ζ(ε)) =
δ1(ζ

′(ε)) = x(ε) and ζ(ε)(v) = ξ ′(v) for all v ∈ VK
∞. Finally, to show that the image of

ζ(ε)(v) in H1(Kv,G0) coincides with ξ (v) for nonarchimedean v ∈ V, we observe that
these elements have the same image under ρKv

, which is a bijection for all v ∈ VK
f (Corol-

lary in §6.4 of [26]). �

Let ζ(ε) be as in the preceding lemma, and ξ(ε) be the image of ζ(ε) under the
natural map H1(K,T0) → H1(K,G0). Then ρK(ξ(ε)) = x(ε) and γv(ξ(ε)) = ξ (v) for all
v ∈ V. Fix two distinct ε1, ε2 ∈ Et , and let ξj = ξ(εj). Since each bv has order � > 2, it
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follows from (33) that μ(ρK(ξ1)) �= ±μ(ρK(ξ2)), hence ρK(ξ1) �= ±ρK(ξ2), so according
to Lemma 9.9(i), α(ξ1) �= α(ξ2). On the other hand, we have

ρKv
(γv(ξ1)) = 0 = ρK(γv(ξ2)) for any v ∈ VK \ (V ∪ V0),

ρKv
(γv(ξ1)) = ±ρKv

(γv(ξ2)) for any v ∈ V0,

and

γv(ξ1) = ξ (v) = γv(ξ2) for any v ∈ V.

Using Lemma 9.9(ii), we now see that βv(α(ξ1)) = βv(α(ξ2)) for all v ∈ VK. Thus, we
obtain the following proposition.

Proposition 9.11. — The 2t elements ξ(ε) ∈ H1(K,G0), ε ∈ Et , have the following proper-

ties: the elements α(ξ(ε)) ∈ H1(K,Aut G0) are pairwise distinct, while for any v ∈ VK, the elements

βv(α(ξ(ε))) ∈ H1(Kv,Aut G0) are all equal, and, in addition, γv(ξ(ε)) = ξ (v) for all v ∈ V.

For ξ(ε) as above, we let Gε denote the form of G0 obtained by twisting it by a
cocycle representing α(ξ(ε)). Since the cohomology classes α(ξ(ε)), ε ∈ Et , are pair-
wise distinct, the corresponding groups Gε are pairwise nonisomorphic over K. Now, fix
ε1, ε2 ∈ Et , and set

ζj = ζ(εj) ∈ H1(K,T0), ξj = ξ(εj) ∈ H1(K,G0) and Gj = Gεj

for j = 1,2. As ξj is the image of ζj under the natural map H1(K,T0) → H1(K,G0), there
is a T0(K)-valued Galois cocycle σ �→ zjσ , σ ∈ Gal(K/K), representing ξj . Therefore,
there exists a K-isomorphism ϕj : G0 → Gj such that ϕ−1

j ◦ σ(ϕj) = i(zjσ ), for all σ ∈
Gal(K/K), where i is the natural isomorphism G0 → Int G0. Then ϕj|T0 is defined over
K, and hence, T0

j := ϕj(T0) is a maximal K-torus of Gj . Now ϕ0 := ϕ2 ◦ ϕ−1
1 is a K-

isomorphism from G1 onto G2 whose restriction to T0
1 is an isomorphism onto T0

2 defined
over K. Since βv(α(ξ1)) = βv(α(ξ2)), the groups G1 and G2 are Kv-isomorphic, for all
v ∈ VK. In addition, for each j = 1,2, and any v ∈ V, the group Gj is Kv-isomorphic
to the group ξ (v)G0 obtained from G0 by twisting over Kv by any cocycle representing
αv(ξ

(v)). So, applying Corollary 9.8, we obtain the following.

Theorem 9.12. — Let G0 be a simple simply connected quasi-split K-group of one of the

following types: An, D2n+1 (n > 1), or E6, and let ξ(ε) ∈ H1(K,G0), ε ∈ Et , be the cohomology

classes as in Proposition 9.11, and let Gε be the group obtained by twisting G0 by a cocycle representing

ξ(ε). Then Gε, ε ∈ Et , are pairwise nonisomorphic K-forms of G0. Moreover, if for every ε ∈ Et , and

every maximal K-torus T of Gε, we have X2(T) = 0 (which is automatically the case if for some

v ∈ V the twist ξ (v)G0 is Kv-anisotropic), then all the groups Gε have coherently equivalent systems of

maximal K-tori.
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Remark 9.13. — If G is an absolutely simple simply connected inner K-form of
type An, then the condition X2(T) = {0} is automatically satisfied for any maximal K-
torus T of G. Indeed, T is of the form T = R(1)

A/K(GL1), where A is a commutative étale
(n + 1)-dimensional K-algebra. Letting S = RA/K(GL1), we have the exact sequence

1 → T −→ S −→ GL1 → 1,

which in conjunction with Hilbert’s Theorem 90 induces the following commutative dia-
gram with exact rows:

0 −→ H2(K,T) −→ H2(K,S)
↓ ↓

0 −→ ⊕
v H2(Kv,T) −→ ⊕

v H2(Kv,S).

Since the map H2(K,S) −→ ⊕
v H2(Kv,S) is injective by the Albert-Hasse-Brauer-

Noether Theorem, our assertion follows.

We now return to our standard set-up: let G1 = G2 =: G be connected absolutely
almost simple algebraic groups over a field F of characteristic zero, and let G̃i, for i = 1,2,
be a form of Gi over a number field K. We observe that if G̃1 and G̃2 have coherently
equivalent systems of maximal K-tori then so do the corresponding adjoint groups G1

and G2. Then for any finite set S ⊂ VK
∞ containing VK

∞, any (Gi,K,S)-arithmetic sub-
groups �i ⊂ Gi(F) are weakly commensurable (provided that they are Zariski-dense) –
see the argument in Example 6.5. It turns out that in this situation arithmetic subgroups
provide length-commensurable locally symmetric spaces (cf. Corollary 8.7).

Proposition 9.14. — Let G1 = G2 = G be connected absolutely simple real algebraic groups,

and let Xi be the symmetric space of Gi = Gi(R). For i = 1,2, let �i be a torsion-free (Gi,K)-

arithmetic subgroup of Gi . If G1 and G2 have coherently equivalent systems of maximal K-tori, then the

locally symmetric spaces X�1 and X�2 are length-commensurable.

Proof. — We will assume (as we may) that G = G, and then �i ⊂ Gi(K) for i = 1,2.
Let γ1 ∈ �1 be a nontrivial semi-simple element, and let T1 ⊂ G1 be a maximal K-torus
containing it. By our assumption, there exists an isomorphism ϕ:G1 → G2 such that the
restriction ϕ|T1 is defined over K, hence T2 := ϕ(T1) is a maximal K-torus of G2. Since
ϕ(T1(K) ∩ �1) is an arithmetic subgroup of T2(K), there exists n > 0 such that γ2 :=
ϕ(γ1)

n belongs to �2. The map α → ϕ∗(α) defines a bijection between the root systems
�(G2,T2) and �(G1,T1). It follows that the sets of complex numbers

{α(γ n
1 ) | α ∈ �(G1,T1)} and {α(γ2) | α ∈ �(G2,T2)}

are identical. Using the formula (23) from Proposition 8.5(ii), we see that
λ�2(γ2)/λ�1(γ1) ∈ Q.

Thus, Q ·λ�1(�
ss
1 ) ⊂ Q ·λ�2(�

ss
2 ). By symmetry, these sets are actually equal, and therefore

X�1 and X�2 are length-commensurable. �
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Construction 9.15. — We finally indicate how Theorem 9.12 can be used to con-
struct examples of weakly commensurable cocompact arithmetic and S-arithmetic sub-
groups, and length-commensurable compact locally symmetric spaces, which are not
commensurable. Let G be a connected absolutely simple simply connected isotropic
real algebraic group of one of the following types: An, D2n+1, where n > 1, or E6, and
let L be either R or C depending on whether or not G is an inner form over R. Fix
a real quadratic extension K/Q , and let v′

∞, v′′
∞ denote its two real places. Next, pick a

quadratic extension L of K so that L⊗K Kv′∞ = L2/[L:R] and L⊗K Kv′′∞ = C, and let G0 de-
note the nonsplit quasi-split K-group of the same type as G which splits over L. Since for
the types under consideration, the R-anisotropic form is an inner twist of the correspond-
ing nonsplit quasi-split R-group, there exist cohomology classes ξ (v′∞) ∈ H1(Kv′∞,G 0)

and ξ (v′′∞) ∈ H1(Kv′′∞,G 0) such that the twist
ξ (v′∞)G0 is R-isomorphic to G and the twist

ξ (v′′∞)G0 is R-anisotropic. Then applying the construction described in Theorem 9.12 to
V = {v′

∞, v′′
∞} and the specified cocycles, we obtain 2t groups Gε, ε ∈ Et , which are pair-

wise nonisomorphic over K but have coherently equivalent systems of maximal K-tori as
these groups are all anisotropic over Kv′′∞ . Besides, Gε is isomorphic to G over Kv′∞ = R,
for every ε ∈ Et . Thus, torsion-free arithmetic subgroups of Gε yield discrete torsion-free
subgroups of G = G(R), and it follows from Proposition 9.14 that the resulting locally
symmetric spaces are length-commensurable, but not commensurable. Finally, for any fi-
nite subset S of VK containing VK

∞, the S-arithmetic subgroups of Gε, ε ∈ Et , are pairwise
weakly commensurable, but not commensurable (cf. Example 6.5).

Remark 9.16. — Most of the results of this section immediately extend to a global
function field K. This applies, in particular, to Theorem 9.6, yielding a local-global prin-
ciple for the existence of a coherent embedding, and Theorem 9.12, containing a con-
struction of forms of a quasi-split group G0 belonging to one of the types An, D2n+1 (n > 1)
or E6, which are not K-isomorphic, but are isomorphic over Kv for all v ∈ VK. It should
be noted, however, that the construction of nonisomorphic K-groups with coherently
equivalent systems of maximal K-tori, described in 9.15, extends to global function fields
only for groups of type An. The reason is that we ensured the triviality of X2(T) for all
maximal tori of a group under consideration by arranging that the group is anisotropic
at a certain archimedean place. Over global function fields, however, any group of type
different from An is isotropic.

10. Isospectral locally symmetric spaces

For a compact Riemannian manifold M, let

L(M) = {λ ∈ R, there exists a closed geodesic on M of length λ},
The following theorem is known. For locally symmetric spaces of rank 1, a proof is given
in [13]. However, for locally symmetric spaces of rank > 1, we have not been able to find
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a reference for it. For the convenience of the reader we will give below its proof which
was supplied to us by Alejandro Uribe and Steve Zelditch.

Theorem 10.1. — Let M1 and M2 be two compact locally symmetric spaces with nonpositive

sectional curvatures. Assume M1 and M2 are isospectral, in the sense that the spectra of their Laplace-

Beltrami operators on functions are the same (their eigenvalues and their multiplicities). Then L(M1) =
L(M2).

As we will explain, this theorem is a direct consequence of theorems of Duistermaat
and Guillemin, [10], and of Duistermaat, Kolk and Varadarajan, [11]. (In fact, the results
of the latter paper alone imply this theorem, but it is conceptually better to use the main
theorem of [10] in the proof.)

The results of [11] (cf. Proposition 5.15) include that, for M a compact locally
symmetric space of non-compact type,

(i) L(M) is a discrete subset of R, and
(ii) if λ ∈ L(M), the set

Zλ := {x ∈ T1M; the geodesic through x is closed of length λ}
is a finite union of closed submanifolds (possibly of different dimensions) of the
unit tangent bundle T1M of M.

Denote by Z◦
λ the union of connected components of Zλ of maximal dimension. It turns

out that, in addition to the previous theorem, for M as above

for all λ ∈ L(M),dim Z◦
λ and Vol Z◦

λ are spectrally determined.(35)

Here the volume is with respect to a measure naturally induced by the geodesic flow.
(Equation (5.47) of [11] is a formula for this volume.)

Let us now see how one proves Theorem 10.1 and the additional statement, (35).
Proposition 5.8 of [11] establishes that each Zλ is a clean fixed-point set of the time
λ map of the geodesic flow φλ : T1M → T1M. (Recall that this means that at each
z ∈ Zλ, ker d(φλ)z = TzZλ.) We can therefore apply the Duistermaat-Guillemin trace for-
mula, [10], to the square root of the Laplace-Beltrami operator on M. Specifically, pick a
length λ and a Schwartz function on the real line, ϕ, such that its Fourier transform ϕ̂ is
compactly supported and satisfies:

ϕ̂(λ) = 1 and L(M) ∩ supp ϕ̂ = {λ}.
(Such a ϕ exists by item (i) above.) Let 0 = μ0 < μ1 � μ2 � · · · be the square roots of
the eigenvalues of the Laplace-Meltrami operator on M, listed with their multiplicities.
Then, by Theorem 4.5 of [10] one has an asymptotic expansion as μ → ∞ of the form:

∑

j

ϕ(μ − μj) ∼ eiμλ

∞∑

j=0

cjμ
dλ−j.(36)



WEAKLY COMMENSURABLE ARITHMETIC GROUPS 181

Here dλ = (dim Z◦
λ − 1)/2. A key point is that the leading coefficient, c0, is not zero

because the Maslov indices (the integers σj in equation (4.7) in [10]) of all closed geodesics
on M are zero, by Proposition 5.15 of [11]. By equation (4.8) of [10], c0 is equal to the
volume of Z◦

λ times a factor that depends only on dλ. The expansion (36) in the present
context is explicitly discussed in §5.6 of [11] (see the last formula in that section which,
incidentally, contains a typo: a τ is missing in the left-hand side exponent). The dimension
of Z◦

λ is determined spectrally by the size in μ of the left-hand side of (36), and therefore
c0 determines the volume of Z◦

λ.
Theorem 10.1 and statement (35) follow from (36), the information on c0, and

the basic fact that if L(M) ∩ supp ϕ̂ = ∅, then the left-hand side of (36) is O(μ−∞). By
considering all possible test functions ϕ as above, one can detect the set L(M) from the
eigenvalues of the Laplacian. �

For i = 1,2, let Gi be a connected absolutely simple adjoint real algebraic group,
Gi = Gi(R), and �i be a torsion-free cocompact discrete subgroup of Gi . Let X�i

= Xi/�i ,
where Xi is the symmetric space of Gi . Assume that X�1 and X�2 are isospectral. Accord-
ing to a result proved by Hermann Weyl, any two isospectral Riemannian manifolds are
of same dimension, and have equal volume, see, for example, [14], Theorem 4.2.1. It
follows that the exceptional case (E) cannot occur. So, from Theorem 10.1 and Corol-
lary 8.14, we obtain the following.

Theorem 10.2. — If X�1 and X�2 are isospectral, then �1 and �2 are weakly commensurable.

Now, Theorem 10.2 in conjunction with Theorem 6 implies

Theorem 10.3. — If X�1 and X�2 are isospectral, and �1 is arithmetic, then so is �2.

Let us now assume that X�1 and X�2 are isospectral, and that at least one of the
subgroups �1 or �2 is arithmetic. Then as we already pointed out, X�1 and X�2 have
equal dimension, and by Theorem 10.3, the other discrete subgroup is also arithmetic.
As �1 and �2 are Zariski-dense and weakly commensurable, by Theorem 1, the groups
G1 and G2 are either of the same type, or one of them is of type Bn and the other is of type
Cn with n > 2. Moreover, according to Theorem 6.2, we have rkR G1 = rkR G2. Using
the classification of connected real simple Lie groups and symmetric spaces (see [17],
Chap. X) we find that if G1 and G2 are of same Killing-Cartan type, have equal real
rank, and the associated symmetric spaces have equal dimension, then G1 = G2. On the
other hand, if G1 is of type Bn and G2 is of type Cn, then the fact that they have the same
real rank and the associated symmetric spaces have equal dimension implies (cf. [17],
Table V on p. 518) that both groups split over R, and hence, G1 = SO(n, n + 1) and G2

is the adjoint group of Sp2n. Sai-Kee Yeung has just shown, by comparing the traces of the
heat operator, that these groups cannot give rise to compact isospectral locally symmetric
spaces if n > 2. Combining these results with Theorem 4, we obtain the following.
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Theorem 10.4. — Assume that X�1 and X�2 are isospectral, and at least one of the subgroups

�1 and �2 is arithmetic. Then G1 = G2 := G. Moreover, unless G is of type An, D2n+1 (n > 1), D4

or E6, the spaces X�1 and X�2 are commensurable.

Remark 10.5. — It would be interesting to determine if Theorem 10.4 remains
valid without any assumption of arithmeticity.

The following remark is due to Peter Sarnak.

Remark 10.6. — Let G be a connected semi-simple real Lie group of adjoint type
and without compact factors; X be its symmetric space. If � is a torsion-free irreducible
cocompact discrete subgroup of G , then the set of conjugacy classes of torsion-free irre-
ducible cocompact discrete subgroups �′ of G such that X/�′ is isospectral to X/� is
finite. This follows from H.C. Wang’s finiteness theorem ([36], Chap. IX) if G is not iso-
morphic to PSL2(R), since according to a theorem of André Weil ([36], Theorem 7.63)
irreducible cocompact discrete subgroups in such a G are locally rigid, and X/� and
X/�′, and therefore, G/� and G/�′ have equal volume. On the other hand, if G is iso-
morphic to PSL2(R), then the finiteness of the conjugacy classes of �′’s is proved in §5.3
of [22].
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