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Abstract
Breast cancer (BC) represents a multifaceted malignancy, with escalating incidence and mortality rates annually. Chemo-
therapy stands as an indispensable approach for treating breast cancer, yet drug resistance poses a formidable challenge. 
Through transcriptome data analysis, we have identified two sets of genes exhibiting differential expression in this con-
text. Furthermore, we have confirmed the overlap between these genes and those associated with exosomes, which were 
subsequently validated in cell lines. The investigation screened the identified genes to determine prognostic markers for 
BC and utilized them to formulate a prognostic model. The disparities in prognosis and immunity between the high- and 
low-risk groups were validated using the test dataset. We have discerned different BC subtypes based on the expression 
levels of prognostic genes in BC samples. Variations in prognosis, immunity, and drug sensitivity among distinct subtypes 
were examined. Leveraging data from single-cell sequencing and prognostic gene expression, the AUCell algorithm was 
employed to score individual cell clusters and analyze the pathways implicated in high-scoring groups. Prognostic genes 
(CCT4, CXCL13, MTDH, PSMD2, and RAB27A) were subsewoquently validated using RT-qPCR. Consequently, we have 
established a model for predicting prognosis in breast cancer that hinges on drug resistance and ERGs. Furthermore, we 
have evaluated the prognostic value of this model. The genes identified as prognostic markers can now serve as a reference 
for precise treatment of this condition.
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Introduction

Breast cancer (BC), a pervasive malignancy worldwide, is 
witnessing an increase in both incidence and mortality rates 
[1]. This trend underscores the necessity for effective BC 

management strategies, including prompt diagnosis, precise 
treatment, and notably, chemotherapy. Although chemother-
apy remains a cornerstone of BC treatment, leading to tumor 
shrinkage and potential cures, it is increasingly impeded by 
the emergence of drug resistance in various BC subtypes 
[2]. This resistance not only diminishes the effectiveness of 
chemotherapy but also complicates the anti-tumor treatment Yao Liu and Lun Dong contributed equally to this work as the first 
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process. Therefore, it is crucial to investigate the underlying 
mechanisms of resistance.

Drug resistance can manifest in various subtypes of BC 
through diverse mechanisms. For example, certain genes are 
commonly or differentially expressed across BC types and 
might impact drug resistance [3, 4]. Research has concluded 
that the overexpression of the human epidermal growth fac-
tor receptor (HER-2) significantly affects BC prognosis. 
The use of trastuzumab has markedly improved patient out-
comes in cases of HER-2 overexpression, while resistance to 
HER-2 targeted agents is increasing [5]. Furthermore, muta-
tions in the estrogen receptor gene have been specifically 
linked to harm in metastatic BC [6]. These genetic elements 
contribute to the growing complexity of drug resistance at 
the molecular level, potentially leading to unmanageable 
BC events and increased fatality. It has been demonstrated 
that genes associated with drug resistance have a significant 
impact in this context [6]. For instance, PTX-induced exo-
somal circBACH1 stimulates the migration and stemness 
of BC cells, influencing drug resistance mechanisms by 
absorbing miR-217 to increase the expression of G3BP2 [7]. 
Moreover, inhibiting exosomal tRF-16-K8J7K1B enhances 
the sensitivity of BC cells to tamoxifen, highlighting the 
potential of exosomal pathways as targets to overcome drug 
resistance [8]. These findings suggest that a significant 
aspect of drug resistance mechanisms in BC may be present 
at the cellular level, especially within exosomes.

Exosomes possess a lipid bilayer structure and are typi-
cally sized between 30 and 150 nm. Initially, exosomes were 
believed to primarily serve as a mechanism for cellular waste 
disposal [9]. However, subsequent research has revealed 
their crucial role in both tumor cell proliferation and anti-
tumor immunity [10, 11]. Exosomes also regulate the micro-
environment between cells and the immune system by trans-
porting bioactive molecules. They function as intercellular 
communicative vectors in the tumor microenvironment and 
play a pivotal role in the progression of BC [12]. Exosomes 
are instrumental in remodeling the tumor microenvironment, 
facilitating immune escape, and even contributing to drug 
resistance [13]. Exosomes transport functional proteins and 
noncoding RNAs that impact drug efflux, metabolism, pro-
survival signaling, epithelial-mesenchymal transition, stem-
like characteristics, and remodeling of the microenvironment 
in tumors [14]. Exosomes’ attributes have led to a significant 
focus on research to comprehend the progression of breast 
cancer and treatment resistance.

BC samples were obtained from the GEO cohort (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/), considering both drug resist-
ance and the impact of exosome-associated genes (ERGs). 
The samples were categorized into drug-resistant and drug-
sensitive groups. Differential expression analysis was car-
ried out on both groups, followed by the intersection of the 
resulting differentially expressed genes (DEGs) with the 

previously compiled ERGs. Details of the gene.csv file can 
be found in the Supplementary Material. Univariate Cox 
regression and Lasso-Cox analyses were conducted on the 
gene intersection to identify prognostic genes and formulate 
a prognostic model. The prognostic genes and models were 
subsequently validated using BC samples from the GEO 
cohort. BC subtypes were determined based on the expres-
sion of the prognostic genes, and differences in prognosis 
and immunity among these subtypes were analyzed using 
the NMF method. The study performed a drug sensitivity 
analysis to compare IC50 values among different BC sub-
types, revealing substantial differences among the drugs. 
Additionally, scRNA data from the GEO database were 
utilized to confirm the expression of prognostic genes in 
immune cells. High-scoring cell populations were analyzed 
using AUCell to identify significant pathways.

Method

Acquisition of data sets

We obtained transcriptome data from 224 BC samples, com-
prising 143 drug-resistant samples and 81 sensitive samples. 
These samples were sourced from the GSE163882 dataset, 
accessible in the GEO database (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/). Technical term abbreviations are explained upon 
first usage. The data were utilized to identify drug resistance-
associated exosome genes (EGDR) by identifying overlaps 
between DEGs and genes associated with exosomes. For 
our study, we utilized 1,113 BC samples and 113 controls 
from the TCGA database (https://​portal.​gdc.​cancer.​gov/) as 
our training dataset. We introduced the GSE163882 dataset, 
which is based on the GPL570 Affymetrix Human Genome 
U133 Plus 2.0 Array platform. It comprises gene expression 
profiles of 327 fresh frozen breast cancer tissues from one-
third of the patients diagnosed and treated at the Sun Yat-sen 
Cancer Center of the Sun Yat-sen Foundation between 1991 
and 2004. The GSE163882 dataset served as the training set 
for prognostic gene screening and risk model construction. 
The GSE20685 dataset served as an independent test set to 
validate differences in survival and other aspects between 
high- and low-risk groups. Additionally, scRNA-seq data 
from six BC samples, totaling 1,534 cells, were obtained 
from the GSE118389 dataset. This dataset is based on the 
GPL9052 Illumina Genome Analyzer (Homo sapiens) 
platform.

Differential expression analysis and GO enrichment 
analysis

The study examined the differences in gene expression 
between two groups of breast cancer samples: drug-resistant 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
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and drug-sensitive. The investigation employed the "limma" 
algorithm from the R package "limma." A total of 4,996 
genes exhibited a p value of less than 0.05 between the two 
groups. Additionally, gene ontology (GO) enrichment analy-
sis was performed using the R package "clusterProfiler." The 
results were visualized using the R package "ggplot2."

Screening of prognostic genes and construction 
of prognostic models

Prognostic genes associated with exosomes were identified 
in this study at a significance level of p < 0.05 through uni-
variate Cox regression analysis. Key genes that influence the 
prognosis of patients among the previously identified genes 
were further determined using Lasso regression and tenfold 
cross-validation. Subsequently, prognostic models for BC 
were developed based on these genes. Patients were assigned 
a risk score according to the constructed model, and BC 
samples were categorized into high- and low-risk groups 
using the median risk score value. To validate the model, 
ROC curve analysis and Kaplan–Meier (KM) survival curve 
analysis were performed on both training and test sets. KM 
curves were generated for prognostic genes to assess their 
predictive capability for BC cell metastasis, utilizing distant 
metastasis-free survival (DMFS). The Kaplan–Meier data-
base, accessible at http://​kmplot.​com/​analy​sis/​index.​php?p=​
servi​ce&​cancer=​breast, was employed for the analysis.

Construction of nomogram model

Based on the predictions generated by the prognostic model, 
we constructed a nomogram model. This confirms the inde-
pendent prognostic factor status of the risk score for breast 
cancer (BC). Our team customized a clinical nomogram 
model for BC using the R packages “rms” and “regplot.” 
The model considers the risk score, clinical stage, and base-
line patient information from the training dataset. To assess 
the predictive capability of the nomogram model in breast 
cancer patients, we developed calibration and concordance 
index (C-index) curves and conducted decision curve analy-
sis (DCA).

Immune correlation analysis

To compare the levels of immune cell infiltration between 
high- and low-risk groups, we employed the ssGSEA algo-
rithm from the R package “GSEA.” This algorithm provides 
abundance information for various subtypes of immune cells 
in BC samples. Additionally, we utilized the “ESTIMATE” 
algorithm, based on the R package of the same name, to 
compute matrix, immune, and stromal scores for samples 
in both high- and low-risk groups. We collected multiple 
immune checkpoint and HLA-related genes to assess their 

differential expression between the two groups. The Immune 
Surface Scores (IPS), obtained impartially, exhibit a posi-
tive correlation with responses to immunotherapy. IPS data 
for BC patients were obtained from the Cancer Immunome 
Atlas (TCIA, https://​tcia.​at/​home).

Drug sensitivity analysis

Using the R package “pRRophetic,” we have predicted 
the IC50 values of 138 compounds obtained from diverse 
BC tissues. Technical terms were explained upon their ini-
tial usage, and a formal tone was consistently maintained 
throughout the text, adhering to common academic structure 
and formatting conventions. We have identified compounds 
with significantly distinct IC50 values between two groups. 
The IC50 value serves as an indicator of a compound’s 
potential to inhibit a specific biological or biochemical func-
tion. Comprehensive information about the 138 compounds 
was sourced from the Cancer Genome Project database 
(https://​www.​sanger.​ac.​uk/​group/​cancer-​genome-​proje​ct/). 
Criteria for retention were established based on compounds 
exhibiting substantial differences between the high- and low-
risk groups (p < 1e–10).

BC typing based on NMF/consensus clustering

This study categorized breast cancer (BC) according to 
the expression of prognostic genes. Specifically, the study 
employed the R package “NMF” to execute the nonnega-
tive matrix clustering algorithm 50 times using the stand-
ard “brunet” approach. We varied the number of clusters 
(k) from two to ten, and the average contour width of the 
common member matrix was calculated using the R pack-
age “NMF.” The optimal number of clusters was deter-
mined based on factors such as phenotype, dispersion, and 
silhouette.

Correlation analysis of scRNA data

The analysis of single-cell RNA data was conducted using 
the R package “Seurat.” The initial step involved perform-
ing data quality control, during which genes associated 
with mitochondria and erythrocytes were excluded. Subse-
quently, the following screening parameters were applied: 
the “nFeature_RNA” criterion selected values above 200 and 
below 100,000; the “percent.mt” criterion selected values 
below 20, and the “nCount_RNA” criterion selected values 
below 100,000. In the normalization process, we identified 
the top 2,000 genes with high variability across all cells 
using the “LogNormalize” and “vst” methods. Here, “nFea-
ture_RNA” refers to the number of detected genes in each 
single-cell sample. “percent.mt” represents the percentage of 
mitochondrial gene expression in the total gene expression. 

http://kmplot.com/analysis/index.php?p=service&cancer=breast
http://kmplot.com/analysis/index.php?p=service&cancer=breast
https://tcia.at/home
https://www.sanger.ac.uk/group/cancer-genome-project/
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“nCount_RNA” indicates the total number of RNA mole-
cules detected in each single-cell sample. “LogNormalize” 
denotes the normalization of gene expression for each cell 
to make the data distribution more akin to a normal distribu-
tion. “vst” refers to the variance-stabilizing transformation 
applied to minimize technical noise in the data.

We subsequently conducted principal component analy-
sis (PCA) analysis, scaled the data, and retained the first 
15 principal components for clustering purposes. The cells 
were then subjected to cluster analysis with a resolution 
of 0.5. The cell clusters were labeled using the R package 
"singleR." We then used the t-SNE algorithm to generate a 
two-dimensional visualization of the cell clusters and their 
respective types. Additionally, we employed the R package 
"AUCell" to calculate the area under the curve (AUC) value 
for each cluster. Our study identified the population of cells 
with high scores and the pathway scores that had signifi-
cant enrichment in this particular cell population based on 
prognostic genes. The gene set we used is "h.all.v2022.1.Hs.
symbols.gmt."

RT‑qPCR method for the verification of prognostic 
genes

Total RNA was extracted from A10 breast epithelial cells 
and MDA-MB-231 breast cancer cells, both of which were 
obtained from the Cell Bank of the Chinese Academy of 
Sciences, using the AG RNA Extraction Kit II (AG21022). 
Reverse transcription was performed using the Evo M-MLV 
RT Kit, and gDNA Clean for qPCR (AG11711). RT-PCR was 
conducted with the SYBR Green Premix Pro Taq HS qPCR 
Kit (AG11701) in a real-time fluorescent quantitative PCR 
analyzer from Agilent. Primer information for the validated 
genes is provided in Table S1 in the Supplementary material.

Statistical analysis

Statistical analyses were performed using R software (ver-
sion 4.2.0) and SPSS software (version 26.0). For continu-
ous and categorical variables, we utilized the Wilcoxon 
rank-sum and chi-square tests, respectively. All analyses 
were deemed statistically significant at a p-value of < 0.05. 
We denote p-values less than 0.05 and 0.01 with “*” and 
“**,” respectively.

Result

Identification of differential drug resistance 
and exosome‑related genes in BC

The technical process outlined in this article is depicted 
in Fig. 1. A differential analysis of transcriptome data was 

conducted to identify genes associated with drug resist-
ance by comparing the drug-sensitive and drug-resistant 
groups from the GSE163882 dataset. The results of the 
differential analysis, including the heatmap and volcano 
plot, are presented in Fig. 2A, B. Details of DEGs are 
provided in the “GSE163882_diff.xls” file in the Sup-
plementary Material. Figure  2C illustrates the Venn 
diagram produced from the intersection of DEGs and 
exosome-associated genes, resulting in 47 shared genes. 
Gene enrichment analysis using GO on these shared 
genes revealed pathways linked to BC and BC-associated 
medication responses, as shown in Fig. 2D. The biologi-
cal significance of these pathways will be discussed in 
the following section. Box plots were utilized to evalu-
ate the expression of communication-related genes in 
breast cancer patients and their controls from the TCGA 
cohort. The results showcased significant variations in 
the expression levels of most of these genes between the 
two groups.

Establishment and verification of prognostic model

In this study, we developed a prognostic model for BC 
using Lasso-Cox regression analysis. Five gene markers 
were identified through the Lasso algorithm, based on the 
optimal λ value (refer to Fig. 3A, B). Specifically, LASSO 
calculates a coefficient for each gene. The first graph is 
the coefficient distribution graph. Each line in the graph 
represents a gene, and the end of these genes will point to 
an ordinate (representing the coefficient of the gene) from 
which the gene can be further screened after taking λ as 
the threshold value. Figure 3B shows that the coefficients 
of five genes could be retained. Utilizing the calculated 
risk scores, the model categorized BC samples into high- 
and low-risk groups. We presented the results of survival 
analysis and ROC curve examination for these groups on 
the TCGA dataset in Fig. 3C, D. Importantly, a signifi-
cant variance in survival time was observed between the 
two cohorts. The model for estimating patient prognosis 
indicated that the risk score yielded area under the curve 
(AUC) values of 0.632, 0.655, and 0.631 for predicting 
patient survival after 1, 3, and 5 years, respectively. PCA 
of the samples from the training group revealed a clear 
separation of low and high-risk groups on a two-dimen-
sional plot (refer to Fig. 3F). The forest plot in Fig. 3F 
emphasizes the identification of five genes as prognostic 
markers through multivariate Cox regression analysis. In 
addition, we performed an independent prognostic analysis 
to assess whether the five genes constituting the prognostic 
model could be used as independent prognostic factors to 
predict breast cancer survival (Fig. 5). The results showed 
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that only CXCL13 and MTDH could be used as independ-
ent prognostic factors.

Subsequently, a test dataset was utilized to validate the 
model’s performance. Figures 4A, B provide details on the 
Kaplan–Meier survival and ROC curves for the high-risk 
and low-risk groups in the test set, indicating a significant 
difference in survival between the two groups. The AUC 
values for predicting survival at 1, 3, and 5 years were 
0.766, 0.623, and 0.633, respectively. Figure 4C, D presents 

the outcomes of both PCA and multivariate Cox regres-
sion analyses. The results further confirmed that CXCL13 
and MTDH can be used as independent prognostic factors 
of breast cancer to predict the survival of breast cancer 
patients.

Prognostic validation was conducted for the five prog-
nostic genes identified in the training set (refer to Fig. 5). 
Notable disparities in survival were observed between 
the high and low expression groups of each of the five 

Fig. 1   Flowchart
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Fig. 2   Results of differential 
analysis between drug-sensitive 
and resistant groups in GEO 
cohort. A and B are the heat 
map and volcano map obtained 
from the difference analysis, 
respectively. C is the Venn 
diagram of the intersection of 
DEGs and exosome-related 
genes. D is the GO enrichment 
result of EGDR. E is the expres-
sion boxplot of EGDR in the 
transcriptome data of TCGA 
cohort
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genes when breast cancer samples were stratified accord-
ingly. Additionally, DMFS for the high and low expres-
sion groups, segregated by these prognostic genes, was 

validated. The KM survival curves displayed in Fig.  6 
reveal significant DMFS survival differences for the two 
expression groups.

Fig. 3   Results of prognostic model construction. A is the least abso-
lute shrinkage and selection operator (LASSO) regression of prog-
nostic genes. B is the cross-validation used to adjust the choice 
of parameters in the LASSO regression. C and D are the results of 

survival analysis and ROC analysis of the prognostic model, respec-
tively. E is a scatter plot after dimensionality reduction using PCA 
for samples from the high- and low-risk groups. F is the forest plot 
obtained by multivariate Cox regression
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Construction and validation of nomogram model

The present study outlines the development of a nom-
ogram model (depicted in Fig.  7A) utilizing baseline 
information from patients (including age and clinical 
stage) and a risk score. This is done to assess the poten-
tial risk associated with BC. The calibration curve for 
this model, as shown in Fig. 7B, illustrates the extent of 
deviation from the ideal model. Additionally, the ROC 
analysis results for the nomogram model are presented 
in Fig. 7C, revealing AUC values of 0.867, 0.769, and 
0.725 for predicting the 1-, 3-, and 5-year survival rates 
of patients, respectively. Notably, these values surpass 
those obtained using the prognostic model. Figure 7D dis-
plays curves exhibiting the C-index over time for various 
models, with the nomogram model achieving the highest 
C-index. According to the DCA depicted in Fig. 7E, the 
predictive accuracy of the nomogram model surpasses 
that of age and clinical stage.

Results of correlation analysis of immune 
infiltration

The ssGSEA algorithm was utilized to assess variances in 
the abundance of immune cell infiltration and immune func-
tion scores of multiple immune cells in high- and low-risk 
groups, determined by gene expression levels in BC speci-
mens (refer to Fig. 8A). Significantly different infiltration 
abundance and immune function scores were observed in 
immunocytes of both groups. Figure 8C–L displays scatter 
plots delineating specific genes that exhibit substantial links 
with immune cells. Further outcomes can be found in the 
supplementary materials’ Immune section.

The dissimilarities in the immune landscape between the 
high-risk and low-risk groups were evaluated from multiple 
viewpoints in this study. Notably, the results show statisti-
cally significant differences between the two groups in ESTI-
MATE score, immune score, stromal score, and tumor purity 
utilizing the ESTIMATE analysis assessment outcomes 

Fig. 4   External validation of prognostic models. A is the KM sur-
vival curve of the prognostic model on the validation set. B is the 
result of ROC analysis on the validation set. C is the forest plot 

obtained from multivariate COX regression analysis to screen inde-
pendent prognostic factors. D is the result of PCA analysis on the 
validation set
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(refer to Fig. 9A–D). Additionally, we conducted an investi-
gation into variances in the expression of HLA-related genes 
and immunoassay sites among both groups (see Fig. 9E, F) 
and examined variations in immunotherapy (see Fig. 10). 
Figure 11 presents IC50 values of specific drugs that sig-
nificantly differ between the two groups (further information 
can be found in the supplementary materials, in the Drug1 
folder).

BC typing based on prognostic genes

In this study, we utilized prognostic gene expression pro-
files to classify BC using the NMF clustering algorithm. As 
depicted in Fig. 12A, the NMF algorithm exhibits distinct 
phenotypic characteristics, RSS, and dispersion distribu-
tion across various cluster numbers. According to the most 
cophenetic curve in this figure, it can be judged that the lead-
ing point of the largest decrease is 2. Therefore, the NMF 
algorithm achieves the best performance when the number 
of clusters is 2. The figure highlights that the performance of 
the NMF algorithm peaks when the cluster number is set to 
2, as illustrated in the consensus plot in Fig. 12B. Addition-
ally, Fig. 12C and D depicts the survival curves for the two 
subtypes and the level of immune cell infiltration. Notably, 

significant differences in both survival and immune cell infil-
tration were observed between the two subtypes. Finally, we 
investigated the disparities in drug sensitivity between the 
two BC subtypes, as presented in Fig. 13 in the Drug2 folder 
in the supplementary material.

Results of immune landscape and AUCell analysis 
at the single‑cell level

To generate multiple cell clusters, we conducted quality con-
trol, normalization, dimensionality reduction, and cluster-
ing using the R package Seurat. The cell clusters were then 
annotated using the R package singleR. Figure 14A depicts 
the scores of different cell clusters associated with various 
cell types. Figure 14B presents the final cell type annota-
tions based on these scores. In Fig. 14C–F, the bubble and 
violin plots illustrate the expression of prognostic genes in 
different cell clusters. Notably, we observed high expression 
of MTDH and RAB27A in various immune cell types. Fur-
thermore, we utilized the AUCell algorithm (Fig. 15A, B) to 
evaluate the scores for different cell types, with macrophages 
exhibiting the highest score. Figure 15C displays the dif-
ferent cell types within the macrophage population with 
elevated AUCell scores. The Discussion section provides 

Fig. 5   Survival validation of prognostic genes. A–E are the survival curves for CCT4, CXCL13, MTDH, PSMD2, and RAB27A, respectively
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a comprehensive explanation of the relationship between 
these pathways and breast cancer, along with potential drug 
targets.

Additionally, based on the gene expression matrix and 
cell type information from scRNA-seq data, we used AUCell 
to calculate the expression levels of genes in specified gene 
sets within each cell. Scatter plots of the top 10 pathways 
before scoring are provided in Supplementary Material 
Fig. S1. We will analyze the relationship between these 
pathways and the progression of breast cancer in detail in 
the Discussion section.

The results of RT‑qPCR were verified 
for the prognostic genes

Differences in the expression of prognostic genes between 
normal mammary epithelial cells and breast cancer cells 
were subsequently verified. Each sample was tested in 
triplicate, and a melting curve analysis was conducted to 
assess the specificity of amplification. Figure 16A–E pre-
sents a box plot illustrating the disparities in gene expres-
sion between the two cell groups. The verification process 

confirmed distinctions in the expression of the majority of 
genes between the two cell groups.

Discussion

The heterogeneity observed in BC presents a significant 
challenge to the efficacy of isochemoth erapy across differ-
ent stages and subtypes. Our study addresses this challenge 
by investigating personalized treatment strategies, with a 
particular focus on the role of exosomes in inhibiting tumor 
growth and regulating the immune response. We performed 
an overlap analysis of DEGs and ERGs between resistant 
and sensitive groups, followed by GO enrichment analysis 
of the common genes. This approach highlights the potential 
for tailored therapies based on genetic profiling, as shown 
in our flowchart. We also elucidated the role of exosomes 
in BC treatment by examining their interactions with key 
genes and pathways. These findings from our comprehensive 
analysis underscore the importance of the exosome path-
way in the development of targeted BC therapies. A study 
by Du et al. demonstrated that everolimus has the potential 
to decrease the expression of protein kinase B (AKT) in 

Fig. 6   KM curves of prognostic genes for distant metastasis (DMFS). A–E are the survival curves for CCT4, CXCL13, MTDH, PSMD2, and 
RAB27A, respectively
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BC cells, indicating its promise as a therapeutic agent [15]. 
According to research by Zheng et al., adriamycin-induced 
apoptotic MCF-7 cells show potential for BC treatment 
[16]. A study by Irene Lopez-Mateo suggested that thyroid 
hormone receptor β may act as a tumor suppressor in BC 
[17]. Ji-Young Park and colleagues induced the expression 
of manganese superoxide dismutase in BC cells through the 
protein kinase B and extracellular signal-regulated kinase 
signaling pathways [18]. Philip Bischoff and colleagues 
found that the progression of BC depends on the disruption 
of adherent tissue integrity [19]. In this study, Siyoung Choi 
and colleagues discovered that mineralization of the matrix 
inhibited integrin-mediated mechanical signal transduction 
by using a collagen matrix with adjustable mineralization, 
thereby inducing a less proliferative stem cell-like phenotype 
in BC cells [20].

We have also explored the prognostic potential of genes 
such as CCT4, CXCL13, MTDH, PSMD2, and RAB27A. 
These genes exhibit significant associations with BC progno-
sis in both TCGA and GEO cohorts. Our flowchart illustrates 

how these genetic markers can be employed in a clinical 
context to predict treatment outcomes and identify high-
risk patients. This comprehension is crucial for advancing 
novel therapeutic targets and personalized treatment regi-
mens. They have been validated as significantly associated 
with BC prognosis in the TCGA and GEO cohorts. Further 
exploration into the roles of these genes in BC initiation 
and progression may lead to the discovery of new treatment 
targets. According to Wang et al., the inhibition of CCT4 
by anti-carlin-β treatment disrupts protein balance and spe-
cifically inhibits tumor cell growth [21]. The significance 
of CXCL13 in an effective T cell response to anti-PD-L1 
therapy was demonstrated through the analysis of scRNA-
seq and scRNA-ATAC data in triple-negative BC [22]. Shen 
et al. observed frequent overexpression of MTDH in BC 
patients with a poor prognosis. MTDH promotes metastasis 
and treatment resistance by interacting with staphylococcal 
nuclease domain-containing 1 (SND1). This complex plays 
a critical role in suppressing anti-tumor T cell responses 
in BC [23]. RAB27A has been identified as a mediator of 

Fig. 7   Construction and validation of the nomogram model. A is a 
nomogram model constructed based on clinical stage, baseline infor-
mation of patients, and risk score. B is the calibration curve of the 

nomogram model. C is the result of ROC curve analysis of the nomo-
gram model. D is the result of C-index analysis. E is the DCA result 
of the nomogram model
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Fig. 8   Evaluation of immune 
infiltration in BC samples based 
on ssGSEA analysis. A is the 
boxplot of the difference in the 
abundance of immune cell infil-
tration in the high- and low-risk 
groups. B is the boxplot of the 
difference in immune function 
between the high- and low-risk 
groups. C–L is the correlation 
analysis of prognostic genes 
and immune cells; correla-
tion analysis of risk scores and 
immune cells
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Fig. 9   ESTIMATE analysis between high- and low-risk groups, 
expression analysis of HLA-related genes and immunoassay sites. 
A–D is the result of ESTIMATE score, immune score, Stromal 
score, and tumor purity in the high- and low-risk groups based on 

ESTIMATE analysis, respectively. E and F is a boxplot based on the 
expression of HLA-related genes and immunoassay sites in the high- 
and low-risk groups, respectively

Fig. 10   Results of immunotherapy analysis. The IPS (A), IPs-ctLA4 (B), and IPs-PD1/PD-L1/PD-L2+CTLA4 high- and low-risk groups (p < 0.05)
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human milk BC stem cells, promoting the growth of mam-
mospheres. Additionally, RAB27A has been found to be 
synergistically inhibited [24].

The risk model utilized in our study is based on LASSO-
Cox analysis, effectively categorizing breast cancer (BC) 
patients into high-risk and low-risk groups. This model has 
been seamlessly integrated into our flowchart and functions 
as a crucial tool for evaluating patient outcomes and cus-
tomizing treatment strategies. We further investigated the 
variations in survival and immune landscapes between these 
risk groups, employing the ssGSEA algorithm to underscore 
noteworthy variations in immune cell infiltration and func-
tion. As depicted in Fig. 8C, five prognostic genes exhibit 

a statistically significant correlation with distinct immune 
cells. Consistent with the findings of Li et al.’s study, clini-
cal evidence indicates an inhibitory effect on BC metastasis. 
Moreover, certain sources suggest that the TAM/CXCL1/
NF-κB/FOXP3 signaling pathway could potentially serve as 
a therapeutic target to modulate Tregs and enhance immuno-
therapy for BC [25]. Janakiram and colleagues have compre-
hensively reviewed the interplay between T cell inhibition 
and immunotherapy in BC [26].

The immune-related aspects of breast cancer, particularly 
the role of HLA-associated genes, constitute the focal point 
of our discussion. Studies have illuminated the intricate rela-
tionship between these genes and the progression of breast 

Fig. 11   Results of drug sensitivity analysis of the high- and low-risk groups. The fractions of A–I had compounds with significant differences 
between the high- and low-risk groups
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cancer, along with their influence on therapy response. Our 
flowchart, incorporating these findings, underscores the 
significance of immunological assessments in formulating 
comprehensive treatment strategies. A substantial number 
of HLA-related genes and immunoassay loci exhibit note-
worthy differences between high- and low-risk groups. The 
majority of these genes have been linked to breast cancer and 
its treatment. In their review, Zheng et al. expounded on the 
role of HLA-G in the immune microenvironment of breast 
cancer, emphasizing its utility in identifying new biomark-
ers for breast cancer [27]. Woll et al. reported that HLA-A2 
dimers can accurately measure and track antigen-specific 

T cell immune responses in peptide vaccine clinical trials 
[28]. It was observed that a reduction in EZH435 expression 
in the human breast cancer cell line MDA-MB-231 signifi-
cantly increased HLA-DRA mRNA expression, even with-
out IFN-γ stimulation [29]. In a study involving 89 patients 
with metastatic breast cancer and 50 age- and sex-matched 
healthy volunteers, Song et al. investigated the percentage of 
peripheral blood T lymphocyte subsets and plasma cytokine 
levels. The study revealed that an elevated level of CD8(+) 
CD28(−) suppressor T lymphocytes may independently pre-
dict progression-free survival during follow-up after chemo-
therapy [30]. Abdullah et al. identified that pharmacological 

Fig. 12   Identification of BC subtypes based on prognostic genes. A 
is phenotype distribution, rss distribution and dispersion distribution 
when rank = 2–10; B is the consensus map of NMF clustering. C is 

the prognostic survival curve of the two molecular subtypes. D is the 
difference in the abundance of immune cell infiltration among differ-
ent subtypes
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combinations of NRP1 with FGFR-targeted kinase inhibi-
tors could be an effective treatment for patients with drug-
resistant metastatic breast cancer [31].

We have identified BC subtypes by employing prognostic 
genes and subsequently explored variations in prognosis, 
immune response, and drug sensitivity among these sub-
types. Notably, therapeutic agents such as oxaliplatin [32], 
paclitaxel [33], and gefitinib [34] have shown effectiveness 
in treating breast cancer.

Finally, we employed single-cell RNA sequencing 
(scRNA-seq) data to offer a more intricate insight into gene 

expression across various cell types. This enabled the iden-
tification of cell populations at risk. Seamlessly integrated 
into our flowchart, this approach underscores the signifi-
cance of comprehending gene expression patterns within the 
context of breast cancer (BC) treatment and prognosis. The 
utilization of the AUCell algorithm facilitated the identifi-
cation of high-scoring cell populations and pathways, many 
of which are pertinent to BC and its treatment, thus affirm-
ing the practicality of our model in clinical settings. X-box 
binding protein 1 (XBP1) plays a crucial role in the unfolded 
protein response (UPR). Vahid Arabkari et al. discovered 

Fig. 13   Drug sensitivity analysis of different BC subtypes
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Fig. 14   Results of cell clustering and annotation analysis of single-
cell sequencing data. A is a heatmap that annotates the cell popula-
tion based on the single-cell algorithm. B is the result of the visuali-
zation of the cell population based on tnse dimensionality reduction. 

C is a bubble plot of the expression of prognostic genes on different 
cell populations. D–F is a violin plot of the expression of prognostic 
genes on different cell populations
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Fig. 15   Results of the analysis based on AUCell. A is a scatter plot 
obtained by scoring different cell types by AUCell based on tsne. B is 
a violin plot based on the distribution of AUCell scores for different 

cell populations. C is the bar graph drawn for the top cell types and 
their corresponding AUC scores in the macrophage population

Fig. 16   Verification results of gene expression by RT-qPCR. A–E is the expression histogram of CCT4, CXCL13, MTDH, PSMD2 and 
RAB27A in normal breast epithelial cells and breast cancer cells, respectively



Clinical and Experimental Medicine          (2024) 24:113 	 Page 19 of 20    113 

the involvement of XBP1 in UPR, correlating it with endo-
crine resistance in BC [35]. In BRCA2 mutation carriers, 
Rachel Joyce et al. identified mTORC1 as a potential target 
for breast cancer prevention [36]. Results from Theresa E 
Hickey et al.’s experiments suggest that androgen receptor 
(AR) exerts a tumor-suppressive role in estrogen receptor 
(ER)-α-positive BC [37]. Kurt W Evans et al. found that oxi-
dative phosphorylation represents a metabolic vulnerability 
in triple-negative BC, potentially exploitable in combination 
therapy [38]. Yvette Drabsch et al. provided a comprehen-
sive review of the crucial role of TGF-β in the invasion and 
metastasis of BC [39].

In conclusion, our study offers a comprehensive overview 
of the intricate interplay among genetic, immune, and thera-
peutic elements in breast cancer. This integrated approach 
enhances our understanding of breast cancer and paves the 
way for more effective and personalized treatments.

Conclusion

This study has developed and validated a prognostic model 
for the accurate stratification of BC samples using bio-
informatics algorithms and biological experiments. The 
model predicts prognosis, immunity, and drug sensitivity 
in drug-resistant BC. It can serve as an independent prog-
nostic factor, enhancing the comprehension of BC treat-
ment. Furthermore, the prognostic genes identified can be 
utilized as a reference for the precise treatment of BC.
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