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Abstract
Rheumatoid arthritis (RA) is a common autoimmune rheumatic disease that causes chronic synovitis, bone erosion, and 
joint destruction. The autoantigens in RA include a wide array of posttranslational modified proteins, such as citrullinated 
proteins catalyzed by peptidyl arginine deiminase4a. Pathogenic anti-citrullinated protein antibodies (ACPAs) directed against 
a variety of citrullinated epitopes are abundant both in plasma and synovial fluid of RA patients. ACPAs play an important 
role in the onset and progression of RA. Intensive and extensive studies are being conducted to unveil the mechanisms of RA 
pathogenesis and evaluate the efficacy of some investigative drugs. In this review, we focus on the formation and pathogenic 
function of ACPAs.
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Introduction

RA is a systemic autoimmune disease characterized by syno-
vial inflammation and cartilage degradation. Lacking effec-
tive and prompt treatments may eventually lead to complete 
joint destruction, at which time, total joint arthroplasty is the 
only treatment of choice. The infiltration of immune cells 
in the synovial membrane, particularly, macrophages and 
lymphocytes, plays a central role in the pathogenesis of RA 
[1]. The generation of autoantibodies against a wide range 
of proteins including rheumatoid factor (RF), ACPA, anti-
carbamylated protein antibody (anti-CarP), anti-acetylated 
protein antibody, etc., may be the causative factors for the 
initiation of RA [2]. Among them, ACPAs have demonstrated 
high specificity for RA diagnosis and a close association with 
disease activity [3]. Although RA is a highly heterogeneous 
disease, it can be roughly divided into two subtypes: ACPA-
positive and ACPA-negative RA. Significant differences have 
been found between these two subtypes with regard to genetic 
background, environmental risk factors, disease progression, 

and remission [4]. Emerging data demonstrate that ACPAs 
can be detected many years before the onset of clinical RA 
and correlate with preclinical inflammation, the severity of 
joint disease, and increased radiographic progression [5]. 
Posttranslational modification (PTM) of proteins, particu-
larly, protein citrullination mediated by PAD, is critical for 
the generation of the antigens that induce the formation of 
ACPAs [6].

Because of their particular importance in RA pathogen-
esis, more studies are needed to unveil the mechanisms for 
the early development of ACPAs and their diagnostic and 
prognostic values in pre-RA and clinical RA. Improved 
understanding of the formation of ACPAs may help the 
identification of novel and effective therapeutics for RA. In 
this review, we summarized recent progress in these fields 
and explored future research directions.

The formation of ACPAs

It has been well accepted that uncontrolled activation of 
PAD4 and subsequent protein citrullination are critical for 
ACPA formation. We expect that further studies on the ori-
gin of ACPA formation during inflammation may lend novel 
insights into the initiation, formation, progress, prognosis, 
and potential identification of novel drugs for RA [7].
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Hyperactivation of PAD4

The PAD family members are  Ca2+-dependent isozymes 
and share 50% sequence similarity [8]. To date, at least 
five subtypes of PADs have been identified in mammals, 
namely PAD1, PAD2, PAD3, PAD4/5, and PAD6 [9]. The 
distribution of the five PAD isoforms varies across tissues 
and organs. Among them, PAD4 is highly tissue-specific 
and abundant in the bone marrow and immune cells, and 
particularly, in neutrophils [10]. This enzyme can catalyze 
the deamination of arginine residues to produce the citrulline 
protein target of ACPA [11].

Membranolytic damage can increase  Ca2+ influx onto 
target cells, and subsequently, cause the hyperactivation 
of PAD4 [12]. For example, the formation of neutrophil 
extracellular traps (NETs) is extruded from the cell and 
forms extracellular fibers that bind pathogens, causing 
membranolytic damage [13]. In addition, the membrane 
attack complex (MAC) formed by the complement system, 
perforin, and granzyme B released from cytotoxic cells can 
also induce membranolytic damage [14]. Among these,  Ca2+ 
is a critical regulator for the catalytic activity of PAD4 as 
it can induce the structural change of PAD4, e.g., from the 
active site cleft, which causes the transition of an inactive to 
an active PAD4 conformation [15].

Breach of self‑tolerance

In the case of defect tolerance and prone genetic background, 
the disorder of PAD and atypical exposure, PAD4 can 
induce the formation of abnormal citrullinated proteins or 
peptides, triggering antigen-specific immune reactions in the 
genetically susceptible individuals to produce autoantibodies 
[16].

Genetic risk factors have been attributed to single 
nucleotide polymorphisms (SNPs) in a range of genes. The 
shared epitope (SE) in the MHC-II locus is an important 
risk factor as it contains the alleles that increase the risk of 
developing seropositive RA evidenced by epidemiological 
studies [17]. Some studies have clarified the important role 
of HLA-DRB1*01, HLA-DRB1*04 SE alleles and two 
non-SE HLA-DRB1 alleles (DRB1*13 and DRB*15) [18]. 
T cells can recognize citrullinated antigens in the context 
of HLA-DRB1*04, and the autoimmune B cell response 
encompasses a large spectrum of citrullinated proteins. It 
has been suggested that S2 and S3P, S1 and S3D alleles 
may also confer susceptibility factors to ACPA-seropositive 
RA [19, 20]. Genome-wide association studies (GWASs) 
have demonstrated at least 30 alleles associated with RA. 
Among those alleles, PTPN22, IL23R, TRAF1, STAT4, 
CD40, PADI4, IRF5, CCR6, and CTLA4 are of particular 
importance [21].

In addition to a genetic disposition, triggers at mucosal 
sites are thought to play a key role in these early events. 
When stimulated by some factors such as smoking, 
environmental dust, and microorganisms in periodontitis, 
macrophages, and other PAD-producing cells in the 
mucosa will be activated, resulting in the production of 
PAD [22, 23]. As accumulating data show that smoking 
and dust are associated with RA pathogenesis, it is widely 
accepted that the lung is the initial site of RA development 
[24, 25]. Porphyromonas gingivalis (P. gingivalis) and 
Aggregatibacter actinomycetemcomitans (Aa) are crucial 
factors for periodontitis[26], P. gingivalis expresses PAD 
and citrullinated enolase, can mediate citrullination of 
bacterial and host protein. Aa hyperactivates PAD by 
inducing membranolytic damage on neutrophils[27]. These 
might participate in the breach of immune tolerance to PAD4 
[28].

The PAD enzymes citrullinate a range of cytoplasmic, 
nuclear, membrane, and mitochondrial proteins. The 
dysregulation of PAD activity can drive the formation 
of abnormal citrullinated proteins or peptides which are 
exposed to the immune system, leading to the generation 
of citrulline-specific antibodies in a complex inflammatory 
environment such as the RA joint [29].

The interaction in NETs, PAD4, and ACPA

The intracellular and extracellular activation of PAD4 may 
induce the citrullination of various proteins, including 
enolase, fibrinogen, vimentin, collagen, histone, etc.
[30]. Upon PAD4 activation, locally released citrullinated 
histones enhance the generation of highly mutated clonal B 
cells resulting in the generation of high-affinity ACPAs [31].

Neutrophils are innate immune cells that may incite 
RA development when the immune tolerance is broken 
[32]. Neutrophil activation can lead to the extrusion of 
cellular DNA and protein complexes that form NETs with 
antimicrobial properties, through a form of cell death 
coined NETosis. NETs can enhance the immune response 
by capturing and killing bacteria [33]. However, they are 
indiscriminate in terms of cytotoxicity, and uncontrolled 
formation of NETs can damage healthy tissues [34]. The 
subsequent increase in  Ca2+ influx on target cells may 
cause uncontrolled citrullination and loss of specificity. The 
aforementioned citrullination of nuclear histones by PAD4 
is a trigger for the formation of NETs [35]. Neutrophils 
generate citrullinated epitopes and release peptidylarginine 
deiminase (PAD) enzymes capable of citrullinating 
extracellular proteins in the rheumatic joint, contributing 
to renewed ACPA generation [36]. As such, the protein 
motifs that are not citrullinated under healthy conditions 
may become citrullinated as new epitopes are generated. 
These new epitopes may then be recognized by the immune 
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system as antigens and trigger antibody reactions. Therefore, 
locally released citrullinated histones enhance the generation 
of highly mutated clonal B cells resulting in the generation 
of high-affinity ACPAs [37].

Neutrophils are activated by immune complexes and 
inflammatory cytokines within the synovial fluid, frequently 
causing enhanced NET formation in RA [31]. ACPAs can 
also promote the release of PADs from neutrophils, which 
in turn catalyze the modification of arginine to citrulline, 
creating a vicious circle of autoantibody production [38, 39] 
(Fig. 1).

Clinical relevance of autoantibodies in RA

RA is gradually developed from pre-RA, early RA to clini-
cal RA with overt autoimmunity [40]. The immunopatho-
genesis of RA begins with the production of autoantibod-
ies against post-translationally modified proteins, which by 
itself is initially reversible and self-limiting. (Checkpoint 1). 
After years of asymptomatic autoimmunity and progressive 
remodeling of the immune system, tissue tolerance erodes, 
and protective joint-resident macrophages fail, the ACPA 
response matures and accumulates more variable domain 
glycosylation sites (Checkpoint 2). Acute synovitis con-
verts into chronic-destructive synovitis (Checkpoint 3)[36] 
(Fig. 2).

Pathogenic effects of ACPAs

As mentioned above, the ACPAs are of critical importance 
at the developmental stages of RA and are closely linked 
to both genetic background and the course of disease [41]. 
Mechanistic study indicates a direct link between the pres-
ence of ACPAs and bone erosions as well as pain in RA 
patients [42]. Central pathophysiological changes include 
synovial inflammation, cartilage destruction, bone erosion, 
and systemic inflammation [43]. In conclusion, an improved 
understanding of the role of autoantibodies in RA pathogen-
esis may facilitate the identification of novel therapeutics 
[44, 45] (Fig. 3).

Activation of the inflammatory response

How might ACPA lead to inflammation? This could be 
mediated via binding to Fc receptors, NET formation or 
complement activation, which is described in more detail 
below.

Fig. 1  The activation of PAD4 and the interaction in NETs, PAD4 
and ACPAs. Smoking, environmental dust, microorganisms in peri-
odontitis, macrophages, and other PAD-producing cells in the mucosa 
may enhance the production of PAD4. With defective immune toler-
ance and genetic susceptibility, PAD4 can induce the formation of 
abnormal citrullinated proteins or peptides, promote the interaction of 
citrullinated proteins and the immune system, and cause genetically 

susceptible individuals to produce autoantibodies. Neutrophils are 
activated by immune complexes and inflammatory cytokines within 
the synovial fluid, frequently causing enhanced NETs formation in 
RA. In turn, NETs serve as a source of citrullinated autoantigens, 
further triggering the production of ACPAs. PAD4 peptidylarginine 
deiminase 4; ACPAs anti-citrullinated protein antibodies; NETs neu-
trophil extracellular traps
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Fig. 2  The development of 
autoimmunity and progression 
of RA. The prediction models 
suggest a cascade of autoan-
tibodies, inflammation, and 
arthritis. While the specificity of 
autoantibodies binding to ACPA 
is confined and their isotype is 
limited in healthy individuals, 
epitope spreading and isotype 
expansion may occur in RA 
patients

Fig. 3  The pathogenesis of ACPAs in RA. Interaction between 
ACPAs and citrullinated fibrinogen forms ICs, which activate inflam-
matory cells and the complement system with subsequent release 
of C3a and C5a. The uncontrolled production of pro-inflammatory 
cytokines and mediators creates a local inflammatory milieu. These 
cytokines induce the generation of MMPs and RANKL by fibro-
blasts. While RANKL is closely involved in the formation and acti-
vation of osteoclasts causing excessive bone resorption, MMPs, 
particularly, MMP13, enhance cartilage degradation. The combined 
effects of these mediators eventually lead to complete joint destruc-
tion. ACPAs bind to osteoclasts, stimulating the release of IL-8 and 

autocrine enhancement of osteoclast maturation and activation. Fur-
ther, chemokines such as CXCR1 and CXCR2 overexpressed in the 
sensory neurons may induce allodynia. ACPAs have the multi-faceted 
role of altered metabolites in adipose tissue, vascular, and liver tis-
sue. ACPAs anti-citrullinated protein antibodies; ICs immune com-
plexes; NETs neutrophil extracellular traps; TLR-4 Toll-like receptor 
4; IL-1R interleukin 6 receptor; IL-6R interleukin 6 receptor; M-CSF 
macrophage colony-stimulating factor; RANK receptor activator of 
NK-κB; MMPs matrix metalloproteinases; IL-8 interleukin-8; CXCR1 
CXC chemokine receptor1; CXCR2 CXC chemokine receptor; RA 
rheumatoid arthritis
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Macrophage activation

Macrophages are important regulators of chronic synovial 
inflammation in RA [46]. Activated macrophages make up to 
30–40% of the cellular content of the RA synovium. ACPAs 
can activate macrophages and promote the production of 
proinflammatory cytokines through an immune complex 
(IC)-mediated mechanism dependent on the Fcγ receptors 
and activation of the TLR4-MyD88 pathway [47]. Besides, 
ACPAs upregulate the interaction between CD147 and 
integrin-β1 in macrophages, which activates the Akt/NF-κB 
signaling pathway and upregulates the expression of NLRP3 
and IL-1β. Further, a significant association between IL-23 
and ACPA positivity in patients with untreated early RA has 
been reported [48, 49].

Activated macrophages in synovium recruit immune 
cells and fibroblast-like synoviocytes (FLSs) by producing 
IL-1β, IL-6, TNF-α, IL-12, and other cytokines to promote 
inflammation [50], while chronic inflammation and 
cytokines secreted by other cells assist in the activation, 
polarization, and apoptosis of macrophages [51].

Neutrophils

ACPA ICs are present in the RA joint and can induce 
neutrophil degranulation by signaling through Fcγ 
receptors (FcγRs). ICs are potent pro-inflammatory stimuli 
of neutrophils that bind Fc receptors and trigger effector 
functions, including reactive oxygen species (ROS) 
production, degranulation, NETosis, and the generation of 
chemokines and cytokines [52]. Studies showed that ACPAs 
induce a defect in the miRNA biogenesis machinery in 
neutrophils from RA patients [53].

ACPAs promote NET formation, and this propagates a 
vicious cycle of inflammation, recruitment of leukocytes, 
and release of cytokines [54]. NETs externalize citrullinated 
antigens and enhance inflammatory response by inducing 
the expression of cytokines, chemokines, and adhesion 
molecules on synovial fibroblasts [55]. Their internalization 
by synovial fibroblasts or macrophages induces the release 
of various inflammatory cytokines.

Complements activation

Previous studies have demonstrated that ACPAs can recruit 
complements via both classical and alternative pathways. 
These studies suggest that ACPA-containing IC can induce 
inflammation in RA. They may enhance the immune 
response in RA by both FcγR binding and complement 
activation [56]. ICs can activate the complement system and 
induce the release of C3a and C5a, which then causes the 
recruitment and activation of leukocytes and the production 
of cytokines and other pro-inflammatory mediators [57].

Bone destruction

Bone erosion is a cardinal sign of RA, and develops early 
after the onset of joint inflammation. A correlation between 
bone erosion and high levels of ACPAs has been reported 
[58]. Protein citrullination and ACPA binding to immature 
dendritic cells (DCs) might thus promote differentiation 
plasticity toward the osteoclast lineage, enhancing bone 
erosion adjacent to joints in ACPA-positive RA patients 
[59].

The presence of citrullinated proteins on the surface 
of osteoclast cells incites the binding of ACPAs to these 
cells and stimulates the release of IL-8, which facilitates 
the maturation and activation of osteoclasts via an autocrine 
mechanism [60]. In addition, ICs may further enhance 
osteoclast activation by engaging Fc receptors on their 
surface [61]. Macrophages induce the proliferation and 
activation of FLS by producing IL-1β and TNF-α. Activated 
FLSs secret RANKL and M-CSF and induce the formation 
and activation of osteoclast. Osteoclast formation can 
also be induced by L-1β, IL-6, and TNF-α produced by 
macrophages [62].

Interestingly, ACPAs can directly induce the 
differentiation of osteoclasts by binding the citrullinated 
vimentin on the surface of osteoclasts and mononuclear 
macrophage precursors [58]. Osteoclasts are derived from 
monocytes from the peripheral circulation. The process 
of differentiation for osteoclasts is mainly regulated by 
M-CSF and RANKL [63, 64]. Cytokines induce the 
production of MMP and RANKL by fibroblasts. RANKL 
activates osteoclasts and MMP causes tissue degradation, 
eventually to total joint destruction. With the accumulation 
of different ACPAs in joints, synovial inflammation occurs 
and increased production of cytokines and matrix-degrading 
enzymes ensues, leading to bone erosion and systemic 
osteoporosis in RA.

Arthralgia

An experimental study demonstrated that the injection of 
ACPA into mice may significantly reduce the pain threshold. 
The attachment of ACPAs onto osteoclasts, these cells 
release IL-8 with subsequent recruitment of chemokines 
such as CXCR1 and CXCR2 to sensory neurons, causing 
allodynia [65, 66].

Metabolic dysregulation

ACPAs have the multifaceted role of altered metabolites 
in the pathogenesis of RA. Arias-de la Rosa et al. have 
demonstrated that ACPAs may directly affect visceral 
human adipose tissue (AT) by regulating the genes related 
to inflammation, impaired insulin signaling, and alteration in 
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lipid metabolism [67]. Previous studies have shown that the 
expressions of adipokines and adiponectin are dysregulated 
in RA patients, and such aberrant expressions of genes 
such as leptin are associated with the levels of ACPAs 
and the disease activity, indicating that AT may play an 
important role in autoimmunity and inflammation [68–72]. 
Adipokines may be involved in the pathogenesis of RA by 
breaking the integrity of the extracellular matrix in cartilage, 
dysregulating bone metabolism, modulating the immune 
system, and enhancing synovial angiogenesis [73].

Of note, ACPAs may incite vascular inflammation 
and coronary artery calcification by the yet-unknown 
mechanisms, which may at least in part explain the increased 
cardiovascular events in RA patients compared to healthy 
individuals [74–76]. ACPAs induced a defective hepatocyte 
function, promoting inflammation, apoptotic, and fibrotic 
processes [77]. Improved understanding of the correlation 
between different metabolites and disease severity may 
lend novel insights and facilitate the identification of new 
biomarkers and therapeutic targets for RA. The specific 
mechanisms of ACPA on inflammation, bone destruction, 
arthralgia, and metabolic disorders are summarized in Fig. 3.

Strategies for interfering with ACPAs 
generation

Despite intensive research on RA drugs, some patients can-
not achieve complete remission, and relapses may occur in 
those who have already achieved complete remission [78]. 
Thus, optimal therapies that can be widely applied to RA 
patients are currently unavailable. Such an unmet medical 
need can only be solved by an improved understanding of 
the pathogenesis of RA [78, 79]. Our review focuses on the 
generation and causative effect of ACPAs on RA as previous 

studies have shown that they are RA cascade leading to joint 
destruction. Early and effective intervention may amelio-
rate the severity of RA, which helps preserve the structural 
integrity of joints, and improve the patients’ quality of life 
[80] (Table 1).

PAD4 inhibitor

PAD enzymes, particularly, PAD4, are critical for abnormal 
citrullination in RA, which can initiate and transmit 
autoimmunity of citrulline-related antigens, thus playing 
a unique role as an effector and target of autoimmunity 
reaction [81]. The in-depth understanding of the role of 
PAD enzymes in RA pathogenesis has led to the exploration 
of small molecules able to inhibit PAD activity [82]. PAD 
inhibition may block NF-κB signaling pathway and attenuate 
TLR-induced expression of IL-1β and TNF-α by neutrophils 
[83, 84].

Cl-amidine, an irreversible broad-spectrum PAD inhibitor 
via the modification of Cys645, may prevent the formation 
of NETs and alleviate joint symptoms in a mouse model 
of collage induced arthritis (CIA) [85], whereas it cannot 
inhibit osteoporosis in mice [86]. A preclinical study shows 
that BB-Cl amidine may alleviate immune-mediated arthri-
tis in mice [87]. However, other reversible PAD4 inhibi-
tors such as GSK199 and GSK484 have not been approved 
for clinical trials [88]. GSK199 inhibits the citrullination 
of PAD4 target proteins and diminishes the formation of 
NETs in vivo, and GSK484 inhibits H3-citrullination [83]. 
As an orally available inhibitor of protein arginine deiminase 
4, JBI-589 is reportedly to ameliorate the damage caused by 
PAD4 and NETosis in mouse arthritis models [89]. Despite 
the discouraging results, the number of novel inhibitors 
keeps increasing, and some of which have shown excellent 

Table 1  Novel therapeutics related to citrullination

Drug category Name Target References

PAD inhibitor Cl-amidine Via the modification of Cys645 [101]
BB-Cl-amidine Pan-PAD inhibitor [102]
GSK199 Inhibits the citrullination of PAD4 target proteins and diminishes the formation of NETs 

in vivo
[103]

GSK484 Inhibit H3-citrullination [104]
JBI589 A non-covalent PAD4 inhibitor with high PAD4 isoform selectivity [89, 105]

NETs inhibitor Target miR-155 Inhibit exaggerated NET generation [106]
PGE2 Inhibit NET release [107]
tACPA Diminish NET release and enhance NET uptake by macrophages in vivo [92]

Targeting B cells Tocilizumab Increase the ratio of post-switch memory B cells (IgD-CD27+)/mature naive B cells [108]
Abatacept Target B-cells by reducing CD80/CD86 expression [109]
Anti-FITC CAR-T cell Eliminate ACPA-specific B cells [97]
Rituximab Chimeric anti-CD20 monoclonal antibody [110]
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efficacy regarding reduced production of citrullinated pro-
teins and relevant ACPAs in animal studies [90].

NETs inhibitor

NETs have been implicated in many disease processes. 
Although they can eliminate pathogens, simultaneous tissue 
damage may occur due to the release of enzymes and other 
molecules [91]. Excessive formation of NETs is correlated 
to the severity of the disease, leading to tissue destruction 
and severe organ dysfunctions. Therapeutic ACPA (tACPA) 
may reduce the release of NETs from human neutrophils 
and enhance NET uptake by macrophages in vivo, thereby 
reducing joint damage and CIA progression in mice [92]. 
Targeting microRNA-155(miR-155) might be useful to 
inhibit exaggerated NET generation in inflammatory 
diseases [93]. Inhibition of TNF-α and IL-6 can reduce 
the formation of NET, which suppresses inflammation and 
serum markers, alleviates endothelial dysfunction, and 
inhibits immune cell activation [94].

Targeting B cells

As B cell responses are necessary for autoantibody 
production, they naturally become the intervention target 
for RA treatment, particularly, in the early stage of disease 
progression. Deletion of B cells with simultaneous reduction 
in the levels of autoantibodies can abrogate the deleterious 
effects of these antibodies [95]. Targeting T cells using 
Abatacept causes significant decreases in the proportion 
of B cells in the synovium and ACPA-specific switched 
memory B-cells in the blood serum of RA patients [96]. 
Consistently, co-culture experiments have shown that anti-
FITC CAR-T cells can eliminate ACPA-specific B cells 
from RA patients via recognition of corresponding FITC-
labeled citrullinated peptide epitopes [97]. Inhibition of 
IL-6 using tocilizumab reduces the serum ACPA titer of 
RA patients by increasing the ratio of post-switch memory 
B cells (IgD-CD27+)/mature naive B cells [98]. A previous 
report shows that targeting B cells with rituximab results in 
a decrease in rheumatoid factor and serum ACPA levels in 
RA patients [99], however, we should keep in mind that not 
all B cells in RA patients are pathogenic and precise deletion 
of autoreactive B cells may achieve optimal outcomes with 
minimal adverse effects [100].

Conclusions

Despite extensive and intensive studies, the detailed 
mechanisms for the pathogenesis of RA remain incompletely 
understood. Our review focused on the expression and 
activity of PAD4 as it is a critical enzyme for the formation 

of ACPAs. ACPAs can be detected many years before RA 
onset, early and optimal interventions to block RA cascade 
remain an unmet medical need and warrant more studies. 
Improved understanding of the association between PAD4, 
ACPAs, and genetic and environmental factors may facilitate 
the development of novel, safe, and effective therapeutic 
targets for RA.
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