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Abstract

Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant
hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of
acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors
have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development,
including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance
of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor
biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX
protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the
interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological
processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.

Keywords RUNX family - Angiogenesis - Tumor cell stemness - Drug resistance - Tumor microenvironment - Signaling
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Introduction

RUNX proteins belong to a family of transcription factors.
These proteins are master regulators of embryonic
development and they play key regulatory roles in a wide
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range of biological processes, such as cell proliferation,
apoptosis, differentiation, and lineage determination [1,
2]. In mammals, three different genes encode the three
RUNX proteins, namely RUNX1, RUNX2, and RUNX3
[3]. The expression pattern of the RUNX family is highly
dynamic, depending on the developmental stage and tissue
microenvironment [4]. Functionally, RUNX1 is indispensable
for the establishment of definitive hematopoiesis [5]. RUNX2
is considered to play a key role in osteogenic differentiation
and bone formation [6]. RUNX3 acts as a tumor suppressor
in gastric cancer, colon cancer, and some other solid tumors,
but it is usually inactivated during tumor progression due to
loss of heterozygosity, promoter hypermethylation, histone
modification, and protein mislocalization [7]. All three
RUNX proteins have a highly conserved DNA-binding
domain, called the Runt domain, which heterodimerizes with
the common non-DNA-binding core binding factor  (CBF-
{) subunit. This interaction results in a structural change that
replaces the repression domain and stabilizes the binding
of RUNX proteins to their consensus motifs [8]. Deletion
of any of the RUNX genes in mice results in lethality [9,
10], highlighting their fundamental and essential role in the
process of development. The RUNX family is functionally
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related to major developmental pathways including the TGFf
signaling pathway [11], Wnt/B-catenin signaling pathway
[12], Hedgehog signaling pathway [13—15], Notch signaling
pathway [16], MAPK signaling pathway [17], and Hippo-YAP
pathway [18].

RUNXI, encoded by the RUNX1 gene located on human
chromosome 21, was first characterized in 1991. It is also
known as acute myeloid leukemia 1 (AML1) because it is
known to be involved in the t(8;21) chromosome translocation
in patients with acute myeloid leukemia [19]. It is a transcrip-
tion factor involved in hematopoietic processes [20] and is
essential for the maturation of lymphocytes and megakaryo-
cytes in adults [21]. Meanwhile, an increasing number of stud-
ies have revealed the pro- or anti-cancer roles of RUNX1 in
solid tumors. Abnormal overexpression of RUNX1 has been
observed in ovarian epithelial cancer [22], renal clear cell carci-
noma [23], gastric cancer [24], colorectal cancer [25], and pan-
creatic cancer [26]. RUNX2, also known as core binding factor
al (CBFal), is the most specific marker gene in the early stages
of bone formation, and plays a key role in the regulation of cell
proliferation in osteoblasts and endothelial cells [27]. Similarly,
several studies have shown that RUNX2 is also closely associ-
ated with the occurrence and development of tumors, such as
breast cancer [28], colorectal cancer [29], thyroid cancer [30],
and pancreatic cancer [31]. RUNX3 has been defined as both
a tumor suppressor and a tumor promoter, and it can play such
contradictory roles even in the same tumor, which may reflect
the complex role of RUNX3 in tumorigenesis [32]. Compared
with normal gastric epithelial cells, gastric cancer cells gradu-
ally lose RUNX3 expression as they gain high invasiveness
with cancer progression. After the first study demonstrating that
RUNX3 has a tumor suppressive role [33], an increasing stud-
ies have reached the same conclusion, suggesting that RUNX3
also plays a tumor suppressive role in solid tumors, such as
colon cancer [34], lung cancer [35], breast cancer [36], glioma
[37], renal cancer [38], and hepatocellular carcinoma [39].

Signaling pathways involving or dependent on RUNX
play crucial roles in different processes of tumor progression,
including tumor proliferation, metastasis, angiogenesis,
tumor stemness, and chemoresistance. In this review, we aim
to summarize and provide an overview of recent research
on RUNX-mediated biological effects in tumors. With key
examples, we will discuss how RUNX participates in different
signaling pathways and biological processes to regulate
proliferation and affect the progression of solid tumors.
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RUNX proteins in the landscape of cancer
expression

RUNX1 in carcinogenesis: a dual function

Among the RUNX family, RUNX1 exhibits a particularly
complex role across different types of cancer. RUNX1
is one of the genes significantly mutated in luminal
estrogen-receptor-positive (ER+) breast cancer. Its
expression is lost during the development of ER+ breast
cancer, suggesting the tumor-suppressive role of RUNX1
[40]. A follow-up study supported the idea that RUNX1
mainly acts as a tumor suppressor in ER+ breast cancer,
and it can exert oncogenic effects by suppressing the
estrogen-mediated inhibition of AXIN1 and activation of
the Wnt/p-catenin signaling pathway [41]. In contrast, it
has also been shown that RUNXI levels are abnormally
elevated in triple-negative breast cancer (TNBC) and
this is associated with a poor prognosis, indicating that
RUNXI1 plays a pro-tumor role in TNBC [42]. An analysis
of data from multiple databases confirmed the abnormally
high expression levels of RUNXI1 in cervical cancer [43].
However, research by Zhu et al. contradicts this by showing
that RUNX1 can be downregulated in cervical cancer via
miR-20a, thereby attenuating the cytotoxic effects of NK
cells against cervical cancer cells [44]. The methylation
level of the RUNXI1 promoter is low in renal clear cell
carcinoma, and the expression of RUNXI1 is upregulated
in renal clear cell carcinoma tissues compared with normal
tissues [45]. Research by Janta et al. has confirmed that
RUNXI1 is aberrantly upregulated in prostate cancer and
facilitates the EMT phenotype [46]. Elevated expression
of RUNX1 has also been observed in glioblastoma (GBM)
samples [47, 48]. Qiu et al. demonstrated that aberrant
activation of the USP10/RUNX1 signaling axis in GBM
maintains the mesenchymal properties of GBM cells,
thereby promoting the progression of GBM [49]. Xu et al.
substantiated that RUNX1 is markedly upregulated in
GBM tissues, particularly in recurrent GBM tissues and
in temozolomide-resistant GBM cells [50]. Intriguingly,
in neuroblastoma, RUNX1 exhibits elevated expression
levels in benign ganglioneuromas (GN) and well-
differentiated tissues, while displaying reduced expression
in poorly differentiated and undifferentiated tissues,
suggesting its tumor-suppressive role in neuroblastoma
[51]. Moreover, RUNX1 is also aberrantly upregulated in
human pituitary tumors, contributing to tumor progression
[52]. In an osteosarcoma study, the expression levels of
RUNXI1 mRNA and protein were found to be higher in
tumor tissues than in normal tissues adjacent to the tumor
[25]. Similarly, Jin et al. substantiated that RUNXT1 is
upregulated in oral squamous cell carcinoma (OSCC)
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tissues and cells, promoting cellular proliferation,
adhesion, and migration while inhibiting apoptosis [53].
Complementing these findings, He et al. demonstrated
an upregulation of RUNXI1 expression in lung cancer,
where it fosters cellular proliferation by binding to the
promoter of tartrate-resistant acid phosphatase 5 (ACP5)
[54]. Pertaining to digestive system malignancies, Liu
et al. found that RUNX1 expression was significantly
upregulated in human pancreatic cancer samples and they
confirmed the role of RUNX1 in promoting pancreatic
cancer cell proliferation [26]. Another study on pancreatic
cancer showed consistent results, with quantitative
polymerase chain reaction results indicating that the
mRNA level of RUNX1 was significantly higher in human
pancreatic cancer samples than in normal pancreatic
tissues [55]. Pharmacological inhibition of RUNX1 can
significantly suppress tumor growth in patient-derived
organoids of primary pancreatic cancer [56]. In a study of
gastric cancer, Mitsuda et al. demonstrated that elevated
levels of RUNXI1 in gastric cancer activated the ErbB2/
HER?2 signaling pathway by up-regulating SOS1, which
served to promote the proliferation of gastric cancer
cells [24]. However, the opposite conclusion has also
been reached, namely, that RUNX1 is downregulated in
gastric cancer tissues [57], suggesting a complex role
of RUNXI in the progression of this type of cancer. In
hepatocellular carcinoma, elevated RUNXI levels have
been shown to upregulate COL4A1 expression, thereby
activating the FAK-Src signaling pathway and promoting
the proliferation, migration, and invasion of hepatocellular
carcinoma cells [58]. In colorectal cancer, Zhou et al.
showed that the high expression levels of LRG1 also
resulted in abnormally high expression levels of RUNX1
[59]. Meanwhile, several studies have demonstrated
that the abnormally high expression level of RUNXT1 in
colorectal cancer is closely associated with the occurrence
of epithelial-mesenchymal transition (EMT) [25, 60]. To
sum up, RUNXI1 serves as a double-edged sword in cancer
development, acting as either a tumor suppressor or a pro-
tumor agent, depending on the type of cancer.

RUNX2 in carcinogenesis: a predominant oncogenic
contributor

RUNX2 expression is another key aspect of cancer pathol-
ogy. In the realm of choroidal melanoma, Zhang et al. corrob-
orated that RUNX?2 is markedly upregulated and is directly
targeted by METTL14 through N6-methyladenosine modi-
fication, contributing to its elevated expression [61]. This is
in parallel with its overexpression in osteosarcoma, which
has been linked to the downregulation of p53 and miR-34
[62]. Moreover, frequent amplification of the RUNX2 gene
in osteosarcoma cell lines correlates with elevated RUNX2

levels, subsequently initiating MYC transcription and driving
osteosarcoma tumorigenesis and progression [63]. Kim et al.
affirmed the high expression levels of RUNX2 in osteosar-
coma and identified it as a key transcription factor that sus-
tains tumor cell survival, modulating a range of downstream
target genes such as MYC through the induction of SOX9 and
interactions with JMJD1C [64]. Research by Green et al. sub-
stantiated the upregulation of RUNX?2 expression in tumors
of patients with high-grade primary bone cancer [65]. In a
parallel investigation, Onodera et al. scrutinized 137 cases
of invasive ductal carcinoma of the breast through immu-
nohistochemical staining and documented overexpression of
RUNX?2 [66]. Concurrently, elevated levels of RUNX2 in
cervical cancer were found to be associated with decreased
miR-218-5p expression, and this high expression of RUNX2
positively regulated cervical cancer cell proliferation [67].
Wang et al. found that MREI11 plays a pro-cancer role in
oral cancer through the RUNX2/CXCR4/AKT/FOXA?2 sign-
aling axis, and both MRE1 and RUNX2 have been shown
to be highly expressed in oral cancer samples [68]. Sancisi
et al. demonstrated that RUNX2 expression is reactivated in
thyroid and breast cancers [69]. In epithelial ovarian cancer
(EOC), RUNX?2 promotes cell proliferation and invasion by
regulating PKD2 and PKD3, thereby activating the MAPK/
ERK1/2 signaling pathway, a finding that is further corrobo-
rated by Tong et al. who also confirmed elevated RUNX2
expression in EOC tissues and cells [70, 71]. Concurrently,
both RUNX2 and MAPK11 are overexpressed in clear cell
renal cell carcinoma (ccRCC) tissues and cell lines, enhanc-
ing the proliferation and migration of ccRCC cells [72]. In
a study aligned with existing findings, Wu et al. revealed a
marked upregulation of RUNX2 in ccRCC tissues. Mechanis-
tically, the oncogenic capabilities of RUNX2 were attributed
to its downregulation of the tumor suppressor NOLC1, which
subsequently facilitated the growth and metastasis of ccRCC
cells [73]. In pancreatic cancer, RUNX2 is also abnormally
overexpressed, and its elevated expression is associated with
the malignant behavior of the tumor, demonstrating signifi-
cant diagnostic capability [74]. Guo et al. demonstrated the
upregulation of RUNX2 expression in clinical samples of
gastric cancer tissues and found that RUNX?2 transcriptional
activation of its downstream target, YAP1, promotes the
progression of gastric cancer [75]. Moreover, upregulated
RUNX2 in gastric cancer also promotes gastric cancer pro-
gression through transcriptional activation of MGATS and
MMP13 [76]. RUNX2 is upregulated in gastric cancer, and
in colorectal cancer patients, the expression levels of RUNX?2
and MSN are significantly correlated, with both being over-
expressed. MSN promotes colorectal cancer progression
through the p-catenin-RUNX2 signaling axis [77]. Evidently,
RUNX?2 generally acts as a tumor facilitator, often collabo-
rating with other signaling pathways to exacerbate cancer
progression.
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«Fig. 1 Pan-cancer assessment of RUNX family members' expression
in comparison with normal tissues, sourced from the TCGA and
GTEx databases. The violin plots consistently illustrate differences
between normal tissues (depicted in orange) and tumor samples
(depicted in gray). A RUNX1, B RUNX2, and C RUNX3 expression
variations among different malignancies. *P<0.05, **P<0.01,
4P <0.001

RUNX3 in carcinogenesis: a primary tumor
suppressor

Emphasis is placed on RUNX3, widely acknowledged as a
tumor suppressor, and the implications of its downregulation
in selected cancer types. For instance, a study by Zhou
et al. found diminished expression of RUNX3 in OSCC
specimens [78]. In cutaneous melanoma, RUNX3 acts as
a tumor suppressor, with its expression being significantly
downregulated in both primary and metastatic tumors
[79]. In breast cancer, RUNX3 serves as a frequently
inactivated or downregulated tumor suppressor that inhibits
the proliferative and transformative potential of estrogen
receptor a (ERa)-dependent cells, such as the MCF-7 cell
line [36]. In a study by Bai et al., RUNX3 was demonstrated
to be negatively regulated by overexpressed miR-20a-5p in
TNBC, leading to a significant reduction in both its mRNA
and protein levels [80]. A study by Paudel et al. examined
the expression of RUNX3 in 100 cases of ovarian epithelial
carcinoma (EOC) and 20 normal ovarian tissues, and the
results suggested that RUNX3 expression is significantly
elevated in EOC tissues [81]. Another study found that
RUNX3 expression is lost in non-small cell lung cancer
(NSCLC), leading to the upregulation of CCL5 and CCL19
in NSCLC cells, which was associated with tumor-associated
bone destruction [82]. In addition, RUNX3 has been shown
to destabilize the oncogenic protein MYC, thereby exerting
a suppressive effect on gastrointestinal and lung cancers
[83]. Zheng et al. demonstrated that RUNX3 expression is
significantly down-regulated in renal cancer tissues, and that
the loss of RUNX3 function in renal cancer tissues promotes
the proliferation, migration, and invasion of renal cancer
cells [84]. Complementing these findings, additional research
has verified that RUNX3 expression is notably suppressed
in metastatic renal cancer tissues due to hypermethylation
of CpG islands [85]. Rehman et al. examined the expression
of RUNX3 in 58 cases of esophageal cancer and matched
adjacent normal tissues, and found that the expression level
of RUNX3 mRNA was significantly increased in the tumor
tissues from 31/57 esophageal cancer patients compared
with its level in the corresponding normal tissues, suggesting
that RUNX3 also plays a pro-cancer role [86]. However,
the opposite conclusion has been made for esophageal
squamous cell carcinoma (ESCC). Tonomoto et al. studied
61 ESCC clinical samples and found that methylation of the
RUNX3 promoter region resulted in the absence of RUNX3

expression in tumor tissues [87]. Similarly, Horiguchi's
research confirmed the downregulation of RUNX3
expression in pancreatic cancer [88]. The expression of
RUNX3 is notably diminished in gallbladder cancer tissues
and cells, largely attributed to DNA Methyltransferase
1 (DNMT1)-mediated methylation [89]. An analysis of
108 clinical samples of hepatocellular carcinoma showed
that miR-106b-5p, which is upregulated in hepatocellular
carcinoma, exerted a pro-cancer effect through the inhibition
of RUNX3, and that the targeting of RUNX3 by miR-
106b-5p resulted in its decreased expression in tumor tissues
[90]. Concurrently, research conducted by Sakakura et al.
identified a notable downregulation of RUNX3 in gastric
cancer and its peritoneal metastases, primarily attributable
to methylation in the RUNX3 gene's promoter region
[91]. Likewise, in gastric cancer, Ju et al. confirmed that
RUNX3 principally inhibits the Wnt signaling pathway
through its interaction with the TCF4/p-catenin complex.
Intriguingly, in certain gastric cancer cell lines such as
KatollIl and SNU668, RUNX3 paradoxically elevated Wnt
signaling activity, implying a cell-context-dependent role
for RUNX3 [92]. Additionally, in gastric cancer, RUNX3
plays a role in suppressing cell proliferation and tumor
growth, an effect mediated through the co-activation of the
transcription factor Ets-1 by JMJD1A and the reduction in
H3K9mel/2 levels [93]. Investigations in colorectal cancer
confirmed that a decline in RUNX3 expression correlates
with increased cell proliferation and invasion [94]. This was
further corroborated by Wu et al., who detected a marked
downregulation of RUNX3 in colorectal cancer, concomitant
with an inverse correlation with HER2 expression [95].
Cumulatively, these findings underscore RUNX3's
predominant function as a tumor suppressor, consistently
found to be downregulated in diverse cancer types.

Further substantiating our discussion on the expression
profiles of RUNX family proteins in tumor tissues, an
analysis utilizing data from TCGA and GTEx databases
provides additional insights into their pan-cancer expression
patterns (Fig. 1). Our comprehensive analysis of RUNX
family expression across various cancer types further
elucidates their role in tumorigenesis.

Prognostic implications of RUNX proteins
Expanding on the aforementioned roles of RUNX proteins
in tumorigenesis, this section focuses on their clinical utility
as prognostic markers.

RUNX1: a diverse prognostic indicator

RUNXI1 is implicated in diverse prognostic outcomes across
various cancer types. For instance, in patients with head and
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neck squamous cell carcinoma (HNSCC), elevated levels of
RUNX1 are associated with more advanced disease stages,
as indicated by American Joint Committee on Cancer stag-
ing, T-staging, and N-staging. Furthermore, multivariate
Cox regression analyses have substantiated that elevated
RUNXI1 levels serve as an independent prognostic factor for
poor overall survival (OS) in this patient population [96].
In TNBC patients, elevated levels of RUNX1 are associated
with poor prognosis and have been established as an inde-
pendent prognostic marker through multivariate Cox regres-
sion analysis [42]. However, certain studies have also reached
the opposite conclusion, finding that the absence of RUNX1
expression in breast cancer is associated with activation of
the TGF- and WNT signaling pathways, and that a low
RUNX1 expression level suggests a poor prognosis in breast
cancer [97]. Moreover, diminished RUNX1 expression is
associated with reduced OS in patients with NSCLC, serving
as a predictive factor for adverse prognosis in this malignancy
[98]. Research by Ramsey et al. substantiates that RUNX1
functions as a tumor suppressor in lung adenocarcinoma
(LUAD), where its downregulation correlates with worse OS
[99]. In high-grade serous ovarian cancer, RUNXI1 stands
as an independent prognostic marker for patient outcomes
or therapeutic response [100]. Elevated expression levels of
both RUNX1 and its downstream target, REXO?2, in isocitrate
dehydrogenase wild-type low-grade gliomas are indicative
of unfavorable prognosis [101]. Zhang et al. performed an
online database analysis and demonstrated that RUNX1 is an
independent prognostic factor in low-grade gliomas, and that
it may target interferon-y receptor 2 (IFNGR2) to regulate the
proliferation, invasion, and migration of glioma cells. Zhang
et al. also confirmed that glioma patients with high RUNX1
expression have a significantly lower survival rate compared
to those with low RUNX1 expression [48]. Additionally,
patients with low-grade gliomas with high expression levels
of RUNX1 and/or IFNGR?2 have a worse prognosis, with a
significant increase in the infiltration of M2 macrophages
[102]. Abnormally high expression levels of RUNXI1 are
associated with poorer OS in patients with ccRCC [45]. Simi-
larly, Rooney et al. confirmed that RUNX1 acts as an onco-
genic driver in ccRCC, associating elevated RUNX1 expres-
sion with significantly poorer clinical outcomes compared
to lower expression levels [103]. In a study of pancreatic
cancer, the results of Kaplan—-Meier survival analysis based
on immunohistochemistry score data for RUNX1 suggested
that a high expression level of RUNXI is associated with a
shorter OS time [55]. These findings underscore the context-
dependent role of RUNX1 as a prognostic marker.

RUNX2: generally a poor prognostic marker

Elevated levels of RUNX2 consistently serve as an
adverse prognostic marker across multiple cancer types.

@ Springer

For instance, in cervical cancer, high RUNX2 expression
correlates with poor prognosis, and both RUNX?2 and its
inhibitory counterpart, miR-218-5p, are identified as poten-
tial prognostic markers [67]. Research by Li et al. indicated
that the upregulation of RUNX2 in EOC is likely asso-
ciated with tumor progression and unfavorable outcomes
[104]. Similarly, heightened expression of RUNX2 is indic-
ative of a poor prognosis in breast cancer patients [105].
Zhang et al. also confirmed that abnormal overexpres-
sion of RUNX2 in breast cancer correlates with advanced
TNM stages, metastasis, and unfavorable prognosis [106].
Elevated levels of Parathyroid hormone-like hormone
(PTHLH), an autocrine/paracrine ligand in HNSCC, not
only serve as a marker of poor prognosis but also exhibit
a significant positive correlation with RUNX2 expression,
which, in conjunction with the RUNX2-PTHLH signaling
axis, contributes to HNSCC progression [107]. Overex-
pression of RUNX?2 is significantly associated with poor
survival in patients with ccRCC [73]. Liu et al. revealed
that aberrant overexpression of RUNX?2 in bladder urothe-
lial carcinoma (BLCA) is indicative of both high infil-
tration of cancer-associated fibroblasts (CAFs) and poor
prognosis in BLCA patients [108]. Notably, in prostate
cancer, particularly under conditions of bone metastasis,
RUNX?2 expression is significantly upregulated [109]. In
hepatocellular carcinoma, elevated RUNX2 expression is
likewise associated with shorter survival times [110]. Simi-
larly, research by Guo et al. corroborated that RUNX2 is
highly expressed in the early stages of gastric cancer and
is positively correlated with unfavorable clinical outcomes
[75]. In another gastric cancer study, RUNX2 was found to
promote metastasis through the upregulation of COL1A1
expression, with patients displaying elevated levels of
both RUNX?2 and COL1A1 experiencing reduced survival
times, thereby indicating a poor prognosis [111]. Comple-
menting these findings, a study by Yi et al. significantly
correlated elevated RUNX2 expression levels with meta-
static progression and poor survival rates in patients with
colon cancer [112]. Overall, RUNX?2 is commonly associ-
ated with poor survival and could serve as an independent
prognostic marker in multiple types of cancer.

RUNX3: primarily a tumor suppressor
with prognostic implications

RUNX3, predominantly recognized as a tumor
suppressor, serves as a crucial prognostic marker,
with its downregulation often indicative of adverse
prognoses. For instance, in papillary thyroid cancer
(PTC), hypermethylation at specific CpG sites leading to
downregulated RUNX3 expression has been significantly
associated with an elevated risk of tumor recurrence [113].
In neuroblastoma clinical samples, research conducted
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by Yu et al. corroborated that patients with low RUNX3
expression exhibited significantly reduced survival rates,
whereas higher levels of RUNX3 expression were frequently
observed in patients at favorable stages 1 and 2 [114]. In
EOC, Heinze et al. substantiated that methylation of RUNX3
is correlated with patients' progression-free survival (PFS)
and OS, indicating that a combination of RUNX3 and
CAMKZ2N1 methylation serves as an independent prognostic
marker [115]. In GBM, LMTK2 mediates tumor suppression
by upregulating RUNX3, which in turn inhibits the Notch
signaling pathway; low levels of LMTK? are associated with
poor overall survival, thereby suggesting that both LMTK?2
and RUNX3 collectively influence the prognosis of GBM
patients [116]. Kitago et al. confirmed that downregulation
of RUNX3 in melanoma is indicative of poor prognosis for
patients [79]. Moreover, low expression of RUNX3 in OSCC
tissues is associated with inferior 5-year overall survival
rates [78]. In NSCLC, Yu et al. tested clinical samples and
found that methylation of the RUNX3 promoter led to its
reduced or absent expression, suggesting a poor prognosis
[117]. The down-regulation of RUNX3 expression and its
loss of function in renal cancer tissues are closely related to
a poor prognosis of patients with renal cancer [84]. Cai et al.
demonstrated that RUNX3 expression is down-regulated
in gallbladder cancer due to DNMT1-mediated promoter
hypermethylation, and its downregulation is associated
with a poor prognosis of patients with gallbladder cancer
[89]. In a study of ESCC, the results of clinical sample
analysis suggested that a low expression level of RUNX3
is closely associated with more advanced T-staging and the
occurrence of lymph node metastasis, and that inactivation
of RUNX3 leads to a poor prognosis for patients with ESCC
[118]. Similarly, research conducted by Fujimoto et al. has
demonstrated that in pancreatic cancer, downregulation of
RUNX3 expression and its subsequent methylation serve as
negative prognostic indicators, especially when combined
with CA19-9 levels, enhancing the sensitivity for detecting
early-stage pancreatic cancer [119]. Research by Horiguchi
et al. corroborated a significant downregulation of RUNX3
in pancreatic cancer, with median survival durations for
patients exhibiting normal and reduced RUNX3 expression
being 1006 and 643 days, respectively, thereby establishing
the negative prognostic impact of RUNX3 downregulation
[88]. Ning et al. disclosed that reduced JMID1A expression
in gastric cancer is associated with invasive phenotypes and
poor prognosis, and this association is further substantiated
by a positive correlation between JMJID1A and RUNX3
expression, indicating that reduced RUNX3 expression
serves as an indicator of unfavorable prognosis [93]. In
colon cancer, increased RUNX3 expression levels in tumor
epithelial cells and stromal cells are independent predictors
of a good prognosis [120]. Complementing these findings,
Zhang et al. confirmed that decreased expression of RUNX3

in CRC tissues and cells is linked to poor prognosis,
accentuating its function as a tumor suppressor [94]. As
the evidence suggests, low expression levels of RUNX3 are
generally associated with a poor prognosis, highlighting its
role as a tumor suppressor.

Moreover, an assessment of the association between
RUNX family genes and OS in multiple tumor types was
conducted using the Kaplan—Meier plotter online database
(Fig. 2). These database findings corroborate the dual
prognostic implications of RUNX1, underline the primary
negative prognostic influence of RUNX2, and validate the
tumor-suppressive role of RUNX3. Collectively, these data
provide substantial evidence for the integral association
between RUNX family genes and tumor prognostic
outcomes, further solidifying their clinical utility as
prognostic markers.

RUNX family proteins and tumor stemness

RUNX1: multifaceted influences on stem cell
properties

RUNXI1 plays a significant role in the regulation of tumor
stemness, warranting closer examination. RUNX1 critically
influences the stem-like properties of cancer cells, with evi-
dence pointing to its role in the stabilization of leukemia
stem cell attributes in a pluripotent model [121]. Research
by Jain et al. demonstrated that RUNX1 potentially pro-
moted stem cell activation in hair follicle stem cells and
skin and oral squamous cell carcinoma through the regula-
tion of lipid metabolism and its impact on the Wnt signaling
pathway [122]. In glioblastoma stem cells (GSCs), research
by Santoni et al. demonstrated overexpression of RUNX1
splice variants Aml1b and Amllc during GSC differentia-
tion [123]. In breast cancer, RUNXI critically influences
both the EMT and stemness, both of which are robustly
linked to invasive tumor characteristics [124]. A study by
Fernandez et al. corroborated the observation that elevated
RUNXI1 expression predominantly facilitates the manifes-
tation of cancer stem cell (CSC) markers in TNBC [125].
Conversely, some reports offer contrasting perspectives. For
instance, Hong et al. observed that RUNX1 inhibits stem cell
activities in breast cancer, consequently restraining tumor
progression [126]. Additional evidence by Kulkarni et al.
suggested that RUNX1, in conjunction with RUNX3, cur-
tails the expression of YAP, thereby mitigating YAP-induced
EMT and stemness [127]. Similarly, Chimge et al. disclosed
that in ER + breast cancer, the lack of RUNX1 triggers an
increased expression of stem cell markers [41]. Fritz et al.
elucidated that RUNX1 and RUNX2 have divergent effects
on breast cancer stem cells; specifically, the downregulation
of RUNX1 accompanied by RUNX2 upregulation fosters
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Fig.2 Prognostic implications of RUNX family gene expressions
in various cancers. A RUNX1, B RUNX2, and C RUNX3: Kaplan—
Meier curves depict the correlation of high RUNX expression (in
red) with overall survival (OS). Data sourced from the Kaplan—-Meier

plotter database. P-values and hazard ratios (HR) were calculated
using the logrank test to indicate the statistical significance of the
survival outcomes

@ Springer



Clinical and Experimental Medicine (2024) 24:50

Page9of25 50

EMT and sustains stem cell-like properties [128]. Overall,
the data indicates that RUNX1's regulatory role in tumor
stemness varies in a cancer subtype-specific manner.

RUNX2: predominantly a promoter of cancer stem
cell traits

RUNX2 exerts a pivotal influence on the regulation of
tumor stemness across a diverse array of cancer subtypes.
Zhang et al. showed that RUNX2 promotes the stem cell
properties of CD44+4/CD24— breast cancer, while miR-205
reverses the stemness by inhibiting RUNX2 [129]. Moreo-
ver, elevated RUNX2 expression in breast cancer has been
linked to enhanced tumor stem cell characteristics, thereby
facilitating breast cancer cell metastasis [106]. Similarly,
Yin et al. corroborated that in breast cancer, RUNX2 pro-
motes the tumor stem cell phenotype through the recruit-
ment of the NuRD(MTA1)/CRL4B complex [130]. Further
substantiating the role of RUNX2 in breast cancer, Knutson
et al. revealed that RUNX2 is instrumental in maintaining
tumor stem cell activity, a mechanism intricately connected
with phospho-progesterone receptors and EGF signaling
pathways [131]. In LUAD, a cigarette extract was found
to promote the expression of RUNX?2, which then induced
the upregulation of stemness markers in airway epithelial
cells (AECs), leading to increased migration, invasion, and
tumorsphere formation by tumor stem cells at the molecular
level in AECs [132]. Senbanjo et al. demonstrated that CD44
regulates RUNX?2 expression in prostate cancer, and that
the interaction between RUNX2 and CD44 promotes the
expression of metastasis-associated genes, such as osteopon-
tin (OPN) and MMP-9, which in turn promotes the migra-
tion and invasion of prostate cancer cells [133]. In colorectal
cancer, Yan et al. demonstrated that RUNX2 induces a stem
cell phenotype in colon cancer cells by binding to BRG1 as
a tight complex, thereby upregulating the transcription and
expression of CD44, and promoting the invasion and migra-
tion of colon cancer cells [134]. Overall, evidence predomi-
nantly supports RUNX2's role in enhancing stem cell-like
characteristics in a range of cancers, which is often linked
to worse patient outcomes.

RUNX3: mainly a negative modulator of tumor
stemness

RUNX3 engages in intricate regulatory mechanisms gov-
erning tumor stemness, generally aligning with the prevail-
ing notion that it serves as a suppressive modulator. In line
with its recognized role as a suppressive modulator of tumor
stemness, Jiang et al. substantiated that in LUAD, RUNX3 is
directly downregulated by miR-1275, resulting in the activa-
tion of Wnt/p-catenin and Notch signaling pathways; this
mechanism consequently enhances the stem-like properties

of LUAD cells, thereby promoting tumorigenesis, recur-
rence, and metastasis [135]. Further research has indicated
its negative regulation of the TEAD-YAP oncogenic com-
plex, thereby reversing EMT and stem-like phenotypes in
tumor cells, particularly in gastric cancer [136]. Voon et al.
also demonstrated that if RUNX3 expression is absent in
gastric cancer, it is prone to spontaneous EMT and aberrant
TGF-f and Wnt signaling, which leads to an increase in a
subpopulation of tumor cells with stem-cell-like properties
[137]. Moreover, the deficiency of RUNX3 in murine gas-
tric epithelial cells (GIF-14) is associated with enhanced
stem-cell-like characteristics [138]. Balinth et al. showed
that EZH2 inhibits the tumor suppressor RUNX3, which
activates SETDB1 and ANp63a, driving an invasive tumor
stem cell phenotype, and that the use of an EZH2 inhibitor
reactivates RUNX3, thereby reversing this process [139].
In colorectal cancer, RUNX3 suppresses the stem cell phe-
notype of colorectal cancer cells by inhibiting Hedgehog
signaling [13]. Overall, RUNX3 predominantly acts as a
dampener of tumor stemness, distinguishing it from RUNX1
and RUNX2.

RUNX proteins and angiogenesis
RUNX1: multifaceted roles in angiogenesis

Angiogenesis, the formation of new blood vessels from pre-
existing ones, plays a pivotal role in the progression and
metastasis of tumors [140]. Within this complex biological
process, the transcription factor RUNX1 has emerged as a
multifaceted regulator, exhibiting both pro-angiogenic and
anti-angiogenic activities depending on the cancer type.
RUNXI1 promotes angiogenesis by downregulating insulin-
like growth factor binding protein-3 (IGFBP-3) [141]. In
GBM, knockdown of RUNXI1 in U-87 MG cells inhibits
the angiogenesis of human umbilical vein endothelial cells,
and a p38 MAPK inhibitor (SB203580) reduces RUNX1
expression levels; thus, RUNX1 may promote angiogenesis
in gliomas through activation of the p38 MAPK signaling
pathway [17]. However, there are also studies suggesting
the opposite. For example, Liu et al. demonstrated that
RUNXI exerts an inhibitory effect on vascular endothelial
growth factor (VEGF) A in hepatocellular carcinoma,
hindering angiogenesis and thus, inhibiting the progression
of hepatocellular carcinoma [142]. Similarly, Hong et al.
demonstrated that RUNXI1 inhibits angiogenesis and
promotes apoptosis in neuroblastoma, thus preventing its
progression [51]. Rada et al. found that activation of the
RUNX1-Ang1 pathway was responsible for the high level of
neutrophil infiltration through vessel co-opting in colorectal
cancer liver metastases, and that high levels of neutrophil
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infiltration is a potential factor promoting the development
of liver metastases [143]. Thus, RUNX1 emerges as a
complex regulator of angiogenesis, with both pro-angiogenic
and anti-angiogenic roles varying by cancer type.

RUNX2: a key facilitator of angiogenesis and tumor
progression

RUNX2's significance is underscored by its involvement in
multiple physiological and pathological processes, including
angiogenesis. Angiogenesis and bone formation are closely
related processes, and it has been shown that RUNX2 over-
expression in mesenchymal cells upregulates the expression
of hypoxia-inducible factor 1a and VEGF, which stimulates
angiogenesis [144]. Additional evidence supporting this role
includes research indicating that RUNX?2 mediates vascular
formation in endothelial cells via glucose-activated phos-
phorylation [145]. Complementing these observations, a
study by Papachristou et al. affirmed that RUNX2 critically
contributes to the malignant transformation and progres-
sion of chondrosarcoma through the upregulation of VEGF
[146]. Corroborating these findings, research by Cecconi
et al. established that the Runt domain of RUNX2 plays an
indispensable role in neoangiogenesis in melanoma, serving
as a potent promoter of new blood vessel formation [147].
Similarly, a study by Niu et al. demonstrated that elevated
RUNX2 levels in thyroid carcinoma induce the expression of
vasculogenic factors VEGFA and VEGFC, thus promoting
tumor invasiveness [148]. Furthermore, the angiogenesis-
inhibiting effects of emodin in breast cancer cells may be
attributable to the downregulation of RUNX?2 transcriptional
activity [149]. In neuroblastoma, extracellular matrix stiff-
ness controls VEGF 5 secretion through the YAP/RUNX2/
SRSF1 axis and regulates tumor angiogenesis [150]. In
hepatocellular carcinoma, Cao et al. have substantiated that
elevated RUNX2 expression is implicated in the promotion
of vasculogenic mimicry (VM), thereby facilitating tumor
progression [110]. Thus, RUNX2 not only plays a role in
angiogenesis but also influences tumorigenic processes
related to vascular growth.

RUNX3: primarily an inhibitor in angiogenic
regulation

Attention is shifted to RUNX3, another key member of
the RUNX family, commonly acknowledged as a tumor
suppressor, to explore its potential role in the regulation
of angiogenesis. Research by Chen et al. substantiates
that RUNX3 serves as a tumor suppressor in prostate
cancer by diminishing the secretion of VEGF, thereby
inhibiting tumoral angiogenesis [151]. Complementing
these findings, RUNX3 is observed to down-regulate
VEGEF expression in gastric cancer cells, thereby limiting
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angiogenesis and impeding tumor growth and metastasis
[152]. In a complementary vein, Lee et al. have confirmed
that RUNX3 serves as an inhibitor of HIF-1a in gastric
cancer cells, promoting the prolyl hydroxylation and
degradation of HIF-1a through interactions with PHD-
2, ultimately suppressing hypoxia-induced angiogenesis
within the tumor microenvironment [153]. Similarly, Kim
et al. revealed that in colorectal cancer, RUNX3 curtails
VEGEF secretion, thereby obstructing endothelial cell
proliferation and angiogenesis [154]. In oral squamous cell
carcinoma, RUNX3 also inhibits VEGF activity and exerts
anti-cancer effects [78]. However, divergent results do exist;
for example, in EOC, a distinct transcriptional variant of
RUNX3 appears to promote angiogenesis, thus functioning
in a pro-oncogenic manner [155]. Taken together, the
prevailing evidence predominantly supports the role of
RUNX3 as a key inhibitor of angiogenesis.

RUNX family and the intricate landscape
of tumor metastasis

RUNX1: the multifaceted orchestrator of metastasis

RUNXI1 is a pivotal transcription factor implicated in
the regulation of metastasis across various cancer types.
Specifically, RUNX1 interacts with SNORA71C to
accelerate breast cancer progression and metastasis [156].
Browne et al., utilizing the MMTV-PyMT transgenic mouse
model, demonstrated that RUNX1 not only fosters tumor
invasion and metastasis in breast cancer but also revealed its
heightened expression in distal lung metastatic lesions [157].
Meanwhile, Liu et al. elucidated that RUNX1 augments the
MAPK signaling cascade in HNSCC by directly engaging
with the promoter region of OPN, thereby facilitating
HNSCC metastasis [158]. In cervical cancer, the RUNX1
expression level is abnormally elevated, promoting EMT
and significantly enhancing the invasion and metastasis
of cervical cancer cells [43]. Doll et al. demonstrated that,
in endometrial carcinoma, RUNX1 collaborates with an
array of proteins such as CBFp and members of the Ets
transcription factor family to expedite distant metastasis,
particularly to the lungs and para-aortic lymph nodes
[159]. RUNXI1 plays a role in promoting tumor metastasis
in EOC, and Keita et al. demonstrated that RUNXI is
hypomethylated in tumor tissues with omental metastases
[22]. Abnormally elevated RUNXI levels in prostate cancer
promote the EMT phenotype and activate the Akt/P38/
JNK-MAPK signaling pathway driving the invasion and
metastasis of prostate cancer cells [46]. In hepatocellular
carcinoma, RUNX1 induces tumor cell migration, invasion,
and metastasis by activating the COL4A 1/FAK/Src signaling
axis [160]. Of particular concern is that, in colorectal cancer,
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RUNXIT activates the TGF-p signaling pathway, which plays
a dominant role in the EMT process of colorectal cancer
cells. Therefore, up-regulation of this signaling pathway
by RUNX1 can promote colorectal cancer cell migration
and invasion [60]. Additionally, RUNX1 enhances liver
metastasis of colorectal cancer by activating vessel co-option
through ARP2/3 [161]. Meanwhile, it has been found that
RUNXI1 expression is up-regulated in colorectal cancer
tissues and this promotes colorectal cancer metastasis by
activating the Wnt/fB-catenin signaling pathway and EMT
[25]. RUNXT1 also directly binds to the RNCR3 promoter
region to transcriptionally upregulate RNCR3 expression.
Moreover, RNCR3 overexpression blocks the inhibitory
effect of miR-1301-3p on the proliferation and invasion of
colorectal cancer cells, while upregulating AKT1 to promote
colorectal cancer progression [162].Overall, RUNX1
plays a significant role in modulating metastasis through
its interactions with multiple signaling pathways, thus
representing a complex but crucial factor in the progression
of diverse malignancies.

RUNX2: predominantly a promoter of cancer
metastasis

The seemingly paradoxical relationship between osteogen-
esis and metastasis finds a nexus in RUNX?2, a transcription
factor predominantly expressed in mesenchymal cells with
an osteoblastic phenotype. Essential for bone formation,
RUNX?2 aberrantly overexpresses in specific tumor cells
of breast and prostate origin, which eventually manifest
invasive bone metastases. Such aberrant overexpression
has been elucidated to bear a significant association with
bone metastases [163]. In primary bone cancer, RUNX2
is aberrantly overexpressed and physically interacts with
YBX1, thereby exerting pro-metastatic effects [65]. In
osteosarcoma, research by Villanueva et al. substantiated
that RUNX2 activates the OPN/SPP1 gene, consequently
enhancing adhesion between osteosarcoma cells and pul-
monary microvascular endothelial cells, which ultimately
drives lung metastasis [62]. In thyroid cancer, RUNX2
promotes EMT and tumor invasion by inducing the expres-
sion of EMT-related molecules such as SNAI2, SNAI3,
TWISTI1, and MMP2 [148]. Wang et al. have corrobo-
rated that, in oral cancer, RUNX2 advances the EMT phe-
notype and metastasis through its synergistic interactions
with CXCR4, AKT, and FOXA?2 [68]. In conjunction with
this, research by Yi et al. positions RUNX?2 as an epige-
netic orchestrator instrumental in facilitating EMT, hence
suggesting its utility as a potential prognostic biomarker
for breast cancer metastasis [112]. Additionally, in breast
cancer, RUNX2 recruits the NuRD(MTA1)/CRL4B com-
plex to catalyze histone deacetylation and ubiquitination,
affecting a cohort of key genes including PPARa and SOD2,

which play pivotal roles in promoting EMT and metastasis
[130]. Li et al. identified ITGAS as a novel transcriptional
target of RUNX?2 and demonstrated that RUNX2 fosters the
recruitment and colonization of breast cancer cells in bone
via ITGAS5-dependent mechanisms, culminating in bone
metastasis [164]. Complementing these findings, research
by Sancisi et al. underscores that RUNX?2 facilitates tumor
metastasis in both thyroid and breast cancer, modulated
through the synergistic control of BRD4 and c-JUN [69].
In LUAD, RUNX2 functions as a critical transcription fac-
tor that augments tumor cell EMT, migration, and invasion
through the upregulation of the galectin-3 pathway and ROS
activation [132]. In ccRCC, RUNX?2 is up-regulated by ZIC2
and it enhances the proliferation and migration of ccRCC
cells by transcriptionally suppressing the tumor suppressor,
NOLC1, and dysregulation of ZIC2/RUNX2/NOLCI1 signal-
ing promotes ccRCC metastasis [73]. In BLCA, aberrantly
overexpressed RUNX2 contributes to tumor metastasis
by inducing an EMT phenotype [108]. Zou et al. showed
that exosomal miR-1275 secreted by prostate cancer cells
activates the SIRT2/RUNX2 signaling pathway to promote
the proliferation and activity of osteoblasts, promoting the
metastasis of prostate cancer [165]. In highly metastatic
prostate cancer cells, RUNX2 is aberrantly overexpressed,
a finding corroborated by the study conducted by Akech
et al. [166]. RUNX2 phosphorylation plays a crucial role in
the occurrence and development of prostate cancer, induc-
ing tumor cells to develop an invasive phenotype, which
ultimately contributes to their metastasis [167]. Corrobo-
rating these observations, Roy et al. affirmed that RUNX?2
serves as a key gene promoting bone metastasis in prostate
cancer by activating the MEK/ERK1/2 signaling pathway
[168]. In a complementary study, Senbanjo et al. elucidated
that within PC3 prostate cancer cells, RUNX2 forms a co-
transcriptional complex with CD44-ICD, resulting in the
upregulation of metastasis-associated genes and thereby
promoting cellular invasion and migration [133]. Comple-
menting the data in prostate cancer, Li et al. revealed that
RUNX?2 enhances metastasis in gastric cancer by upregulat-
ing COL1A1 expression [111]. In line with these findings,
Cao et al. demonstrated that elevated RUNX2 expression in
hepatocellular carcinoma facilitates EMT as well as tumor
cell migration and invasion [110]. In summary, RUNX2 is
not merely a bridge between bone formation and metastasis;
it serves as a critical player in the metastatic pathways of
several types of malignancies.

RUNX3: a potential inhibitor of metastasis
Contrary to other RUNX family members predominantly
implicated in the enhancement of metastasis, RUNX3

manifests an opposing role. Research conducted by Wang
et al. corroborated RUNX3's tumor-suppressive role in
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Table 1 (continued)

References

Target genes and interacting proteins

Biological roles

expression status

Cancer classification

(58]
[57]
[15]

[25]

Facilitates proliferation, migration, and invasion COLA4A1, FAK-Src signaling

Upregulated

Hepatocellular carcinoma

Modulated by circ_0027599 via sponging miR-21-5p

Inhibits migration, invasion, and cell cycle process
ABCG?2, promoting its expression

Downregulated

Gastric cancer

Promotes proliferation and chemoresistance

Upregulated

Colorectal cancer

Targeting KIT promoter

Promotes metastasis and EMT

Upregulated

Colorectal cancer

melanoma, particularly in inhibiting cell migration and
metastasis [169]. In renal cell carcinoma, Zheng et al.
demonstrated that the downregulation of both RUNX3 and
TGF- in metastatic tissues, attributed to hypermethylation
of CpG islands, is significantly associated with metastatic
propensity and can be reversed by the application of a
methylation inhibitor [85]. In prostate cancer, RUNX3
serves as a tumor suppressor. Its overexpression leads to
the upregulation of TIMP-2, which in turn inhibits the
expression and activity of MMP-2, thereby suppressing
the metastasis of prostate cancer [151]. In esophageal
squamous cell carcinoma (ESCC), overexpression of
RUNX3 remarkably suppresses the phosphorylation of
Smad?2/3. Through the TGF-f/Smad signaling pathway,
RUNX3 reverses EMT, subsequently inhibiting the
invasion and metastasis of ESCC cells [118]. Notably,
corroborating research by Whittle et al. elucidates that
RUNX3 exhibits a bifunctional role in pancreatic ductal
adenocarcinoma by simultaneously constraining cell
proliferation and facilitating cellular migration and
invasion, a mechanism intricately associated with Dpc4
(Smad4) status [170]. In cases of gastric cancer, however,
the absence of RUNX3 accelerates the progression toward
peritoneal metastasis [91]. Interestingly, in colorectal cancer,
Zhang et al. demonstrated that hypermethylation-induced
downregulation of RUNX3 disrupts the circMETTL3/miR-
107/PER3 axis, thereby facilitating cancer metastasis [94].
Unlike its counterparts, RUNX3 mainly demonstrates an
inhibitory function on metastasis, although the specifics can
be context-dependent, highlighting the complex role it plays
in the realm of metastasis.

RUNX proteins and drug resistance in tumor
therapy

RUNX1's regulatory influence in drug resistance

Building upon RUNXT1's involvement in angiogenesis and
metastasis, it is crucial to explore its role in drug resistance.
Fernandez et al. demonstrated that in TNBC, RUNX1 binds
to the androgen receptor (AR), leading to resistance to AR
inhibitors in patients with TNBC [125]. In ovarian cancer,
RUNXI1 negatively regulates the expression of the miR-17-
92 cluster, which leads to the upregulation of BCL2, the
direct target of miR-17-92, resulting in significant inhibition
of cisplatin-induced apoptosis, which may be associated
with cisplatin resistance [171]. Hyperactivation of the
RUNXI1/IL-34/CSF-1R signaling axis is associated with the
resistance of melanoma to BRAF-V600E inhibitors [172].
Wang et al. demonstrated that RUNX1 negatively regulates
miR-101 expression in lung cancer cells, thereby hindering
the sensitizing effect of miR-101 on cisplatin in lung cancer
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Table 2 (continued)

References

Target genes and interacting proteins

Biological roles

Expression status

Cancer classification

[112]

Epigenetic regulator of EMT, promoting metastasis and =~ EMT-associated genes

Upregulated

Colon cancer

poor survival

[134]

Targets CD44; interacts with BRG1

Sustains stem cell-like properties; promotes CD44-

Not specified

Colorectal cancer

induced EMT; involved in invasion

chemotherapy [173]. Xu et al. demonstrated that RUNX1
plays an oncogenic role in GBM, and that RUNX1 induces
temozolomide resistance in GBM by up-regulating MRP1,
which is negatively regulated by miR-128-3p [50]. In EOC,
RUNXI1 synergistically binds to the promoter region of
insulin-like growth factor 1 receptor (IGF1R) with FOXO3a,
contributing to the up-regulation of IGFIR expression,
which can lead to the development of platinum-paclitaxel
resistance in EOC [174]. Han et al. demonstrated the
potential of employing RUNX1 as a biomarker of reference
in devising chemotherapy regimens for patients diagnosed
with gastric cancer [175]. In colorectal cancer, RUNXI is a
biomarker for the development of chemotherapy programs
and it can activate the Hedgehog signaling pathway by
up-regulating the expression of ABCG2, inducing resistance
to 5-fluorouracil by colorectal tumor cells [15]. The data
collectively suggests that RUNXI1 acts as a key regulatory
node in the establishment of drug resistance across diverse
types of cancer, thereby offering multiple therapeutic avenues
for intervention.

RUNX2: mediator of chemoresistance

RUNX2 contributes to the chemo-resistant phenotype in sev-
eral cancers. In TNBC, RUNX2 leads to chemoresistance
in breast cancer cells through transcriptional activation of
the target gene, MMP1 [28]. An analysis of osteosarcoma-
related gene expression indicates that overexpression of
RUNX2 can be a potential biomarker for chemotherapy fail-
ure in patients with osteosarcoma [176]. Similarly, research
by Ozaki et al. demonstrated that RUNX2 attenuates cellular
sensitivity to Adriamycin chemotherapy in human osteosar-
coma by inhibiting the transcriptional activity of TAp73, a
molecule involved in DNA damage response. This mecha-
nism contributes to chemoresistance, and its disruption
through RUNX?2 knockdown enhances Adriamycin sensi-
tivity while upregulating TAp73 and its target genes [177].
In related research, the same team also revealed that RUNX2
inhibits the transcriptional and pro-apoptotic activities of
p53 through functional collaboration with HDAC6 in human
osteosarcoma, potentially implicating a role for RUNX2 in
Adriamycin resistance in this cancer type [178]. Sugimoto
et al. demonstrated that RUNX?2 confers gemcitabine resist-
ance in pancreatic cancer AsPC-1 cells through the inhibi-
tion of TAp63, suggesting that targeting RUNX?2 may serve
as a novel strategy to enhance the efficacy of gemcitabine
treatment in p53-deficient pancreatic tumors [179]. RUNX2
has also been shown to be significantly overexpressed in
platinum-chemotherapy-resistant gastric cancer cells and tis-
sues, and RUNX?2 reduces the response of gastric cancer to
chemotherapeutic drugs by negatively regulating p53-medi-
ated apoptosis [180]. These findings position RUNX2 as
a significant actor in the development of chemoresistance
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Table 3 (continued)

References

Target genes and interacting Proteins

Biological roles

Expression status

Cancer classification

[86]

Co-expressed with EZH2, implicated in

functioning both as an oncogene and a tumor

Upregulated

Esophageal cancer

TGF-p dependent apoptosis

suppressor, influenced by interactions with

MYC or p53
Resistance to growth-inhibitory and apoptosis- TGF-beta, R122C

(33]

Downregulated

Gastric cancer

inducing action of TGF-beta

[91]

vav3, TOLL-like receptor, caspase 9

Inhibits cell proliferation and peritoneal

Downregulated

Gastric cancer

metastases

[152]
[13]

VEGF
[94]

Inhibition of metastasis and angiogenesis

Downregulated

Gastric cancer

GLI1, promoting its ubiquitination

Suppresses metastasis and stemness

Downregulated

Colorectal cancer

Transcriptionally activates circMETTL3;

Inhibits CRC cell proliferation and metastasis

Downregulated

Colorectal cancer

circMETTL3 sponges miR-107, which

targets PER3

and a possible target for improving the efficacy of existing
treatments.

RUNX3: a tumor-suppressive regulator in cancer
drug resistance

Kim et al. demonstrated that re-expression (activation)
of RUNX3 enhances the susceptibility of NSCLC to
Sc-conjugated cetuximab, and that clinical efficacy can
be improved through the combined use of therapeutics
with RUNX3 activity [181]. Barghout et al. showed that
RUNX3 expression was elevated in the tumor tissues of
patients with carboplatin-resistant EOC compared to those
with carboplatin-sensitive EOC, suggesting that a high
RUNX3 expression level contributes to the development of
chemoresistance in EOC [182]. In pancreatic cancer, loss of
RUNX3 expression leads to the upregulation of multidrug
resistance proteins (MRP), consequently increasing
resistance to gemcitabine and adversely affecting patient
prognosis [88]. Tan et al. found that in hepatocellular
carcinoma, HCV core protein reduces sensitivity to cisplatin
by downregulating RUNX3 via inhibition of NR4A1 and
upregulation of Smad7 [183]. In gastric cancer, RUNX3
is targeted and suppressed by miR-106a, particularly in
multidrug-resistant (MDR) cell lines. This downregulation
facilitates the efflux of anthracycline drugs (ADR) and
inhibits drug-induced apoptosis, thereby advancing
mechanisms of multidrug resistance and chemoresistance
[184]. Collectively, these findings underscore RUNX3's role
as a tumor-suppressive gene in mediating drug resistance,
highlighting its context-dependent impact across various
cancer types and therapeutic approaches, thereby deepening
our understanding of the RUNX family's tumor-suppressive
influence on drug resistance.

Summary and perspectives

RUNX transcription factors function as pivotal
developmental regulators, indispensable for cellular
differentiation across diverse tissue types. These proteins,
despite recognizing the same DNA sequences, have unique
C-terminal structural domains that lead to varying target
binding, occasionally yielding contradictory outcomes.
Depending on the cellular context, RUNX transcription
factors may transition between roles as tumor suppressors
and oncogenes. Intricate interplay exists among the various
members of the RUNX family, with this interplay largely
dependent on the relative expression levels of each family
member in different tissues.

RUNX's differential responses to oncogenic stimuli such
as Wnt, c-Myc, and mutant RAS point towards its capacity

@ Springer



50 Page 18 of 25

Clinical and Experimental Medicine (2024) 24:50

Fig. 3 Comprehensive roles

of RUNX family genes in
oncogenesis. The diagram
explicitly highlights the pivotal
functions of RUNX genes
across diverse cancer hallmarks,
emphasizing the RUNX-
associated effects on cellular
proliferation and invasion,
metastatic dissemination,
angiogenesis, chemoresistance,
and maintenance and self-
renewal of cancer stem cells

for variable oncogenic activities. A core question that
emerges is how RUNX effectively coordinates the crosstalk
among multiple signaling pathways to integrate these signals
and dictate cellular fate. Accumulating evidence implies
that stringent regulation of RUNX expression is crucial for
maintaining normal cellular differentiation. Disruption in
this regulation could potentially lead to aberrant cellular
differentiation, initiation of tumors, and subsequent tumor
progression. Consequently, the expression levels of RUNX
and its downstream targets could serve as early indicators of
neoplastic development and as prognostic biomarkers. For a
summarized overview of the differential roles and expression
statuses of RUNX1, RUNX2, and RUNX3 in various cancers,
readers are referred to Tables 1, 2, and 3. To encapsulate
the complex roles and interactions of RUNX family genes
in modulating the hallmarks of cancer, Fig. 3 serves as a
representative scheme.

Particularly intriguing is the question of whether the
oncogenic propensity of RUNX can be mitigated by enhancing
its oncogenic activity. This line of inquiry could illuminate
if the restoration of RUNX expression represents a viable
therapeutic strategy for cancer treatment. For instance,
RUNX1's role in maintaining tumor cell stemness might be
counteracted by the restored expression levels of RUNX3.
In essence, it appears plausible that individual RUNX family
members could act to mitigate the tumor-promoting effects of
their counterparts.

@ Springer

Cancer stem cell & self-renewal

Chemo-resistance

The burgeoning field of research focused on the RUNX
family of transcription factors holds considerable promise.
As the field continues to expand rapidly, it is expected that
our understanding of RUNX's pleiotropic roles in cancer
therapeutics will become increasingly nuanced in the years
to come. Unquestionably, in-depth and broad-based research
is imperative and is likely to yield novel avenues for the
development of anti-cancer pharmaceuticals.
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