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Abstract
Traumatic brain injury is a major cause of morbidity in civilian as well as military populations. Computational simulations 
of injurious events are an important tool to understanding the biomechanics of brain injury and evaluating injury criteria and 
safety measures. However, these computational models are highly dependent on the material parameters used to represent 
the brain tissue. Reported material properties of tissue from the cerebrum and cerebellum remain poorly defined at high 
rates and with respect to anisotropy. In this work, brain tissue from the cerebrum and cerebellum of male Göttingen minipigs 
was tested in one of three directions relative to axon fibers in oscillatory simple shear over a large range of strain rates from 
0.025 to 250  s−1. Brain tissue showed significant direction dependence in both regions, each with a single preferred load-
ing direction. The tissue also showed strong rate dependence over the full range of rates considered. Transversely isotropic 
hyper-viscoelastic constitutive models were fit to experimental data using dynamic inverse finite element models to account 
for wave propagation observed at high strain rates. The fit constitutive models predicted the response in all directions well 
at rates below 100  s−1, after which they adequately predicted the initial two loading cycles, with the exception of the 250  s−1 
rate, where models performed poorly. These constitutive models can be readily implemented in finite element packages and 
are suitable for simulation of both conventional and blast injury in porcine, especially Göttingen minipig, models.
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1 Introduction

Traumatic brain injury (TBI) is a significant cause of injury 
and death in both civilian and military populations. In the 
United States (U.S.) alone, TBI accounts for approximately 2 

million emergency department visits and over 69,000 deaths 
per year (Centers for Disease Control and Prevention 2023). 
In addition, nearly 480,000 U.S. Service members sustained 
at least a mild TBI between 2000 and 2023 (Military Health 
System 2023). In order to develop mitigation strategies for 
traumatic brain injury, the underlying biomechanics and 
mechanisms of TBI need to be better understood. Finite 
element (FE) simulations are a vital tool for understanding 
the biomechanics of head injury (Dixit and Liu 2016; Mad-
hukar and Ostoja-Starzewski 2019; Sundaramurthy et al. 
2012; Sundaramurthy et al. 2021). The results of these mod-
els are highly dependent on the material parameters used 
(Zhao et al. 2018). For simulations to be accurate, material 
parameters should be based on the modeled loading rates 
and modes. High-quality constitutive models are especially 
needed for the brain where despite decades of experimen-
tal modeling, reported properties still show a wide range of 
variation (Meaney et al. 2014).
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Peak strain rates seen in FE models of TBI can vary by 
several orders of magnitude depending on the type of injury 
being simulated (e.g., blast vs. impact), species, and material 
models used in the simulation. For example, in simulations 
of human blast injury, strain rates have been observed on the 
order of ten (Subramaniam et al. 2021; Zhang et al. 2013) to 
several hundred per second (Singh et al. 2014). In contrast, 
peak strain rates in simulations of impact injury have been 
observed at up to 235  s−1 in porcine models compared to 
65  s−1 in humans (Wu et al. 2021). Consequently, constitu-
tive models should be generated from experimental data over 
a broad range of strain rates.

Oscillatory shear testing, either with a parallel plate shear 
tester or a rheometer, is a long-established means of testing 
brain tissue. Most of these studies have been limited to either 
strain rates below 50  s−1 (Bilston et al. 1997, 2001; Brands 
et al. 2000; Budday et al. 2017b; Chatelin et al. 2012; Feng 
et al. 2013; Hrapko et al. 2008) or low strain amplitudes 
(below 5% shear strain) (Bilston et al. 1997, 2001; Brands 
et al. 2000; Chatelin et al. 2012; Feng et al. 2013; Hrapko 
et al. 2008; Nicolle et al. 2004), with few studies examin-
ing both high strain rates and large deformations. Darvish 
and Crandall (Darvish and Crandall 2001) subjected bovine 
cerebral tissue to oscillations at frequencies of 1–1000 Hz at 
amplitudes of up to 10.5% shear strain but, due to the effects 
of resonance in their experimental system, were not able to 
use any rates above 30 Hz to develop constitutive models. 
Arbogast and Margulies (Arbogast and Margulies 1998) 
subjected porcine brainstem samples to frequency sweeps 
between 20 and 200 Hz at amplitudes of up to 7.5%; while, 
Thibault and Margulies (Thibault and Margulies 1998) sub-
jected porcine cerebral tissue to frequency sweeps between 
20 and 200 Hz at amplitudes up to 5%. However, both stud-
ies modeled the tissue response using linear viscoelastic-
ity and did not attempt to fit data to a hyper-viscoelastic 
framework. To date, no author has performed oscillatory 
shear experiments at both high strains (over 10%) and high 
strain rates (up to 200  s−1) and developed a respective hyper-
viscoelastic model.

Brain tissue anisotropy at strain rates and strains 
remains poorly characterized. Brain tissue is broadly clas-
sified as either white or gray matter. Gray matter primar-
ily comprises neuronal cell bodies and glial cells; while, 
white matter contains axons that connect neurons and glial 
support cells. Most of these axons, especially those of 
larger diameter (Simons and Trajkovic 2006), are wrapped 
in myelin sheaths. In addition to their critical physiologi-
cal functions, myelin content is correlated with increased 
tissue stiffness (Weickenmeier et al. 2017), suggesting that 
they may act as reinforcing fibers within the brain. In many 
regions of the brain, such as corpus callosum (Budde and 
Annese 2013) and corona radiata (Budday et al. 2017a), 
these fibers run in a predominant direction and may lead 

to a significant degree of anisotropy. In these regions, axon 
fiber direction can be mapped throughout the brain using 
diffusion tensor imaging (DTI) (Budde and Annese 2013; 
Budday et al. 2017a). Many studies have examined anisot-
ropy in the brain. For example, Arbogast and Margulies 
demonstrated that the brainstem is transversely isotropic in 
shear with a single preferred fiber direction (Arbogast and 
Margulies 1998). In a transversely isotropic material, the 
shear response is stiffer in the preferred direction where 
the fibers run in the shear plane and normal to the direc-
tion of shear, as compared to the non-preferred orienta-
tions where the fibers run either transverse to the shear 
plane or in the shear plane but aligned with the direction 
of shear, which will respond similarly. In the cerebrum, 
published data on anisotropy are mixed, with some studies 
reporting that the region demonstrates significant anisot-
ropy (Darvish and Crandall 2001; Feng et al. 2013; Velardi 
et al. 2006), with others reporting an isotropic response 
(Budday et al. 2017a; Nicolle et al. 2005). To date, no 
studies have examined the effects of anisotropy in cerebel-
lar tissue.

Previous work by our group focused on characterizing 
brain tissue from adolescent (aged 4–5 months) Göttingen 
minipigs, when brain tissue properties are similar to those 
of adult pigs (Prange and Margulies 2002), in high-rate and 
quasi-static (QS) shear and compression (Boiczyk et al. 
2023). While we produced hyper-viscoelastic constitutive 
models that predict the response of brain tissue in shear and 
compression at strain rates up to 300  s−1, our experimental 
data did not include intermediate strain rates in the several 
decades between the quasi-static and high-rate tests. This 
work also suggested that our simple shear experiments may 
have been confounded by inhomogeneous deformations in 
part due to wave propagation at high rates, potentially stiff-
ening the response. If this is the case, conventional methods 
of fitting constitutive models may provide poor fit quality 
and not accurately reflect the experimental results. While 
such issues may be unavoidable in high-rate brain tissue test-
ing, inverse FE modeling can be used to account for dynamic 
effects. Recently, multiple studies have investigated the use 
of inverse methods to successfully fit hyperelastic (Feng 
et al. 2017; Kaster et al. 2011; MacManus et al. 2017; Moran 
et al. 2014), as well as hyper-viscoelastic (Felfelian et al. 
2019; Hosseini-Farid et al. 2019) and biphasic (Hosseini-
Farid et al. 2020), constitutive models to experimental tests 
of brain tissue. However, none of these studies has used 
these methods to model simple shear in brain tissue at high 
rates. The literature either focuses on compressive loading 
or only considers simple shear using rate-independent hyper-
elastic models.

In this study, we performed a new set of experiments 
where tissue from the cerebrum and cerebellum of adoles-
cent male Göttingen minipigs was subjected to simple shear 
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frequency sweeps at rates between 0.025 and 250  s−1 over 
large sub-failure deformations. Tissue from each region was 
tested in three different directions and was used to define a 
transversely isotropic hyper-viscoelastic constitutive model 
for each region using inverse FE methods.

2  Methods

2.1  Overview

Brain tissue samples from the cerebrum and cerebellum 
were obtained from freshly euthanized Göttingen minipigs 
and tested in one of three directions relative to tractogra-
phy-determined axonal fiber directions. Average experi-
mental data were used to fit both isotropic and transversely 
isotropic hyper-viscoelastic constitutive models using both 
analytical and inverse FE methods.

2.2  Sample preparation

The Animal Care and Use Review Office of the US 
Army Medical Research and Development Command, 
Fort Detrick, MD, and the Institutional Animal Care and 
Use Committee at the University of Utah approved all 
experimental protocols. Tissue was harvested from 20 
juvenile male Göttingen minipigs (4–5 months old). Pigs 
were euthanized immediately before tissue harvest via an 
overdose of phenytoin/pentobarbital. The braincase was 
carefully opened with a hammer and chisel, and the brain 
was freed from the dura and cranial nerves before being 
removed intact and immersed in a solution of 7.5% poly-
ethylene glycol buffered (PEG) saline (7.5% by weight 
polyethylene glycol in phosphate-buffered saline) (Lujan 
et al. 2009) until testing. To prevent potential material 
property changes due to differing temperatures between 
samples from confounding our results, all tissue was stored 
and tested at room temperature (21 °C).

Diffusion tensor imaging was obtained from one ani-
mal to define brain tractography. The excised brain was 
imaged at the Preclinical Imaging Core Facility (Univer-
sity of Utah) with a 7 T MRI (Bruker BioSpec, Ettlingen, 
Germany). Resulting diffusion tensor imaging (DTI) and 
T2 MRI data were evaluated in DSI Studio (Yeh et al. 
2013) to determine fiber directions and identify suitable 
sites for tissue harvest in the cerebrum and the cerebel-
lum. In the cerebrum, a region of the corona radiata with 
fibers running predominantly rostral caudally was chosen 
(Supplemental Fig. 1), while in the cerebellum a region 
with fibers running predominantly medial laterally was 
chosen (Supplemental Fig. 2). All tissue samples used for 
mechanical characterization were harvested from these 

regions in one of three directions based on predominant 
fiber orientation (Fig. 1). Tissue was tested in either the A 
direction (non-preferred), where the fibers run in the shear 
plane and parallel to the direction of shear; the B direction 
(preferred), where the fibers run in the shear plane and 
normal to the direction of shear; or the C direction (non-
preferred), where fibers run normal to both the shear plane 
and the direction of shear (Arbogast and Margulies 1998).

Immediately before testing, tissue was cut, using a cus-
tom die, to a cuboid with a size of 8 mm wide by 8 mm 
long and 5 mm thick in one of the three fiber orientations. 
A scalpel was run over the top face of the die to ensure a 
uniform thickness of the specimen and remove any excess 
brain tissue. A total of 2–4 samples were harvested from 
the cerebrum and cerebellum of each animal for a target 
sample size of 12 per group (region and direction). After 
cutting, tissue samples were measured with digital calipers, 
and dimensions were recorded. Tissue samples were then 
immediately mounted between parallel aluminum plates on a 
custom oscillatory shear tester with a thin layer of cyanoacr-
ylate adhesive. Due to the high driven strain rates used in 
these tests, tissue could not be tested in a bath. Tissue sam-
ples were instead inspected between each applied frequency, 
and additional PEG-buffered saline was applied as needed 
to keep the tissue hydrated.

2.3  Tissue tester

All material characterization was performed on a custom 
oscillatory shear testing device developed for this study 
(Fig. 2). The top plate was connected to a 250 g load cell 
(Model 31 Low, Honeywell, Golden Valley, MN); while, the 
bottom plate was connected to a voice coil actuator (LAS16-
23, BEI Kimco, Vista, CA) controlled via a servo amplifier 
and driver (412CE, Copley Controls, Canton, MA). Load 
and displacement data were acquired from the load cell and 
an integrated Hall effect sensor in the voice coil, respec-
tively, via a data acquisition unit (SCXI-1520, National 
Instruments, Austin, TX) using a custom LABVIEW VI.

Fig. 1  Schematic of the A, B, and C directions relative to axon fiber 
direction (black lines and dots) and direction of applied shear (blue 
arrows)
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2.4  Oscillation tests

Each sample was subjected to a frequency sweep composed 
of five shear strain oscillations with an amplitude of 20% 
at rates of 0.025. 0.25, 2.5, 12.5, 50, 100, 125, and 250  s−1 
(corresponding to driven frequencies of 0.02, 0.2, 2, 10, 40, 
80, 100, and 200 Hz) around a mean shear strain of 0%. Data 
were simultaneously sampled from the load cell and dis-
placement sensor with a sample rate of 100 times the driven 
frequency (between 2 and 20 kHz) such that there were 500 
data points for every oscillation.

A total of 72 samples were subjected to testing, compris-
ing 36 samples harvested from the cerebrum and an addi-
tional 36 from the cerebellum. Within these 36 samples, 12 
were tested in each of the A, B, and C directions. All samples 
underwent five cycles of oscillatory loading at eight different 
strain rates, ranging from 0.025 to 250  s−1.

2.5  Data processing

Load- and displacement–time series data were filtered using 
a phaseless four-pole Butterworth filter specified in the SAE 
J211 standard (Bell et al. 2018) with a cutoff frequency of 
ten times the driven frequency (Supplemental Figs. 3 and 4). 
The 1st Piola–Kirchhoff (1st PK) shear stress ( T  ) was then 
calculated by dividing the load signal by the cross sectional 
sample area (the product of tissue length and width). Shear 
strain ( K ) was defined as the ratio of displacement to speci-
men height.

While brain tissue mechanical response is nonlinear, 
dynamic modulus was calculated as a reference for simple 
comparisons between different strain rates, regions and 

loading directions. The value was calculated at each driven 
strain rate by first identifying the locations of the peaks 
and troughs in the oscillatory stress and strain data using 
the findpeaks function in MATLAB. The locations of these 
peaks and troughs were then used to calculate the ampli-
tudes of the first cycles of the stress and strain waveforms, 
T0 and K0 , respectively. These amplitudes were used to 
calculate the dynamic modulus using Eq. 1. Finally, the 
phase angle ( � ) was calculated using the cross-correlation 
function xcorr in MATLAB.

For each region and direction, we calculated the average 
shear stress and shear strain waveforms by first re-sam-
pling the stress and strain data from each individual sam-
ple such that each sample had values at the same discrete 
time points. We then computed the average and standard 
deviation of the re-sampled stress and strain waveforms 
which were used for all subsequent analysis.

2.6  Statistical analysis

To determine whether region-specific or anisotropic con-
stitutive models were needed, the effects of tissue anisot-
ropy and tissue region were examined by comparing the 
dynamic moduli across all strain rates. First, a multivariate 
ANOVA was performed to compare the effects of oscilla-
tory strain rate, region, and direction on dynamic modulus. 
Where a statistical difference (p < 0.05) was detected, a 
Tukey Test was performed to evaluate pairwise differences 

(1)G =
T0

K0

Fig. 2  Custom shear tester
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in either region, tissue direction, or the combination of 
region and direction. To correct for multiple comparisons, 
we defined significance for the Tukey test results as values 
below a Bonferroni corrected value of p = 0.016.

2.7  Constitutive modeling

To evaluate the effects of modeling with and without assuming 
deformation homogeneity, constitutive models were fit using 
MATLAB and inverse FE methods, respectively. Methods and 
results associated with the MATLAB fits are detailed in the 
Appendix.

FE models were constructed in FEBio (Maas et al. 2012) 
for each of the three directions in the cerebrum and cerebel-
lum (6 FE models total). As we were primarily interested in 
wave propagation along the direction of loading as well as 
through the thickness of the sample, all models consisted of a 
half-symmetry, 8 mm long, 4 mm wide (half the width of the 
experimental specimen), and 5 mm tall cuboid of brain tissue 
(Supplemental Fig. 5), with symmetry boundary conditions 
(constrained Y) applied to the positive Y face. The top face of 
the brain model was connected to a fixed, 1 mm thick rigid 
plate via a rigid contact to mimic the experimental conditions 
of the brain tissue connected to the load-cell-side plate in our 
shear tester. We did not explicitly model the bottom, moving 
plate in this simulation. Instead, we constrained the displace-
ment in the Y- and Z-directions of the bottom face of the brain 
tissue and applied a sinusoidal displacement in the X-direction 
defined by the experimental average strain vs. time data for 
each region.

Brain tissue was modeled as a nearly incompressible vis-
coelastic material with a solid (matrix–fiber) hyperelastic 
mixture. We used an Ogden model to represent the matrix 
component of the solid mixture. In order to capture anisotropy, 
we opted to also use a fiber with exponential-power law mate-
rial in FEBio (Maas and Weiss 2007) with the deviatoric fiber 
stress given by Eq. 2,

where H(x) is the Heaviside step function that ensures fibers 
only contribute in tension, Ĩn is the invariant defined by the 
square of the deviatoric fiber stretch �̃  (Eq. 3),

where C̃ is the deviatoric right Cauchy–Green tensor, and 
the unit vector along the fiber in the reference configuration 
n
�
 is related to the unit vector along the fiber in the current 

configuration n (Eq. 4).

(2)�̃ = H

(
�In − 1

)2�In
J

𝜕�̃�

𝜕�In

n⊗ n

(3)�In = �̃�2 = nr ⋅ C̃ ⋅ nr

(4)n = F̃ ⋅ nr∕�̃�

The strain energy function for this fiber is given by Eq. 5,

where 𝜉 > 0 is the fiber modulus, � ≥ 0 is the coefficient 
of the exponential argument, and � ≥ 2 is the power of the 
exponential argument.

A convergence study was performed to examine the opti-
mal element type and number of elements by comparing 
the magnitude and timing of the first X-reaction peak force 
in the model. The model was considered converged when 
there was less than a 1% change in the magnitude of the first 
peak X-reaction force and the time at which it occurred. We 
evaluated meshes with grid sizes ranging from 5 to 40 ele-
ments in the Z direction and 2–40 elements in the Y direction 
for both 8- and 20-node hexahedral elements. The optimal 
models were meshed with 400 HEX8 (8-node hexahedral) 
elements, with eight elements in the X direction, two in the 
Y direction, and 25 in the Z direction.

Optimization of all matrix and viscoelastic parameters 
was performed in the non-preferred (A) direction for each 
region, preserving the other non-preferred (C) direction for 
validation testing. Optimal material parameters for the con-
stitutive models were found using the built-in FEBio opti-
mization functionality. To reduce computational time, we 
leveraged the convolution integral present in the formula-
tion of the hyper-viscoelastic constitutive model to optimize 
parameters at the strain rates closest to the corresponding 
time constant and all rates preceding that rate. To this end, 
the hyperelastic parameters ( c,m ) were optimized for the 
quasi-static (QS) oscillations of 0.025  s−1, g1 was optimized 
for all oscillations through 0.25  s−1, g2 was optimized for all 
oscillations through 12.5  s−1, g3 was optimized for all oscil-
lations through 125  s−1, and g4 − g5 were optimized for all 
oscillations up through 250  s−1. Optimization of the three 
fiber-specific parameters ( �, �, � ) was performed on all oscil-
lations at 0.025  s−1 for each region's preferred (B) direction, 
preserving all subsequent rates for validation. In order to 
reduce the likelihood that the optimized solution was settling 
on a local minimum, multiple parameter scans where given 
parameters were varied by a defined step size between upper 
and lower bounds were run. Initially, a large range of values 
was scanned with a large step size. Subsequent scans were 
then performed with a progressively narrowing range and 
decreasing step size until a scan with a step size of 10 ( c, � ) 
or 1 ( m, �, �, gi ) was performed. An optimization was then 
run with the initial condition for a given parameter defined 
as the value with the lowest objective value from the final 
parameter scan.

(5)�̃� =
𝜉

𝛼𝛽

(
exp

[
𝛼
(
�In − 1

)𝛽
]
− 1

)
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3  Results

3.1  Experimental observations

Due to early issues in data acquisition triggering and testing 
errors resulting from poorly adhered or deficient samples, 
the total sample size in all groups differed slightly from the 
12 samples targeted. In the cerebrum, the sample size for 
each direction was A = 12, B = 10, and C = 11, while in the 
cerebellum, the sample size for each direction was A = 10, 
B = 12, and C = 12.

Average stress–strain (hysteresis) curves for the cerebrum 
in the A, B, and C directions are shown in Figs. 3, 4, 5, 
respectively; while, hysteresis curves for the cerebellum 
in the A, B, and C directions are shown in Supplemental 
Figs. 6–8, respectively. For all strain rates below 250  s−1, 
the resulting stress–strain curve for these tests begins in 
the lower-left quadrant and advances toward the lower 
right quadrant in a clockwise direction. At 250   s−1, the 
stress–strain curves advance from the lower left quadrant to 
the upper left quadrant in a counterclockwise direction. The 
curves show substantial degrees of hysteresis for all rates, 
regions, and directions tested, with the brain being signifi-
cantly stiffer during loading than unloading. Comparisons 
between the first and last (fifth) loading cycles of each strain 
rate show that the first cycle was stiffer than the last for all 
but the highest rates. For all regions and directions, the first 
applied oscillation of 0.025  s−1 shows the most dramatic 

change between the first and last cycle, likely due to precon-
ditioning of the sample.

In tests with strain rates below 100  s−1, prescribed dis-
placement waveforms showed minimal variation from the 
target amplitude of K = 0.2 for five cycles at a given driven 
frequency. At rates of 100–250  s−1, drift was present in the 
displacement waveform, with subsequent loading cycles 
applying higher amplitudes. However, this was consistent 
between tests, and peak deformation stayed below K = 0.25.

Measured stress–strain waveforms showed greater vari-
ability, especially at high rates. Additionally, some degree 
of load cell drift is present in the raw load signal at the 
lowest rate of 0.025  s−1, which is not evident at higher rates 
and contributes to the apparent increase in the magnitude 
of stresses due to negative deformations seen at this rate. 
For oscillations at and above 50  s−1, the amount of noise in 
the stress data increases significantly. This is particularly 
evident in the 100 and 125  s−1 rates, where the hysteresis 
curves appear to cross over each other at several points, most 
noticeably in Figs. 3 and 5. The change in curve directional-
ity observed at 250  s−1 appears to be due to a change in the 
phase of stress and strain, with the stress curve beginning to 
lag the strain curve rather than preceding it as at other rates. 
Generally, the preferred and non-preferred directions showed 
similar noise levels with the exception of the 50  s–1 where 
a significant spike in noise is present in the stress data for 
the preferred directions but is absent in the non-preferred 
directions.

Fig. 3  Shear stress (aver-
age ± standard deviation)–shear 
strain hysteresis curves for the 
cerebrum in the non-preferred 
(A) direction (N = 12)
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For all directions and regions, dynamic modulus 
increased nonlinearly from rates of 0.025–50  s−1 before 
decreasing slightly at 100  s−1, with the means of some 
groups continuing to decrease; while, others leveled 
out or began to increase again (Fig. 6). There is also a 

noticeable increase in scatter at the highest rates, poten-
tially a result of increased experimental noise from both 
high frequency electrical sources and increased mechani-
cal vibrations. Multivariate ANOVA suggested significant 
differences (p < 0.01) between loading directions for both 

Fig. 4  Shear stress (aver-
age ± standard deviation)–shear 
strain hysteresis curves for the 
cerebrum in the preferred (B) 
direction (N = 10)

Fig. 5  Shear stress (aver-
age ± standard deviation)–shear 
strain hysteresis curves for the 
cerebrum in the non-preferred 
(C) direction (N = 11)
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the cerebrum and cerebellum. In the cerebrum, pairwise t 
tests showed that the B direction was significantly stiffer 
than both the A (p < 0.001) and C (p < 0.001) directions, 
which did not significantly differ (p = 0.58). Pairwise 
t-tests in the cerebellum showed that the B direction was 
significantly stiffer than the C direction (p = 0.008) but 
not the A direction (p = 0.08). As in the cerebrum, the 
A and C directions in the cerebellum showed no signifi-
cant difference (p = 0.76). While no significant differ-
ence was present between the A and B directions, the 
mean dynamic modulus is noticeably higher at all rates 
in the B direction compared to the A direction, which has 
comparable means to the C direction. Thus, our results 
suggest that brain tissue from both the cerebrum and cer-
ebellum shows a transversely-isotropic response, with the 
preferred direction being the B direction.

For all regions and directions, the stress waveform led 
the strain waveform by approximately 20 degrees between 
0.025 and 12.5  s−1 before increasing to around 40 degrees 
at a rate of 50  s−1 (Fig. 7). At 100  s−1, there was con-
siderable variation in phase angle, with stress leading 
strain between 50 and 60 degrees in the cerebrum and 
36 and 63 degrees in the cerebellum. Some individual 
samples showed a phase lag at this rate, where the stress 

waveform began to lag the strain waveform, leading to 
more variation in the data. At 125  s−1, the mean phase 
angle decreased and a similarly large degree of variance 
to the 100  s−1 rate was present, with some, but not all, 
samples exhibiting phase lag. At 250  s−1, the mean phase 
angle for all groups ranged between − 6 and − 65 degrees, 
and almost all individual samples show some degree of 
phase lag.

3.2  Constitutive modeling

FEBio simulations for low-rate cases resulted in model fits 
similar to those assuming a homogeneous deformation, but 
substantial differences were apparent at higher rates. At the 
lower rates (0.025 and 12.5  s−1), shear stress distributions 
were closely similar to one another, all showing the broadly 
uniform stress distribution in the center shear plane observed 
for 0.025  s−1 (Fig. 8). However, areas of lower stress develop 
on the left and right sides of the model, and regions of higher 
stress are seen in the four corners of the model at the rigid 
plate and fixed boundaries. Generally, the model remains 
cuboidal even at high deformations at the lower rates, though 
some curvature develops in the elements at the rigid contact 
and fixed boundaries. At 50  s−1, the model exhibits a similar 

Fig. 6  Dynamic modulus (aver-
age ± standard deviation) as a 
function of strain rate and load-
ing direction for the cerebrum 
and cerebellum
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Fig. 7  Phase angle (aver-
age ± standard deviation) phase 
angle as a function of strain rate 
and loading direction for both 
the cerebrum and cerebellum

Fig. 8  Shear (XZ) stress distribution at the center plane for the cerebral finite element model during the first loading cycle at 0.025, 50, and 
250 s.−1
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stress distribution to lower rates at low strains (K < 0.1) but 
develops a noticeable stress concentration in the top half of 
the model as strains increase. At higher strains, the model 
develops a slight curvature on the left and right sides, with 
the side facing the direction of motion becoming slightly 
concave. When the motion stops at the peak or minimum 
of the sinusoidal oscillation, the model recovers a roughly 
cuboidal state similar to lower rates. At the three highest 
rates (100–250  s−1), substantial wave propagation is present 

in the model, with stress waves noticeably developing at 
the bottom, oscillating face, and advancing toward the rigid 
contact at the top face. The model also develops substantial 
curvature at these rates as the stress wave propagates through 
the sample. These effects become especially pronounced at 
250  s−1.

Visual inspection of the models shows the tendency of 
the inverse FE model to somewhat overpredict the mag-
nitude of maximum and minimum stresses to varying 

Fig. 9  Experimental data and 
inverse finite element fits for 
the cerebrum in the A (non-
preferred) direction

Fig. 10  Experimental data and 
inverse finite element fits for the 
cerebrum in the B (preferred) 
direction
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degrees in all directions and at all rates, with the big-
gest degree of overprediction seen in the C direction. At 
125  s−1, the model tends to overpredict the magnitude of 
stresses after the first two oscillations and overpredicts 
the magnitude after the first trough at 250  s−1. FE-derived 
(X-reaction force) stress predictions in the cerebrum for 
all oscillations are compared to experimental stresses in 
the A, B, and C directions in Figs. 9, 10, 11, respectively.

To examine model fit quality, we calculated the over-
all root mean squared error (RMSE) between regularized 
experimental and model stress data as well as the phase 
angle between these waveforms. Note that the phase angle 
and RMSE are not independent of one another, with both 
phase and amplitude error contributing to overall error. 
Error and phase angle values for the cerebrum at all rates 
for each of these directions are shown in Table 1. For 
all directions, the lowest rate of 0.025  s−1 shows a rela-
tively high degree of phase shift and error (due to both 
phase mismatch and overprediction of stress magnitude, 

particularly in the C direction). Error and the magnitude 
of phase shift are substantially lower between 0.25 and 
50  s−1, with the highest error in the A direction. Above 
50  s−1, both overall error and phase shift increase, with all 
directions showing some negative phase shift, indicating 
the model is leading the experimental data somewhat at 
these rates. At 100 and 125  s−1, the MATLAB fits have a 
similar or lower phase angle to the inverse FE fits, while at 
250  s−1

, the inverse FE fits have a lower phase shift.
Inverse FE fits for the cerebellum are shown in Supple-

mental Figs. 9–11 for the A, B, and C directions, respec-
tively. Table 2 shows the phase angle difference and overall 
RMSE error for the cerebellar fits. Similar to the cerebrum, 
error, and phase angle are relatively high for all regions at 
0.025  s−1, due to both a high degree of phase shift as well 
as overprediction of stress magnitude, before decreasing 
for rates up to 100  s−1. However, error and phase are nota-
bly higher at these rates, with a pronounced increase above 
12.5  s−1. At 100  s−1, there is a lower degree of phase shift 

Fig. 11  Experimental data and 
inverse finite element fits for 
the cerebrum in the C (non-
preferred) direction

Table 1  Overall error (RMSE) 
and phase angle between 
regularized model and 
experimental stresses for the 
cerebrum inverse finite element 
fits for all directions

Negative phase shift denotes model leads experimental data

Direction Error mode Strain rate  (s−1)

0.025 0.25 2.5 12.5 50 100 125 250

A Phase (°) 13.68 0.7 0.7 0.7 4.3  − 9.4  − 24.5  − 30.2
RMSE 0.31 0.2 0.2 0.2 0.2 0.4 0.7 0.8

B Phase (°) 13.7 1.4 1.4 1.4 16.6  − 12.2  − 13.0  − 31.7
RMSE 0.3 0.1 0.1 0.1 0.4 0.5 0.5 0.8

C Phase (°) 15.1 2.2 1.4 1.4 5.0  − 9.4  − 15.1  − 48.3
RMSE 0.3 0.1 0.1 0.2 0.2 0.4 0.6 1.0
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compared to the cerebrum though error values remain high. 
Visual inspection of the plots shows that the cerebellar mod-
els tend to underpredict maximum while slightly overpre-
dicting minimum stress, especially at rates below 100  s−1 
and in the C direction. Fits for the 100  s−1 and 125  s−1 rates 
are better than in the cerebrum though they degrade in qual-
ity after the second oscillation. In contrast to the cerebrum, 
the model poorly fits the initial loading at 250  s−1 before 
better-predicting stresses at subsequent oscillations, which 
is especially notable in the A and C directions. Table 3 
shows the optimized parameters for both the cerebrum and 

cerebellum models. The models have similar Ogden model 
components, though the cerebellum model has a higher 
shear modulus and lower non-linearity parameter than the 
cerebrum model. The viscoelastic components are similar 
at lower rates for both models, but the cerebrum model has 
higher values at g3 and g5 , suggesting increased sensitivity to 
high-rate loading. The cerebrum model also exhibits a much 
lower degree of anisotropy than the cerebellum model, with 
a fiber stiffness ( � ) and an exponential coefficient ( � ) over 
five times higher in the cerebellum model compared to the 
cerebrum model.

Table 2  Overall error 
(RMSE) and phase angle 
between regularized model 
and experimental stresses for 
the cerebellum inverse finite 
element fits for all directions

Negative phase shift denotes model leads experimental data

Direction Error mode Strain rate  (s−1)

0.025 0.25 2.5 12.5 50 100 125 250

A Phase (°) 13.7 1.4 8.6 15.1 7.9  − 2.9  − 13.0  − 15.1
RMSE 0.3 0.1 0.2 0.3 0.2 0.4 0.5 0.8

B Phase (°) 13.7 2.2 8.6 15.1 6.5  − 2.2  − 3.6 30.2
RMSE 0.3 0.1 0.2 0.3 0.2 0.5 0.6 0.9

C Phase (°) 15.1 2.9 9.3 18.0 10.8  − 1.4  − 7.9 10.8
RMSE 0.3 0.1 0.2 0.4 0.3 0.4 0.5 0.6

Table 3  Optimized parameters 
from the inverse finite element 
models of the cerebrum and 
cerebellum

Region Parameter

c   (Pa) m g
1

g
2

g
3

g
4

g
5

�   (Pa) � �

Cerebrum 323.0 22.1 0.8 1.1 3.1 0.0 92.2 300.0 4.6 2.0
Cerebellum 352.4 16.3 0.9 1.1 0.0 0.0 65.1 1611.0 24.6 2.0

Fig. 12  Predicted stresses from 
the constitutive model in single 
ramp, homogeneous simple 
shear (XZ) for the cerebrum and 
cerebellum when inertial terms 
are not considered in the non-
preferred (A or C) direction
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Although the preceding results show the ability of the 
presented model to fit the experimental data, its response to 
a loading scenario typical of TBI has not been shown. To 
examine its response to such loading, we simulated single 
ramp, simple shear using a single element model (homo-
geneous deformation; no inertial effects) for all the tested 
strain rates. Figure 12 shows the results for one of the non-
preferred (A or C) directions. Notably, predicted cerebral 
stresses are markedly higher than cerebellar stresses at all 
rates and scale more at higher rates. The peak stress grows 
from 1.3 times higher in the cerebrum than the cerebellum 
at 0.025  s−1 to 2.2 times higher at a rate of 250  s−1.

4  Discussion

The objective of this study was to develop anisotropic hyper-
viscoelastic constitutive models of Göttingen minipig cer-
ebrum and cerebellum tissue over a large range of strain 
rates relevant to conventional and blast TBI. Results show 
that the cerebrum and cerebellum are highly rate dependent 
and stiffen nonlinearly with strain rate. Additionally, results 
show that cerebrum and cerebellum are transversely iso-
tropic. Samples showed high degrees of wave propagation 
during high rate oscillations, which complicated the consti-
tutive model fitting with traditional optimization methods. 
However, dynamic inverse FE modeling was able to achieve 
adequate constitutive model fits.

4.1  Dynamic modulus and phase angle

Results show that brain tissue dynamic modulus increases 
exponentially as a function of strain rate. While we (Boiczyk 
et al. 2023), and multiple other studies (Darvish and Cran-
dall 2001; Donnelly and Medige 1997; Nicolle et al. 2004; 
Nicolle et al. 2005; Rashid et al. 2013; Thibault and Mar-
gulies 1998), have previously demonstrated substantial rate 
dependence of brain tissue subject to simple shear (either 
single ramp or oscillatory loading), our previous modeling 
of Göttingen minipig brain tissue only captured loading at 
QS and high rates (150 and 300  s−1); it was not characterized 
at intermediate rates relevant to portions of the brain that 
may not experience the most severe loads or to milder over-
all loading scenarios. Both Darvish and Crandall (Darvish 
and Crandall 2001) and Thibault and Margulies (Thibault 
and Margulies 1998) demonstrated a nonlinear increase in 
stiffness at frequencies between 1 and 1000 Hz and 20 and 
200 Hz, respectively, with no drop off as seen in our data 
at a frequency of 80 Hz (100  s−1), suggesting that signal 
noise may be affecting our results at these rates. Reported 
stress magnitudes at 100 Hz ranged from about 500–5000 Pa 
in previous studies compared to around 1000–4000 in our 
results, though direct comparisons are difficult due to 

differences in species, animal age, and time between death 
and sample testing.

Phase angle plots show a relatively stable phase shift 
between the stress and strain waveforms between rates of 
0.025 and 12.5  s−1, before the phase angle increases at 50 
and 100  s−1. Phase angle then decreases and becomes nega-
tive at the three highest rates as stress begins to lag strain. 
In a viscoelastic material subject to harmonic oscillation, 
stress should lead strain between 0 (purely elastic response) 
and 90 degrees (purely viscous response). At the two highest 
rates, our results show a negative phase angle, with strain 
leading stress, which was also demonstrated by Darvish and 
Crandall (2001) in porcine brain. This phenomenon suggests 
that inertial effects are present at high rates, which need to be 
accounted for. Namely, there is likely a substantial degree of 
wave propagation between the moving bottom plate and the 
fixed top plate where the load was measured, as the FE mod-
els predicted. However, because this was not immediately 
visible on test videos of high-rate tests, strains should be ver-
ified experimentally using digital image correlation (DIC) 
in future work. Preliminary evaluation of farm pig brain tis-
sue and silicone gel with similar stiffnesses to brain tissue 
(Brands et al. 2002) cut to different heights suggests that the 
degree of this phase lag appears to be tied to sample height, 
with thicker samples showing a more pronounced degree 
of negative phase shift than thinner samples. This evalua-
tion suggests that wave propagation, especially through the 
relatively thick samples tested here, was responsible for the 
unexpected behavior.

The increase in phase angle between 12.5 and 100  s−1 
suggests that the internal damping (the tangent of the phase 
angle) increases as a function of driven frequency. This, in 
turn, violates the continuous relaxation spectrum assumption 
underlying the Fung quasi-linear viscoelastic (QLV) model 
(Fung 1993) used here, which states that internal damping 
will remain relatively constant between several decades of 
driven oscillatory frequencies. While the QLV models used 
in this work generally fit the data well, there was a noticeable 
trend toward overprediction of stresses at rates of 100  s−1 
and above, especially in subsequent loading cycles, which 
may suggest models with increased damping at high rates 
may perform better. Although this effect is not as large in 
phase angle data calculated from the FE models, this may be 
a result of constitutive model selection rather than a physical 
property of the tissue. Future work should aim to explore 
constitutive models accounting for discontinuous damp-
ing, either through discrete element models (Budday et al. 
2017b) or a fully nonlinear viscoelastic model (Darvish and 
Crandall 2001).
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4.2  Anisotropy

Both the cerebrum and cerebellum were shown to be trans-
versely isotropic, preferring the B direction, where DTI-
identified fibers were oriented parallel to the shear plane 
but transverse to the direction of shear. Regional differences 
became more apparent as the strain rate increased, and the 
cerebrum appeared to have a larger degree of anisotropy 
than the cerebellum. Transverse isotropy was previously 
observed in this orientation in the brainstem by Arbogast 
and Margulies (Arbogast and Margulies 1998). Both Jin 
et al. (Jin et al. 2013) and Prange and Margulies (Prange and 
Margulies 2002) also tested samples from a portion of the 
corona radiata similar to our work. They found a significant 
difference in stiffness in a direction they suggest has a fiber 
orientation similar to the A direction in this work. However, 
both studies assumed that fibers predominantly ran outward 
(laterally and superiorly) from the corona radiata instead of 
rostral caudally, as the DTI we performed here shows, sug-
gesting that the fiber orientation was closer to the B direction 
we found was stiffest. Conversely, both Budday et al. (2017a) 
and Nicolle et al. (Nicolle et al. 2005) showed no significant 
effect of direction in cerebral tissue. However, Budday tested 
tissue at QS rates where any variation between regions may 
be lost in natural variance. Nicolle tested tissue at either 
very low strains (0.0033%) or low rates (0.8  s−1), conditions 
where directional differences may be difficult to detect.

4.3  Constitutive modeling

The FE models presented in this work show substantial shear 
wave propagation from the bottom surface, where oscil-
lations were applied, to the top surface, the site of meas-
urement. Examination of shear wave propagation through 
individual elements in the model of cerebellum suggests 
that it takes about 2.9 ms for the wave to travel the 5 mm 
from bottom to top at driven strain rates of 100, 125, and 
250  s−1, requiring a wave speed of 1.7 m/s. In comparison, 
a travel time of 2.4 ms, with a wave speed of 2.1 m/s, were 
calculated for the cerebrum model. The higher wave veloc-
ity in the cerebrum may explain the lower degree of phase 
shift seen in the MATLAB fit constitutive models between 
the cerebrum and cerebellum discussed in the Appendix. 
(Note that the phase shift discussed in connection with the 
MATLAB and inverse model fits is not the same as the 
phase angle presented with the dynamic modulus.) Jiang 
et al. (2015) measured acoustic shear wave speeds in por-
cine brain tissue exposed to ultrasonic radiation and reported 
shear wave speeds between 1.5 and 2 m/s; while, Hamhaber 
et al. (Hamhaber et al. 2007) reported a mean velocity of 
1.88 ± 0.58 m/s in elastography experiments on human brain 
tissue subject to mechanical excitation of about 80 Hz (the 
driven frequency for the 100  s−1 tests reported here). These 

results agree with the results predicted by our FE simula-
tions. As a result of the substantial wave propagation dem-
onstrated here, future high-rate experiments on brain tissue 
should either aim to limit sample thickness to reduce the 
travel distance for shear waves or account for it during con-
stitutive model fitting.

Unsurprisingly, the MATLAB constitutive model fits, 
which did not account for inhomogeneous deformations or 
dynamic effects, performed poorly. While the models per-
formed well at rates below 125  s−1, they underperformed 
the inverse FE fit models at all rates but 0.025, 100, and 
125  s−1 in the cerebrum and 0.025 and 12.5  s−1 in the cer-
ebellum. Critically, the poorly matched parameters at a high 
rate could lead to an inaccurate material response when used 
in dynamic simulations of brain injury, possibly making the 
tissue appear substantially stiffer. Additionally, the fourth 
invariant-dependent anisotropic model implemented in 
the inverse FE fit models could not be implemented using 
the modeling framework of the MATLAB models, as the 
assumption of a homogeneous, simple shear deformation 
would have led to no shear stress due to the fibers, with fiber 
stress only contributing axially. Anisotropy could be added 
by accounting for matrix–fiber interaction terms based on 
higher order invariants, but that may misrepresent the aniso-
tropic response of the tissue given that inverse FE fit models 
could account for the observed direction dependence using 
just fiber terms.

While the inverse FE constitutive model fits performed 
better than the MATLAB fits, they still had substantial lim-
itations. Inverse FE fits still show substantial error, espe-
cially at the lowest and highest rates, particularly regarding 
improper matching of model phase. While the phase shift 
is markedly improved from the MATLAB models at high 
rates, predicted stress waveforms still lead the experimen-
tal stress waveforms, suggesting an overprediction of wave 
velocity. The inverse FE fits also struggle to match amplitude 
through all oscillations at high rates. Future work should aim 
to improve these models by examining different constitutive 
models to address issues with damping and predicted wave 
amplitude.

The constitutive models presented here can predict the 
first two cycles of loading at all rates up to 125  s−1 and ini-
tial ramp loading at 250  s−1 in multiple fiber directions for 
both the cerebrum and cerebellum. At 250  s−1, it is expected 
that the initial ramp loading could capture the initial blast 
overpressure wave seen in simulations of blast injury (Mao 
et al. 2015; Sundaramurthy et al. 2021), though could strug-
gle predicting stresses from wave reflections.

4.4  Limitations

Experimentally recorded load data exhibited large degrees of 
variation at the QS (0.025  s−1) and four highest (50–250  s−1) 
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rates. At the QS rate, the load data is subject to drift over 
the 300 s-long test, which seems to skew the results. While 
attempts were made to compensate for this drift during data 
post-processing, substantial preconditioning effects (i.e., 
stress softening) at this rate made it difficult to isolate the 
drift fully. As a result, data quality at this rate is dimin-
ished compared to subsequent rates but was still sufficient 
to be used to fit hyperelastic and anisotropic parameters, 
which showed little change in fit values when additional, 
higher-rate data were considered. The cerebrum shows a 
substantially larger degree of variation for all rates than the 
cerebellum, especially at 50  s−1. Examination of individual 
stress traces shows a high degree of variation between the 
phase and amplitude of individual stress waveforms with 
no clear outliers at all rates. Given this group's harvesting 
location and testing orientation, animal-to-animal variations 
in overall fiber density and orientations, as well as slight 
variations in die location and rotation between brains, may 
be responsible for this.

At high rates, substantial noise becomes evident in load 
data, especially at the two highest rates where load data loses 
its roughly sinusoidal shape, and higher frequency oscilla-
tions can be seen in the data. While some degree of higher 
frequency oscillation is predicted by the FE models, suggest-
ing that this could be an expected physical response of the 
tissue, it is also worth noting that frequency domain inspec-
tion of high-rate tests shows spikes close to the 410 Hz 
ringing frequency of the load cell-side test fixtures. Thus, 
it seems possible that some of the variations in high-rate 
tests may have been due to the influence of excitation of our 
load-cell-side test fixtures, resulting in poorer quality fitting. 
Future work at high rates should aim to use fixtures with 
higher ringing frequencies to reduce the risk of excitation.

In addition to issues with noise, the experimental data 
used in the creation of inverse FE models had a few notable 
limitations. Tissue deformations were not mapped during 
experiments and only the motion of the voice coil attached 
plate was simulated in the inverse FE models. Thus, the 
actual degree of wave propagation and inhomogeneous 
deformation predicted in the model cannot be experimen-
tally validated. Moreover, this meant that we were unable 
to calculate the stress distribution throughout the material, 
potentially introducing error. Future work should aim to 
explicitly map sample deformations during tests using DIC 
to improve model quality. Inverse FE modeling coupled with 
DIC deformation data has previously been used to model 
brainstem, in compression (Felfelian et al. 2019), and soft 
tissue phantoms (Moerman et al. 2009) successfully, albeit at 
relatively low rates. Additionally, the experimental response 
used to fit constitutive models at all rates above the QS rate 
was substantially preconditioned and may not be representa-
tive of the in vivo state of the brain and may be substantially 

softened. Future work should aim to examine the effects of 
stress relaxation at high rates.

Appendix

Prior to work on inverse FE fitting, we attempted to fit con-
stitutive models to the experimental data using numerical fit-
ting methods in MATLAB. This was initially attempted using 
isotropic, hyper-viscoelastic models on samples tested in the 
non-preferred direction, assuming a homogeneous deforma-
tion. Due to limitations with this approach, we did not pursue 
definition of an anisotropic formulation.

Methods

As a first step, average data from the cerebrum and cerebellum 
in a non-preferred direction (direction A in Fig. 1) were used 
to fit a hyper-viscoelastic constitutive model (Puso and Weiss 
1998) by optimizing an objective function in MATLAB, where 
the experimental deformation was assumed to be homogene-
ous. The 2nd Piola–Kirchhoff stress (S) was given by Eq. 6,

where Se is the elastic stress, and the reduced relaxation 
function G(t) is given by a five-term Prony series (Eq. 7),

where g1–g5 are viscoelastic parameters, and �1–�5 are 
defined such that values vary by one decade from �1 = 1s to 
�5 = 10−4s . For the elastic stress, we used an incompress-
ible one-term Ogden model, similar to our previous study 
(Boiczyk et al. 2023) (Eq. 8).

The parameters c and m are the shear stiffness and a nonlin-
earity parameter, respectively; while, �i is the ith eigenvalue 
of the right Cauchy–Green stretch tensor. For this fitting, we 
assumed a homogeneous, simple shear deformation through-
out the tissue (Eq. 9),

where K is the shear strain calculated from the experimental 
displacement data (displacement divided by sample height).
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The parameters c , m , and g1–g5 were fit in MATLAB using 
the function fminsearchbnd (D'Errico 2022) to optimize the 
objective function in Eq. 10. Prior to fitting, experimental 1st 
PK stress ( P ) was converted to 2nd PK stress.

(10)� =
1

nsamp

nsamp∑
i=1

(
P
Experimental

i
− PModel

i

)2

max
(
PExperimental

)

Results

Constitutive models assuming a homogeneous deforma-
tion (simulated using MATLAB) performed well at rates 
of 0.025–12.5  s−1, showing a low degree of phase shift 
and relatively low root mean squared error (RMSE) values 
for both the cerebellum (Fig. 13) and cerebrum (Fig. 14); 
phase angle and RMSE values for each model are shown 
in Table 4. At 50  s−1, there is a noticeable increase in both 

Fig. 13  Experimental data and 
MATLAB fits for the cerebrum 
in the A (non-preferred) direc-
tion

Fig. 14  Experimental data and 
MATLAB fits for the cerebel-
lum in the A (non-preferred) 
direction
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error and phase shift for both regions. At the two high-
est rates, there is a large, negative phase shift between 
the model and the experimental data, indicating that the 
model is predicting stress values occurring substantially 
earlier than observed experimentally, and suggesting that 
the assumption of a homogeneous deformation is incor-
rect. These models also poorly predict the general stress 
response at these highest rates, overpredicting the final two 
cycles at the 125  s−1 rate and substantially underpredicting 
stress values at the 250  s−1 rate.  

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10237- 024- 01852-4.
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