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Abstract
Central to the clinical adoption of patient-specific modeling strategies is demonstrating that simulation results are reliable 
and safe. Indeed, simulation frameworks must be robust to uncertainty in model input(s), and levels of confidence should 
accompany results. In this study, we applied a coupled uncertainty quantification–finite element (FE) framework to 
understand the impact of uncertainty in vascular material properties on variability in predicted stresses. Univariate probability 
distributions were fit to material parameters derived from layer-specific mechanical behavior testing of human coronary 
tissue. Parameters were assumed to be probabilistically independent, allowing for efficient parameter ensemble sampling. 
In an idealized coronary artery geometry, a forward FE model for each parameter ensemble was created to predict tissue 
stresses under physiologic loading. An emulator was constructed within the UncertainSCI software using polynomial chaos 
techniques, and statistics and sensitivities were directly computed. Results demonstrated that material parameter uncertainty 
propagates to variability in predicted stresses across the vessel wall, with the largest dispersions in stress within the adventitial 
layer. Variability in stress was most sensitive to uncertainties in the anisotropic component of the strain energy function. 
Moreover, unary and binary interactions within the adventitial layer were the main contributors to stress variance, and the 
leading factor in stress variability was uncertainty in the stress-like material parameter that describes the contribution of 
the embedded fibers to the overall artery stiffness. Results from a patient-specific coronary model confirmed many of these 
findings. Collectively, these data highlight the impact of material property variation on uncertainty in predicted artery stresses 
and present a pipeline to explore and characterize forward model uncertainty in computational biomechanics.

Keywords Vascular biomechanics · Patient-specific modeling · Cardiovascular modeling · Vascular mechanobiology · 
FEBio software suite

1 Introduction

Physics-based simulations of the cardiovascular system 
are increasingly being integrated into clinical decision-
making (Douglas et al. 2015; Driessen et al. 2019), surgical 
planning (Trusty et al. 2019), and medical device design 
(Timmins et al. 2011). Moreover, the US Food and Drug 
Administration (FDA) has published widely on using simu-
lations to promote the safety, effectiveness, and security of 
FDA-regulated products (Morrison et al. 2017, 2018; Path-
manathan et al. 2017; Ahmed et al. 2023; Food and Drug 
Administration: Center for Devices and Radiological Health 
2023). As simulations contribute to clinical workflow and 
regulatory approval and may affect downstream outcomes 
(e.g., major adverse events, patient death), there is a press-
ing need to provide confidence in simulation predictions and 
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demonstrate that results are reliable and safe before clinical 
adoption. Such confidence in simulation pipelines is avail-
able in idealized scenarios but is marred by uncertainties, 
which manifest through variability in the subject and clinical 
variabilities (i.e., model input parameters) that cloud the pre-
dictive and prognostic lenses of computer-based modeling. 
Central to the clinical adoption of patient-specific modeling 
strategies, therefore, is clearly demonstrating that simulation 
results are reliable and safe. That is to say, it is essential that 
simulation results be accompanied by levels of confidence 
when they potentially impact life-altering decisions.

Advances in medical imaging, computational mechanics, 
biomechanics, and computing power now enable simulations 
that predict arterial tissue deformations at the patient-
specific level (Taylor and Figueroa 2009; Taylor and 
Humphrey 2009). In addition to the model geometry, 
boundary conditions, and numerical approaches to solve 
the governing equations, the constitutive relation(s) 
describing the behavior of the material(s) under conditions 
of interest are required to compute the transmural wall 
stresses that influence the homeostatic and maladaptive 
mechanobiological processes. While experimental 
approaches have been developed to characterize the non-
linear, pseudoelastic, and anisotropic material response of 
vascular tissue under loading, there is much variability in 
the employed techniques. For example, methods such as 
ring tests, in-plane biaxial tests, pressure–diameter tests 
at the in-vivo length, and biaxial tests consisting of cyclic 
pressure–diameter and axial force–length protocols have 
been utilized to characterize the mechanical properties 
of vascular tissue (see the comprehensive review by 
Feruzzi et al. and references within (Ferruzzi et al. 2013)). 
Regardless of the specific form of the strain energy function 
(SEF, W  ), regression analysis can identify the best-fit 
values of the material parameters within. In addition, 
there is variability in the applied regression method (e.g., 
Marquardt–Levenberg) and candidate objective function 
that is minimized (Humphrey 2002; Ferruzzi et al. 2013). 
Due to the variability within experimental testing protocols 
and fitting approaches, as well as variability within and 
across tissue samples, there exist inherent uncertainties in 
material parameter(s) describing the soft biologic tissue 
that propagate to the simulation-predicted mechanical 
environment.

In the present study, we incorporated advancements 
in the field of UQ to evaluate the variability in the output 
of computational simulations of the arterial mechanical 
environment due to intrinsic uncertainty in material parameter 
estimation. In contrast with a traditional deterministic 
simulation where input parameters have a fixed value that 
results in a single model output, UQ provides a statistically 
rigorous approach to determine the influence of input 
parameter uncertainty by examining a distribution of model 

outputs (Najm 2009). We applied a novel open-source UQ 
software tool, UncertainSCI, which employs polynomial 
chaos expansion (PCE) to assess sensitivity, to a forward-
modeling framework (Narayan et al. 2022). Therefore, the 
goal of this study was to leverage PCE UQ to examine the 
impact of uncertainty in tissue material properties on the 
variability in model outputs, namely the predicted stress 
under physiology loading. Given the clinical significance 
of coronary artery disease and the role of mechanics in the 
development and progression of the disease (Brown et al. 
2016; Tsao et al. 2022), we focused on uncertainty in material 
characterization and computational models of this vascular 
territory. To demonstrate the approach, we evaluated models of 
a generalized multi-layered, thick-walled vessel representative 
of a coronary artery and a patient-specific model of an 
epicardial coronary artery.

2  Methods

An overview of the integrated UQ–finite element (FE) mod-
eling framework is presented in Fig. 1. Briefly, probability 
distributions were fit to n-material parameters, which were 
derived from material testing of human coronary tissue, in 
a structurally motivated SEF. The parameter space was sam-
pled to generate m-parameter ensembles. Utilizing a batch-
processing framework, forward FE models for each parameter 
ensemble were created, and FE analysis was carried out to 
predict tissue deformation, strains, and stresses. Finally, statis-
tics of the model outputs were computed, and uncertainty was 
quantified due to material parameter variability.

2.1  Material parameter probability distribution 
sampling

Material parameters derived from previous layer-specific 
mechanical behavior testing of 13 human nonatherosclerotic 
left anterior descending coronary artery tissues were employed 
herein (Holzapfel et al. 2005). Briefly, uniaxial extension 
testing was performed in the circumferential and longitudinal 
(axial) directions for the media and adventitia layers. Best-
fit material parameters were determined from the mechanical 
behavior curves using the structurally-motivated SEF,

where � represents the ground matrix stiffness, k1 is a fiber 
stress-like parameter, k2 is a dimensionless parameter, � is 
a measure of fiber dispersion within the bounds of [0,1] 
(0 = no fiber alignment, 1 = perfect fiber alignment along 
the prescribed vector defined by angle � ), and I1 and Ii
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are the first and fourth invariant, respectively, of the right 
Cauchy–Green tensor ( C ), defined as

for a deformation gradient that takes the form 
F = diag(�r, �� , �z ). M

i is a unit vector, 
(
0, cos�i, sin�i

)
 , 

indicating the orientation of a fiber family, where �i 
defines the angle between the embedded fiber family and 
the circumferential axis in the circumferential–axial plane. 

(2)I1 = �2
r
+ �2

�
+ �2

z
, Ii

4
= �2

�
cos2� + �2

z
sin2�,

Two fiber families were considered ( �1 = −�2) , together 
describing symmetric fiber families with the same material 
properties around the long axis of the vessel.

Probability distributions were created for each consti-
tutive parameter in the medial and adventitial layers (10 
in total, Fig. 2). Note that parameter distributions were 
assumed independent, which was guided by the original 
description of the SEF (Eq. 1) and a lack of data demon-
strating any physical relationship among them (Holzapfel 
et al. 2000). Material parameters � , k1 , k2 , and � employed 

Fig. 1  Schematic of the inte-
grated uncertainty quantifica-
tion–finite element analysis 
(FEA) computational frame-
work. a Probability distributions 
were fit to data on the material 
parameters ( n ) and Uncer-
tainSCI was utilized to sam-
ple and generate m-parameter 
ensembles. b An automated 
modeling framework assigned 
each material parameter ensem-
ble to a common FEBio input 
file model and FEA was carried 
out for m-number of models. c 
FE results were post-processed 
to extract relevant uncertainty 
quantification metrics and per-
form statistical analysis
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gamma distributions to avoid non-physiologic parameters 
(i.e., values had to be > 0), whereas � used a beta distribution 
to take advantage of its inherent bounds [0,1]. Probability 
density functions (PDFs) were fit to the experimental data 
of each individual parameter using maximum likelihood 
estimation via the mle function in Matlab. The material 
parameter PDFs were defined as distribution objects within 
UncertainSCI, and a parameter ensemble was created 
from the 10 PDFs that sampled the entire parameter space 
and accounted for potential output dependence on parameter 
ensembles (Fig. 1a).

2.2  Idealized artery computational model

A generalized computational model of a human left anterior 
descending coronary artery was constructed. The artery 
was modeled as a multi-layered, axisymmetric quarter-
cylinder ( L = 1 mm, Ri = 1.59 mm, Ro = 2.25 mm), with a 
medial and adventitial layer thickness of 0.32 and 0.34 mm, 
respectively (Holzapfel et al. 2005). The intima layer was 
neglected in this model, as it provides negligible structural 
support (Burton 1954). The structurally motivated SEF 
given by Eq. (1), an available material model in FEBio 
(HGO-coronary), described both the medial and adventitial 
layers. The artery was discretized with 8-node hexahedral 
“brick” elements with 6 elements in the radial direction for 
each layer. A mesh convergence study demonstrated that 12 
elements in the radial direction (6 elements in each layer) 
were required to achieve convergence, as a higher mesh 

density (24 radial elements) led to a < 2.5% change in the 
2-norm criteria for the 1st principal stress (Supp. Fig. 1). 
The media and adventitia arterial layers were “welded” 
with shared nodes at the interface. Applied loads included 
lumen pressures of 80 (diastolic) and 120 (systolic) mmHg. 
The boundary conditions comprised of fixing the vessel 
ends in the axial direction and symmetry in the �-planes 
to restrict rigid body motions. Quasi-static finite element 
analysis was performed using the open-source, nonlinear 
finite element software suite FEBio (Maas et al. 2012, 
2017). Solver details include using the implicit solver, auto-
time stepper (initial and maximum time-step size = 0.1), 
non-symmetric form of the stiffness matrix, quasi-Newton 
method (Broyden-Fletcher-G-S; global stiffness matrix 
reformed each time step), and Pardiso linear solver. Solver 
settings ensured numerical robustness and the ability to 
support parallel execution. Simulation results were post-
processed to evaluate the deformed inner ( ri ) and outer 
( ro ) radii, transmural distributions of 1st and 3rd principal 
stresses ( �1, �3 ), and distensibility ( D , Eq. 3) (Ferruzzi et al. 
2013), which was defined as

where di,sys and di,dias are the deformed inner diameters at 
systole and diastole, respectively, and Psys and Pdias are 
systolic and diastolic pressure, respectively.

(3)D =
d2
i,sys

− d2
i,dias

d2
i,dias

(
Psys − Pdias

) ,

Fig. 2  Layer-specific material parameter distributions and probability 
density functions (PDFs). Reported material parameters for the media 
(top row) and adventitia (bottom row) layers were obtained from uni-
axial testing of coronary arteries (Holzapfel et  al. 2005). PDFs for 

each parameter were fit to the observed data. Gamma distributions 
were fit to data for parameters � , k

1
 , k

2
 , and � , and a beta distribution 

was fit to data for �
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A batch-processing scheme was developed to iterate 
through material parameter ensembles while using the same 
FEBio input file, which contained information on model 
mesh and connectivity, material SEFs and parameters, and 
boundary conditions. A Matlab sub-routine was written 
that iterated through the size-M parameter ensemble, 
writing M unique input files (Fig. 1b). FEBio was called 
and executed using the GIBBON toolbox (Moerman 2018), 
and simulation results were stored for UQ analysis. For the 
idealized artery models, the batch-processing scheme and FE 
models were run on a Windows 10 server machine with an 
Intel® Xeon® Silver 4110 CPU (8 cores at 2.10–3.00 GHz).

2.3  Patient‑specific coronary artery computational 
model

A three-dimensional representative patient-specific model 
of the left main and left anterior descending coronary arter-
ies was constructed by expanding established techniques 
(Samady et al. 2011; Timmins et al. 2015). The end-dias-
tolic geometry was created by fusing bi-plane angiographic 
image data and virtual histology intravascular ultrasound 
(VH-IVUS) images (Fig. 3). Lumen and media-adventitial 
boundary contours were stacked perpendicular to the IVUS 
catheter centerline, and catheter torsion was accounted for 
via the sequential triangular algorithm (Wahle et al. 1999). 
A medial layer was constructed from smoothed IVUS 

boundary contours, and an adventitial layer was added 
with a constant thickness of 400 μm (Waller et al. 1992). 
Branches were added from IVUS and angiographic-defined 
locations with branch layer thicknesses derived from post-
mortem coronary mean lumen diameter and layer thickness 
values (Waller et al. 1992). The geometry was meshed with 
nonlinear tetrahedral elements via tetGen and Gibbon 
(Si 2015; Maas et al. 2016; Moerman 2018), with unique 
material properties for each layer prescribed using struc-
turally-motivated SEF (Eq. 1) (Holzapfel et al. 2005). To 
aid the application of boundary conditions, a rectangular 
box of perivascular (PV) tissue with compressible, neo-
Hookean properties ( E = 1 kPa, � = 0.3) was added around 
the coronary geometry and shared identical nodes with the 
outer vessel surface. The PV outer boundary surfaces were 
at least 10 mm away from all nodes in the artery (Fig. 3B) 
and were fixed in all global directions. Preliminary stud-
ies on idealized and patient-specific coronary geometries 
demonstrated that a PV support with those material prop-
erties ( E = 1 kPa, � = 0.3) and a thickness of 10 mm had a 
negligible effect on the deformation of the arterial tissue 
under an applied lumen pressure. Axial motion was pro-
hibited at the vessel and branch end surfaces. The lumen 
was pressurized to 40 mmHg (note: the reference geometry 
represented the vessel at end-diastole; ~ 80 mmHg). A set of 
patient-specific models was created using an identical set of 
material parameter ensembles from the ideal quarter cylinder 

Fig. 3  Patient-specific coronary 
model construction. a Angio-
graphic and VH-IVUS data 
were fused to create the 3D 
lumen and medial-adventitial 
boundaries. b The multi-layer 
coronary geometry, meshed 
with tet10 elements, was 
surrounded by compressible 
perivascular tissue
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model at PCE order 3 (n = 592 parameter samples). Given 
the increased complexity of the patient-specific models 
compared to idealized models, solver and solution param-
eters were modified. Broyden’s quasi-Newton method was 
employed as the solver. The auto-time stepper parameters 
were reduced (initial time-step size = 0.01, max time-step 
size = 0.05), and the aggressiveness parameter was turned 
on to aid the identification of time-step size after a failed 
step. To aid computational efficiency and solution conver-
gence, the discretization was refined until mesh quality, as 
determined by the radius–edge ratio in the Mesh Inspector 
feature in FEBio, was deemed suitable. Across the > 169 k 
quadratic tetrahedral elements in the patient-specific 
artery model, excluding perivascular support, the average 
radius–edge ratio was 0.934, and < 0.003% of the elements 
had a value > 2.5. The batch scheme was executed on two 
high-performance compute servers (192 Intel Xeon Platinum 
8360H CPU @ 3.00 GHz cores (HT) per machine) with 
14 concurrent jobs running on each machine using 8 cores 
per simulation (Scientific Computing and Imaging Institute, 
University of Utah).

2.4  Uncertainty quantification and sensitivity 
analysis

The open-source, Python-based software suite, 
UncertainSCI, was employed to perform forward model 
UQ analysis (Narayan et al. 2022). UncertainSCI utilizes 
non-intrusive PCE techniques to query forward model data 
output over a parameter ensemble (i.e., generated parameter 
samples) to construct a parameter-to-model-output emulator. 
With a tunable parameter p , the PCE order, the emulator is 
comprised of a sum of polynomial functions of degree at 
most p and serves as a surrogate model that approximates 
the mapping between the input parameter(s) and model 
output without the need to solve for a computationally 
expensive forward model. In this study, for example, the 
constructed emulator provides a relationship between SEF 
parameters (inputs) and FE-predicted principal strains and 
stresses (outputs) across the queried range of parameter 
distributions. UncertainSCI constructs parameter 
samples via the weighted approximate Fekete points method 
(Guo et al. 2018). The construction of the emulator allows 
direct extraction of statistics, uncertainty characteristics, 
and model sensitivity. For a comprehensive description 
of polynomial chaos techniques and their application, the 
interested reader is directed to the work by Najm (Najm 
2009).

The quality of the PCE was assessed in the idealized 
computational models by quantifying the relative error ( �� ) 
between the PCE approximations and FE-predicted model 
outputs (e.g., �1 ), whereby

where Ax̂ approximates the solution to the model output ( 
⇀

b ), 
N is the number of elements through the vessel thickness 
(i.e., transmurally), and ||⋅||2 indicates the 2-norm of 
the vector. For orders p = {1, 2, ..., 5} , the relative error 
was calculated for 5 independent PCE runs. In addition, 
parameter ensembles were oversampled to evaluate error 
stability across sampling rates and ensure the aliasing error 
is minimized.1 Statistical measures (e.g., mean, standard 
deviation, coefficient of variation) were calculated directly 
from the PCE model output. Sensitivity indices, which 
measure the relative contribution of individual parameters 
and parameter ensembles to the overall variability of the 
emulator (i.e., variability in model output), were calculated 
across the SEF parameters. More specifically, Sobol indices 
(Sobol′ 2001) were determined to measure the direct effect 
of an individual parameter (unary interaction; first-order 
Sobol indices) and parameter ensembles (binary, tertiary, 
etc. interactions) have on the variance in the model output 
for 1st principal stress ( �1).

3  Results

3.1  PCE construction, quality, and order 
convergence

The number of parameter ensembles generated (i.e., m , 
Fig. 1b), time required to generate these ensembles within 
UncertainSCI, and run time for the FE-batch process-
ing within FEBio for the idealized geometry across PCE 

(4)�𝛿(p) =
1

N

N∑

i=1

||||
||||
Ax̂ −

⇀

b
||||
||||2

||||
||||

⇀

b
||||
||||2

,

Table 1  Computational times across PCE orders for the idealized 
artery model. Five PCE runs were performed across each order. Data 
are reported as mean ± standard deviation

Order ( p) Parameter ensem-
bles generated 
( m)

Parameter 
generation run 
Time (h:mm:ss)

FE simulations 
run time 
(h:mm:ss)

1 42 0:01:46 ± 0:00:03 0:02:50 ± 0:00:01
2 152 0:04:07 ± 0:00:03 0:09:26 ± 0:00:03
3 592 0:13:45 ± 0:00:06 0:36:20 ± 0:00:17
4 2022 0:45:12 ± 0:00:06 2:03:12 ± 0:00:18
5 6026 2:24:14 ± 0:01:48 6:10:34 ± 0:03:29

1 Pilot studies demonstrated that 2 × oversampling notably reduced 
fluctuations in the Sobol indices and was thus sufficient to ensure sta-
bility in PCE results and conclusions drawn (Supp. Figure 2).
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orders are presented in Table 1. The number of parameter 
ensembles ranged from ~ 40 (order 1) to > 6,000 (order 5) 
and required between several minutes and many hours to 
generate the ensembles and run the FE simulations. Evalu-
ation of the relative error for the 1st and 3rd principal 
stresses across orders demonstrated reduced error and 
error variability across multiple PCE runs as order number 
increased (Fig. 4a, b). Data indicated that order 3 captured 
the dominant uncertainty modes, as relative error values 
were < 0.4% with a standard deviation of < 0.1 across 5 
runs. Furthermore, Sobol indices maintained stability at 
order 3 and higher orders. First-order Sobol indices in the 
adventitia changed by < 0.003 and the relative positions 
remained unchanged across orders 3 to 4 (Fig. 4c). Smaller 
changes were observed at higher orders (Supp. Fig. 2). A 
similar trend in the stabilization of the first-order Sobol 
indices was seen in the medial layer (Supp. Fig. 2). Moreo-
ver, second-order Sobol indices and their relative posi-
tions were preserved across orders 3 to 5 (Supp. Fig. 3). 
Examining the FE results from the order 3 simulations 
demonstrated that a range of deformed geometries and 

distensibilities were captured (Fig. 5). Across the ~ 600 
parameter ensembles at order 3, deformed inner diameter 
and thickness values ranged from 3.76 to 4.78 and 0.49 
to 0.58 mm, respectively, and distensibility values ranged 
from 4.67 to 18.72  MPa−1.

3.2  UQ and sensitivity analysis in idealized 
coronary model

The propagation of material parameter uncertainties to the 
transmural distribution of 1st principal stress at 120 mmHg 
yielded large deviations from the median within the medial 
and adventitial layers (Fig. 6a). While median stress values 
and stress variance decreased radially through each layer, 
there was an abrupt increase in the variance at the inner-
most region of the adventitia. Also, variances were higher 
overall in the adventitia. As a result, coefficient of variation 
values in the adventitia were > 1.5 × the values in the media, 
indicating adventitial stress values had greater dispersion 
around the mean (Fig. 6b). Sensitivity analysis highlighted 
that the material parameters in the anisotropic component 
of the adventitia dominated the variance in the predicted 1st 
principal stress (Fig. 7). For example, adventitial material 
parameters k1 , k2 , � , and � accounted for nearly 70% of the 
variance in predicted stress values due to a single parameter 
(unary interactions), with k1 alone accounting for ~ 25% (i.e., 
variance in FE-predicted stresses are largely explained by 
the uncertainty in the stress-like parameter describing the 
contribution of the adventitial fibers to the artery stiffness, 
k1 ). Notably, the uncertainty in the stiffness of the Neo-
Hookean ground matrix, controlled by parameter � , had a 
negligible effect on stress variance in the media and only a 
marginal effect in the adventitia.

Sensitivity analysis further revealed unique interactions 
between two parameters (i.e., binary interactions) that con-
tributed to the variance in predicted stress. While unary inter-
actions were dominant, binary interactions still accounted 
for 12.2% of the variance in predicted 1st principal stress 
(Fig. 8a). Examining pairwise interactions within each arte-
rial layer highlighted that such interactions in the adventitia 
accounted for far greater stress variance than those in the 
media (Fig. 8b). Of the 12.2% of the variance in stress due to 
binary interactions, the interaction involving the adventitia 
alone accounted for 46.8% of the variance, and the media-only 
interaction accounted for 11.6%. The binary interaction of 
parameters across layers (i.e., inter-layer) accounted for 41.6% 
of that variance. That is to say, 5.7% of the (total) variance in 
predicted stress was due to binary interactions between adven-
titial parameters alone (46.8 of 12.2%), compared to 1.4% for 
medial parameters and 5.1% for inter-layer parameter combi-
nations. Across the 45 possible pairwise combinations, inter-
actions between the adventitia � − � and k2 − � dominated, 
with normalized second-order Sobol indices of 0.21 and 0.10, 
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respectively (Fig. 8c). Moreover, 5 of the top 10 binary inter-
actions were between adventitial SEF parameters within the 
anisotropic component. Modest interactions between param-
eters within the media and adventitia were observed (e.g., 
media k1 , adventitia k2 : 0.07), and only 1 binary interaction 
between medial parameters was in the top 10 (media k1 , k2 : 
0.07). Lastly, tertiary interactions (i.e., interactions between 
3 material parameters) accounted for < 3.1% of the variance 
in predicted 1st principal stress (Fig. 8a).

3.3  Application of UQ to patient‑specific model 
of coronary artery

The batch-processing scheme (592 patient-specific models, 
PCE order 3) completed in ~ 49.5 h on the multicore com-
pute servers. Examining the uncertainty in 1st principal stress 

revealed spatial heterogeneity in statistical and sensitivity 
measures across the physical domain (Fig. 9a). At a cross 
section distal from the left circumflex (slice 1; Fig. 9b), for 
example, mean stresses across the simulations ranged from 
15.9–44.6 and 11.8–27.0 kPa in the medial and adventitial lay-
ers, respectively. Similar trends of higher values in the media 
were observed at other spatial locations (Fig. 9b) and when 
comparing standard deviation and coefficient of variation val-
ues across the models. Like the idealized model results, first-
order Sobol indices in the patient-specific model associated 
with adventitial material parameters dominated variances in 
predicted stress (Fig. 9c). The isotropic and anisotropic mate-
rial parameters in the adventitia accounted for 23.3 and 42.5% 
of the variance in stress, respectively. Notably, first-order 
Sobol indices have marked spatial variation, with increased 
dispersion in the adventitial layer (Fig. 9c).

Fig. 5  Distribution of deformed 
geometries and structural stiff-
ness from FE models for order 3 
PCE analysis. a Deformed inner 
diameter, b deformed thickness, 
and c distensibility. Yellow line: 
median values from UQ-FE 
models (i.e., median of the 
output), magenta line: FE model 
output at median parameter val-
ues (i.e., output at the median)
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4  Discussion

Herein, we demonstrate the utility of computational 
UQ in characterizing and quantifying how uncertainties 
in arterial material parameters propagate to variability 
in FE-predicted stresses under physiologic loads. In an 
idealized (cylindrical artery) and patient-specific coronary 

artery computational model, we show that the variability 
in predicted stresses is sensitive to uncertainties in the 
anisotropic component of the material SEF but not 
uncertainties in the isotropic component. Moreover, unary 
and binary interactions within the adventitial layer are the 
main contributors to variance in transmural stresses, with 
variability in the stiffness of the embedded fibers (i.e., k1 ) 
being the leading factor in stress variability. Lastly, we 
highlight the non-intrusive nature of UncertainSCI 
and the ability to couple this powerful yet lightweight UQ 
framework to the FEBio software suite.

Given that vascular tissue has an anisotropic structural 
organization and a nonlinear stress–strain response, it was 
not surprising to see that uncertainty in the anisotropic SEF 
parameters accounted for the greatest variance in stress 
(Figs. 7 and 8). Moreover, sensitivity analysis demonstrated 
that the unary interaction of the initial stiffness of the fibers 
( k1 ) and the binary interaction between fiber angle ( � ) and 
fiber dispersion ( � ) in the adventitia layer were prominent 
parameters that influence stress variabilities. Experimental 
data highlight that the adventitia is stiffer than the media 
layer (Holzapfel 2005), resulting from the dense network 
of type I collagen within the ground matrix. Thus, the 
presented results provide further evidence of the influence 
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of the arterial structure on the mechanical behavior of this 
soft tissue. Also, it is important to recognize the greater 
dispersion of the anisotropic SEF parameters in the 
adventitia versus media (Fig. 2), contributing to the larger 
coefficient of variation and Sobol indices in the adventitia. 
In addition to increased sample testing, advances in 
experimental approaches to better characterize and quantify 
these SEF parameters will promote reduced uncertainty in 
calculated stress values.

Efforts have been focused on integrating computational 
models of the cardiovascular system into the clinical 
setting; however, multiple sources of uncertainty must be 
accounted for to provide confidence in model predictions. 
In patient-specific models, for example, uncertainty arises 
in domain (geometry) construction, boundary conditions, 
numerical schemes, and, as investigated herein, material 
properties. In the context of material properties, sources of 
uncertainty are present when utilizing either population-
based or patient-specific data. A population-based approach 
was used in this study, whereby variability across patient 
samples contributed to the uncertainty in arterial stiffness 
(Holzapfel et al. 2005). Importantly, this approach requires 
quantifying arterial mechanical properties on large data sets 
utilizing standardized protocols, including biaxial material 

characterization, to minimize experimental variance (Walsh 
et al. 2014). While methods to non-invasively determine 
patient-specific material properties are in development 
(e.g., DENSE MRI (Bracamonte et al. 2020)), there remain 
limitations with such strategies that must be resolved before 
adoption. Moreover, uncertainty exists in patient-specific 
strategies due to material spatial heterogeneity and image 
noise that must be accounted for within the modeling 
framework. Despite longitudinal studies that have utilized 
deterministic modeling approaches to demonstrate the utility 
of arterial wall stress as a prognostic marker of, for example, 
coronary plaque or abdominal aneurysm rupture (Teng et al. 
2014; Polzer et  al. 2020), effective modeling strategies 
and decision guidelines must be robust to uncertainty 
and provide levels of reliability and safety before clinical 
adoption.

Capturing the randomness of the input parameters 
(i.e., defining accurate PDFs) is central to parametric UQ, 
whereby the randomness of input parameters propagates 
forward to the model outputs. The accuracy of constructed 
PDFs to capture SEF material parameter distributions 
depends on whether the evaluated samples (observations) 
sufficiently explore the parameter space. While mechanical 
testing data on human tissue samples across the vascular 

           (kPa)

0 10 20 5030 40

Slice 1
Slice 2

Slice 3

Fi
rs

t-o
rd

er
 S

ob
ol

 In
di

ce
s

0

0.1

0.2

0.3

0.4 Media Adventitia

Material Parameter

(a) (b)

(c)

Sl
ic

e 
1

Sl
ic

e 
2

Sl
ic

e 
3

Mean

(kPa)
0 5025

Standard
Deviation

(kPa)
0 2010

Coefficient
of Variation

0 105

Fig. 9  Uncertainty quantification and sensitivity analysis in a patient-
specific coronary artery model from order 3 PCE analysis (592 sim-
ulations). a Mean first principal stress ( �1) plotted on the unloaded 
geometry. b Transmural distributions of the stress mean, standard 
deviation, and coefficient of variation plotted in the media and adven-

titial layers at locations along the coronary vessel. c Normalized 
first-order Sobol indices for material parameters in the media and 
adventitia (spatially averaged). Data are reported as mean ± standard 
deviation across all elements within each material layer



937Influence of material parameter variability on the predicted coronary artery biomechanical…

tree are reported (Vande Geest et al. 2004; Holzapfel et al. 
2005; Teng et al. 2009), these studies are often limited to 
a few samples, which may not provide sufficient numbers 
to define representative PDFs. This study fit PDFs to SEF 
parameters derived from the experimental testing of 13 
human coronary tissue samples, which is the largest reported 
data set on layer-specific mechanical testing of human 
coronaries (Holzapfel et al. 2005). The fit PDFs capture the 
distribution of observations (Fig. 2); however, it is unclear if 
these fits represent the population distribution and whether 
the selected distributions are the best descriptors. Indeed, 
a study reported biaxial testing data from 125 human 
femoropopliteal arteries and provided a comprehensive 
analysis that examined differences in material properties 
across age and disease severity (Jadidi et al. 2021). Yet, 
given the difficulty in procuring human tissues, particularly 
healthy samples, such studies are rare, especially in the case 
of coronary arteries. Thus, the standardization of testing 
protocols is warranted to allow consolidation of data sets 
toward improved characterization of population distributions 
and quantification of parametric UQ input parameter 
randomness.

An advantage of UncertainSCI is that it utilizes 
non-intrusive UQ techniques, which do not require changes 
to existing simulation frameworks or numerical schemes, 
to calculate accurate statistical measures of the forward 
propagation of uncertainty. Moreover, UncertainSCI 
uses PCE techniques, which are more efficient and offer 
better convergence than Monte-Carlo (MC) and quasi-
MC-based approaches (Xiu and Hesthaven 2005) and offer 
advantages in biomedical simulations, where the dependence 
on parameters is often smooth. Although PCE and MC 
approaches sample the multivariate parameter distributions, 
MC approaches require more samples to obtain reliable 
sensitivity measures and are thus more computationally 
demanding (Eck et al. 2016). Regardless of the sampling 
approach, and particularly relevant to soft biological tissue, 
it must be ensured that the sampled parameter ensembles 
produce physical stress-stretch responses (Robertson and 
Cook 2014). While MC methods have been successfully 
applied to cardiovascular simulations (Sankaran and 
Marsden 2011; Tran et  al. 2019), these approaches can 
be problematic for complex patient-specific models (e.g., 
Figs. 3 and 9). Alternatively, PCE approaches compute 
equivalent statistical metrics, with orders of magnitude 
fewer evaluation samples compared to MC approaches 
(Eck et al. 2016; Burk et al. 2020). Importantly, however, 
PCE approaches are only recommended when the number 
of uncertain parameters is limited, typically less than 20, 
after which PCE strategies are no longer more efficient than 
MC methods (Xiu and Hesthaven 2005; Crestaux et al. 2009; 
Eck et al. 2016). While the presented study evaluated 10 
parameters describing the material properties for the UQ 

analysis (Eq. 1, Fig. 2), additional areas of uncertainty are 
present in cardiovascular simulations, as discussed above, 
that would increase UQ complexity and computational 
demand. Methods can be employed to reduce the number 
of uncertain inputs. For example, if uncertain inputs have 
minimal effects on model output variance (i.e., small first-
order Sobol indices, Fig. 7), those inputs can be fixed within 
their uncertain domain. Recently, a novel UQ framework 
that utilized a multilevel multi-fidelity MC estimator, which 
incorporates results from zero and one-dimensional models 
across mesh (spatial) resolutions to efficiently construct 
estimators, was shown to greatly reduce computational 
costs (10 to 100 × reduction) for UQ in hemodynamic 
simulations (Fleeter et al. 2020). Continued advancements 
in data-efficient UQ methods to promote clinical translation 
and adoption are warranted.

The lack of patient-specific material properties brings 
into question the reliability of existing coronary artery 
model results. Without directly comparing results derived 
from patient-specific or population-based material 
properties, a few remarks can be made regarding reliability. 
First, advances in medical imaging, hemodynamic 
assessment, and constitutive modeling have promoted 
patient-specific modeling capabilities beyond 2D, linear 
elastic computational models derived from histology data 
(Cheng et al. 1993). Thus, even with the lack of material 
property data, patient-specific models better represent the 
in vivo anatomy and physiology, and model results are more 
reliable. Second, even with material property limitations, 
current modeling efforts enable hypothesis generation and 
testing that have revealed new insights into cardiovascular 
biology and medicine. As an example, early observations 
and hypotheses on the role of plaque stress in coronary 
plaque rupture motivated studies that have realized these 
observations in patients with acute coronary syndrome 
(Richardson et  al. 1989; Teng et  al. 2014). Third, the 
presented UQ analysis indeed provides an assessment of 
the reliability of modeling results given material property 
uncertainty. Thus, studies can (and should) address the 
interpretation of their results within the context of our 
presented findings. What remains unknown is how the 
uncertainty in these data translates to correlations with 
clinical observations or outcomes, promoting the predictive 
power of biomechanical indices.

The presented results have implications for interpreting 
correlations between biological processes, such as 
tissue homeostasis, growth and remodeling, and disease 
progression, and the mechanical environment, such 
as stresses and strains (i.e., vascular mechanobiology) 
(Humphrey and Schwartz 2021). Whether utilizing 
analytical solutions or FE approaches to determine 
stresses within thick-walled vascular tissue, variability in 
calculated/predicted stresses due to material parameter 
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uncertainty could impact the drawn correlations. Moreover, 
stress mediated growth laws (i.e., constitutive relations 
that describe cellular and extracellular matrix produce 
and removal rates as a function of stress) are central to 
constrained mixture models of soft tissue growth and 
remodeling (Humphrey 2021). Recognizing and quantifying 
the impact of uncertainty on these relationships are critical 
to advance the understanding of the evolution of soft 
tissue geometry, composition, and material behavior under 
complex loading.

There are limitations in this study that should be 
acknowledged; however, these limitations do not detract 
from the significance of the results. First, not all possible 
PDFs were explored to describe the distribution of the 
reported SEF material parameters. While PDFs that 
yielded non-physical material parameters were excluded, 
continued investigation of PDFs that best describe the 
experimental data is warranted. Second, residual strain 
was not included in the computational models. While 
residual strain homogenizes the stress field in the artery 
wall under physiologic loading (Chuong and Fung 1986), 
these do not mitigate the variance in wall stresses due to 
uncertainty in material parameters. Importantly, the opening 
angle, the geometric quantity that aids quantification of 
the displacement field to determine residual strain, is yet 
another variable with uncertainty to evaluate and determine 
its impact on arterial stress field variance. Third, material 
testing data on the intimal layer reported in the Holzapfel 
et al. study (Holzapfel et al. 2005) were not incorporated 
into the idealized model. These data were derived from the 
mechanical testing of specimens with non-atherosclerotic 
intimal thickening and diffuse intimal hyperplasia, which 
are detectable with VH-IVUS imaging (García-García 
et al. 2009). Future investigations utilizing the presented 
FE-UQ framework will seek to incorporate additional 
tissue components and plaque phenotypes. Lastly, only 
one patient-specific geometry was explored. Although 
the coronary anatomy and spatial variation in sensitivity 
measures impart complexities that make it difficult to draw 
immediate conclusions, the demonstrated application of 
the UQ-FE framework provides a novel approach for future 
investigations.

5  Conclusion

In summary, we present a computational framework 
to explore, characterize, and quantify forward model 
uncertainty in FE simulations of the arterial wall 
biomechanical environment. We report that uncertainties 
in SEF parameters describing the material response of 
a multi-layered, thick-walled artery under physiologic 
loading are pushed forward, leading to considerable 

variances in transmural stress fields. These data highlight 
that there remains a pressing need to promote experimental 
data collection toward better characterizing SEF material 
parameter distributions and further understanding the 
propagation of such uncertainty to the predicted kinematics 
and stresses. Moreover, our efforts demonstrate the demand 
for continued rigor in computational biomechanics by 
providing confidence in calculated stress metrics to address 
complex biological and clinical problems.
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