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Abstract
Cardiomyocytes are the functional building blocks of the heart—yet most models developed to simulate cardiac mechanics 
do not represent the individual cells and their surrounding matrix. Instead, they work on a homogenized tissue level, assum-
ing that cellular and subcellular structures and processes scale uniformly. Here we present a mathematical and numerical 
framework for exploring tissue-level cardiac mechanics on a microscale given an explicit three-dimensional geometrical 
representation of cells embedded in a matrix. We defined a mathematical model over such a geometry and parametrized our 
model using publicly available data from tissue stretching and shearing experiments. We then used the model to explore 
mechanical differences between the extracellular and the intracellular space. Through sensitivity analysis, we found the 
stiffness in the extracellular matrix to be most important for the intracellular stress values under contraction. Strain and 
stress values were observed to follow a normal-tangential pattern concentrated along the membrane, with substantial spatial 
variations both under contraction and stretching. We also examined how it scales to larger size simulations, considering 
multicellular domains. Our work extends existing continuum models, providing a new geometrical-based framework for 
exploring complex cell–cell and cell–matrix interactions.

Keywords  Cardiac mechanics · Cell geometries · Cardiomyocyte contraction · Intracellular and extracellular mechanics · 
Microscale modeling

1  Introduction

Myocardium contraction is known to be affected both 
by subcellular (Borbély et al. 2005; Azeloglu and Costa 
2010) and extracellular (Qin et al. 2007; Deckx et al. 2019) 
mechanisms. Cellular geometrical configurations have been 
demonstrated to be important for key mechanical features 
(Stein et al. 2011; Humphries et al. 2017). Existing models 
of cardiac tissue mechanics are usually based on extensive 
homogenization—useful for many purposes, yet unsuitable 
for capturing smaller-scale effects and interactions. These 
are widely used on tissue and organ level, see e.g., Guccione 
et al. (1991); Holzapfel and Ogden (2009), and have been 

used extensively for interpreting clinical data (Xi et al. 2012; 
Sack et al. 2016; Finsberg et al. 2018). One of the limitations 
of this approach, however, is that intracellular and extracel-
lular processes are assumed to take place everywhere instead 
of being organized into discrete structures.

The cells and their extracellular material each have unique 
biochemical constituents and structure (Fomovsky et al. 
2010; Avazmohammadi et al. 2019) and can be expected 
to have different mechanical properties. Furthermore, the 
force that drives cardiac contraction is only generated 
within the cells and not in the surrounding matrix. There 
are models that describe how this force is generated from 
electromechanical subprocesses on a sarcomere level (Land 
et al. 2017; Rice et al. 2008). When coupled to spatially 
resolved models, these are usually assumed to scale homo-
geneously through the tissue without taking into account the 
cellular geometries. Higher-resolution imaging techniques 
have been developed, see e.g., Pinali and Kitmitto (2014); 
Bensley et al. (2016), making it possible to extract exact 
geometrical representations of how cells are embedded in 
the extracellular matrix. To make use of this information in 
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cardiac modeling, there is a need for developing spatially 
resolved modeling frameworks that explicitly capture both 
the cells and their surroundings.

Some mechanical continuum-based models that do take 
into account these explicit geometries have been developed, 
considering single isolated cells. These are modeled using a 
hyperelastic and isotropic (Tracqui et al. 2008; Okada et al. 
2005; Garcia-Canadilla et al. 2017; Lenarda et al. 2018), 
or anisotropic material model (Tracqui and Ohayon 2009; 
Ruiz-Baier et al. 2014; Gizzi et al. 2015). The impact of the 
cell membrane and the extracellular matrix can be explic-
itly implemented using a combination of Dirichlet and Neu-
mann boundary conditions (Ruiz-Baier et al. 2014; Gizzi 
et al. 2015; Lenarda et al. 2018). In Lenarda et al. (2018), 
cell–cell interactions were investigated by considering two 
cells connected through a surface representing a gap junc-
tion. The study presented in Tracqui et al. (2008) consid-
ered a single cell embedded in a substrate, investigating the 
impact of substrate stiffness on intracellular dynamics. None 
of these, however, include the extracellular matrix as a part 
of the domain.

Going somewhat broader, there are models for contractile 
skeletal cells considering cell–matrix interactions. An ana-
lytical model was presented in Sharafi and Blemker (2011), 
backed up with numerical simulations considering up to 
nine cells connected in a bundle, including an endomysium 
layer separating the cells from each other. Circular, ellipti-
cal and spherical geometries were used in multiple subse-
quent models, see e.g., Abhilash et al. (2014); Liang et al. 
(2016); Sopher et al. (2018); Mann et al. (2019), considering 
single cells and pairs of cells embedded in different kinds 
of polymer matrices. These works report that considerable 
amounts of force transmission occur through shear stresses 
and prominent force chains. Although all of these models 
have been developed for general contractile cells, the main 
findings most likely hold for cardiomyocytes as well.

Like mechanics, cardiac electrophysiology has often been 
modeled in a homogenized manner. Some of these models 
have been further refined into models that take into account 
the cells explicitly represented in the domain, surrounded 
by the extracellular matrix (Hogues et al. 1992; Stinstra 
et al. 2010; Tveito et al. 2017). Following the terminology 
in Tveito et al. (2017), such a model can be referred to as 
an EMI model—a model that separates the domain into an 
extracellular subdomain, a membrane and an intracellular 
subdomain.

In this work, we present the extension and characteriza-
tion of the model presented in Telle et al. (2021), in which 
the extracellular and the intracellular subdomains are explic-
itly represented in the geometry. The main purpose behind 
this model is to capture interactions arising due to differ-
ences in structures and properties on a microscale, consid-
ering smaller tissue samples built up from individual cells, 

which potentially could differ in their geometries, material 
properties, or contraction dynamics. Here, we use experi-
mental data to parametrize our model, considering stretching 
and shearing experiments. We were able to capture the full 
orthogonality of cardiac tissue through the geometry rather 
than imposing it in the strain energy function. Using this 
parametrized model as a baseline, we explored the param-
eter space subject to fiber direction stretch and contraction. 
Utilizing high-performance computing (HPC), we are able 
to move from the single cells to multicellular domains, rep-
resenting small cubical tissue samples.

2 � Models and methods

2.1 � The mathematical framework

Following the geometrical framework presented in Tveito 
et al. (2017) and employed in Telle et al. (2021), we consider 
a three-dimensional domain consisting of two volumes—the 
cells and the surrounding matrix. The intracellular space 
( Ωi ) is surrounded by the extracellular space ( Ωe ), sepa-
rated by a surface ( Γ ) representing the cell membrane; see 
Fig. 1. Geometrically Ωi and Ωe are both closed volumes, 
while Γ represents the intersection �Ωi ∩ �Ωe , where again 
�Ωi and �Ωe represent the boundaries of Ωi and Ωe . We let 
Ω = Ωi ∪ Ωe denote the whole domain and �Ω the outer 
boundary.

Using a fully Lagrangian formulation, let u denote the 
displacement of a given point in the domain Ω , defined by 
u ∶= x − X , where x is a point in the current configuration 
and X a point in the reference configuration. Let F ∶= ∇u + I 
denote the deformation gradient, where I is the identity ten-
sor. The stress–strain relationship in the material is given by 
a strain energy function �(F) , and the first Piola-Kirchhoff 
stress tensor by P ∶=

��(F)

�F
. An equilibrium solution, where 

all forces are balanced, can be found by solving

Fig. 1   Subdomains Ωi and Ωe and their boundaries. Schematic draw-
ing of the subdomains; the intracellular subdomain Ωi is surrounded 
by a surface Γ representing the membrane, separating it from the 
extracellular subdomain Ωe . The whole domain is surrounded by an 
outer boundary �Ω . �

�
 and �

�
 denote normal vectors of surfaces Γ and 

�Ω . In 3D, Ωi and Ωe are volumes, separated by a surface Γ
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over the whole domain Ω , subject to imposed boundary 
conditions.

We assumed continuity of displacement and stresses 
across the membrane, mathematically expressed as

and 

on Γ where �
�
 and �

�
 denote normal vectors of Ωi and Ωe 

respectively.
To incorporate contraction of the cells, we used an active 

strain approach, as described, e.g., in Ambrosi and Pezzuto 
(2012); Rossi et al. (2012). In this approach, the deforma-
tion gradient F is decomposed in a multiplicative manner, 
F = �

�
�
�
 . The active component, �

�
 , quantifies the strain 

caused by the cell contraction over time, while �
�
= F�

�

−1 
gives the passive elastic deformation. Following Ruiz-Baier 
et al. (2014) and Rossi et al. (2012), we let �

�
 be transversely 

isotropic, given by

where � is a scalar time-dependent function.
In our model, active contraction was only prescribed 

within Ωi , i.e., within the cells. We imposed the discretiza-
tion by letting � vary over time within Ωi while being set to 
zero in Ωe:

For simplicity, we took �i to be a scalar function dependent 
on time only.

For the strain energy function � , we defined different 
strain energy functions �i and �e for the intracellular and 
extracellular spaces. We then combined these into one com-
mon strain energy function,

uniquely defined in Ω ⧵ Γ.
For both domains, we used a hyperelastic invariant-based 

strain energy function, based on the one proposed in Holzap-
fel and Ogden (2009). These were based on the invariants 
I1 and I4f  , given by

(1)∇ ⋅ P = 0

(2)�
�
= �

�

(3)�
�
P = −�

�
P

(4)�
�
=

⎡⎢⎢⎣

1 − � 0 0

0 (1 − �)−1∕2 0

0 0 (1 − �)−1∕2

⎤⎥⎥⎦
,

(5)� =

{
�
i
(t) X ∈ Ω

i

0 X ∈ Ω
e
.

(6)�(F) =

{
�
i
(F) X ∈ Ω

i

�
e
(F) X ∈ Ω

e

(7)I1 ∶= tr(C)

Here tr denotes the trace operator, C ∶= J−2∕3�
�

T
�
�
 the 

modified isochoric Cauchy–Green deformation tensor, and �
�
 

the fiber direction, i.e., the longitudinal direction of the cells.
For the intracellular subdomain, we let

Here ‖ ⋅ ‖+ denotes a conditional term, given by 
‖I‖+ = max(I, 0) . The parameters ai , bi , aif  and bif  deter-
mine the cellular stiffness. The second component gives 
significant increasing stiffness in the fiber direction subject 
to stretching, and none under compression.

For the extracellular domain, we used an isotropic for-
mulation, given by

Again, the parameters ae and be determine the stiffness of the 
matrix surrounding the cells. Other variants for this strain 
energy functions were also explored. In particular, we tried 
including shear terms and terms increasing the stiffness in 
transverse (sheet and normal) directions. These additional 
terms were, however, found to be redundant.

Cardiac tissue is known to be fully orthotropic, with 
the sheet direction determined by distinct alternating lay-
ers of cells and perimysium (Holzapfel and Ogden 2009; 
Costa et al. 1999). Rather than imposing this in the strain 
energy function, we let the full orthotropy of myocardium 
be imposed by including layers in the geometry used in the 
simulations—see detailed description in Sect. 2.3.

In this work, we assumed both subdomains to be incom-
pressible, i.e., we required

for all X in Ω during deformation. This restriction was 
imposed using a Lagrange multiplier, see full derivation in 
Holzapfel (2000). This gives us a modified strain energy 
function,

where p can be interpreted as the hydrostatic pressure.

2.2 � Weak form and implementation details

To solve the above systems of equations numerically, we 
used the finite element method. Here, we solved (1) in 
the weak sense by solving the following problem: Find 
displacement u and the hydrostatic pressure p such that

(8)I4f ∶= �
�
⋅ (C�

�
).

(9)�i(F) =
ai

2bi
(ebi(I1−3) − 1) +

aif

2bif
(ebif ‖I4f−1‖2+ − 1).

(10)�e(F) =
ae

2be
(ebe(I1−3) − 1).

(11)J ∶= det(F) = 1

(12)�∗(F) = � + p(J − 1),
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for all test functions v and q from suitable test spaces. A full 
derivation can be found in Appendix A.1. The numerical 
experiments were implemented using FEniCS (Alnæs et al. 
2015) (version 2019.1), using a Taylor-Hood discretization 
( P2–P1 ) to represent the displacement and the pressure, 
respectively.

Equation (13) is solved as a stationary problem for each 
time step. Before we solve the problem for a given step, 
either boundary displacement (for stretch/shear experiments) 
or active tension (5) (for contraction experiments) values are 
updated. The results from the previous step are used as an 
initial guess for the next step, with zero values being used for 
the very first step. Each such step can hence be considered 
a continuation step, for which Newton’s method is used to 
find an equilibrium solution.

2.3 � Geometries and meshes

For our experiments, we considered meshes representing a 
single cardiac cell embedded in an extracellular matrix, as 
well as tiled meshes consisting of multiple cells; see Fig. 2.

We take the fiber direction f0 to be aligned with the cells 
in the longitudinal direction. Following the convention for 

(13)∫Ω

P ∶ ∇v + q(J − 1)dX = 0
several tissue-level models, we define sheet and normal 
directions s0 and n0 , perpendicular to the fiber direction and 
each other. We follow the usual convention of defining the 
microstructural unit vectors in the reference configuration 
using a subscript 0, and the corresponding vector in the cur-
rent configuration without the subscript.

The cell itself has a cylindrical shape, having a length of 
102 μm (100 μm + 1 μm for each of the connections) and 
a diameter of 18 μ m, with rounded edges at each end; see 
Fig. 2 (c, f). The extracellular material was added around to 
form a box, such that the matrix surrounds the cell, with the 
thinnest layer being 1 μm in the sheet direction and 3 μm in 
the normal direction. The thicker layers in the normal direc-
tion were added to resemble layers of perimysium. Together 
with the cell orientations, these give rise to the characteristic 
local three-dimensional structure of myocardium. These pro-
portions give us a total volume of 24.42 ⋅ 103 μm3 for Ωi , and 
24.54 ⋅ 103 μm3 for Ωe for a single-cell geometry.

The regular cubical shape of the domain was explicitly 
developed for the purpose of extending the framework to 
multicellular domains representing varying numbers of car-
diac cells. Here, copies of the single-cell geometry were 
simply tiled next to each other in width, length, and height. 
The cells were connected in the fiber direction, sharing a 
common surface in the mesh at the connections.

Properties of meshes of various resolutions for a sin-
gle-cell geometry are reported in Table 1. These were all 

a b c

d e f

Fig. 2   Geometries and meshes. The geometries (a, d), the cor-
responding meshes (b, e), and the geometries with a quarter of the 
domain removed (c, f)—representing the single cell and the 3 × 3 × 3 
cells. The cell has a cylindrical shape, determining the fiber direction 
f , and the membrane is represented as an explicit surface in the mesh. 

The single-cell mesh was used as a base for the tiled mesh, combined 
into a common geometry by being tiled in a grid fashion. Note that 
the padding in the normal direction n is larger than the padding in 
the sheet direction s , meant to resemble layers of perimysium. The 
dimensions are indicated in (c) and (f)
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used for convergence studies, and for most other experi-
ments, the middle (5.0 μm ) mesh was used. Tiled meshes, 
generated using the 5.0 μm as a base, were used for scal-
ing experiments. Properties of these meshes are listed in 
Table 2. The single-cell mesh (5.0 μm ) can be seen in 
Fig. 2a–c, and a corresponding tiled mesh is displayed in 

Fig. 2d–f. All meshes are tetrahedral and were generated 
using Gmsh (Geuzaine and Remacle 2009).

2.4 � Deformation modes

Virtual stretching and shearing experiments were used 
first to parametrize our EMI model. This parameterized 
model was then used to explore convergence, sensitivity, 
spatial variation, and scalability. For these simulations, 
we considered nine distinct deformation modes—stretch-
ing in the fiber, sheet and normal directions (FF, SS and 
NN), and shearing in all combinations of fiber/sheet/nor-
mal directions (FS, FN, SF, SN, NF, NS). See Fig. 3c for 
a schematic overview. For each deformation mode, dis-
placement on pairwise opposite surfaces (see Fig. 3a) was 
enforced using Dirichlet boundary conditions while the 
other surfaces were allowed to move freely. A complete 
mathematical description of all boundary conditions can 
be found in Appendices A.2 and A.3.

Cellular contraction was modeled using a precomputed 
time-dependent active strain transient, as displayed in 
Fig. 3d. For these experiments, the traction along every 
surface was set to zero. Rigid motion was avoided by 
enforcing orthogonality of the solution with respect to the 
kernel using Lagrangian multipliers, as explained, e.g., in 
Kuchta et al. (2016). See Appendix A.4 for more details.

Table 1   Properties of meshes used for convergence experiments

Max c hmax hmin Nodes Elements Dofs

20.0 18.72 4.12 265 1 118 5 560
10.0 17.98 4.37 335 1 364 6 956
5.0 9.66 3.62 965 4 071 20 573
2.5 5.32 2.02 4 117 18 964 91 540
1.25 2.69 1.20 24 362 126 908 574 139

Table 2   Properties of meshes used for scaling (HPC) experiments

Cardiac cells Nodes Elements Dofs

1 965 4 071 20 573
2 8 891 8 142 40 702
2 × 2 3 515 16 284 78 218
2 × 2 × 2 6 461 32 568 149 360
4 × 2 × 2 12 787 65 136 297 082
4 × 2 × 4 24 601 130 272 582 076
4 × 4 × 4 47 033 260 544 1 136 588
8 × 4 × 4 93 565 521 088 2 266 888

a

b

c d

Fig. 3   Surface partition, boundary conditions and deformation 
modes. The outer boundary surface was partitioned into different sur-
faces (a), where �Ω = S

1
∪⋯ ∪ S

6
 . Stretching and shearing experi-

ments were performed by applying Dirichlet boundary conditions for 
the displacement on either of these pairs of opposite surfaces. In, e.g., 
shear FS (b), points on the surface S2 are moved a given distance (in 
percentage of the length of the domain) in the sheet direction. There 
are nine deformation modes used for the model parameterization 

(c)—stretching experiments FF, SS, and NN; shearing experiments 
FS, FN, SF, SN, NF, and NS. The white arrows indicate the direc-
tion of deformation. The pink arrows indicate the normal component, 
when not coinciding. For the active contraction experiments (d), 
all surfaces were allowed to deform freely (top). Active strain was 
imposed in the intracellular domain Ωi, using a precomputed active 
strain transient (bottom)
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2.5 � Reported quantities

For many experiments, we report values derived from the 
Green-Lagrange strain tensor, given by

and values derived from the Cauchy stress tensor, given by

In particular, we considered the normal components along 
the fiber, sheet, and normal directions of each tensor, i.e., 
Eff  , Ess and Enn for the strain, and �ff  , �ss and �nn for stress. 
Except from when displayed as spatial plots, these were 
taken as averaged quantities over the separate subdomains. 
These were calculated as volume integrals, given by

and

Here �
�
 is equal to �

�
 , �

�
 or �

�
 , in the reference configuration. 

Subdomain Ωj is either the (combined) intracellular space 
Ωi , the intracellular space in a single cell ( Ωi,k for k = 1...N , 
considering N cells) or the extracellular space Ωe.

The integrated quantities were computed using fourth-
order Gaussian quadrature, which coincided with second 
and third order for the strain values. For visualization of the 
spatial distributions, these were projected to a discontinuous 
Lagrangian function space ( DG2 ), the discontinuity being 
helpful for capturing strain and stress components close to 
the membrane.

2.6 � Parameter estimation

To parametrize our model, we used the same experimen-
tal data as explored in Kakaletsis et al. (2021), made pub-
licly available by the authors (Kakaletsis et al. 2020). In 
their study, cardiac tissue blocks from sheep hearts were 
extracted, then shearing and stretching experiments were 
performed on each sample. We restricted the scope to the 
11 samples taken from the left ventricle. In order to make the 
optimization tractable with our given computation resources, 
we only considered the positive values, i.e., from reported 
displacement zero and upwards.

For each sample, there were data on forces, in both nor-
mal and shear directions, and resulting displacement, as well 

(14)E =
1

2
(FT

F − I)

(15)� = J−1PFT
.

(16)Eee =
∫
Ωj
�
�
⋅ (E�

�
)dX

∫
Ωj
dX

(17)�ee =
∫
Ωj
e0 ⋅ (�e0)dX

∫
Ωj
dX

.

as length, width and height measurements for each of the 
samples. We derived load and stretch values for each sample 
and used these for direct comparison to the model.

We performed corresponding virtual stretch and shear 
experiments by deforming the domain using the same range 
of stretch and shear magnitudes used in the experimental 
data. For each stretch value � and each deformation mode 
M, the total load on the surface, imposed by the applied 
Dirichlet boundary conditions, was calculated by

Here e is either the mesh normal direction or the shear direc-
tion, depending on the tracked component. Si is either S2 , S4 
or S6 , depending on the deformation mode (see again Fig. 3), 
and N denotes the normal vector to this surface.

The parameter estimation was then formulated as an 
optimization problem, expressing the difference between 
the experimental load values and the virtual load values as 
an L2 norm. We performed the optimization using SciPy’s 
minimize function, allowing material parameters ai , bi , ae , 
be , aif  and bif  to vary within the interval [0.01, 40].

2.6.1 � Parameter sensitivity

We next explored the sensitivity of each parameter by com-
puting Sobol indices. This analysis was done for all defor-
mation modes used in the stretching and shear experiments, 
tracking load values of interest, as well as for averaged 
stresses across the entire domain under fiber direction stretch 
experiment FF and contraction. The sensitivity analysis was 
performed using the Python library SALib (Herman and 
Usher 2017; Iwanaga et al. 2022).

For each of these cases, sensitivity analysis was per-
formed by sampling the parameter space with N = 512 val-
ues, allowing each material parameter to vary in the interval 
[0.1, 30]. We considered D = 6 material parameters, which 
resulted in N(D + 2) = 512(6 + 2) = 4096 different param-
eter combinations per deformation mode. For each param-
eter combination, we simulated virtual stretch up to 10% and 
virtual shear up to 40%, dictated by the range of strain values 
of the experimental dataset used for the parameterization. 
Contraction was simulated to a peak of approximately 20% 
shortening. These experiments were all performed using a 
single-cell geometry. Finally, based on the resulting load and 
stress values, we computed the first order and total sensitiv-
ity indices.

2.6.2 � Convergence

To test the convergence properties of our problem, we gen-
erated a set of meshes with decreasing maximum mesh 

(18)LM(�, e) =
∫
Si
PN ⋅ edS

∫
Si
FN ⋅ (FT

N)dS
.
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element size (circumradius), as listed in Table 1 (Max c). 
Here h max and h min are defined as the largest and smallest 
cell diameter in the mesh. The cell diameter is defined as 
twice the circumradius.

We performed convergence experiments by tracking nor-
mal stress components for each subdomain, as given in (17), 
considering fiber direction stretch and contraction. These 
were also performed using a single-cell geometry.

2.7 � Spatial plots

To explore spatial distributions we performed fiber direction 
stretch and contraction experiments, processed in Paraview. 
The fiber direction stretch was simulated up to 10% stretch. 
For the contraction experiment, we simulated half a cardiac 
cycle—and report spatial values for the maximal contracted 
state (138 ms). For the contraction experiments, we also 
compared individual components of stress and strain values 
averaged over each subdomain. We considered both single 
cell meshes and tiled meshes, consisting of 3 × 3 × 3 cells.

2.8 � Scalability

Finally, we investigated the performance and scalability of 
our current solver implementation with the aim of tackling 
larger, tissue-scale problems using meshes of tiled cells. For 
these experiments, we stretched the domain by 15 % in the 
fiber direction using ten continuation steps while varying the 
problem size and number of CPUs used to perform the cal-
culations. We considered one weak scaling problem, where 
we used tiled meshes such that there is one cardiac cell per 
CPU, and one strong scaling problem, where a fixed mesh 
representing 4 × 4 × 4 cells was used. Properties of meshes 
used in these experiments are listed in Table 2.

The current solver is based on using Newton’s method 
combined with a distributed-memory parallel direct solver 
provided by SuperLU_dist (Li and Demmel 2003). A known 

limitation of this approach is the considerable memory usage 
that is associated with the LU factorization stage of the 
direct solver (see, e.g., Dongarra et al. (1998)). To increase 
the amount of available memory, in order to make the prob-
lem feasible to solve, we employed six compute nodes for 
the strong scaling experiments. Each compute node con-
sisted of two Intel Xeon Gold 6138 CPUs with 40 CPU cores 
and 192 GiB of memory. Consequently, we limited our cur-
rent experiments to at most 240 CPU cores and a total of 
1 152 GB of memory. We configured SuperLU_dist to use 
the serial MC64 algorithm to compute a row permutation. 
An alternative parallel algorithm for based on Approximate 
Weight Perfect Matching (AWPM) (Azad et al. 2020) was 
tested, but found to be significantly slower for our case.

3 � Results

3.1 � Parameter estimation

Optimized parameter values for (9) and (10) found for each 
experimental sample, as well as the average across all of 
them, are listed in Table 3. The experimental data are plot-
ted together with the model fit, using average parameters, in 
Fig. 4. We observe that most of the load values fall within 
the range given by the experimental data—in particular, the 
load values calculated for the FF, FS, and FN experiments 
all are close to the middle of the range defined by the experi-
mental data. On the other hand, the load values for the sheet 
and normal direction stretch (SS, NN) are both somewhat 
too high.

3.1.1 � Parameter sensitivity

Sensitivity analysis was performed using variance-based 
sensitivity analysis, with the resulting Sobol indices dis-
played in Fig. 5. We here report the first order ( S1 ) and total 

Table 3   Optimized material 
parameters for the strain energy 
function (6) to experimental 
data (Kakaletsis et al. 2020), for 
samples 1–11

The average values are highlighted in bold

a
i

b
i

a
e

b
e

a
if

b
if

Sample 1 0.02 22.44 8.15 6.84 40.00 24.16
Sample 2 29.51 14.49 0.57 2.29 40.00 40.00
Sample 3 4.31 17.06 0.18 16.39 7.66 15.11
Sample 4 0.02 5.99 3.76 5.90 21.21 16.91
Sample 5 3.15 1.92 0.03 37.47 40.00 16.62
Sample 6 12.25 0.01 0.05 31.30 17.34 8.16
Sample 7 3.06 23.57 0.04 17.03 9.46 27.16
Sample 8 2.86 0.01 0.01 14.93 5.95 27.63
Sample 9 3.20 24.46 0.02 25.45 30.62 17.21
Sample 10 3.17 18.18 0.05 11.97 3.76 38.98
Sample 11 1.16 0.27 3.87 9.87 2.16 40.00
Average 5.70 11.67 1.52 16.31 19.83 24.72
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Fig. 4   Parameter fit—all experimental data and our parametrized 
model. Original experimental data for all deformation modes FF–NN 
shown with gray dots. Our model fit for the same deformation modes, 
using average material parameter values as listed in Table 3, is dis-

played in red. The schematic drawings (top right corners) display dis-
placement direction (white), normal (pink/white) and shear (white) 
components; see more detailed explanation in Fig. 3
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( ST ) sensitivity, and for the sake of brevity we do not show 
the confidence intervals. Overall, the confidence intervals 
span a range up to 0.23 for the load experiments, up to 0.09 
for the fiber direction stress experiments, and up to 0.12 for 
the contraction stress experiments. Across all experiments, 
we see that the general patterns of the first-order sensitivity 
are repeated in the total sensitivity, and more so for the aver-
aged stress values than for the load values.

For the load experiments, we see that most of the modes 
are most sensitive to changes in the exponential be param-
eter, followed by the exponential bi parameter. Prominently, 
the exceptions are the three stretch experiments, which, in 
particular, have low sensitivity for these two parameters. 
Instead, the aif  parameter appears to matter most for the fiber 
direction stretch (FF), the ai and ae parameters most for the 
sheet direction stretch (SS), and ai followed by ae for the 
normal direction stretch (NN).

Considering the fiber direction stress experiment, we can 
see that the intracellular fiber direction stress ( �ff  across Ωi ) 
is most sensitive to the parameter aif  , as for the correspond-
ing load experiment. The extracellular sheet direction stress 
( �ss across Ωe ) is by far most sensitive to the ai parameter. 
Across all tracked stresses, the bi parameter matters the least.

Finally, for the contraction stress experiment, across all 
tracked stresses, the be parameter matters the most, seconded 
by ae . Across the other parameters, the sensitivity is, in com-
parison, marginal. This holds for both the first order and the 

total sensitivity, although we can see a small enhancement 
in all values for the total sensitivity, i.e., having somewhat 
higher magnitudes.

3.1.2 � Convergence

Results from the convergence studies are displayed in Fig. 6, 
reporting subdomain stress values for different mesh resolu-
tions. Many of the tracked components appear converged at 
a mesh resolution with a maximum element size of 5.0 μm . 
However, under contraction, component �ff  appears to still 
vary somewhat going from the mesh with maximum element 
size of 2.5 μm to the mesh with an element size of 1.25 μm.

3.1.3 � Single cell versus multicellular domains

We compared the load and stress results for a single cell, 
which was used for the parametrization, and 3 × 3 × 3 cells. 
The results are displayed in Fig. 7. We note that across all 
stretching and shearing experiments, considering load val-
ues, the results are similar for both geometries. For stresses 
in the stretching experiment (subplots b, e), most quanti-
ties are comparable (in absolute values; relative values vary 
somewhat more), while for contraction, there is a notable 
difference. Here, the averaged fiber direction stress given by 
�ff  across Ωi , almost doubles from 7.87 kPa at peak for the 
single-cell domain to 12.75 kPa for the multicellular domain. 

Fig. 5   Sensitivity analysis. Sensitivity analysis performed using 
Sobol indices, reporting first order ( S

1
 , top) and total ( ST , bottom) 

sensitivities. The sensitivity analysis was performed for all stretching 

and shear experiments with normal and shear loads as output (left), as 
well as fiber direction stretch and contraction with normal intra- and 
extra-cellular stresses as output (middle, right)
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Similarly, but reversed in magnitude, the fiber direction 
stresses given by �ff  across Ωe , decreases from −8.17 kPa at 
peak for the single-cell domain to −12.85 kPa for the mul-
ticellular domain. The individual contributions of the fiber 
direction stresses of each cell are also plotted in Fig. 8. Here, 
we can see that the fiber direction stresses are higher in all 
cells in the tiled mesh compared to the single-cell mesh. We 
also note that this increase is highest in the middle cells, i.e., 
the cells surrounded by cells on two sides in the fiber direc-
tion. Along the sheet and normal directions there is much 
less variation between the different cells.

3.2 � Spatial distributions of strain and stress

Spatial distributions of the pressure, strain and stress values 
for fiber direction stretching and contraction experiments 
are presented in Figs. 9, 10, 11, and 13. All spatial plots 
are deformed according to the respective displacement 
fields. For the contraction experiment for the single cell, 
we also include plots of strain and stress values averaged 
over each subdomain in Fig. 12. Movies of the evolution 
of these quantities under different levels of stretch and over 

time are presented in the supplementary material, see Movie 
1-Movie 4.

For the stretching experiments, the values are plotted at 
maximum stretch, while for contraction, this is the state in 
which the cell reaches the highest contraction, correspond-
ing to the peak of the active strain in Fig. 3d. We report the 
normal components of E (14) and � (15). Note that, follow-
ing the continuity assumption (3) the normal stresses are 
continuous across the membrane. For stresses in the other 
directions, however, we predominantly see a clear discon-
tinuity here.

We note that for both stretching and contraction experi-
ments, the pressure field, as displayed in Fig. 9, contributes 
to about half of the stress in the fiber direction, consistent in 
sign and magnitudes. The pressure contribution to the stress 
values is the same along the diagonal entries (per defini-
tion, see Eq. (15)), while being zero for all shear entries. 
However, we can observe that for most of the domain the 
total stress distributions in the sheer and normal directions 
are mostly zero-valued, implying that the stress arising from 
(6) and the stress from the pressure have opposite signs and 
mostly cancel each other out.

a b

Fig. 6   Convergence experiments—normal stress components. The 
plots display the effect of mesh refinement (see Table 1), measured by 
the change in integrated stress values subject to fiber direction stretch 
(a) and contraction (b). The lightest line corresponds to the coarsest 
mesh (20.0 μm), while the darkest line corresponds to the finest mesh 

(1.25 μm). For both deformation modes we display the normal stress 
components of � (15) averaged over intracellular subdomain Ωi and 
the extracellular subdomain Ωe, respectively, as given by (17). The 
curves marked with stars display the resolution used for most of the 
experiments in this paper
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3.2.1 � Stretching experiments

As displayed in Fig. 10a and 11a, we can observe fairly uni-
form strain values everywhere in the domain for the stretch-
ing experiments. There is, however, a subtle discontinuity 
along the membrane for components Ess and Enn (visible 
inside the quarter removed, to the right and on the top, 
respectively). The stress values, on the other hand, vary 
considerably. Considering the fiber direction stretch, even 
though the Eff  values along and inside the cell are almost 
similar, �ff  takes significantly higher values in the intracel-
lular subdomain. For the tiled meshes, the patterns observed 
mostly generalize what we see for the single-cell experi-
ments. However, for Ess , and to some degree for Enn , we see 
that the area between the cells is being stretched consider-
ably in their respective directions—without any correspond-
ing strong response in stress values.

In the movies (Movie 1 and Movie 2), we can see the 
evolution of strain and stress patterns over different stretch-
ing levels. In particular, we see strain patterns develop quite 
early, while, on the scales plotted, the stress patterns develop 
later. We also see that the �ff  is highest along the middle of 
the cells. This remains true for all steps, but is outside the 
scale depicted for the final steps in Fig. 10 and  11.

3.2.2 � Contraction experiments

In contraction, we observed large variations in all scalar 
fields ranging from −0.3 to 0.3 in strain, and from −80 kPa 
to 40 kPa in stress values. We see this to some degree in the 
average traces presented in Fig. 12, with highest variation 
for stresses represented by �ff  . Here we also observe higher 
orthotropy for strain values than for stress values—the dif-
ference between Ess and Enn is more prominent than the dif-
ference between �ss and �nn.

As expected, and consistent with the average values plot-
ted in Fig. 12, we observe mostly negative Eff  and mostly 
positive Ess and Enn values for both domains. The strain val-
ues are fairly similar along and inside the cells. In contrast, 
�ff  has a clear discrete transition across the membrane, tak-
ing positive values in Ωi and negative values in the extracel-
lular subdomain ( Ωe ). For the �ss and �nn components, we 
have low stress in most of the domain. However, there is a 
small region along the cell with positive values (barely vis-
ible as a red line) and a more prominent area at the end of 
the cell, which has negative values.

Tensor glyphs displaying strain and stress values for 
a single cell under contraction are plotted in Fig. 13. For 
intracellular strain values, the glyphs are elongated close to 
the membrane tangentially. This implies a more prominent 
expansion close to the membrane than in the middle, and is 
also visible for the Ess and the Enn components in Fig. 10—
somewhat more prominent for Enn than for Ess . For extracel-
lular strain values, all glyphs are spherical and somewhat 

Fig. 7   Single cell vs tiled cells behavior, loads and stresses. Rep-
resentative plots on the top, all modes at peak values (indicated by 
triangles) on the bottom. We also compared intra- and extracellular 

stresses along the fiber direction, under fiber direction stretch (FF; b, 
d) and under contraction (c, e)
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smaller, indicating a more evenly distributed strain distribu-
tion with no prominent principal component.

We observe far more prominent stress values in the extra-
cellular subdomain than in the intracellular subdomain. 
These are mainly concentrated close to the membrane, also 
in a tangential pattern. We can observe that these are flat 
glyphs, indicating two prominent principal components. 
One of these components coincides with the fiber direc-
tion, while the other follows the cell shape circularly. These 
glyphs, highly prominent in this plot, correspond exactly to 
the subtle red lines barely visible for components �ss and �ff  
in Fig. 10. We observe flat glyphs at each end of the cell for 
the intracellular subdomain, also orientated perpendicular to 
the fiber direction. In the middle section of the cell, however, 
we have elongated glyphs oriented in the fiber direction, 
indicating that the main contribution to all the stresses is in 
this direction.

We observe general higher strain and stress values for 
the tiled meshes compared to the single-cell experiment. In 
particular, we have increased magnitude for �ff  values, both 
for the intracellular and extracellular space. We also see that 
strain values between the cells changes—here, they obtain 
negative ( Eff  ) or positive ( Ess , Enn ) values, following the 
cells surrounding them.

Both color maps and tensor glyphs are also included in 
movies for contraction, see Movie 3 and Movie 4. Many of 
the same observations as outlined above can be done here, 
but we also see that we start with a prominent strain concen-
tration close to the membrane, while the stress concentration 
in the extracellular domain emerges later on. We also note 
that the prominent intracellular �ff  component is emerging 
first and is taking highest values close to the connection 
between the cells.

3.3 � Scalability

The performance and memory consumption for the weak 
and strong scaling experiments are displayed in Tables 4 and 
5. The solver required 43–46 Newton iterations in total for 
every case.

The parallel efficiency and memory efficiency for the 
scaling experiments are shown in Fig. 14. For the weak 
scaling experiments, we report the baseline time over the 
measured time for each measurement and the baseline 
memory divided by the measured memory. For the strong 
scaling experiments, we report the baseline time, times the 
number of nodes (6), divided by the measured time and the 
number of processes, and baseline memory divided by the 
measured memory.

Fig. 8   Cardiomyocyte stress per cell, single cell and 3 × 3 × 3 cells. 
Average Cauchy stress in the fiber direction, �ff  (17), for a single 
cell (solid curve) and for each cell in a multicellular domain (dashed 
curves). For the tiled cells, we use a lighter color for the middle cells, 

relative to the fiber direction, as indicated by the schematic drawing. 
The magnified area displays minor differences within each of these 
groups

a b

Fig. 9   Hydrostatic pressure and displacement distributions. Spatial 
plots of unknowns u and p that we solved for; the hydrostatic pres-
sure p the colormap plotted on the domain deformed according to the 
displacement u subject to stretching in the fiber direction (a) and con-
traction (b)
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Fig. 10   Spatial strain and stress plots for a single cell. Spatial plots 
of strain and stress subject to stretching in the fiber direction (a) and 
contraction (b), for a single cell. We report the normal components of 
the Green–Lagrange strain tensor E (14) and the Cauchy stress tensor 

� (15). Some values have magnitudes outside the range displayed—in 
particular, the �ff  , reaches about 40 kPa under stretch (in the intracel-
lular space), and about −30 kPa under contraction (in the extracellu-
lar space). See also Movie 1 and Movie 3
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Fig. 11   Spatial strain and stress plots for 3 × 3 × 3 cells. Spatial plots 
of stretching in the fiber direction (a), contraction, at peak (b), for a 
mesh consisting of 3 × 3 × 3 cells. As in Fig. 10, we report the nor-
mal components of the Green–Lagrange strain tensor E  (14) and 

the Cauchy stress tensor �  (15). Values outside the range displayed 
here reach magnitudes twice as high as for a single cell −80 kPa and 
−60 kPa, for �ff  under fiber direction stretch and under contraction, 
respectively. See also Movie 2 and Movie 4
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a b

Fig. 12   Normal strain (a) and stress (b) components for each of the 
two subdomains, considering a single cell under contraction. Normal 
components of E (15) and � (14), averaged over the intracellular and 

extracellular subdomains Ωi and Ωe – see Equations (16) and (17) – 
over the first 500 ms of a cardiac cycle

Fig. 13   Tensor glyph plots for a single cell under contraction. The 
top panels display strain, and the bottom panels stress values; for the 
intracellular subdomain Ωi (left) and the intracellular subdomain Ωe 
(right). The tensor values are represented using deformed spheres, 
inserted at all node points in the mesh. Elongated glyph means we 

have one dominant principal direction; flat glyphs mean we have two; 
the spherical ones indicate that all three are equal in magnitude. The 
size of a glyph corresponds to the magnitude of the eigenvalues at 
that point, and each glyph is colored according to the largest of these, 
in magnitude. See also Movie 3 and Movie 4
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For the weak scaling experiments, one would ideally hope 
for the CPU time to remain constant as the problem size 
and number of CPUs increase proportionally. Unfortunately, 
this is not the case, and both the CPU time and memory 
increase significantly as the problem size (number of cardiac 
cells) increases, despite the work per processor remaining 

constant. These results indicate that some parts of the direct 
solver do not scale well.

In the case of the strong scaling, there is clearly some 
speedup from increasing the number of CPUs, where in par-
ticular we observe fairly good scaling of the LU factorization 
stage. Most of the time is initially spent in this stage, which 
goes from about 420–480 seconds per Newton iteration when 

Table 4   Performance and weak 
scaling for 10 continuation 
steps (15% stretch in the fiber 
direction)

Cardiac Nodes CPUs Max DOFs Time Parallel Max memory Memory
cells per CPU [h:mm:ss] efficiency per CPU [GB] efficiency

2 1 1 40 702 0:06:23 − 3.49 −

2 × 2 2 2 39 760 0:11:06 0.58 4.79 0.73
2 × 2 × 2 4 4 38 334 0:15:54 0.40 5.93 0.59
4 × 2 × 2 8 8 38 250 0:21:13 0.30 6.54 0.53
4 × 4 × 2 16 16 38 718 0:41:42 0.15 8.29 0.42
4 × 4 × 4 32 32 37 190 1:22:30 0.08 10.86 0.32
8 × 4 × 4 64 64 37 895 2:45:07 0.04 15.64 0.22

Table 5   Performance and strong 
scaling for 10 continuation 
steps (15% stretch in the 
fiber direction), using a mesh 
representing 4 × 4 × 4 cardiac 
cells

Nodes CPUs Max DOFs Time Speedup Parallel Memory Memory
Per CPU [h:mm:ss] efficiency [GB] efficiency

6 6 193 941 5:53:22 − − 199.21 −

6 12 97 105 3:42:03 1.59 0.796 230.49 0.864
6 24 51 729 2:17:59 2.56 0.640 277.11 0.719
6 48 25 727 1:40:06 3.53 0.441 360.60 0.552
6 96 12 875 1:02:41 5.64 0.352 474.56 0.420
6 192 6 544 0:58:39 6.03 0.188 688.25 0.289

Fig. 14   Weak and strong scaling performance. Memory- and parallel 
(time) efficiency of the weak and strong scaling experiments relative 
to the baselines of one and six CPUs, respectively. For both experi-

ments, these corresponds to numbers taken from the Parallel effi-
ciency and Memory efficiency columns in Table 4 and Table 5
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using 1 CPU per node to about 25 seconds per Newton itera-
tion when using 32 CPUs per node. However, the solver must 
also compute row and column permutations. The row per-
mutation, computed using a serial algorithm, takes about 14 
seconds per Newton iteration regardless of how many CPUs 
are used. The calculation of the column permutation requires 
more time as the number of CPUs per node increases, taking 
up to 26 seconds per Newton iteration. Ultimately the compu-
tation of row and column permutations limits the scalability 
of the solver.

4 � Discussion

We have presented a cardiac model for single cells and 
small collections of cells, where these cells are embed-
ded in a matrix with differing material properties. It takes 
into account an explicit geometrical cell configuration 
that allows for refinement of cardiac tissue mechanics in a 
more physiologically relevant manner than one can achieve 
by simply using finer meshes and a homogenized tissue 
model. This work extends the mechanical aspect of cell-
based modeling of single cells (Ruiz-Baier et al. 2014; 
Gizzi et al. 2015; Garcia-Canadilla et al. 2017; Lenarda 
et al. 2018; Tracqui et al. 2008) by including the extracel-
lular material. Our results indicate that this inclusion is 
important for the quantification of intracellular stresses.

4.1 � Model parameterization

We used experimental data to parameterize our model, 
matching six parameters to data from nine different defor-
mation modes, finding a reasonable fit. There is a fairly large 
variance in the optimal parametrization of each individual 
sample, which may reflect on variations in the underlying 
experimental data. Some general patterns observed here is 
that typically either the ae or the ai parameter is high, and 
the other low. We also see that the fiber direction stiffness 
parameters aif  and bif  vary across almost the whole range of 
allowed parameters, which could arise from varying fiber 
dispersion in the samples. We also noted that starting the 
optimization from different starting values did not change 
the main patterns in the final results. There were certainly 
some differences indicating local minima, but when aver-
aged out this resulted in no significant differences. As dis-
played in Fig. 7, the differences between the single cell 
geometry and the multicellular geometry in computed load 
during stretching and shearing simulations are minor. This 
indicates that performing parameter optimizations for pas-
sive behavior on a single-cell geometry can, within reason, 
be extrapolated to multicellular domains.

We were able to capture differences in the stress–strain 
ratio in different directions transverse to the fiber direction 

by incorporating geometrical differences, i.e., by mak-
ing the matrix thicker in the normal direction than in the 
sheet direction, rather than through additional terms in our 
strain energy function. The sensitivity analysis of separate 
intra- and extracellular stresses displays interesting dynam-
ics between the two subdomains. The extracellular material 
parameters, ae and be , proved to be most important for intra-
cellular stresses. Considering the load values, based on the 
relative sensitivity, we see that both stretching and shearing 
experiments are important to perform and use in the para-
metrization to capture these two accurately. The sensitivity 
analysis also displays that across the stress values, the first 
order and total Sobol indices are fairly similar, indicating lit-
tle interaction between the different parameters. For the load 
values we observed a larger difference between the first order 
and total indices, indicating a higher degree of interaction.

The formulation used for the intracellular strain energy 
function �i  (9) is very similar to the one used in other 
works for isolated cardiomyocytes (Tracqui and Ohayon 
2009; Ruiz-Baier et al. 2014; Gizzi et al. 2015), and can 
physiologically be motivated by the mechanical contribu-
tions of the sarcomere structure found within the cells. 
Other models for cardiomyocytes (Tracqui et al. 2008; 
Okada et al. 2005; Garcia-Canadilla et al. 2017; Lenarda 
et al. 2018) have assumed isotropy in the intracellular 
domain, not assuming that there is any difference between 
stress–strain values in different directions. This could, in 
particular, be a good assumption for cells and cell collec-
tions developed in vitro, which as immature cells have a 
less developed sarcomere structure. For the extracellular 
strain energy function �e  (10) it could in particular be 
relevant to compare with Sharafi and Blemker (2011) and 
Zhang and Gao (2012). In Sharafi and Blemker (2011), a 
term enhancing the shear stiffness is included, while in 
Zhang and Gao (2012) the authors utilize an isotropic for-
mulation, modeling both subdomains as Mooney-Rivlin 
materials. Inspired by the first one, we explored several 
formulations including additional shear components, as 
well as formulations with additional transverse stiffness. In 
all cases, however, these were found to be redundant—our 
optimization script found the corresponding parameters to 
be zero across most of the samples. The difference in norm 
found by the optimization script remained fairly similar 
with or without these extra terms, also for the non-zero 
cases. As such, we believe the dynamics captured with 
these potential extra terms is already captured in the cur-
rent formulation. Further studies are, however, needed to 
better determine the most representative constitutive rela-
tionships in this model, for each subdomain.

Compared to the study in Gizzi et al. (2015), our param-
eters ai , bi , aif  and bif  are all stiffer. They considered a single 
cell, employing a similar model to the one used for the intra-
cellular space. Data are obtained by curve fitting based on 
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the polynomial strain energy function used in Tracqui and 
Ohayon (2009), which again is based on data published in 
other studies. Compared to the original study in Kakaletsis 
et al. (2021), from which we have the experimental data 
(for tissue samples), we observe an increase in the anisot-
ropy for the intracellular space. We found parameters aif  and 
bif  to take values 19.83 kPa and 24.72, respectively. These 
are comparable to the parameters af  and bf  as listed in the 
original paper, in their parameterization of a corresponding 
homogenized tissue-level model. Across their four strate-
gies, the af  parameters ranged between 3.85 and 6.60 (kPa), 
and bf  between 4.34 and 10.79. We see that the intracellular 
space has a significant increase in degree of anisotropy com-
pared to the homogenized tissue-level model. This can be 
explained by the isotropic assumption for the extracellular 
space—to match tissue-level experiments with decreasing 
anisotropy in one domain, one needs to increase the anisot-
ropy in the other.

The main limitation of the parameterization process 
might be that, although the model itself is designed for tak-
ing into account explicit cellular geometries, we are using an 
idealized one. In particular, we have a much larger volume 
ratio between the intracellular and extracellular space than 
realistic. Our intracellular to extracellular ratio is almost 1 to 
1, while values in the literature report the volume ratio to be 
around 4 to 1 (Olivetti et al. 1991). This is likely to lead to an 
overestimation of aif  and bif  , as the stiffness is defined over a 
volume which is too small. In addition, we have added extra 
padding between every sheet of single cells. In reality there 
should be a few cells per sheet, surrounded by perimysium 
layers on both sides, which will have an impact differences 
between the sheet and normal directions. We also only con-
nect the cells in the fiber direction, in an artificially regular 
manner. As displayed in Fig. 8, there is a huge degree of 
interaction between the cells in this direction and only mar-
ginal interaction in the other directions, tracking stress val-
ues under contraction. Connecting them in the sheet direc-
tion as well, which is, e.g., done in the electrophysiological 
model in Tveito et al. (2017), would most likely bring in 
more interaction in this direction as well. Capturing all of 
these closer-to-realistic aspects would be of major interest, 
bringing us closer to capturing real physiological features, 
but would also require us to use far more advanced meshing 
techniques.

Histological information is included in the data pub-
lished (Kakaletsis et al. 2020). One could potentially make 
geometries based on these images, which would most likely 
lead to a significant improvement of the fit and new exciting 
results. The main problem here, however, is the size of the 
tissue samples. All of the samples were cut to have approxi-
mate dimensions 10 mm × 10 mm × 10 mm , for which one 
can estimate a couple of millions of cells, far more than 
the 128 cells we are, at max, considering in our study. An 

additional limitation of our optimization procedure is that we 
only consider the positive values, while the original data also 
included negative ones, i.e., compressive stress and shear in 
two directions. Including both sides could potentially lead to 
a better parameterization—in particular, because we have a 
conditional term in the fiber direction, dependent on whether 
we have stretching or compression. We also assumed conti-
nuity of stresses across the membrane (3), implying that the 
membrane has no stiffness. Incorporating some stiffness for 
the membrane would probably be more realistic and likely 
to affect the cell–matrix dynamics observed. It could poten-
tially also give a better fit to the experimental data. For sim-
plicity, however, we chose not to include it.

As described above, a study using a cell-based model, 
paired with stretch and image-based geometries and cor-
responding stretch/strain experiments on a smaller tissue 
sample would probably be the most rigorous and accurate 
way for proper separate characterizations of material proper-
ties of the cardiac cells and the matrix. It could also make 
sense to explore geometries generated artificially, capturing 
more realistic features, e.g., by allowing for a non-regular 
tiling pattern or matching the extracellular/intracellular 
volume ratio. Finally, it would be interesting to compare 
how the parametrization of our model would change when 
parametrized based on data from other experimental studies.

4.2 � Toward a more physiologically relevant model

The results presented in this paper are highly dependent on 
the underlying geometrical cell configuration. The strain 
and stress plots display spatial patterns, following the cell 
geometries, with clear transitions along the membrane. 
Under contraction, this is, in particular, visible as a clear 
tangential-normal pattern. Here stress values in the extra-
cellular domain are concentrated in directions tangential 
to the membrane, perpendicular to prominent intracellular 
strain concentrations, oriented normal to the cell membrane. 
Through differences in the geometry in the sheet and nor-
mal direction, we were able to capture a fully orthogonal 
behavior of the tissue. This applies both for stretching and 
shearing experiments, as displayed in Fig. 4, as well as for 
stress and especially strain values under contraction, as dis-
played in Fig. 12.

Real geometries are much more complicated—for a single 
cell, the domain has a more complex shape, and for multiple 
cells, the cells self-organize in more complex, non-regular 
patterns. Images of cells can be used to construct more real-
istic geometries, as done in, e.g., Ruiz-Baier et al. (2014); 
Gizzi et al. (2015); Garcia-Canadilla et al. (2017); Tracqui 
et al. (2008) considering single cells, and to some degree in 
in Sharafi and Blemker (2011), considering a cross-section 
through nine cells. For the latter study, force values reported 
are within a comparable range to stresses observed in our 
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study; however their setup is quite different from ours, mak-
ing it hard to compare these directly.

Most of the models mentioned above include calcium 
dynamics, with experimental spatial-temporal calcium 
measurements driving the model. A limitation of our model 
is that it does not couple strain dependencies back to the 
active tension, which would be more physiologically cor-
rect. In particular it would be of interest to include this for 
comparison to the work performed by Tracqui et al. (2008). 
This was designed to match the experimental setup explored 
in Qin et  al. (2007), and explains key sub-processes in 
cell–material dynamics subject to increasing stiffness of the 
surrounding material. A fully coupled model would, how-
ever, only matter for capturing active contraction dynamics, 
while the stretching and shearing experiments determining 
the material parameters would remain unaffected.

The proposed model has the ability to represent micro-
scale heterogeneities in intracellular and extracellular matrix 
properties, e.g., by allowing the individual cells to have dif-
ferent properties. Given an image-based geometry of actual 
cardiac cells, far more realistic simulations could potentially 
be achieved. Extending our purely mechanical model to take 
into account calcium and sarcomere length dynamics would 
also bring in intracellular heterogeneities for the active ten-
sion, with resulting new strain and stress patterns. Meas-
urements of subcellular mechanical structures and calcium 
measurements, as explored in, e.g., Reichardt et al. (2020); 
Garcia-Canadilla et al. (2017); Blatter et al. (2003); Deckx 
et al. (2019), could be used within such a framework for 
exploration of heterogeneities within a single cell or a small 
collection of a few cells. A key focus here could, for exam-
ple, be to differentiate between heterogeneities in material 
properties versus heterogeneities in the activation param-
eters. An alternative approach, focusing on cell–cell and 
cell–matrix interactions, would be to keep the mechanical 
properties and calcium levels homogeneous within each 
cell, and instead utilize cell-based calcium measurements, 
as reported, e.g., in Jones et al. (2018). The numerical frame-
work, as developed for computational resources presently 
available to us, is currently far from capable of capturing the 
whole heart. It might, however, be possible to use it either 
to capture the mechanics of in vitro cell collections, such 
as cardiac microtissues (Zhang et al. 2015), or to examine 
in detail small sections of the myocardium, to understand 
how local interactions may propagate up to tissue and organ 
levels.

A particular area of interest for the model is in disease 
modeling, targeting diseases affecting mechanics on this 
scale. Our model could, for example, be used to study the 
impact of hypertrophy, characterized by changes in the 
cell geometries (Göktepe et al. 2010). By explicitly mod-
eling the intracellular space, one could look at changes to 
the myocyte during eccentric or concentric remodeling by 

altering the length and diameter of the cells. This could be 
useful in helping to delineate how mechanical triggers such 
as stress and strain drive these remodeling processes, by 
more accurately determining the stress and strain the myo-
cyte experiences. Here it would be interesting to understand 
how remodeling-based changes to the cell geometries can 
normalize altered load or contribute to continued remodeling 
stimuli. Another application could be in modeling scarring, 
in which the cell structures in the damaged part change upon 
healing (Rog-Zielinska et al. 2016). In the scarred regions, 
fibroblast cells differentiate to myofibroblast, which have 
contractile properties (Baum and Duffy 2011). In principle, 
there is no reason our cell-based model should only work for 
cardiomyocytes; it would be fairly straightforward to extend 
the geometrical framework to including different cell types 
with different mechanical and contractile properties.

Hypertrophy and scarring are both common causes of 
cardiac fibrosis (Maulik and Mishra 2015; Hinderer and 
Schenke-Layland 2019), which also can be represented more 
explicitly in a cell-based framework than in traditional tis-
sue-level models. This includes interstitial fibrosis, in which 
the matrix stiffness increases, or replacement fibrosis, in 
which cells are replaced by a collagen network (Hinderer 
and Schenke-Layland 2019). In our model, we could capture 
this by, respectively, increasing the extracellular material 
parameters and by replacing certain cells with more matrix 
in the geometry. For the first one, in particular, we have 
demonstrated that the cardiomyocyte stresses are highly 
dependent on the matrix stiffness, so even a small increase 
in matrix stiffness could be expected to have a large impact. 
Modeling this explicitly on a cell-based level could provide 
physiological insights and understanding of how these dis-
eases work on the relevant scale. In a long-term perspective, 
following the development of more efficient simulations, our 
modeling framework may be well-suited to represent larger 
tissue samples of clinically relevant sizes. Such an explicit 
representation could, for example, be used as an alterna-
tive to the more common statistical representations of fiber 
dispersion.

4.3 � Implications of continuity and discontinuity 
assumptions at the membrane

In our implementation of the model, we solved for dis-
placement u and pressure p in a Taylor-Hood discretization 
space, assuming continuity of both in the whole domain. 
Furthermore, we took � (6) to be discontinuous across the 
membrane, implying that the first Piola-Kirchhoff stress ten-
sor can be discontinuous as well—except from normal to 
the membrane, where we assumed continuity (3). We also 
assumed incompressibility in both subdomains.

Our approach is very similar to the one considered 
in Tracqui et al. (2008), in which three subdomains are 
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considered (the substrate, the cell, and the nucleus), and the 
whole system is solved simultaneously. As in our case, they 
assume continuity of displacement and stresses across the 
membranes—but in all directions. In Farsad and Vernerey 
(2012), on the other hand, continuity is neither assumed for 
displacement nor stresses. They also use the extended finite 
element method (XFEM) rather than FEM. Here, the dis-
continuities at the membrane are represented by Heaviside 
functions instead of explicitly representing the intersection 
in the mesh. They observe stress concentrations close to the 
membrane, consistent with our results. Yet another alter-
native could be to employ a discontinuous Galerkin (DG) 
method, as outlined, e.g., in Ten Eyck et al. (2008). We also 
note that in the electrophysiology cell-based model in Tveito 
et al. (2017), they employ a splitting scheme in which the 
equations for the intracellular space, the membrane, and 
the extracellular space are solved separately. We note that 
an incompressible formulation is used in Ruiz-Baier et al. 
(2014); Lenarda et al. (2018) for isolated myocytes, and 
a nearly incompressible formulation is used in Zhang and 
Gao (2012) for skeletal cells, surrounded by an endomysium 
layer, for both subdomains.

In our case, we found that the base mesh combined with 
the Taylor-Hood discretization remains a reasonable choice. 
Using a continuous function space for the pressure is, in 
particular, a limitation of our work, as there is no physical 
reason that neither the pressure nor the pressure-dependent 
stresses should be continuous. As displayed in Fig. 9, the 
pressure fields are somewhat blurred out across the mem-
brane—but this appears to be a fairly minor artifact. XFEM 
and DG methods could be used to capture the discontinu-
ity, however, they include a more complex mathematical 
framework and are more expensive discretizations, which do 
not seem necessary for our work. A splitting scheme could 
potentially also be developed for the mechanical model—
however, again, this would make the methods more complex 
without necessarily being more precise at this stage. Cardiac 
tissue is known to be compressible (Yin et al. 1996; Nolan 
and McGarry 2016), in which the cells, which primarily con-
sist of water, are close to incompressible, while the matrix’ 
volume changes significantly under pressure. The matrix is 
estimated to be 100–1000 times more compressible than the 
cells it surrounds (Dolega et al. 2021). Alternatively one 
could use a nearly incompressible formulation, as done in 
Telle et al. (2021), but with a much higher penalty param-
eter for the intracellular subdomain. High penalty parameters 
are, however, associated with locking (Hadjicharalambous 
et al. 2014; Karabelas et al. 2022), which both can lead to 
numerical instabilities and underestimation of variables of 
interest. For these reasons we chose an incompressible for-
mulation. This challenge could, however, be overcome using 
other kinds of elements, as widely explored in (Karabelas 
et al. 2022).

A more rigorous comparison between different numerical 
schemes would probably lead to the development of more 
efficient and accurate methods. In particular, if one wants to 
couple the mechanics with the underlying electrophysiology, 
the splitting scheme could be more appropriate. Alternative 
formulations for either incompressible or nearly incompress-
ible formulations would be prudent to explore in the future, 
and it would in particular be interesting to see the impact of 
defining these differently in each subdomain.

4.4 � HPC considerations

Through our scaling experiments, we explored limitations 
of the presented numerical solution approach both with 
respect to time and memory consumption. We observe rea-
sonable speedup for some parts of the direct solver, such as 
for the LU factorization stage. However, other parts become 
increasingly costly, such as the computation of row and col-
umn permutations, which are needed for robustness and to 
reduce fill-in of the computed factorization. As the problem 
size increases, these parts seem to dominate the execution 
time.

As considered in, e.g., Whiteley (2017); Brune et al. 
(2015), iterative methods combined with suitable pre-
conditioners might give better performance for nonlinear 
elasticity problems. In terms of problem size, our largest 
meshes lie somewhere in between the second largest and 
largest problem size considered in Whiteley (2017), indi-
cating that our problem is comparable to their experiments 
in terms of degrees of freedom. Operator splitting schemes 
have proven to give significant speedup for the electrophysi-
ological EMI model, as considered in Jæger et al. (2021), 
and similar approaches would be interesting to investigate 
from a mechanical perspective as well. Hexahedral meshes 
have been demonstrated to be more accurate than tetrahedral 
meshes, which we have used, as reported in, e.g., Karabelas 
et al. (2022); Oliveira and Sundnes (2016) for related prob-
lems. From an efficiency perspective, this implies one could 
get better solutions with coarser meshes, which could be 
worth considering for future work.

Limited scalability obviously affects the generalization 
of our simulations—using our framework, we can only con-
sider small collections of cells. Implementing precondition-
ers and operator splitting schemes are, however, not always 
straightforward and can be considered a separate extensive 
research question.

In the future, it would be prudent to investigate alter-
native solvers. It would also be interesting to see whether 
changing, e.g., the mesh structure would lead to different 
numerical properties, both with respect to convergence and 
with respect to efficiency. Physiologically relevant exten-
sions of the model presented in this paper—e.g., image-
based geometries, coupling to electrophysiological models, 
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utilizing experimentally measured calcium cell-wise or 
high-resolution single-cell experiments—are dependent on 
high-resolution meshes. Anyone investigating such ques-
tions would presumably meet similar scalability limitations. 
Pushing these limits would enable investigation of larger 
problems, opening up for investigating a wide range of new 
research questions.

5 � Conclusions

We have introduced a cell-based framework for modeling 
cardiac tissue, parametrized based on experimental data. 
This was done by pairing stretching and shearing experi-
ments performed on cardiac tissue samples with correspond-
ing virtual experiments. We observe that the adaption to a 
geometrical framework, based on relatively simple exten-
sions of existing ideas used for tissue level models, give rise 
to striking spatial strain and stress values patterns and opens 
up for numerous new interesting research questions. Utiliz-
ing our model, we have been able to differentiate between 
deformation and stresses in the cells from the matrix sur-
rounding them. Moving to multicellular and finer meshes 
have, however, proven computationally expensive, as dem-
onstrated by our scaling and convergence experiments.

Our work demonstrates that it is feasible to work with 
a discretized model which explicitly represents the cells, 
ranging from a single cell to small collections of cells. Our 
geometrical approach can further be extended by using more 
realistic geometries or be coupled with calcium dynamics, 
which could be used for new studies leading to an improved 
understanding of cardiac mechanics.

6 � Supporting information

We include movies for the spatial distributions, consider-
ing fiber direction stretch and contraction. For all movies 
we display normal components of and tensor glyphs for 
the Green–Lagrange strain tensor E (14) (top row) and the 
Cauchy stress tensor � (15) (bottom row).

Movie 1
Fiber direction stretch (FF), single cell. Strain and stress 

components for a single cell subject to stretching in the fiber 
direction. Maximum stretching state values, at 10% stretch, 
are also displayed in Fig. 10.

Movie 2
Fiber direction stretch (FF), tiled cells. Strain and stress 

components for a 3 × 3 × 3 cells subject to stretching in the 
fiber direction. Maximum stretching state values, at 10% 
stretch, are also displayed in Fig. 11.

Movie 3

Contracting cell, single cell. Strain and stress components 
for a single contracting cell under contraction, for half a 
cardiac cycle. Maximum contracted state values are also 
displayed in Fig. 10 and Fig. 13.

Movie 4
Contracting cells, tiled cells. Strain and stress compo-

nents for 3 × 3 × 3 cardiac cells under contraction, for half 
a cardiac cycle. Maximum contracted state values are also 
displayed in Fig. 11.

Appendix: Weak form and boundary 
conditions

In this appendix, we provide a more rigorous mathematical 
framework for how the weak form was derived, and how the 
different boundary conditions for the different deformation 
modes were imposed. All deformation modes are sketched 
and explained in Fig. 3.

Derivation of the weak form

Equilibrium of stresses is, in this paper, expressed using the 
first Piola-Kirchhoff stress tensor, as given in Eq (1). In this 
work, we employed an active strain formulation and assumed 
incompressibility imposed by a Lagrangian multiplier. Fol-
lowing the derivations in Ambrosi and Pezzuto (2012) and 
Holzapfel (2000), we can incorporate these changes in the first 
Piola-Kirchhoff stress tensor, which then reads

where an equilibrium solution still is given by (1). P is 
dependent on the displacement u and the hydrostatic pres-
sure p, which represent the unknowns.

One can define appropriate function spaces V and Q, 
defined over Ω , for the displacement and hydrostatic pressure 
respectively. Starting with the strong form of our problem (1), 
one can consider test functions v ∈ V  and take the integral 
over Ωi and Ωe separately:

and

then perform integration by parts in order to obtain

(19)P = det(�
�
)
��(�

�
)

��
�

�
�

−T + JpF−T

(20)∫Ωi

(∇ ⋅ P) ⋅ vdX = 0

(21)∫Ωe

(∇ ⋅ P) ⋅ vdX = 0

(22)∫Ωi

P ∶ ∇vdX = ∫Γ

(�
�
⋅ P) ⋅ vds
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We assume the continuity of stresses across Γ as given in (3), 
which implies that the membrane has no stiffness. If one 
wanted to incorporate some stiffness here, which physically 
probably would be meaningful, this could be an equation to 
change. For simplicity, though, we will keep the formulation 
as it is, implying that

By adding (22) and (23), the integral terms on Γ cancel, 
and we can combine the integrals to a integral over all of Ω,

On the outer boundary �Ω , we apply either Dirichlet bound-
ary conditions or zero Neumann conditions, which makes 
the surface integral over �Ω vanish.

For the incompressibility condition, given by Eq (5), 
we can multiply the equation with a test function q ∈ Q to 
obtain

where no decomposition of the subdomain is needed.
By adding these two equations, our weak form becomes

and our problem can be formulated as follows: Find a solu-
tion (u, p) such that the above equation holds for all v ∈ V  
and all q ∈ Q.

The above equation is solved as a stationary problem, in 
which time dependent variables are kept constant. These 
variables either define the boundary displacement, for 
stretching/shearing experiments, or the active tension (5), 
for contraction experiments.

Boundary conditions for stretching experiments

We imposed Dirichlet boundary conditions on two of the 
surfaces, step-wise increasing one of the components, giving 
a proportional stretch of � of the whole domain. If, e.g., if 
� is increased up to 0.15 for the fiber direction stretch (FF), 
the deformed domain becomes 15% longer in this direction.

The remaining components on these two surfaces were 
fixed to zero, while we allowed free movement on the other 
surfaces. Combined with the incompressibility constraint, 

(23)∫Ωe

P ∶ ∇vdX = ∫Γ

(�
�
⋅ P) ⋅ vds + ∫

�Ω

(�
�
⋅ P) ⋅ vds.

(24)∫Γ

(�
�
P) ⋅ vds = −∫Γ

(�
�
P) ⋅ vds

(25)∫Ω

P ∶ ∇vdX − ∫
�Ω

(�
�
P) ⋅ vds = 0.

(26)∫Ω

(J − 1)qdX = 0

(27)∫Ω

P(u, p) ∶ ∇v + q(J(u) − 1)dX = 0

this implies a shortening in the direction perpendicular to 
the stretching direction.

Mathematically the boundary conditions described above 
can be expressed as

for the fiber direction stretch. Similarly, for the sheet direc-
tion stretch, we have

and for the normal direction stretch, we have

For all the surfaces not mentioned above, for each experi-
ment, we impose vanishing Neumann boundary conditions, 
i.e.,

Boundary conditions for shear experiments

Similarly to the stretching experiments, shear experiments 
were performed by imposing Dirichlet boundary conditions 
on two of the surfaces. One of the components was then 
increased, giving a proportional shear deformation of � . If, 
e.g., � was increased up to 0.15, the surface on which we 
apply non-zero Dirichlet boundary conditions is moved a 
distance corresponding to 15% of the distance between the 
two surfaces being fixed.

Mathematically, we have, for the FS experiment

for the FN experiment

for the SF experiment

(28)u = (0, 0, 0) on S1

(29)u = (�, 0, 0) on S2

(30)u = (0, 0, 0) on S3

(31)u = (0, �, 0) on S4

(32)u = (0, 0, 0) on S5

(33)u = (0, 0, �) on S6

(34)�
�
P = (0, 0, 0).

(35)u = (0, 0, 0) on S1

(36)u = (0, �, 0) on S2

(37)u = (0, 0, 0) on S1

(38)u = (0, 0, �) on S2

(39)u = (0, 0, 0) on S3
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for the SN experiment

for the NF experiment

and, finally, for the NS experiment

For all the surfaces not mentioned above, for each experi-
ment, we impose vanishing Neumann boundary conditions, 
i.e.,

Boundary conditions for active contraction

For the active contraction experiments, the traction along 
every surface was set to 0:

Due to the Neumann boundary conditions, this formulation 
does not possess a unique solution. In fact, the formulation 
has a six-dimensional kernel consisting of rigid deforma-
tions, i.e., translation and rotation in a three-dimensional 
space. We remove these modes by enforcing orthogonal-
ity of the solution with respect to the kernel by means of 
Lagrangian multipliers, as done in, e.g., Kuchta et al. (2016): 
Let R be the space of rigid motions. Using the finite element 
formulation, we then seek to find displacement u , pressure 
p and rigid motion r ∈ R such that

and

for all v ∈ V  , all q ∈ Q and all s ∈ R.
Here r can be interpreted as a Lagrange multiplier 

enforcing the constraint that the solution u is free of 

(40)u = (�, 0, 0) on S4

(41)u = (0, 0, 0) on S3

(42)u = (0, 0, �) on S4

(43)u = (0, 0, 0) on S5

(44)u = (�, 0, 0) on S6

(45)u = (0, 0, 0) on S5

(46)u = (0, �, 0) on S6.

(47)�
�
P = (0, 0, 0).

(48)Pne = 0 on �Ω.

(49)∫Ω

(P ∶ ∇v + q(J − 1) + r ⋅ v)dx = 0

(50)∫Ω

u ⋅ sdx = 0

translation or rotation with respect to the original con-
figuration. Equation (50) implies that u is orthogonal to 
R. In the practical implementation we fix a chosen set of 
basis vectors, 

{
�
�

}6

i=1
 , of the six-dimensional rigid motion 

space R and obtain r through its expansion coefficients 
in the basis, i.e., r =

∑
i ci�� . Here the requirement (50) 

is equivalent to imposing ∫
Ω
u ⋅ �

�
dX = 0 for all 1 ≤ i ≤ 6.
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