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Abstract
Cells migrating in clusters play a significant role in a number of biological processes such as embryogenesis, wound healing, 
and tumor metastasis during cancer progression. A variety of environmental and biochemical factors can influence the col-
lective migration of cells with differing degrees of cell autonomy and inter-cellular coupling strength. For example, weakly 
coupled cells can move collectively under the influence of contact guidance from neighboring cells or the environment. 
Alternatively strongly coupled cells might follow one or more leader cells to move as a single cohesive unit. Additionally, 
chemical and mechanical signaling between these cells may alter the degree of coupling and determine effective cluster sizes. 
Being able to understand this collective cell migration process is critical in the prediction and manipulation of outcomes of 
key biological processes. Here we focus on understanding how various environmental and cellular factors influence small 
clusters of cells migrating collectively within a 3D fibrous matrix. We combine existing knowledge of single-cell migration 
in 2D and 3D environments, prior experimental observations of cell–cell interactions and collective migration, and a newly 
developed stochastic model of cell migration in 3D matrices, to simulate the migration of cell clusters in different physi-
ologically relevant environments. Our results show that based on the extracellular environment and the strength of cell–cell 
mechanical coupling, two distinct optimal approaches to driving collective cell migration emerge. The ability to effectively 
employ these two distinct migration strategies might be critical for cells to collectively migrate through the heterogeneous 
tissue environments within the body.
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1  Introduction

Collective cell migration is vital for physiological processes 
such as tissue growth, morphogenesis, wound healing, and 
cancer metastasis (Arima et al. 2011; Munjal and Lecuit 
2014; Alexander et al. 2008; Gillitzer and Goebeler 2001). 

In the first three processes mentioned above, cells move col-
lectively within sheets or at the boundary of a 2D sheet, 
and the factors that drive these collective phenomena have 
been widely described and studied (Petitjean et al. 2010; 
Sepúlveda et al. 2013; Vedula et al. 2012; Garcia et al. 2015; 
Palamidessi et al. 2019). Primarily, guiding forces in these 
cases come from neighboring non-motile cells providing 
contact guidance, cell shape and polarity changes driven 
by inter-cellular tension, forces from cell mitosis or cell 
death, and chemotactic and durotactic signaling from the 
environment (DuChez et al. 2019; Lo et al. 2000; Arrieu-
merlou and Meyer 2005; Parker et al. 2002; Cai et al. 2014; 
Mansury et al. 2002; Robertson-Tessi et al. 2015). How-
ever, these scenarios are different from those encountered 
during collective cell migration in 3D matrix like environ-
ments as observed during cancer metastasis. In the case of 
metastasis, collective cell migration occurs either as long 
finger-like protrusions emanating from the main tumor or as 
small migrating clusters of cells that separate from the main 
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tumor (Lambert et al. 2017). This collective dissemination 
and migration of tumor cells enhances successful seeding at 
a secondary tumor site (Wang et al. 2016). Here, we aim to 
understand the factors that govern and promote the migra-
tion of small cell clusters in 3D matrices. Metastatic cancer 
cells migrate through extracellular matrices (ECMs), which 
can exhibit a range of different properties depending on the 
tissue type (Wang et al. 2016; Nasrollahi and Pathak 2016). 
ECM properties that play a significant role in cell migration 
are stiffness (Wu et al. 2014; Plotnikov et al. 2012), fiber 
density (Carey et al. 2012), fiber alignment (Fraley et al. 
2015), ECM porosity (Ilina et al. 2011), bond density (Bur-
gess et al. 2000), and chemical signaling (Carey et al. 2012; 
Fraley et al. 2015). In addition, cell properties also affect 
migration, such as proteolytic ability (Levental et al. 2009), 
cell stiffness (Lange and Fabry 2013), cell mechanoactivity 
(Bosgraaf and Van Haastert 2009), and expression levels of 
cell–cell and cell–ECM adhesion receptors (Gallant et al. 
2005). Additionally, in vivo and in vitro studies have shown 
that collectives are led by phenotypically different “leader” 
cells with “follower” cells trailing behind (Friedl and Mayor 
2017). Leader cells exhibit characteristics that are mesen-
chymal-like—softer, fluidized cells with high mechanical 
activity (Wolf et al. 2007; Cross et al. 2008), whereas fol-
lower cells resemble an epithelial phenotype—stiffer cells 
with low mechanical activity (Saez et al. 2005). The transi-
tion of cells from an epithelial to a mesenchymal phenotype 
(EMT) is often regarded as the proximate cause of cancer 
metastasis. During EMT, downregulation of adheren junc-
tions decreases cell–cell adhesion, which when coupled with 
increased mechanoactivity drives cell migration (Nasrollahi 
and Pathak 2016). EMT is a dynamic bidirectional process 
that does not always run to completion (Lambert et al. 2017). 
As such, clusters of metastatic cancer cells may experience 
phenotypically dynamic states, where followers transition 
into leaders as directed by extracellular and inter-cellular 
signaling. For example, followers transition to leaders when 
bound to ECM integrins in the front and cell cadherins in the 
rear (Kato et al. 2014). Furthermore, the presence of cancer-
associated fibroblasts (CAFs) promotes transitioning into a 
leader phenotype (An et al. 2013). CAFs increase collective 
cell migration by realigning local tumor environments with 
tube-like pathways of highly aligned fibers (Gaggioli et al. 
2007). Alternatively, only partial EMT of all cells might 
result in the absence of well-defined leader cells (Bronsert 
et al. 2014).

We investigate how cell clusters with or without defined 
leader cells migrate within different ECM environments 
using stochastic simulations of cell–cell and cell–ECM 
interactions. Our approach builds on existing in silico 
models (Frascoli et al. 2013; Mousavi et al. 2014; Drasdo 
and Hoehme 2012; Chen and Zou 2017) by adding a num-
ber of unique features as detailed below. We employ a 3D 

computational model that simulates long-term (> 48-h real 
time) cell–matrix and cell–cell interactions to track collec-
tive migration in a fiber-based 3D environment. Factors 
affecting migration such as bond density, fiber direction, 
fiber density, cell mechanoactivity, pseudopod protrusion 
frequency, protrusion length, active contractility, proteo-
lytic activity, transmission of active forces and biochemi-
cal signals from leader cells to follower cells, and passive 
adhesive and elastic forces between cells are some of the 
key tunable parameters within the model. Using this model, 
we determine optimal migration environments by modulat-
ing the fiber density, fiber alignment, adhesion strength, and 
cluster size parameters. Additionally, we test two distinct 
cluster migration scenarios—(1) a defined leader phenotype 
that is maintained for the duration of the simulation (48 h) 
drives the cluster, while the rest of the cells are purely fol-
lower cells (Fig. 1a and Video S1), and (2) peripheral cells in 
contact with the matrix elements can easily switch in and out 
of leading phenotype (Fig. 1b and Video S2). We find that 
the leader and follower dynamics are an important feature 
for collective cell migration. While the exact mechanics of 
cell migration are still not well known, evidence for both 
these scenarios of defined one or two leaders driving small 
clusters (Bianco et al. 2007) or undefined leadership such as 
the phenotypic variability for cells in collectives undergo-
ing EMT, embryonic development, and migration through 
dynamic ECM environments can be found in the literature 
(Friedl and Mayor 2017; Ewald et al. 2008; Jakobsson et al. 
2010).

Fig. 1   Cartoon showing two collective cell migration types. a Cluster 
cell migration with a defined leader where a single cell maintains the 
leader phenotype (blue cell) for the duration of migration. The path it 
migrates is traced out by the purple line. b Switching leader scenario 
where the cells can switch between the leader and the follower pheno-
type depending on their migration phase. Only one cell can have the 
leader phenotype at a given point in time, but the cell does not main-
tain this phenotype. First leader traces the purple path while the sec-
ond leader traces the green path and so on
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2 � Methods

The proposed mathematical migration model was devel-
oped from our previous single-cell migration model (Yeo-
man and Katira 2018) and an altered multi-cell model pro-
posed by Palsson (2008). Here we summarize the salient 
features of the combined model.

In Yeoman and Katira (2018), we presented a simula-
tion setup to predict cell migration in 3D matrix environ-
ments as a function of cell and ECM mechanical properties 
such as adhesion strength, active contractility, mechano-
activity, matrix fiber density, fiber diameter distribution, 
fiber alignment, matrix stiffness, and the presence of 
chemotactic signaling. This setup is as follows: (1) Cells 
migrate by extending pseudopods along the length of the 
matrix fibers it is interacting with (Kim et al. 2015). (2) 
The fiber along which a new pseudopod extends is selected 
based on its proximity to the preferred direction of motion 
as determined by cell polarity and case cell shape. (3) The 
cell shape, which varies between elongated and rounded, 
is determined as a function of the alignment between the 
fibers the cells are in contact with, cell–matrix adhesion 
strength, contractile force exerted by the cell, and the stiff-
ness of the matrix (Ahmadzadeh et al. 2017). (4) The fib-
ers in this simulation setup are generated on an as-needed 
basis, stochastically, using the fiber density distribution, 
fiber diameter distribution, and fiber alignment angle dis-
tribution of the simulated matrix. This allows for a rapid 
simulation of cell–fiber interactions with a handful of fib-
ers it is currently interacting with and allows for long-
term cell migration predictions within 3D environments. 
(5) Gradients in fiber density or stiffness can be introduced 
by changing the local averages of the distributions from 
which new fiber and cross-links along these fibers are sto-
chastically generated. Additional details on the single-cell 
stochastic migration model can be found in Yeoman and 
Katira (2018).

We modify this existing setup to allow for cell–cell 
interactions and the altered dynamics of leader and fol-
lower cells. Additionally, we calculate our cell shape dif-
ferently from that described above, with shape dependent 
on the whether a cell is leading or following. The steps of 
the algorithm can be seen in the model summary Fig. 2. 
The starting point for this algorithm is the ECM fiber 
generation. Fibers are stochastically generated as needed 
and are populated with a random distribution of bind-
ing sites. The cells then react to the number of binding 
sites on the fiber they are extending a pseudopod along 
by entering one of three phases: retraction, outgrowth, 
or contraction. The cells are initialized in the retraction 
phase and can enter the other phases depending on the 
number of bonds between the pseudopod tip and fiber. 

During outgrowth, the cell extends its pseudopod by an 
incremental distance each time step, and the number of 
bonds between pseudopod tip and fiber is counted. If the 
number of bonds is above a maximum threshold, then 
the cell will enter contraction; if the number of bonds 
is below a minimum threshold, then the cell will enter 
retraction. Alternatively, cells will switch from outgrowth 
to retraction phase if the pseudopod has been extending 
for a certain stochastically determined time. Fiber cross-
links are randomly distributed along the length of a fiber 
when it is stochastically generated. If a fiber cross-link 
is reached, then the cell is likely to continue outgrowth 
along the obtuse angle between the current fiber and a 
new stochastically generated fiber. During retraction, the 
current pseudopod shrinks, while a new pseudopod under-
goes outgrowth. The new pseudopod may grow along the 
existing fiber in the reverse direction with a 20% chance 
or grow along a new fiber stochastically generated with 
an 80% chance. In the collective cell migration model, all 
cells can enter the outgrowth and retraction phases. How-
ever, only leader cells can enter the contraction phase if 
the growing pseudopod encounters enough binding sites. 
Cells are assigned as followers when another cell in the 
cluster has become a leader. Determination of the leader 
cell phenotype is described later in this section. During the 
contraction phase, an active force, �act

i
 , is generated along 

the pseudopod vector. The pseudopod contracts in length, 
dragging the cell center forward under the action of the 
active force. Active migration force is a function of the 
number of adhesions between the pseudopod and the fiber 
it is attached to, the matrix stiffness, and cell contractil-
ity (Yeoman and Katira 2018). As the cell center moves 
forward, the pseudopod length decreases, and when the 
pseudopod length reaches zero (or a minimum threshold), 
the cell enters retraction.

2.1 � Modeling cell–cell interactions

Cell–cell interaction forces, section A in Fig. 2, are deter-
mined by calculating the distance from one cell center to 
every other cell center, or rij . If rij ≤ dbreak then the cells 
are considered to be in contact and passive forces will be 
calculated between cells i and j. A 2D representation of 
the adhesive and compressive passive forces can be seen 
in Fig. 3. The equations used to compute the passive forces 
are (Palsson 2008):

(1)F
pass

ij
=

⎧
⎪⎨⎪⎩

Fcompressive = Fcomp𝜒(−xij)
3∕2, x < 0

Fadhesive = −Fadh𝜒(xij + x0)…

e−𝜆(xij+x0)
2

− v0e
−𝜆x2

ij t, x ≥ 0
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Fig. 2   Flowchart for collective cell migration algorithm. Green boxes represent the contracting phase, blue boxes represent the outgrowth phase, 
and red boxes represent the retracting phase. The inset “A” is where forces acting on the cells in the cluster are calculated
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The scalar passive force, Fpass

ij
 , is continuous at x = 0 , and, 

depending on xij , the passive force is either positive or nega-
tive. Fcompressive is the passive force pushing two cells away 
from each other, and Fadhesive pulls cells toward one another. 
Fcomp is a compressive force constant, � is an orientation 
factor, xij is an adjusted cell–cell distance factor. Fadh is an 
adhesive force constant, x0 and v0 are constants for continu-
ity, and � is a strength constant.

The orientation factor is solved with:

rcell is the average cell radius, di and dj is the distance from 
cell center to cell membrane along the �ij unit vector.

The calculation for xij is:

dij is the distance from cell membrane to cell mem-
brane along the �ij unit vector, mindist is a value derived 
from the minimum radius from packing deformed 

(2)� =
rcell

2

(
1

di
+

1

dj

)

(3)xij =
dij −mindist

rcell

incompressible ellipsoids into a fixed space and that comes 
out to mindist ≈ − 0.1 ∗ rcell.

The calculation for the constants x0 and v0 is:

The following equation determines the passive force vector 
with:

The magnitude of the force is multiplied by the unit vector 
from the center of cell i to cell j, and �pass

ij
 is the passive force 

between cell i and cell j.
The net force per cell, �net

i
 , is calculated here:

�act
i

 is the force vector generated during the contraction 
phase of a cell.

This force is determined with, l0,i , the protrusion length of 
a cell’s extending pseudopod, F0 , the maximum contractile 
force in the pseudopod, and is multiplied by the extending 
pseudopod’s unit vector. �i is the vector for cell i’s extend-
ing pseudopod. The contractile force, F0 , is calculated here:

where nb is the number of bonds between the pseudopod and 
ECM fiber, and n 1

2

 , is the cell–ECM bond density at which 
the generated force is half of Fmax.

The drag force per cell, �D
i
 , is based on the cell–cell com-

mon surface area and cell–matrix common surface area, and 
is calculated here:

The first term on the right is the drag force from cell–bond 
interactions of the ECM, and the second term on the right 
is the drag force from cells moving past one another. The 
constant �s is the viscosity coefficient for cell–matrix inter-
actions, �c is the viscosity coefficient for cell–cell interac-
tions, A is the total surface area of the cell, Ais and Aij are the 

(4)x0 =

√
1

2�

(5)v0 =x0e
−�x2

0

(6)�
pass

ij
= F

pass

ij
⋅

���

‖���‖

(7)�net
i

= �act
i

+
∑
j∈N(i)

�
pass

ij

(8)�act
�

=
F0kECMl0,i

F0 + kECMl0,i
⋅

��

‖��‖

(9)F0 =
Fmaxnb

nb + n 1

2

(10)�D
i
= �s

Ais

A
�i + �c

∑
j∈N(i)

Aij

A
(�i − �j)

Fig. 3   Schematic showing how forces are transmitted through a clus-
ter. a The leading cell transmits adhesive force through adheren junc-
tions between cells, pulling along the follower cells behind it. b Com-
pressive forces are transmitted between cells if the cell movement is 
blocked by a neighboring cell
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common surface areas between the cell and the matrix, and 
cell and cell, respectively. j ∈ N(i) denotes that all neigh-
bors of i are j, so the summation is only for cells in contact 
of cell i. �i and �j are the vector velocities of cells i and j, 
respectively.

The calculation for common surface area between cells is:

sf is a surface factor and was left at 1 for simplicity, found 
in Palsson (2001).

The velocity of each cell is determined from the following 
sets of equations:

After expanding out the drag force equation for each cell, the 
values for each drag coefficient can be grouped into either 
SEii or SNij , with one being the friction surrounding cell i or 
the friction between cells i and j, respectively. Matrix divi-
sion is used to solve for the velocity. The proposed model 
for SEij substitutes in fb and fv for the frictional calculation 
in Palsson (2008) because using a friction coefficient based 
on the number of bonds, rather than a viscosity-based coef-
ficient from cells moving past ECM seems more appealing 
when considering that the bond information is readily availa-
ble in the model. fb is an adjusted frictional component from 
Yeoman and Katira (2018) with the removal of an exponen-
tial factor. ni

br
 is the number of bonds made between a cell 

and ECM fibers, kECM is an ECM spring constant, ki is the 
cell–matrix bond stiffness, and koff is a cell–matrix dissocia-
tion rate. fv is a viscous frictional component, � is the ECM 
viscosity, and kprime is a drag adjustment factor.

The change in position �i of the cell center of cell i is then 
simply obtained by:

(11)

Aij = 0.25exp(−5(xij −mindist)
2) ×

sf + rcell((1∕di) + (1∕dj))

2 + sf

(12)
⎡
⎢⎢⎣

�1
⋮

�i

⎤
⎥⎥⎦
=

⎡⎢⎢⎣

SE11 ⋯ SN1j

⋮ ⋱ ⋮

SNi1 ⋯ SEii

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

�net
1

⋮

�net
i

⎤
⎥⎥⎦

(13)SEii =fb + fv

(14)SNij =�c

Aij

A

(15)fb =n
i
br

kECMki

(kECM + ki)koff

(16)fv =6��K
�

(17)Δ�i = �iΔt

where Δt is the simulation time step. (Optimal time step of 
2 s determined previously in Yeoman and Katira (2018) is 
used.)

2.2 � Quantifying migration

The algorithm shown in Fig. 2 and the equations described 
above are used to calculate the position of every cell at every 
time step. The overall center of mass of the cluster is tracked 
and its trajectory is analyzed using different approaches as 
it migrates (Dickinson and Tranquillo 1993). The four main 
characteristics evaluated are mean squared displacement 
(MSD), cluster speed, persistence length, and lifetime. MSD 
is obtained between non-overlapping points at specific time 
intervals along the trajectory. We fit this MSD ⟨R2⟩ vs time 
interval data to find the motility coefficient, � , and exponent, 
� (Yeoman and Katira 2018). Using the motility coefficient 
and the exponent, an effective MSD of that particular cluster 
over the cluster’s lifetime TL is back calculated using:

This is repeated for 10 instances of cluster migration, with 
every combination of environmental and cell–cell adhesion 
parameter tested. Sample MSD for cluster trajectories are 
shown in Supplementary Figures S1 and S2.

Cluster speed is calculated by averaging the instantaneous 
velocity of each cell in the cluster at each time step. We use 
cluster speed to show us how quickly a cluster is migrating 
through the ECM. Lifetime is the simulated time that it takes 
for a single cell to break away from the cluster. We use this 
as a metric for determining how well a cluster stays together 
in certain ECM conditions. Persistence length indicates the 
distance over which a cluster maintains its directionality of 
migration. Persistence length LP was calculated by fitting 
MSD vs contour length data to Eq. 19 using a nonlinear least 
squares regression:

The maximum contour length L used was 10 μm . High per-
sistence values indicate that the clusters are migrating with 
little change in a particular direction of travel, while low 
values tell us that the cluster changes the direction often.

2.3 � Leader scenarios

Clusters of cells are driven by two different scenarios—
defined single leader and switching leaders. For a defined 
leader, the same cell continues as the leader throughout the 
simulation, while the remaining cells are labeled as fol-
lowers. For the switching leader scenario, there is a set of 

(18)⟨R2⟩ = �(TL)
�

(19)⟨R2⟩ = 2L2
p

�
L

Lp
− 1 + e

−
L

Lp

�
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rules in place to select the leader during each time step. Any 
cell can be the leader, but only one leader can be active at 
a time. The leader cell is selected when a cell enters con-
traction before any other cell in the cluster. If two or more 
cells enter contraction during a time step, then leadership 
is randomized. If the current leader and another cell enter 
contraction during a time step, then the current leader keeps 
leadership. Followers are able to enter retraction and out-
growth, but cannot enter contraction. Followers also take 
on a spherical shape, while leaders have an ellipsoidal front 
and spherical rear.

2.4 � Generation of the 2‑phase optimal migration 
plots

Figure 5a–d shows a heat map generated by a thin-plate 
spline fit to the data in Supplementary Figures S3 and S4. 
However, only the migration strategy with the higher MSD 
is plotted on the heat map to show which behavior dominates 
in any given region, with blue representing cluster migration 
strategy with a defined leader and red representing cluster 
migration strategy with switching leaders.

2.5 � Model validation

The model parameters are obtained from previously pub-
lished experimental and theoretical studies (Table 1). The 
model equations are also based on the previously published 
theoretical work. The model predicts cluster cell migration 
speeds on the order of 1–50 μm∕h , and clusters migrate 
distances on the order of a few hundred micrometers without 
breaking. These values seem reasonable (Friedl et al. 1995; 
Carmona-Fontaine et al. 2008; Cai et al. 2016). Additionally, 
the model predicts biphasic relationship for MSD, speed, 
and persistence length as a function of fiber density, which is 
consistently observed in typical single-cell migration studies 
(Burgess et al. 2000; Zaman et al. 2006; Palecek et al. 1997; 
DiMilla et al. 1991; Gaudet et al. 2003). As shown in Fig.  4 
and Supplementary Figures S3 and S4, our model predicts 
these biphasic trends for migration with both, defined leader 
and switching leader strategies. Beyond this, it has been hard 
to find quantitative cluster cell migration data in the litera-
ture to validate other key predictions of our model.

Table 1   Simulation parameters

Parameter Description Value References

Acell Surface area of the cell ( μm2) Calculated Geometry
Apseudo Pseudopod area in contact with local fiber ( μm2) ∼ 0.3 Lusche et al. (2009), Cooper (2007)
AI Fiber alignment index 0–0.8 Sun et al. (2015)
Fmax Max. active force (nN) 10 Du Roure et al. (2005), Abraham et al. (1999) and 

Ananthakrishnan and Ehrlicher (2007)
�fiber Fiber density of the ECM ( fibers∕μm3) > 0.002 Harjanto and Zaman (2013)
Fcomp Compressive force factor (N) 30 × 10−9 Knutsdottir et al. (2016)
Fadh Adhesive force factor (N) 25 × 10−9–10 × 10−8 Palsson (2008)
rcell Cell radius ( μm) 7.5 Palsson (2008)
� Strength constant 7 Palsson (2008)
n
i

br
Bonds at rear of cell Calculated Yeoman and Katira (2018)

kECM Stiffness of the ECM ( N∕μm) Calculated Yeoman and Katira (2018), Zaman et al. (2005), 
Bruinsma (2005) and Zaman et al. (2006)

k
i

Stiffness of cell–ECM bond ( nN∕μm) 0.25 × 10−9 Erdmann and Schwarz (2006)
koff Cell–ECM unbinding rate under zero force conditions 

( s−1)
0.1–100 Bruinsma (2005), Taubenberger et al. (2007) and Li 

et al. (2003)
K

′ Drag adjustment factor Calculated Yeoman and Katira (2018)
� ECM viscosity ( nN*s∕μm2) ∼ 10−10 Zaman et al. (2005)
�c Cell–cell viscosity ( N*s∕μm) 2.5 × 10−7 Palsson (2008)
�s Cell-surface viscosity ( N*s∕μm) 8 × 10−8 Palsson (2008)
dbreak Cluster inclusion distance ( μm) 2 × rcell + 5.5 Estimated
nb Avg. number of binding sites per l0 Calculated Yeoman and Katira (2018)
n 1

2

Cell–ECM bond density at which the generated force 
is half of Fmax

100 Bruinsma (2005)
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3 � Results

The primary result of our model is that for different levels of 
cell–cell adhesion, fiber alignment, cluster size, and either 
of the two cluster migration scenarios described above, cell 
migration distance shows a biphasic relationship with fiber 
density (Figs. S3 and S4). There seems to be an optimal 
ECM density ideal for cluster cell migration for every dif-
ferent combination of environmental and cellular condi-
tions. This is along the lines of the biphasic relationship 
reported previously between migration distance and ECM 
density for single-cell migration. More importantly, our 
results show that for cluster cell migration, there are unique 
environmental and cellular conditions where one of the two 
migration strategies clearly outperforms the other (Fig. 5). 
(1) Cluster cell migration with a defined leader cell (migra-
tion scenario 1, blue region in Fig. 5) is ideal for clusters 
with high cell–cell adhesion migrating in high fiber density 
environments and preferable fiber alignment. (2) Cluster cell 
migration where the cells switch between leader and fol-
lower phenotypes (migration scenario 2, red region in Fig. 5) 
is ideal for clusters with low-to-intermediate cell–cell adhe-
sion migrating in low fiber density environments.

Analyzing the results in further detail, when inter-cellular 
adhesion is low, corresponding to low cadherin expression 
(with a cell–cell separation force of ∼ 25 nN) (Chu et al. 
2004), the MSD is significantly higher for clusters able to 
switch between leaders (cluster migration scenario 2) in 
both aligned and unaligned low-density matrices (Fig. 6a, 
red and orange lines). The radar plots in Fig. 6b, d, f show 
how cluster speed, persistence, and lifetime are also affected 

Fig. 4   Effect of fiber density on MSD, cluster lifetime, cluster speed, 
and persistence length for various cluster sizes for a defined leader 
cluster migration strategy. a MSD as a function of fiber density. 
b Cluster lifetime as a function of fiber density. c Cluster speed as 
a function of fiber density. d Persistence as a function of fiber den-
sity. Blue line is a 3-cell cluster, green line is a 5-cell cluster, and red 
line is a 10-cell cluster. Fiber density was increased linearly from 
0.5 × 10−3 to 2 × 10−3 fibers∕μm3 . Cell–cell adhesion was set to mod-
erate (50  nN cell–cell dissociation force). Ten simulations for each 
scenario were run at each fiber density and run for 48 h of simulated 
time or until cluster dissociation. Error bars represent ± SEM

Fig. 5   Heat maps derived from 
thin-plate spline fit to MSD 
collected at 3 cell–cell adhesion 
levels and 5 fiber density levels. 
a Five-cell cluster with no fiber 
alignment. b Five-cell cluster 
with fiber alignment. c Ten-cell 
cluster with no fiber alignment. 
d Ten-cell cluster with high 
fiber alignment. Red regions are 
where clusters with switch-
ing leader phenotype have the 
highest MSD; blue regions are 
where clusters with a defined 
leader have the highest MSD
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by the fiber density and cell–cell adhesion strength. When 
cell–cell adhesion is low in low fiber density environments, 
cluster lifetime and persistence are similar for both lead-
ing scenarios in aligned and unaligned matrices (Fig. 6b). 
Persistence is about twice as high for clusters with a defined 
leader in aligned matrices, but the higher cluster speed for 
clusters with no defined leader is greater by more than a fac-
tor of 4, leading to a higher migratory efficiency (Fig. 6b). 
In less dense environments, the ability to switch between 
leaders allows the cluster to overcome the sparsity of bind-
ing sites and probe a larger region of space. The cluster can 
more quickly find fibers with sufficient binding sites for 
force generation and displacement. Interestingly, the ability 
to switch between leaders also helps redistribute the migra-
tion forces evenly between the loosely bound cells, allowing 
the cells to stay clustered together even in high-density envi-
ronments. We attribute this to a herding effect, which can be 

enhanced by increasing the number of cells in the cluster, 
thereby increasing the lifetime of the cluster (Fig. S5A). 
On the other hand, when there is single leader driving the 
cluster of loosely bound cells in high-density environments, 
the leader cell is more likely to break off quickly from the 
main cluster due to a buildup of migration forces between 
the cell–cell interface of the leader and follower cells (Fig. 
S5B). (Figure 6d shows the difference in lifetimes of loosely 
bound clusters migrating in high-density environments for 
both migration scenarios.)

As inter-cellular adhesion increases, cell migration with a 
single defined leader becomes more advantageous in denser 
matrices (Fig. 6c dark and light blue lines). Cluster speed is 
higher for clusters with undefined leaders for the same rea-
sons as in less dense matrices, but the persistence decreases 
due to an increased probability of changing direction as the 
leaders switch between peripheral cells (Fig. 6d). A single 

Fig. 6   Effect of fiber density 
and cell–cell adhesion on 
MSD. a MSD for low cell–cell 
adhesion. b Radar plot showing 
values of persistence length, 
cluster lifetime, and cluster 
speed at low fiber density and 
low cell–cell adhesion. c MSD 
for mid cell–cell adhesion. d 
Radar plot at high fiber density 
and low adhesion. e MSD for 
high cell–cell adhesion. f Radar 
plot for high fiber density and 
high cell–cell adhesion. Blue 
toned lines are clusters with 
a defined leader; red toned 
lines are clusters with an 
undefined leader. Solid lines 
are in an unaligned ECM and 
dashed in an aligned ECM. 
Fiber density was increased 
linearly from 0.5 × 10−3 to 
2 × 10−3 fibers∕μm3 . Ten simu-
lations for each scenario were 
run at each fiber density and 
run for 48 h of simulated time 
or until a single cell dissoci-
ated from the cluster. Error bars 
represent ± SEM
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leader in these cases allows for a more persistent migration, 
while the higher adhesion between the cells allows for cluster 
to hold up against the increased migration forces.

When the cell–cell separation force exceeds 50 nN, clus-
ter migration driven by a single defined leader becomes 
even more advantageous in matrices with high fiber density 
(Fig. 6e). Single leader clusters migrate more persistently, 
especially with highly aligned fibers, through matrices 
with high fiber density and therefore have a higher MSD 
(Fig. 6f). When the cluster’s leader is undefined, the cluster’s 
migration direction will change every time the leading cell 
switches, thus reducing the migratory efficiency (Fig. 6f). 
Interestingly, cluster migration driven by switching leaders 
loses its edge in keeping the cluster together in high-density 
environments as well (Fig. 6f). Because all the peripheral 
cells can generate migratory forces, the likelihood that one 
of them generates strong enough forces to rip it apart from 
its neighbors goes up as compared to the case where only 
one leader cell is dragging the cluster behind it.

The single leader migration scenario is more suited to take 
advantage of fiber alignment, especially for high adhesion 
strength clusters in high-density environments (Fig. 6a, e). 
This is again because having a single leader allows the cluster 
to migrate more persistently along aligned fibers (Fig. 6b, d, 
f). However, at intermediate and low adhesion strengths, the 
fiber alignment in high-density environments stretches out 
the cluster more along the persistent migration path, straining 
the contact between the leader and the follower cells. This 
increases the likelihood of the cluster disintegrating, lowering 
the cluster lifetime and overall migration distance (Fig. 6c).

Overall, the smaller five-cell clusters have a higher MSD 
than the larger 10-cell clusters because they experience 
less drag as they migrate through the ECM. Cluster speed 
increases with increased cell–cell adhesion because the 
cluster becomes more compact as the trailing cells migrate 
closer to the leading cell. Regardless of cluster size, clusters 
with an undefined leader have a greater migratory efficiency 
in regions of low fiber density at any cell–cell adhesion 
strength, in both aligned and unaligned ECMs. Having a 
defined leader is favored when both adhesion and fiber den-
sity are high, and this type of migration is enhanced when 
the fibers are aligned.

4 � Discussion

Clusters that are driven by a defined leader cell (scenario 
1) are akin to animal foraging behaviors commonly seen 
in certain bees, ants, and fish species (Reebs 2000; Couzin 
et al. 2005; Sumpter 2006), where a single or a few leaders 
act as catalysts for coordinating directionality. A minority 
of defined leaders within a collective can enhance group 

movement in a single direction. However, this requires sig-
nal transmission (chemical, mechanical or otherwise) from 
the leader(s) to the rest of the collective and can become less 
effective as the overall size of the collective grows. Alter-
natively, clusters driven by switching leaders between all 
peripheral cells (scenario 2) are akin to herding that can give 
rise to self-organization in flocks of starlings or schools of 
fish (Sumpter 2006; Cavagna et al. 2010; Goodenough et al. 
2017). Neighbor mimicking and distributed decision making 
are two behavior patterns reminiscent of herding. Neighbor 
mimicking helps align the motion of individuals, leading to 
more cohesive moments that helps maintain the integrity of 
mass-migrating groups (Buhl et al. 2006). Distributed deci-
sion making on the other hand can allow the collective to 
evaluate and choose from alternatives to increase migration 
efficiency (Mallon 2001).

To our knowledge, this study is the first to show that 
under certain environmental conditions, leading- and herd-
ing-like behaviors that are similar to the self-organizing, 
active systems seen throughout the animal kingdom can 
differentially dominate and govern optimal strategies in 
relatively small collectives of cells migrating through a 3D 
ECM. In extracellular matrices where fibrous proteins are 
scarce, for clusters with the ability to switch between lead-
ers, multiple cells can probe the environment to overcome 
the scarcity of binding sites. By sharing the role of finding 
a sufficient number of binding sites for displacement, the 
cluster spends less time searching than a cluster with a sin-
gle leader. In fiber dense environments, the more strategic 
behavior is dependent on cell–cell adhesion strength and 
the force required to separate two cells. For clusters with 
low cell–cell adhesion, herding occurs when leadership can 
switch between cells. The peripheral cells in these clusters 
nudge their neighbors toward the cluster’s center, generating 
compressive forces between neighboring cells. This helps 
align their motion to their nearest neighbor, leading to more 
cohesive movements that help maintain the cluster stability 
and extend the cluster lifetime. The advantages of defined 
leadership only become apparent when cell–cell adhesion 
is high enough, and motion of the leader can be transmitted 
farther along the follower cells effectively. High adhesion 
greatly improves the migratory efficiency in dense ECM by 
allowing a single leader to maintain its directional persis-
tence for longer, especially in environments with high fiber 
alignment.

Our results show that collective cell migration is pos-
sible for significant distances, even when cells only weakly 
couple with each other. Under these conditions where cluster 
dissociation and single-cell migration would be expected, 
collective migration can be maintained by herding-like 
behavior. Because small clusters of cancer cells are more 
likely to establish secondary tumor sites, herding and 
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self-organization of migrating cancer cells may increase 
metastatic potential in unfavorable environmental condi-
tions. Furthermore, collective cell migration is also possible 
and may be beneficial in low fiber density environments. In 
these environments, cells in a cluster are together able to 
probe a larger volume of the ECM for binding sites than an 
individual cell, and therefore, decision making for move-
ment is faster.

The results presented here are based on cells display-
ing a predefined migratory phenotype. For example, in a 
single defined leader scenario, the leader cell may be a 
cell that has undergone EMT and pulls along a group of 
cells that have remained epithelial, whereas if all cells 
have undergone partial EMT, they can switch between 
different leaders. However, the model presented here 
also provides a platform to examine how genotypic and 
phenotypic changes can alter individual and collective 
cell migration and examine whether these changes are 
specifically targeted to promote any particular migra-
tion scenario to suit a particular outcome. Studies have 
shown that genetic regulators can activate partial EMT 
and collective cell migration during metastases in Dros-
ophila intestinal tumors (Campbell et al. 2017). Cells 
are known to downregulate cell–cell adhesion proteins 
during EMT (Nasrollahi and Pathak 2016), so the extent 
of this regulation may be important for the metastatic 
potential of a tumor depending on the properties of the 
extracellular environment around the tumor (Vander-
Vorst et  al. 2019). Other recent experimental studies 
have also shown that the matrix architectural context 
can drive phenotypic changes in cellular phenotype that 
influences migratory behavior (Velez et al. 2017; Morris 
et al. 2016). In the future, we hope to couple the model 
presented here with intra- and extracellular signaling-
driven temporal changes in cellular genotype, phenotype 
and consequently mechanotype to examine how migrat-
ing cellular collectives may adapt to different extracel-
lular environments.

5 � Conclusions

We present a model that can simulate collective cell migra-
tion long term in 3D with both cell–cell and cell–ECM 
interactions. Although validation of the model is limited 
due to the difficulty of performing 3D cluster migra-
tion assays, we believe that this physics-based approach 
works well as an accurate predictive tool for experimental 
research. Furthermore, the model allows for perturbations 
to be easily introduced for several parameters affecting cell 
and ECM properties to study how cellular clusters might 
optimize the leader–follower dynamics to better adapt for 

movement through their given environment. Leader–fol-
lower dynamics play an important role in any form of col-
lective migration and further research to interrogate which 
cell types and genetic regulators give rise to the different 
leading scenarios could present new targets for inhibiting 
cancer metastasis. Our results highlight some of the migra-
tory phenotypes that should be looked into for in vitro and 
clinical settings and present possible prognostic pheno-
types that could be identified prior to aggressive cancer 
treatments.
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