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Abstract
In this paper, the dynamic behavior of bovine brain tissue, measured from a set of in vitro experiments, is investigated and 
represented through a nonlinear viscoelastic constitutive model. The brain samples were tested by employing unconfined 
compression tests at three different deformation rates of 10, 100, and 1000 mm/s. The tissue exhibited a significant rate-
dependent behavior with different compression speeds. Based on the parallel rheological framework approach, a nonlin-
ear viscoelastic model that captures the key aspects of the rate dependency in large-strain behavior was introduced. The 
proposed model was numerically calibrated to the tissue test data from three different deformation rates. The determined 
material parameters provided an excellent constitutive representation of tissue response in comparison with the test results. 
The obtained material parameters were employed in finite element simulations of tissue under compression loadings and 
successfully verified by the experimental results, thus demonstrating the computational compatibility of the proposed mate-
rial model. The results of this paper provide groundwork in developing a characterization framework for large-strain and 
rate-dependent behavior of brain tissue at moderate to high strain rates which is of the highest importance in biomechanical 
analysis of the traumatic brain injury.

Keywords Brain tissue · Constitutive modeling · Strain rate · Parallel rheological framework · Compressibility · Finite 
element

1 Introduction

Evaluating the mechanical properties of the brain tissue is 
a fundamental subject in understanding intracranial brain 
deformation under different loading conditions. It has been 
shown that severe rotation of the head creates rapid angu-
lar acceleration in the brain causing brain deformations and 
shear strains which may lead to TBI (Holbourn 1943). TBI 
can also occur from blunt impacts leading to an acute sub-
dural hematoma, diffuse axonal injury (DAI), death, or other 
serious disability (Faul et al. 2010; O’riordain et al. 2003; 
Rueda and Gilchrist 2009). To study in vivo intracranial 
behavior under TBI conditions, FE models have been intro-
duced to predict the brain deformation for different applied 
loads (Eslaminejad et al. 2018b; Giordano et al. 2014; Gori-
ely et al. 2015b; Hosseini-Farid et al. 2018; Ramazanian 

et al. 2018; Ramzanpour et al. 2018; Ratajczak et al. 2019; 
Raul et al. 2006). In these analyses, while creating a com-
putational model containing detailed anatomical geometries 
of the human head is necessary, it is also highly important 
to employ accurate material properties for the intracranial 
organs. Modeling TBI is dynamic in nature and the brain 
will experience a variety of loading rates for different sce-
narios. Thus, for a rate-dependent material such as the brain, 
it is necessary to select the correct material properties cor-
responding to a specific simulation rate.

It has been shown that severe brain injury under blunt 
impact normally occurs when the brain deforms within the 
strain-rate range of 23–140 s−1 (Viano and Lovsund 1999; 
Zhang et al. 2004). Also, the recent computational studies 
of various impact and blast scenarios indicated that for mild 
to severe TBI, the brain undergoes strain rates ranging from 
36 to 241 s−1 (Farid et al. 2018). It should be noticed that 
the effective time durations in higher-frequency loads, such 
as impact-induced and blast-induced TBI, are, respectively, 
within the order of some and less than one millisecond (Sab-
oori and Walker 2019; Zhang et al. 2004). With such a short 
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time duration, the rate effect is a key feature in studying 
the behavior of the brain in TBI-related loading. Substan-
tial studies have focused on characterizing this viscoelastic 
behavior by using time-dependent stress-strain relations (de 
Rooij and Kuhl 2016; Hosseini-Farid et al. 2019a; Men-
dis et al. 1995; Miller 1999). Those studies employed the 
strain energy functions linearly coupled with time domain 
to implicitly address the strain-rate effects at large strains 
(Hosseini-Farid et al. 2019b; Rashid et al. 2012). Although 
this modeling provides effective constitutive representation 
for short- and long-term tissue behaviors, calibrating these 
linear viscoelastic models to test results from various rates 
is fairly challenging (Farahmand and Ahmadian 2018; Farid 
et al. 2017). In contrast, limited works in the literature have 
developed the nonlinear hyper-viscoelastic material mod-
els which were phenomenological in nature and have suc-
cessfully reproduced the rate-dependent tissue responses 
over complex loading histories (de Rooij and Kuhl 2016). 
Although the hysteresis and dissipative characteristics were 
fully addressed by these models, their formulations are not 
supported in FE packages and are only useful if one is inter-
ested in self-developed numerical studies (Haldar and Pal 
2018; Prevost et al. 2011).

The aim of this study is to elaborate on some key fea-
tures of characterizing the brain tissue at high strain rates 
paving the way for investigating the injury at the central 
nervous system under dynamical loads. This work is going 
to be a preliminary step in developing a predictive model for 
brain tissue over a large variety of strains and strain rates. 
In the experimental portion of this study, unconfined tests 
with compression velocities of 10, 100, and 1000 mm/s were 
carried out on animal brain tissues for strain value of up 
to 30%. The nonlinear viscoelastic constitutive modeling 
is described, and the compatibility of the new model for 
implementation in FE software packages has been exam-
ined. This paper establishes an introductory step toward the 
development of a comprehensive experimental, theoretical, 
and computational framework to enhance the FE analysis 
being employed in a variety of biomechanical studies for 
traumatic brain injury.

2  Materials and methods

2.1  Experiments

Four fresh bovine brains were obtained from the Animal Sci-
ence Department facilities at North Dakota State University. 
The animals were 2 years old, and all were healthy. The brains 
were carefully removed from their heads, immediately kept in 
phosphate-buffered saline (PBS) solution to prevent dehydra-
tion, and transported to the lab cold, but not frozen, to prevent 
mechanical decay. All tests were conducted within three to 

eight hours after the slaughtering. First, the samples from the 
brain were cut from the frontal and parietal lobes of each hem-
isphere. The procedure followed the experimental protocol by 
Miller and Chinzei (1997b) instructed to prepare samples for 
uniaxial unconfined compression tests. The actual measured 
diameter and height of samples before conducting the experi-
ment were 24.8 ± 0.3 mm and 15.0 ± 0.3 mm (mean ± SD), 
respectively. All the extracted brain specimens consisted of a 
mixture of gray and white matter.

Similar to Rashid et al. (2012), the unconfined compres-
sion tests were conducted on the mixed gray and white mat-
ter specimens for up to 30% strain of each sample height. 
Tests were performed at room temperature (~ 22 °C) using 
a BOSE 3200 Electroforce machine (BOSE Corporation, 
Bloomington, MN, USA) designed for testing soft tissue 
materials. Figure 1 shows the experimental setup of the 
unconfined compression tests. Before each test, the surfaces 
of the top and lower platens were thoroughly treated with 
a surgical lubricant (Surgilube, Fougera Pharmaceuticals 
Inc.) to establish unconfined compression conditions. This 
procedure was essential to diminish the frictional effects 
and to provide a uniform expansion in the radial direction. 
Samples were then carefully located between the two plat-
ens. The outer surface of each brain specimen was carefully 
humidified with phosphate-buffered saline solution to keep 
the tissue hydrated, during the entire test procedure. After 
hydration, the upper platen was cautiously moved downward 
until it touched the sample. Then, all forces and reference 
displacement were set to zero. The tests were performed at 
three different deformation rates of 10 mm/s (n = 10 brain 
samples), 100 mm/s (n = 8), and 1000 mm/s (n = 12). These 
compression velocities correspond to approximate nominal 
strain rates of 0.67, 6.67, and 66.7 s−1. Figure 1 shows the 
Electroforce machine which was used for the testing. Also, 
the radial expansion of the cylindrical specimens captured 
by a high-speed camera (NanoSense MKIII, DantecDy-
namics) at different instances (Fig. 1) confirmed that the 
deformation was approximately homogeneous. It proves that 
employing the surgical lubricant was effective in minimizing 
the frictional effects between the sample and the platens.

2.2  Constitutive modeling

2.2.1  Preliminaries

The parallel rheological framework allows the introduction 
of a nonlinear viscoelastic material model consisting of mul-
tifold networks connected in parallel (Bergstrom 2015). As 
shown in Fig. 2, the mechanical response of brain tissue 
can be decomposed into two parallel networks: hyperelastic 
equilibrium network (spring), specified as network A, and 
a rate-dependent viscoelastic behavior (spring–dashpot), 
defined as network B (Farid 2019).
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Considering the parallel continuity, for each network the 
deformation gradient tensor can be considered to be equal:

where the deformation gradient F correlates the position 
of a point at deformed rate-dependent configuration x to its 
position at undeformed state X as:

The deformation gradient tensor introduces the right 
Cauchy–Green tensor C as C = FT·F. For the kinematic 
characterization, the deformation gradient (F) and right 
Cauchy–Green tensor (C) are generally decomposed into 
volumetric contribution, characterized through the volume 
change (J) and a deviatoric (isochoric), volume-preserving 
contribution (Laksari et al. 2012). In this regard, F̄ and C̄ 

(1)F = FA = FB

(2)F =
𝜕x

𝜕X
= ∇⊗ x

denote the deviatoric part of deformation and can be written 
in the form of

where J, the Jacobian tensor, represents the change in vol-
ume between the deformed and undeformed states, intro-
duced as J = det (F) = �1−2� , with λ being the stretch ratio.

2.2.2  Elastic behavior

It is assumed that the equilibrium network response is purely 
elastic. Any form of strain energy function for expressing the 
behavior of soft materials can be employed to model the elas-
tic (spring) response in each network. It is assumed that both 
networks have the same hyperelastic model (Bergstrom 2015; 

(3)F̄ = J
−1

3 F, C̄ = J
−2

3 C

(a) (b) (c)

High-speed 
camera

Electroforce 
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(d) (e)

t=0.00 s t=0.021 s

t=0.033 s t=0.045 s

Fig. 1  a Electroforce machine ready for the in  vitro unconfined 
compression test while a high-speed camera records samples defor-
mation, and the deformation steps of brain specimen with speed of 

100 mm/s in terms of time at b t = 0.00, c t = 0.021, d t = 0.033, and e 
t = 0.045 s, corresponding to compressive strain of 0, − 0.14, − 0.21, 
and − 0.3

Fig. 2  a Schematic representa-
tion of the proposed nonlinear 
viscoelastic model with two 
parallel networks consisted of 
an equilibrium network A and 
a viscoelastic network B, b 
the multiplicative decomposi-
tion of the deformation for the 
rheological components of this 
model
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Goriely et al. 2015a), and the total strain energy, UT, is obtained 
from the weighted summation of the energies of two networks

where Ce
A
 and Ce

B
 are the elastic right Cauchy–Green tensor 

in networks A and B. The stiffness ratio of networks, si, 
is a dimensionless material parameter indicating the ratio 
of shear modulus of networks A and B and must satisfy 
s1 + s2 = 1.

The total Cauchy stress response, �T , of the system can be 
derived from the strain energy function as follows:

where p is the hydrostatic pressure that is determined by 
boundary conditions. In this paper, the Ogden strain energy 
function is used to evaluate the elastic response of both net-
works (Ogden 1972, 1986). The general (compressible) form 
of the Ogden strain energy function is:

where �̄�i is the deviatoric principal stretch introduced as 
�̄�i = J

−1

3 𝜆i , N is the material parameter number, and µi, αi, 
and Di are material parameters. The initial shear modulus 
and bulk modulus for the Ogden model are given by 
�0 =

∑N

i=1
�i and K0 =

2

D1

 , respectively. In this study, the 
compressible form of Ogden hyperelastic model is employed 
to consider the compressibility effect. For this study, the 
volumetric parameter (D1) was assessed by using the calcu-
lated initial shear modulus, µ0, and Poisson’s ratio, ν, as:

According to Eq. (7), the value for Poisson’s ratio (ν) 
is needed in order to determine the parameter D (Forte 
et al. 2017; Shojaeiarani et al. 2019). The value of ν = 0.49, 
reported in substantial number of studies as the Poisson’s 
ratio for the brain tissue (Miller et al. 2000; Tse et al. 2014), 
was applied to calculate the compressibility parameter of 
hyperelastic model.

2.2.3  Viscous behavior

The whole viscous behavior is taken into account by network 
B (Fig. 2a), which is modeled by assuming the multiplica-
tive split of the deformation gradient into both elastic and 
viscous (inelastic) deformation (Fig. 1):

(4)UT = s1U
(

Ce
A

)

+ s2U
(

Ce
B

)

(5)
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UOgden =

N
∑

i=1

2𝜇i

𝛼2
i

(
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−𝛼i
1
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−𝛼i
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− 3
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+
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∑
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1

Di
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(7)D =
2

K
=

3(1 − 2v)

�0(1 + v)

where the viscous part of the deformation, Fv
B
 , represents 

the stress-free intermediate configuration of the network B 
(Quintavalla and Johnson 2004). The elastic component of 
deformation gradient, Fe

B
 , is evaluated using its classical 

form, and Fv
B
 is calculated via time integration of the rate of 

creep deformation gradient in the viscoelastic network, Ḟv

B
 . 

In this regard, the velocity gradient in network B is given by

It is similarly decomposed into the elastic and inelastic com-
ponents given as:

which can be written as

and with respect to Eq. (9), Eq. (11) will be written in the 
form of

where

It is assumed that the system possesses an unchanged rota-
tion in the intermediate relaxed configuration regarding to 
the stress-free state (reference configuration) (Boyce et al. 
1989); therefore, the viscous spin tensor becomes zero, 
W̃

v

B
= 0 . Thus, the viscous rate of deformation in network 

B is constitutively represented by the symmetric part of the 
velocity gradient as L̃v

B
= D̃

v

B
 . To describe the viscoelastic 

constitutive response of deformation gradient, the evolution 
of the creep part is considered ( D̃v

B
≡ Dcr ) (Hurtado et al. 

2013). Hence, through the multiplicative split of the defor-
mation gradient for isotropic materials suggested by (Lee 
1969) the rate form of creep deformation gradient is rewrit-
ten as (Dafalias 1986):

where Dcr is expressed based on creep potential, 
Gcr = Gcr(�) , and proportionality factor, �̇� , and the flow 
rule is given as:

In this model, we assume the creep potential is char-
acterized by q̄ , the equivalent deviatoric Cauchy stress, 
as Gcr = q̄ , and also the proportionality factor is defined 

(8)FB = Fe
B
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B

(9)LB = ḞBF
−1
B
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as  , where  is the equivalent creep strain rate. 
Therefore, the flow rule will be given by

where �̄ is the deviatoric Cauchy stress, τ = Jσ is the Kirch-
hoff stress, �̄ is the deviatoric Kirchhoff stress, and q̃ = Jq̄ . 
The expression of equivalent creep strain rate,  , can 
be provided by models such as power law (Jaishankar and 
McKinley 2013), power-law strain hardening (Dalrymple 
et al. 2015; Ghoreishy and Sourki 2018), hyperbolic sine 
law (Hurtado et al. 2013), or either from Bergstrom–Boyce 
(Bergström and Boyce 2001). In this paper,  is defined 
based on power-law strain-hardening model in the form of

where �cr is the equivalent creep strain and A, m, and n are 
the material parameters.

2.3  Parameter identification

All experimental data from three different loading rates of 
unconfined compression tests for bovine brain tissue were 
simultaneously used for calibrating the material param-
eters. The nonlinear least-squares algorithm lsqnonlin 
in MATLAB was employed to identify the constitutive 
constants of the proposed material model. To achieve a 
physically meaningful amount for material constants, the 
shear modulus, μ1, and A were constrained to have an only 
positive value. Also, Eq. (7) with the value of ν = 0.49 
stands as the constraints for determining the volumetric 
parameter, D1. At each iteration, this parameter was first 
calculated from the estimated shear modulus based on 
Eq. (7) and then employed into the optimization process. 
The objective function (χ2) which represents the sum of 
the square of the difference between experimental and 
numerically calculated stresses is defined as follows:

where �Num
i

 and �Exp

i
 are the numerically predicted and 

experimentally measured true (Cauchy) stresses, respec-
tively, for three loading rates (k = 1–3) and N is the number 
of data points. To accelerate the parameter identification 
process, it is essential to assign a restricted range for each 
parameter value. Therefore, in this regard the parameters 
m and n were set to be calculated from the range of [0.5, 
10] and [− 1,0], respectively. Eventually, one set of material 
parameters that provided the best fit to the test results of 
the brain at three measured rates were obtained.

(16)

(17)

(18)�2 =

3
∑

k=1

N
∑

i=1

(

�
Exp

i
− �Num

i

)2

3  Results

3.1  Mechanical response of brain tissue

Based on force and displacement signals obtained directly 
from the testing machine, the force histories versus the 
compressive strains were determined and are presented in 
Fig. 3. To attain the stress-strain behavior of the bovine 
brain shown in Fig. 3d, the Lagrangian stresses were cal-
culated by dividing the force over the initial cross-sec-
tional area of the sample measured at its reference con-
figuration. The averaged nominal stress-strain curves were 
determined by up to 30% of compressive strain, showing 
an inherent nonlinear mechanical behavior of tissue at 
each deformation rate. The brain tissue showed a stiffer 
response when the compression rate increased (Fig. 3d), 
indicating that the stress not only is a function of strain 
value but also depends on the loading rate.

The maximum nominal stresses at 30% compres-
sive strain with the deformation rates of 10, 100, and 
1000 mm/s are − 4.26 ± 1.26 kPa, − 8.62 ± 2.58 kPa, and 
− 12.74.0 ± 3.97 kPa (mean ± SD), respectively. According 
to one-way ANOVA (SPSS Statistics, version 24.0, IBM 
Corp., Armonk, NY) (Eslaminejad et al. 2018a; Jahani 
et al. 2018), the values of nominal stress at 30% strain 
showed significant statistically different (p < 0.01) over 
various deformation rates (Fig. 4). The apparent elastic 
modulus (slope of stress-strain curve) at 5%, 10%, 15%, 
and 20% strains for different compression velocities was 
determined and is compared in Fig. 4. A consistent rise 
in the elastic modulus was observed with increasing the 
strain levels and strain rates. As shown in Fig. 4, this 
measure of mechanical stiffness demonstrated a statisti-
cal difference and significant rate-dependent behavior for 
brain tissue.

3.2  Determined rate‑dependent material 
parameters

Table 1 presents the summary of determined material con-
stants of the proposed model for bovine brain tissue at 
three different rates. The calculated weighted factors (si) 
of hyperelastic stress in the first and second networks were 
found to be 0.273 and 0.727, respectively. Both deviatoric 
(µ) and volumetric (D) constitutive parameters of  the 
Ogden hyperelastic model were evaluated. This nonlinear 
viscoelastic model provided excellent constitutive repre-
sentation in comparison with the test data for brain tissue 
(R2 = 0.999). Figure 5 demonstrates the prediction of the 
proposed model for the mechanical response of brain tis-
sue at three deformation rates of 10, 100, and 1000 mm/s. 
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3.3  Model verification in finite element analysis

In order to check the validity of the introduced model and 
the obtained material parameters for use in FE analysis, an 
inverse simulation of test procedure was carried out. Using 

ABAQUS/Standard 2016 code (ABAQUS Inc., Providence, 
RI), the same unconfined compression experiment was mod-
eled by the FE technique for a brain specimen. As shown in 
Fig. 6a, an axisymmetric geometry with a radius of 12.5 mm 
and a height of 15 mm was generated resembling the brain 

Fig. 3  The experimentally 
recorded history of forces vs. 
nominal compressive strain for 
bovine brain specimens at dif-
ferent compression velocities of 
a 10 mm/s, b 100 mm/s, and c 
1000 mm/s, and d the com-
parison between mean nominal 
stresses measured at three dif-
ferent compression velocities
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elastic moduli as a measure 
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Table 1  Material parameters 
for the nonlinear viscoelastic 
model, calibrated for brain 
tissue at different deformation 
rates of 10, 100, and 1000 mm/s

Matter Material parameters

Hyperelastic parameters Rate-dependent parameters R
2

Tot

µ1 (Pa) α1 D1  (Pa−1) s A  (Pa−ns−m−1) n m

Brain 2941 1.58 1.37e−5 0.727 0.02429 0.5875 − 0.1828 0.999
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specimen. A four-node, axisymmetric quadrilateral, reduced 
integration, hybrid element, which includes hourglass con-
trol, was employed. On the left rotational axis, an axisym-
metric boundary condition (U1 = 0) was applied. A friction-
less interaction was applied between platens and the top and 
bottom surfaces of the brain sample. The constitutive con-
stants presented in Table 1 were implemented as the material 
properties of tissue in the FE model (see “Appendix”). The 
upper platen was moved in the vertical direction, compress-
ing the specimen to 30% of its engineering strain with three 
deformation rates used in the experiments (i.e., 10, 100, 
1000 mm/s). A uniform uniaxial deformation along with 

homogenous radial expansion was observed for the brain 
sample as depicted in Fig. 6b. That leads to fully uniaxial 
compression stress in vertical (“Y–Y”) direction with insig-
nificant transverse stress in the radial direction (Fig. 6c).

As depicted in Fig. 7, very good agreements between 
experimentally measured stress-strain and FE computed 
results were achieved for brain sample at three different 
tested speeds. In order to obtain the nominal stresses in 
the FE analysis shown in Fig. 7, the calculated reaction 
force for the upper platen was divided by the initial top 
area of the brain sample. Also, additional simulations with 
velocities in the range of calibrated rates (10 ~ 1000 mm/s) 

Fig. 5  The comparison between 
experimental data and the deter-
mined mechanical response by 
nonlinear viscoelastic model 
for brain tissue at three dif-
ferent rates of: a 10 mm/s, b 
100 mm/s, and c 1000 mm/s
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Fig. 6  a The developed FE model for unconfined compression test 
procedure of the brain specimen, b the homogeneous deformation 
configuration of tissue at 30% of compressive strain, and c) the con-

tour of Cauchy stress in “Y–Y” (vertical) direction for the sample 
compressed up to ε = − 0.3 strain with velocity of 10 mm/s
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were chosen to further examine the validity of the model 
and determined material parameters. In this regard, the FE 
simulations were performed for the compressive speeds 
of 50, 250, 500, and 750 mm/s, and the computed tissue 
response for each rate is presented in Fig. 7. This rate-
dependent model gives proper predictions of the tissue 
response for other intermediate rates. The calculated 
mechanical responses in Fig. 7 and the predicted deformed 
configuration in Fig. 6 were in full agreement with experi-
mental results, verifying the validity of the proposed mate-
rial model to reproduce the tissue viscoelastic behavior.

Similar to other engineering parameters, the developed 
strain rates in the brain specimens can be calculated by FE 
analysis. The results of the FE simulation show the brain 
has a uniform distribution of strain rates. As demonstrated 
in Fig. 8, at the strain value of 30% and for the compression 
velocity of 10, 100, and 1000 mm/s, the vertical strain rates 
(ER22) were found to be, respectively, − 0.94, − 9.4, and 
− 94 s−1. These values were negative since they are related 
to compressive deformations and strains. The transversal 
strain-rate components in “X–X” and “Z–Z” directions 
(ER11 and ER33) were identical and with a value of 46 s−1 
at the speed of 1000 mm/s. It can be seen that the estimated 
strain rate associated with the highest compression veloc-
ity of this study is consistent with those reported ranges of 
rates at TBI (Viano and Lovsund 1999; Zhang et al. 2004). 
Although for constant velocity, it was expected to obtain 
the constant strain rate, the calculated strain rate showed 
some variations at different strains. These variations for 
both lateral and vertical strain rates (ER11 and ER22) ver-
sus the compressive strains are demonstrated and depicted 
in Fig. 8c, d.

4  Discussion

The main objective of this study was to verify and calibrate 
the rate-dependent model on the animal brain, and further 
pave the path for determining the most accurate material 
properties of human brain. In this regard, the rate-dependent 
mechanical behavior of bovine brain tissue has been inves-
tigated under unconfined compression test at intermediate 
to high rates. Figure 4 reveals how the peak stress and the 

750 mm/s
1000 mm/s

500 mm/s

250 mm/s

100 mm/s

50 mm/s

10 mm/s

Fig. 7  The predicted nominal stress by FE analysis of brain sample 
(dotted lines) with different deformation rates using the material con-
stants presented in Table 1

Fig. 8  The demonstration 
of determined strain rate: a 
the strain-rate contour in the 
direction of “Y–Y” plotted for 
30% of strain, b symbol plot of 
strain-rate components at three 
directions plotted for 30% of 
strain, c the variation of strain 
rate in transversal direction 
versus strain, d the variation of 
strain rate in vertical direction 
versus strain
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apparent elastic modulus of the bovine brain vary as the 
rate changes. Based on the parallel rheological framework 
approach, a single-phase nonlinear viscoelastic model was 
developed and calibrated with the experimental result. The 
averaged experimental results at three different rates were 
employed to determine one set of material parameters. The 
excellent agreement between the numerically calculated and 
experimentally measured stresses (Fig. 5a–c) confirmed that 
the proposed constitutive model is fully capable of charac-
terizing the rate-dependent behavior of brain tissue under 
compression deformation.

The researchers of the study presented here could not 
find any studies with perfectly similar deformation rates 
of the bovine brain tissue to compare their results with. 
However, good agreement was found between the results of 
the current study and the results provided by Laksari et al. 
(Laksari et al. 2012). In that study, engineering stress of 
10.3 kPa (at ε = − 0.3) was reported for bovine brain sam-
ples under unconfined compression test at the nominal strain 
rate of 10 s−1. Pervin and Chen (2009) were able to exam-
ine the mechanical responses of the bovine brain at high 
rates using a modified split Hopkinson pressure bar. They 
obtained insignificant anisotropy behavior for white mat-
ter and showed the compressive stress at 30% strain with 
a nominal strain rate of 1000/s was 60 and 75 kPa for gray 
and white matter, respectively. Although Rashid et al. (2012) 
have examined porcine brain tissue, they determined the 
compressive stresses as 8.8, 12.8, and 16 kPa (at ε = − 0.3) 
corresponding to compression velocities of 150, 300, and 
450 mm/s. These varying ranges were typical in the results 
of experimental studies. These are likely due to the fact that 
the samples were obtained from different animal species and 
ages, and prepared in different shapes and dimensions, and 
tested with different protocols (e.g., lubrication, preloading, 
etc.) (Anderson 2018; Elkin et al. 2010).

In the literature of biomechanics of the brain, some stud-
ies have been devoted to characterizing the rate-dependent 
mechanical properties of this tissue. Pamidi and Advani 
(1978) derived a nonlinear constitutive relation based on 
power energy function. They calibrated their model using 
the reported in vitro test results of Galford and McElhaney 
(1970) and obtained a good numerical prediction of human 
brain tissue under compression. Mendis et al. (1995) have 
developed a large-strain linear viscoelastic model to be used 
in finite element modeling of brain tissue. They incorporated 
the Prony series into the Mooney–Rivlin strain energy func-
tion and determined the time-dependent form of the hyper-
elastic coefficient. Miller and Chinzei (1997b) implemented 
a similar hyper-viscoelastic model to characterize the vis-
coelastic behavior of porcine brain tissue. They introduced 
a unique procedure to calculate the material constants over 
three different low to medium rates. Hrapko et al. (2006) 
captured the nonlinear mechanical response of brain under 

the shear response of tissue, using a new differential viscoe-
lastic model that was developed based on Mooney–Rivlin 
viscoelastic network and included 16 material parameters. 
In order to capture the rate-dependent behavior at finite vis-
cosity and deviatoric and volumetric plasticity of the brain 
tissue, El Sayed et al. (2008b) developed a nonlinear elas-
tic–viscoplastic material model and verified their model with 
tissue response under uniaxial compression and tension test 
up to 50% nominal strain. Also, Prevost et al. (2011) have 
investigated the dynamic behavior of porcine brain tissue at 
nominal strain rates of 0.01, 0.1, and 1 s−1. They developed 
a rheology-based constitutive model to capture the effects 
of compressibility, hysteresis conditioning, the rate depend-
ency, and short- and long-term viscoelastic behaviors of 
the tissue. Although their comprehensive model with eight 
parameters was proven to predict the behavior of tissue at 
tension, and relaxation modes as well, it has a limited ability 
for being used in FE software packages. Recently, Haldar 
and Pal (2018) developed a rate-dependent anisotropic con-
stitutive relation and numerically modeled the brain tissue 
under large deformation. They have shown that their rigor-
ous phenomenological model was able to account for the 
rate dependency, nonlinear viscoelasticity, anisotropy, and 
tension-compression asymmetry behavior of the tissue.

Although the model proposed in this study accounts for 
the compressibility effect of tissue deformation, it has fewer 
material constants to be determined in contrast to existing 
constitutive models which lead to a relatively faster model 
calibration process and less computational cost. Also, it was 
shown that the developed nonlinear viscoelastic model can 
be directly implemented in commercial FE code to perform 
the FE simulations with no need for writing a material sub-
routine. In this regard, the main features of this model in 
comparison with the most common viscoelastic models used 
to characterize the rate-dependent behavior for brain tissue 
are presented in Table 2.

The present study is an essential step toward the develop-
ment of a constitutive model able to predict the tissue behav-
ior during large deformation at arbitrary loading velocities. 
As the limitations of the current study, it should be noted 
that the tissue was characterized for only uniaxial deforma-
tion (unconfined compression) over a range of intermedi-
ate to high rates. If the material parameters are determined 
for one particular deformation mode such as compression, 
it may not exhibit adequate behavior for other deformation 
modes such as tension, shear, or other loading combinations. 
One other limitation of this study is the estimation of the 
material parameters from a mixed white and gray matter 
of the brain tissue. The results, therefore, are only valid for 
such a composite and can be useful in approximate mod-
eling of the brain (Miller and Chinzei 1997a; Rashid et al. 
2012). Also, we have assumed an isotropic structure and 
employed the average mechanical properties of the tissue 
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in the determination of material parameters; however, this 
procedure is accepted in obtaining such parameters that are 
useful in evaluating an approximate behavior of the tissue. 
Moreover, in some studies, it was postulated that the ana-
tomical location (Donnelly and Medige 1997; Tamura et al. 
2007) and the direction (Budday et al. 2017; Pervin and 
Chen 2009) of extracted brain samples had an insignificant 
effect on the tissue response. For instance, Tamura et al. 
(2007) have performed several unconfined compression tests 
and have shown that neither the orientations nor anatomical 
location of the specimen do not affect the macro-mechanical 
behavior of porcine brain tissue.

As a suggestion for future work, further model refine-
ment is required to address the time-dependent viscoelastic 
behavior associated with the biphasic inherent of brain tis-
sue at intermediate to high deformation rate regime. This 
single-phase viscoelastic model provided here was a first 
step toward achieving this goal, and it is needed to introduce 
a viscoelastic biphasic constitutive model to demystify more 
phenomenological behavior of brain tissue. It is suggested in 
the next step that brain tissue is treated as a porous medium, 
composed of a solid matrix with interstitial fluid, and the 
significant role of fluid diffusion in the brain tissue is taken 
into account. On this subject, the future biphasic constitutive 
model should be able to capture the tissue rate-dependent 
behavior resulting from the coupled dynamical interactions 
between the mechanical response of the solid phase and fluid 
flow.

5  Conclusions

This study demonstrates the in vitro results for bovine brain 
tissue in unconfined compression experiments up to 30% 
nominal strain over three orders of deformation rate mag-
nitudes (10–1000 mm/s). The significant effects for rate 

dependency of this soft biological tissue were observed. It 
was shown that with an increase in deformation rate, the 
mechanical features, i.e., the nominal stress and apparent 
elastic moduli, were also increased. A rate-dependent consti-
tutive relation was introduced and simultaneously calibrated 
with the measured data from three various rates of deforma-
tion. The excellent correlations between the experimental, 
theoretical, and computational results have indicated that 
the proposed model is fully able to characterize brain tissue 
behavior and be employed in FE simulations. The outcome 
of this study is a promising constitutive model and a suc-
cessful technique to capture the rate-dependent material 
properties, a complex inherent characteristic of the brain at 
intermediate to high strain rates.

Acknowledgements Special thanks to the Department of Animal Sci-
ence Department at North Dakota State University for providing the 
brain tissues. The work was carried out in accordance with the IRB 
guidelines.

Appendix

Modeling parallel rheological framework in ABAQUS

Parallel rheological framework (PRF) is a finite-strain 
constitutive approach, which is referred to model non-
linear viscoelasticity, Mullins effect, and permanent set 
in polymers and elastomeric materials. The framework is 
made from the superposition of elastic or elastoplastic net-
works in parallel with one or multiple finite-strain viscoe-
lastic network, N (Fig. 9). This material model has been 
available in ABAQUS 6.13 and later versions (ABAQUS/
Standard User’s Manual, version 6.13; Providence, RI). 
This framework can be consisted of arbitrary number of 
viscoelastic networks and is able to (1) use a hyperelastic 

Table 2  A summary of most well-known rate-dependent constitutive models have been introduced to characterize the brain viscoelastic behavior 
in comparison with the model proposed in this study

*This model is available in the explicit finite element code MADYMO (Hrapko et al. 2009)
**It seems the model has not becoming available in commercial FE packages, yet (El Sayed et al. 2008a)

Reference study/model Key feature No. of material 
constants

Compressibility FE availability

Pamidi and Advani (1978)/power energy function Rate dependent 3 N.A. N.A.
Mendis et al. (1995) and Miller and Chinzei (1997b)/linear hyper-

viscoelastic
Time dependent 8 N.A. Yes

Bergström and Boyce (2001)/nonlinear hyper-viscoelastic Rate dependent 8 Yes Yes
Hrapko et al. (2006)/nonlinear viscoelastic Rate dependent 16 N.A. Yes*
El Sayed et al. (2008b)/nonlinear elastic–viscoplastic Rate dependent 13 Yes Yes**
Prevost et al. (Prevost et al. 2011)/nonlinear hyper-viscoelastic Rate dependent 8 Yes N.A.
Haldar and Pal (2018)/nonlinear hyper-viscoelastic Rate dependent 8 N.A. N.A.
This study/nonlinear hyper-viscoelastic Rate dependent 7 Yes Yes
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material model to specify the elastic response; (2) be com-
bined with Mullins effect to predict material softening; (3) 
incorporate nonlinear kinematic hardening with multiple 
back stresses in the elastoplastic response; and (4) employ 
multiplicative split of the deformation gradient and a flow 
rule derived from a creep potential to specify the viscous 
behavior.

A variety of hyperelastic models (e.g., Mooney–Riv-
lin, neo-Hookean, Ogden, polynomial, Yeoh, etc.) in 
combination with various common creep laws (i.e., power 
law, strain-hardening power law, hyperbolic sine, Berg-
strom–Boyce) or even with a user-defined creep model led 
to introduce a diverse material models for representing the 
complex viscoelastic behavior for materials.

Assign strain‑hardening power‑law model 
in ABAQUS

ABAQUS command Viscoelas t ic ,  Nonl inear , 
LAW = STRAIN was used to define the nonlinear vis-
coelastic model based on the strain-hardening power-law 
formulation. The strain-hardening power law is defined 
by specifying three material parameters: A, n, and m. To 
obtain physically reasonable behavior, A and n must be 
positive and −1 < m ≤ 0. In this study, the calibrated mate-
rial model is implemented as the form of the ABAQUS 
inp-file format that is shown in the following: 

**MATERIALS
**
*Material, name=Ogden-Strain-Law
*Hyperelastic, Ogden
2941., 1.58, 1.37 e−5
**
*Viscoelastic, Nonlinear, NetworkId=1, SRatio=0.727, Law=strain
0.02429, 0.5875, −0.1828
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