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Abstract
We present a novel computational approach, based on a parametrized reduced-order model, for accelerating the calculation 
of pressure drop along blood vessels. Vessel lumina are defined by a geometric parametrization using the discrete empiri-
cal interpolation method on control points located on the surface of the vessel. Hemodynamics are then computed using a 
reduced-order representation of the parametrized three-dimensional unsteady Navier–Stokes and continuity equations. The 
reduced-order model is based on an offline–online splitting of the solution process, and on the projection of a finite volume 
full-order model on a low-dimensionality subspace generated by proper orthogonal decomposition of pressure and velocity 
fields. The algebraic operators of the hemodynamic equations are assembled efficiently during the online phase using the 
discrete empirical interpolation method. Our results show that with this approach calculations can be sped up by a factor of 
about 25 compared to the conventional full-order model, while maintaining prediction errors within the uncertainty limits of 
invasive clinical measurement of pressure drop. This is of importance for a clinically viable implementation of noninvasive, 
medical imaging-based computation of fractional flow reserve.

Keywords  FFR · Coronary artery disease · Computational fluid dynamics · Finite volumes method · Discrete empirical 
interpolation method · Navier–Stokes · Proper orthogonal decomposition · Reduced basis method · Reduced-order 
modeling

1  Introduction

Coronary artery disease (CAD), often manifested by arterial 
stenosis, is one of the leading causes of mortality world-
wide (Heidenreich et al. 2011). Coronary artery stenosis can 
result in reduced blood flow to the region of the myocar-
dium supplied by the narrowed vessel branch. Clinically, 
the functional severity of the stenosis can be quantified with 
the fractional flow reserve (FFR) index. FFR is calculated 
as the ratio between the blood pressure distal to a stenosis 
and the aortic blood pressure, both of which are invasively 
measured under hyperaemic conditions using a pressure 
wire catheter (Gould et al. 1974). Several clinical studies 
have shown the effectiveness of such functional evaluation 
in driving lesion treatment with improved clinical outcome 
compared to standard angiographic assessment (Pijls et al. 
2007; Tonino et al. 2010; Heidenreich et al. 2011; Zimmer-
mann et al. 2015). However, using a catheter can overesti-
mate lesion severity by causing an obstruction that increases 
the pressure drop by up to 20% depending on the vessel 
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anatomy and blood flow conditions (Ashtekar et al. 2007; 
de Vecchi et al. 2014).

To address the invasiveness of the procedures, fractional 
flow reserve estimation based on computational hemody-
namic models (FFRc) has been proposed and clinically vali-
dated (Taylor et al. 2013; Coenen et al. 2015; Hlatky et al. 
2015; Douglas et al. 2016; Zhang et al. 2016). Yet, determin-
ing FFRc is computationally expensive, requiring either high 
performance computing resources or long times to solution, 
and neither is compatible with clinical routine for the assess-
ment of CAD (Zhang et al. 2016). Aiming at reducing the 
computational burden of these calculations, Itu et al. (2016) 
have proposed a data-driven modeling approach based on 
a neural network for the prediction of FFRc without per-
forming full hemodynamic simulations. While this approach 
allows for almost real-time assessment of stenosis sever-
ity, the FFR estimate is based on restrictive assumptions on 
the shape of the vessel and on a simplified one-dimensional 
hemodynamic model. In this work, we propose a differ-
ent approach: instead of a surrogate physics representation 
derived from training a neural network, we employ a model 
to compute the full three-dimensional hemodynamic flow 
field in coronary arteries, starting directly from the mass and 
momentum conservation equations. Another advantage of 
this approach compared to those based on machine learning 
is that it provides the flow field in the full domain, allowing 
to compute various metrics a posteriori without having to 
train a new algorithm. In addition, we introduce a flexible, 
general parametric description of the computational domain 
and boundary conditions to represent anatomic and physi-
ologic features of blood vessels.

The issue of high computational cost and long time to 
solution is a recurring problem for systems described by 
partial differential equations (PDEs) in general. When the 
systems further depend on adjustable parameters, as in the 
case of the identification of optimal simulation parameters 
(Olgac et al. 2009; Knight et al. 2010; Rikhtegar et al. 2012) 
and subject-specific evaluations and surgical planning 
(Gijsen et al. 2014; Vergallo et al. 2014; de Zélicourt and 
Kurtcuoglu 2016), evaluating the full-order model (FOM) 
described by the discretized PDEs can become prohibitively 
expensive. To address this problem, reduced basis (RB) 
methods for parametrized partial differential equations and, 
more generally, reduced-order models (ROMs), have been 
studied intensively in the last decade, e.g., to enable faster 
calculations of fluid dynamics problems (Quarteroni and 
Rozza 2007; Rowley 2011; Bergmann et al. 2009; Amsal-
lem et al. 2012; Manzoni 2014; Ballarin et al. 2015; Buoso 
and Palacios 2017). While attempts have been made to use 
ROMs for subject-specific computational fluid dynamics 
(CFD) (Manzoni et al. 2012a, b; Lassila et al. 2013; Col-
ciago et al. 2014; Ballarin et al. 2016, 2017), these method-
ologies have shown limited capability in aiding clinicians 

in the subject-specific assessment of stenosis severity. The 
challenge, in fact, arises from the need to represent often 
quite different subject-specific geometries and data under a 
common framework. So far, this point has required (1) heavy 
computational preprocessing to describe patients anatomic 
and physiologic variability in terms of meaningful param-
eters, and (2) cumbersome operations to adapt the resulting 
model to patient-specific cases during the solution process.

Here, we propose to use a reduced-order hemodynamic 
model to predict the pressure drop along stenosed vessels. 
The hemodynamic equations are discretized with the finite 
volume (FV) method and projected into a subspace of lower 
dimension, enabling fast calculations. Previous RB hemody-
namic models are almost entirely based on the finite element 
method (Manzoni et al. 2012a, b; Lassila et al. 2013; Col-
ciago et al. 2014; Ballarin et al. 2016, 2017). Existing RB 
approaches based on the FV method (Stabile et al. 2015; Sta-
bile and Rozza 2018) do not allow to define arbitrary three-
dimensional geometric parametrizations, thus limiting their 
adoption for patient-specific cases. Moreover, they address 
the pressure–velocity coupling using a pressure equation 
different from the one solved in the full-order FV model. In 
contrast, our computational pipeline builds on the exact alge-
braic form of the unsteady incompressible Navier–Stokes 
and continuity equations (hereinafter collectively abbrevi-
ated as NS) used in the full-order model (FOM), wherefrom 
we build a nonlinear RB-ROM based on offline–online split-
ting of the computations. System dimensionality is reduced 
by projecting the FOM onto a subspace obtained from proper 
orthogonal decomposition (POD) of a dataset of velocity 
and pressure fields. The algebraic operators of the equations 
in the ROM are then assembled efficiently, i.e., with low 
computational cost, in the online phase using the discrete 
empirical interpolation method (DEIM) (Maday et al. 2009). 
DEIM is also employed, for the first time, to provide a low-
dimensional description of the computational domain which 
can integrate arbitrary parametrizations with the reduced-
order description of the fluid-dynamic equations. The aim 
of our new method is the fast, subject-specific computation 
of pressure drop across a stenosis.

The manuscript is structured as follows: Sect. 2 intro-
duces the conventional method for FFRc calculations and 
the pipeline for building and using the ROM. We present the 
results in Sect. 3 and discuss the advantages and limitations 
of the methodology in Sect. 4.

2 � Methods

2.1 � Problem description: FFRc calculations

Our approach is based on an offline–online splitting of the 
computations as sketched in the flowchart of Fig. 1. The 
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online block includes the standard steps for the calcula-
tion of the subject-specific FFR. The process starts with 
the acquisition of images (e.g., using computed tomog-
raphy) and the segmentation of the branches of interest 
(A). Secondly, a computational domain is created from 
the vessel lumen (C) and used for the discretization of 
the incompressible NS equations according to the selected 

numerical strategy. We will refer to this model as the full-
order model (FOM). The numerical procedure requires the 
coupling of the resulting system of equations with bound-
ary conditions, which are derived from subject-specific 
noninvasive clinical images and measurements (B). To 
this end, usually, the inlet and outlet boundaries of the 
computational domain are coupled with lumped-parameter 
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II. Geometry reduction DEIM is used to define a reduced-order geometric description of (I).

III. Physical parametrization Definition of a reduced-order description of boundary conditions.
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Fig. 1   Pipeline for the calculation of FFRc. The online block (steps 
A to D) corresponds to the conventional calculation process using 
a full-order model. The offline block contains the steps used for the 
geometric parametrization and the creation of a reduced-order hemo-

dynamic model. The two outputs of the offline block are the reduced-
order geometric description from the geometry reduction (II) and the 
HROM (XI), which are used in online steps C and D, respectively, for 
the calculation of subject-specific FFRc
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models of the heart and coronary microcirculation, respec-
tively (Stergiopulos et al. 1995; Sankaran et al. 2012; Tay-
lor et al. 2013). The NS equations are then solved and the 
FFRc is computed (D).

Our aim is to speed up steps C and D of Fig. 1 by using 
the aforementioned offline–online decomposition strat-
egy, where the offline phase, performed only once during 
the development of the model, accounts for the highest 
computational burden, but leads to faster online subject-
specific hemodynamic calculations. Our offline stage 
starts from a dataset of computational domains sharing 
the same node connectivity and describing the variability 
of the vessels of interest (I). We then apply DEIM to the 
vertex coordinates of the domains in (I) to obtain a set 
of geometrical bases that, weighted by appropriate coef-
ficients, can reconstruct the domains of interest up to a 
preselected approximation tolerance (II). Such reduced-
order geometric description can efficiently reconstruct the 
computational domain inside a given vessel reducing the 
computational time of the step (C) in the online phase. In 
the offline step (III), we parametrize the boundary condi-
tions for the blood vessels which, in general, will depend 
on the specific application considered. In our application, 
we use the mean blood flow velocity as unique parameter.

The geometric and physical parameters identified in 
steps (I) and (III), respectively, are used to create a pre-
defined set of FOMs of the population for which we com-
pute the corresponding hemodynamics using a FV solu-
tion strategy (IV) and store the corresponding velocity and 
pressure fields (V). Based on these solutions (or snap-
shots), we use POD to generate a set of bases (VI) whose 
linear combination can reconstruct the original solutions. 
By imposing orthogonality of the algebraic formulation 
of the FOM residuals on the POD bases (Galerkin pro-
jection), we can reduce the system’s dimensionality of 
states (VII). This leads to a reduced-order model with 
low dimensionality, which we refer to as ROM (VIII). 
We integrate the ROM for the cases considered in (IV) 
and store the algebraic NS operators (IX). Using DEIM 
on these matrices (X), we determine an approximation of 
the algebraic description of the NS operators, which will 
allow their efficient assembly during the online solution 
process (XI). The ROM using the DEIM approximation to 
reconstruct the operators is referred to as hyper-reduced 
ROM (HROM). With this final ROM, the time to solution 
of subject-specific calculations will be reduced.

In the remainder of this section, we will detail the steps 
presented in Fig. 1. We remark that in order to calculate 
FFR, both the pressure drop along the vessel and the aortic 
pressure must be known. Here, we will focus on the com-
putational pipeline for the prediction of the pressure drop. 
We have developed the pipeline based on simplified yet 

realistic coronary artery branch anatomies, and tested it for 
large pressure drops as they may occur in severe stenoses.

2.2 � Geometry database

We populated the geometric database (Fig. 1, I) with syn-
thetic geometries approximating the variability of the most 
important anatomic features of coronary arteries, such as 
diameter scaling and tapering, stenosis severity, position and 
length. The geometric parametrization is set a priori during 
the generation of the database. However, this information 
is not provided explicitly to our geometric parametrization 
algorithm. Instead, the algorithm automatically identifies a 
set of parameters and suitable mapping from those to the 
mesh point coordinates based on the used geometries. This 
allows to easily adapt the parametrization to general shapes 
for which a parametric description is not known or not 
imposed a priori.

All synthetic geometries in our study are obtained from 
the deformation of a three-dimensional straight pipe with 
diameter d0 = 4 mm and length L0 = 40 mm, which is shown 
schematically in Fig. 2. A Cartesian coordinate system is 
defined with origin at the center of the inlet section and 
the x3 axis along the length of the pipe. The fluid domain is 
meshed with 75,000 hexahedral elements, which have been 
shown to provide grid-independent pressure drop results for 
the geometries and fluid conditions addressed in this work. 
The mesh is generated using the native OpenFOAM struc-
tured mesher (Weller et al. 1998).

Geometric features are then added to the reference mesh 
to represent realistic branch anatomies. First, diameter scal-
ing and a bell-shaped section restriction along the x3 axis are 
prescribed with the mapping function

where xi are the coordinates of the mesh points, �g,0 is 
the diameter scaling factor and �g,1 , �g,2 and �g,3 are the 

(1)

xi = xi�g,0

[
1 − �g,1 exp

(
−

(
x3 − �g,3L0

)2
�g,2L0

)]
and i = 1, 2,

L0

µg,3L0

µg,1d0 µg,0µg,4d0µg,0d0

x2

x3

f (µg,2L0)

Fig. 2   Reference domain (representing a coronary artery branch) with 
added features (changes of the geometry due to stenosis and taper-
ing): �g,0d0 is the inlet diameter, �g,0�g,4d0 the outlet diameter, �g,1d0 
the diameter of the stenosis throat, �g,3d0 the throat position on the x3 
axis, L0 is the total length (constant for all geometries). The stenosis 
length is a function of �g,2L0
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amplitude, length and throat position parameters of the bell-
shaped restriction, respectively. In what follows, we will use 
�g,1 to represent the stenosis severity based on the diameter. 
Secondly, tapering of the channel is prescribed with a linear 
function defined between the throat position, �g,3L0 , and the 
domain outlet such that

where �g,4 is to the ratio between the outlet diameter and 
the inlet one.

Each e lement  of  the  geometr ic  da tabase , 
Xi = X

(
�i
g

)
∈ ℝ

h×3 is obtained applying the transforma-
tions of Eqs. (1) and (2) with a prescribed set of the afore-
mentioned parameters, �i

g
 . Specifically, Xi(j, ∶) =

(
xj, yj, zj

)
 

are the new coordinates of the jth point of the reference 
computational domain after the transformation.

2.3 � Physical parametrization

We impose physiologic blood flow conditions in the ves-
sels by prescribing the inlet velocity profile. For our simu-
lations, we have set a constant parabolic inlet velocity pro-
file since this has been seen to be a reasonable assumption 
for FFR calculations (Zhang et al. 2016): clinically, FFR is 
obtained as the time-average of the values measured dur-
ing the diastolic phase of the cardiac cycle, when coronary 
flow and microcirculation resistance are almost constant. 
Based on these assumptions and considering the cylindrical 
pipe configuration introduced in Sect. 2.2, the inlet veloc-
ity uin =

(
u1in , u2in , u3in

)
 has a nonzero component in the x3 

direction and is defined as

where x1
(
�i
g

)
 , x2

(
�i
g

)
 and x3

(
�i
g

)
 are the coordinates of a 

point of the domain, d
(
�i
g

)
 is the inlet diameter and the 

physical parameter �p is the mean inlet velocity. As high-
lighted in the notation, geometry and point coordinates 
depend on the geometric parameters describing the configu-
ration of the selected domain. While we have considered 
here an axis-symmetric parabolic profile, more complex inlet 
flow profiles could be employed just as well.

(2)

xi = xi�g,4

[
z − �g,3L0

L0
(
1 − �g,3

)
]

with z ≥ �g,3L0, i = 1, 2,

(3)

u3in

�
�i
g
,�i

p

�
= 2�p

⎛⎜⎜⎜⎝
1 − 4

�
x2
1

�
�i
g

�
+ x2

2

�
�i
g

��

d2
�
�i
g

�
⎞⎟⎟⎟⎠

�����x3��i
g

�
=0

2.4 � Full‑order hemodynamic model 
and finite‑volume solution

After the definition of a domain Ω
(
�g

)
 with boundaries 

�Ω
(
�g

)
 described by the selected geometric parametriza-

tion, we set the unsteady, incompressible parametrized NS 
and continuity equations to model the blood flow in the vessel 
(required for the online step C and offline step IV in Fig. 1). 
Blood is assumed to behave like a Newtonian incompressible 
fluid with constant and uniform density, � , and kinematic vis-
cosity, � . The system of equations, under rigid wall assump-
tions, reads as follows

where u is the fluid velocity, p is the fluid pressure divided 
by the fluid density, n is the boundary normal vector, uin

(
�p

)
 

is the boundary condition imposed at inlet and vessel walls 
( �ΩD ) and h

(
�p

)
 is the boundary condition at the outlet 

( �ΩN ), which we set to zero in our work. For clarity, we 
have explicitly specified the dependence of the computa-
tional domain on the geometrical parameters, �g , and of the 
boundary conditions on physical parameters, �p . Hereinafter, 
unless specifically stated, � will refer to the generic depend-
ence on the parameters.

The pressure–velocity coupling is obtained using the PISO 
algorithm, in which mass conservation is imposed by solv-
ing a pressure-Poisson equation (Jasak 1996; Moukalled 
et al. 2015). This method allows resolving the saddle-point 
problem of the system of equations and couple the solution of 
the pressure and velocity fields. The algebraic descriptions of 
these operators can be derived after the selection of suitable 
spatial and temporal discretization. Here, linear interpolation 
and central differencing are used for spatial discretization. A 
semi-implicit time-marching scheme is used where solution-
dependent terms need to be linearized with respect to the solu-
tion of the last time step. After spatial and time discretization, 
the algebraic form of the incompressible NS equations yield-
ing our FOM reads as

where [∙]t and [∙]t+Δt refer to solution fields at the previous 
and current time steps, respectively, uh ∈ ℝ

3h and ph ∈ ℝ
h 

(4)

⎧
⎪⎪⎨⎪⎪⎩

�

�t
u + (u ⋅ ∇)u − �Δu + ∇p = 0 in Ω

�
�g

�
× (0, T)

∇ ⋅ u = 0 in Ω
�
�g

�
× (0, T),

u = uin
�
�p

�
in �ΩD

�
�g

�
× (0, T),

−pn + �(∇u)n = h
�
�p

�
in �ΩN

�
�g

�
× (0, T),

u = u0 in Ω
�
�g

�
× t = 0,

(5)

[
Mh + Ch

(
ut
h

)
− ��h �h

0 �h

(
ut
h

)
] [

ut+Δt
h

pt+Δt
h

]

=

[
f t+Δt
u,h

f t+Δt
p,h

]BCD

+

[
f t
u,h

f t
p,h

]BCN

,
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are the velocity and pressure fields at the mesh cell cen-
troids, Mh , Ch

(
uh
)
 , ��h and �h are the mass, convective, 

Laplacian and pressure-gradient operators of the momentum 
conservation equation and �h

(
uh
)
 the modified Laplacian 

of the pressure-Poisson equation. In the notation used, the 
dependence on the time increment Δt is implicitly included 
in the mass matrix. The two terms at the right-hand side 
represent the discretized versions of the Dirichlet ( [∙]BCD ) 
and Neumann ( [∙]BCN ) boundary conditions, respectively. At 
each time step, the system is linearized using the previous 
solution for the evaluation of Ch

(
uh
)
 , �h

(
uh
)
 and [∙]BCN . The 

subscript h refers to the discretization of the equations in 
the FOM computational domain, h being the total number 
of cells of the domain. We have used the OpenFOAM FV 
framework to discretize and solve the NS equations (Weller 
et al. 1998). For a detailed derivation of the equations, the 
form of the discretized operators and the PISO solution pro-
cess, the reader is referred to (Jasak 1996; Moukalled et al. 
2015). Since our aim is to compute the pressure drop along 
the vessel, we use herein a zero-pressure reference at the 
domain outlet. However, any reference pressure could be 
used, including one obtained by coupling the stenosis model 
with a lumped-parameter representation of coronary circula-
tion as shown in Stergiopulos et al. (1995), Sankaran et al. 
(2012) and Taylor et al. (2013).

2.5 � Dimensionality reduction

This section introduces the POD and DEIM methods used 
during the offline phase to reduce the dimensionality of both 
geometric and hemodynamic descriptions. Concretely, POD 
is used to construct the reduced bases for the velocity and 
the pressure fields through the so-called method of snapshots 
(Buljak 2011) (Fig. 1, VI). These subspaces are used for the 
Galerkin projection (Fig. 1, VII) of the algebraic NS equa-
tions to reduce the state of the system (Fig. 1, VIII). Addi-
tionally, the application of POD to the elements of the geo-
metric dataset, Xn = X

(
�n
g

)
 , or to the discrete fluid-dynamic 

operators of the NS equations, will generate the bases which, 
together with the DEIM coefficients (Fig. 1, steps II, X), will 
allow the definition of an eicient sampling strategy for thei-
ronline reconstruction.

2.5.1 � Proper orthogonal decomposition

To ensure that this article is self-contained, we review here, 
briefly, the construction of a reduced-order approximation 
of a generic parametric-dependent field through POD. In 
our case this field, �(�) , could consist of hemodynamic 
velocities, uh , pressures, ph , mesh point coordinates, Xn , or 
discrete operators from Eq. (5). Let �(�) be a map defined 

on D with values in ℝh and let Mz = {�(�) ∈ ℝ
h | � ∈ D} 

be the manifold identified by the image of � . The goal of 
POD is to approximate Mz with a low-dimensional opti-
mal linear space of ℝh starting from a set of ns snapshots 
�i = �(� i) , with � i ∈ D , i = 1,… , ns . Here, �1,… , �ns 
are randomly sampled points of D ; other strategies, such 
as latin hypercube sampling or sparse grid techniques, 
could be exploited. These strategies become especially 
useful for high-dimensional parameter spaces, where the 
system might exhibit a non-smooth response, or where it 
may have different physical regimes in subregions of the 
parameter space (Pagani et al. 2018). Using the snapshots 
method (Buljak 2011), the POD bases are computed from 
the eigenvectors, �i and eigenvalues, �i of the correlation 
matrix � = �T

𝕏h� ∈ ℝ
ns×ns , where Z is the snapshot matrix

and 𝕏h ∈ ℝ
h×h is a symmetric positive-definite matrix 

encoding a suitable norm. Since � is symmetric and pos-
itive-definite, we have that �1 ≥ �2 ≥ ⋯ ≥ �ns ≥ 0 and the 
POD bases are obtained as

from the N eigenvectors �i corresponding to the first N (larg-
est) singular values; we can set the bases dimension N as the 
minimum integer such that

for a given small tolerance 𝜀POD > 0 . For time-independent 
field variables and operators, � ≡ � , POD is performed with 
the procedure described above. For time-dependent field var-
iables, as in the case of velocity, pressure, convective and 
pressure-Laplacian algebraic NS operators and discretised 
Neumann boundary conditions, � ≡ [t,�] and the procedure 
relies on snapshots taken of each different parameter value 
combination at different instances in time. Then, the correla-
tion matrix C is assembled either once, on the global matrix 
collecting all the snapshots (corresponding to �1,… ,�ns at 
times t1,… , tNt ), or sequentially, taking for each selected 
parameter values the snapshots corresponding to different 
instants, and finally performing POD again of the retained 
eigenmodes for each �1,… ,�ns . Here, we have selected the 
first approach and computed the POD bases on the global 
correlation matrix. The second approach is preferable when 
there is insufficient memory to store all snapshots at once.

In the spirit of POD decomposition, each (possibly time-
dependent) instance in Mz can be approximated as

� = [�1, �2,… , �ns ] ∈ ℝ
h×ns ,

�i =
1√
�i

��i, i = 1,… ,N ≤ Nh

(6)
∑N

i=1
�2
i∑ns

i=1
�2
i

≥ 1 − �POD



1873Reduced‑order modeling of blood flow for noninvasive functional evaluation of coronary artery…

1 3

where �N = [�1,… ,�N] ∈ ℝ
h×N are parameter and time-

independent bases and �(�) the vector whose components 
are the respective amplitudes.

2.5.2 � Galerkin projection

The aim of the Galerkin projection (Fig. 1, VII) is to reduce 
the number of FOM states by imposing normality of the alge-
braic formulation of the FOM residuals with respect to a suit-
able bases subspace. In our case, the bases are generated using 
POD on snapshots of velocity and pressure fields (output of 
step VI in Fig. 1) obtained from the solutions of the full-order 
model (FOM) for selected sampled combinations of the physi-
cal and geometrical parameters. The corresponding projection 
matrices from the full to the reduced-order spaces are 
�u =

[
�1,… ,�Nv

]
∈ ℝ

h×Nv  a n d 

�p =

[
�1,… ,�Np

]
∈ ℝ

h×Np with Nv ≠ Np a priori.
The Galerkin projection of the FOM of Eq. (5) onto the RB 

spanned by the columns �u and �p yields, algebraically, the 
following ROM

where the same notation as in Eq. (5) has been adopted. MN , 
CN

(
uh
)
 , ��N and �N are the reduced-order representation of 

the mass, convective, Laplacian and pressure-gradient opera-
tors of the momentum conservation equation and �N

(
uh
)
 the 

reduced-order representation of the modified Laplacian of 
the pressure-Poisson equation. The two terms at the right-
hand side represent the projection of discretized versions of 
the Dirichlet ( [∙]BCD ) and Neumann ( [∙]BCN ) boundary con-
ditions onto the corresponding RB. The subscript h and N 
refer to the number of degrees of freedom of the FOM and 
ROM, respectively.

The dimension of the system defined by Eq. (8) is now 
much lower than that of the FOM (Eq. (5)), and solving the 
system has become computationally less expensive. However, 
without further development, the ROM still requires the cal-
culation of all operators in the FOM ahead of their projection 
onto the POD bases. Additionally, some of the operators in 
Eq. (5) depend on the FOM solution (dependence on uh in 
Eq. (8)) so that they would need to be recomputed at each 
iteration using the FOM and then projected onto the POD sub-
space. This would translate to only a marginal cost reduction 

(7)�(�) ≈ �r(�) =

N∑
i=1

�iai(�) = ��(�),

(8)

[
MN + CN

(
ut
h

)
− ��N �N

0 �N

(
ut
h

)
] [

ut+Δt
N

pt+Δt
N

]

=

[
f t+Δt
u,N

f t+Δt
p,N

]BCD

+

[
f t
u,N

f t
p,N

]BCN

,

when using the ROM as in Eq. (8). For this reason, we need 
a method to efficiently reconstruct these solution-dependent 
operators at each iteration. We refer the reader to the work of 
Negri et al. (2015) for more detail.

2.5.3 � Discrete empirical interpolation method

During the online phase, the generation of both computational 
domain and algebraic operators of the NS equations must be 
performed very efficiently. We use DEIM (Maday et al. 2009) 
(or MDEIM, for its matrix version) to reduce the compu-
tational cost of these two tasks and obtain the approximate 
mesh coordinates and NS operators. We will generally refer 
to them as �(�h(�);�) , where �h(�) specifies the dependence 
on the solution field and � the dependence on the parameters 
describing the problem. We seek to approximate �(�h(�);�) 
as a linear combination of (�h(�);�)-independent terms, �i

R
 , 

and corresponding (�h(�);�)-dependent weights, �i
R
(�h(�);�),

where �R(�h(�);�) ∈ ℝ
mR is the vector of the coefficients to 

be determined and �R =
[
�0
R
,… ,�

mr

R

]
.

The bases �R can be computed during the offline phase 
by performing POD on a set of snapshots of �(�h(�);�) as 
described in Sect. 2.5.1. The coefficient vector �R(�h(�);�) can 
be evaluated for each new value combination of � by imposing 
mR interpolation constraints on a subset ℘ = [℘1,… ,℘mR

] 
of entries of �(�h(�);�) [the so-called magic points, see, e.g., 
Maday et al. (2009)] selected by the DEIM algorithm. There-
fore, during the online phase, it is sufficient to calculate the 
algebraic operators only at those points to quickly reconstruct 
their formulation in the ROM.

2.5.3.1  DEIM for NS algebraic operators  To apply DEIM to 
the matrices corresponding to the algebraic operators in 
Eq. (5), we calculate the average value, A0

�R
 . Then, we build 

the snapshot matrix for the POD algorithm (Sect. 2.5.3) by 
stacking into a column vector the difference between the 
operator and the mean, i.e., �i = vect(�(�h(�

i);�i) − A0
�R
) . 

After calculating the bases functions �i
R
 , these can be reas-

sembled into their matrix form, Ai
�R

 , and projected onto the 
relevant POD subspace so that each operator in (8) can be 
approximated as

(9)

�(�h(�);�) ≈ �r(�h(�);�) = �R�R(�h(�);�)

=

mR∑
i=1

�i
R
(�h(�);�)�

i
R
,

(10)

�N(�h(�);�) ≈ �N,r(�h(�);�)

=

mR∑
i=0

�i
R
(�h(�);�)A

i
N,�R

,
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where Ai
N,�s

= �
T
fr
Ai
�R
�fl

 and �0
R
= 1 . Here, �fr

 and �fl
 rep-

resent the appropriate subspaces �u or �p , depending on the 
operator. In this case, magic point subsets correspond to 
℘ = [℘1,… ,℘mR

] element entries of the selected operator. 
During the online phase, modal amplitudes �i

R
 are calculated 

by imposing that Eq. (9) is satisfied for these selected entries 
and, finally, the operator is approximated using Eq. (10). The 
ROM exploiting DEIM approximation of the NS algebraic 
operators will be referred to as HROM.

2.5.3.2  DEIM for  geometric reconstruction  We first com-
pute the mean geometry, X̄ref , obtained from the point-wise 
average of the coordinates of the domains in the dataset. 
Then, we build the snapshot matrix for the DEIM algorithm 
(Sect. 2.5.3) by stacking into a column vector the difference 
between the coordinates of each instance of the geometric 
database and the mean geometry, i.e., �i = vect(X

(
�i
g

)
− X̄ref) . 

The magic points obtained from DEIM identify an equiva-
lent number of vertices of the mesh boundary. As for the NS 
operators, during the online phase, the modal amplitudes �i

R
 

are calculated by imposing that Eq. (9) is satisfied for these 
coordinates of these points. The one-to-one correspondence 
of the points of the atlas and a general shape will, in general, 
not be ensured. Therefore, the points used to impose the 
interpolation constraints will be identified by a suitable 
mapping of the geometry. In the case of vessels, this could 
be done by a cylindrical parametrization of atlas and refer-
ence geometry. In particular, after the segmentation of the 
patient anatomy and the isolation of the lesioned branch of 
interest, the magic points are identified based on the center-
line position along the branch and the polar coordinates in a 
section-based reference frame. We want to highlight that 
during the online phase, we only require the mesh elements 
necessary for the calculation of the DEIM coefficients of the 
NS operators. Therefore, to further accelerate the calcula-
tions, we can reduce the bases �R to the mesh points defin-
ing those cells. In our pipeline the geometric parametriza-
tion is used to reconstruct only the reduced meshes for each 
operator.

3 � Results

3.1 � Geometry database

We generated 100 synthetic geometries by randomly pre-
scribing the components of the parameter space introduced 
in Sect. 2.2 within a predefined range. The reference (inlet) 
diameters vary between 2 and 6 mm, corresponding to 
�g,0 = 1.0 ± 0.50 , fully covering the variation found in the 
statistical analysis of coronary arteries by Mancini et al. 

(2007). Tapering values reported by the same authors led 
to the selection of �g,4 = 1.0 ± 0.15 to represent healthy and 
diseased physiological tapering conditions. The stenosis 
severity parameter �g,1 ranges from 0.2 to 0.5 and the lesion 
is arbitrarily located along the vessel by selecting �g,3 values 
from 0.37 to 0.63. The reference stenosis length parameters, 
�g,2 , is varied in the range [0.5–1.0]×10−4 . The values are 
summarized in Table 1.

3.2 � Geometric parametrization and reconstruction

The geometric parametrization is obtained by applying 
DEIM to 75 out of the 100 geometries generated in the 
database, while the 25 excluded cases are used to assess 
the performance of the parametrization on new geometries. 
Setting a tolerance of 10−2 , 10−3 and 10−4 for DEIM leads 
to the selection of K = 3 , 5, and 7 bases, respectively. The 
mean geometry, X̄ref , is shown in Fig. 3a where we have also 
highlighted the position of the resulting magic points for a 
representative case with � = 10−4 , which we further use to 
illustrate our results. In Fig. 3, we present the individual 
contribution of the first two modes, �i

R i=1…2
 , over the mean 

shape for the maximum and minimum values of the corre-
sponding coefficient �i

R
 obtained from DEIM.

Figure 4 illustrates the error in the reconstruction on the 
training geometries (left panel) and on a test-set (right) for 
the three different tolerances. Errors are computed as the 
maximum distance between two corresponding nodes and 
shown relative to the reference diameter, d0.

3.3 � ROM training

For each of the defined training geometries, we have set a 
constant parabolic inlet velocity profile with a mean velocity 
magnitude between 0.2 and 1.2 ms−1 , which corresponds to 
flow regimes with Reynolds numbers (based on the refer-
ence inlet diameter d0 ) between 200 and 1200. The lower 
end of this range corresponds to resting physiologic con-
ditions in coronary arteries as derived from the coronary 
blood flow measurements from Keegan et al. (2004) and 
Zafar et al. (2014). The maximum velocity for the training of 

Table 1   Parameters and their value ranges for the geometry database. 
Indicated are also the geometric features they affect

�
g

Parameter Range

Min Max

�g,0 Inlet diameter 2.0 6.0 mm
�g,1 Stenosis severity 0.2 0.5 –
�g,2 Stenosis length 0.5 1.0 10−4

�g,3 Stenosis position 0.37 0.63 –
�g,4 Tapering 0.85 1.15 –
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the ROM is set to 1.2 ms−1 to fully cover hyperaemic blood 
flow conditions, which need to be considered when assessing 
the pressure drop across the stenosis. Each FOM is initial-
ized with a velocity field equal to the mean inlet velocity 
and calculations are conducted for t ∈ [0, 0.1] s with a time 
step size of, Δt = 5 × 10−6 s and 2 correction iterations of 
the PISO algorithm. Snapshots of pressure and velocity are 
stored from t = 0.08 at intervals of Δt = 5 × 10−4 s to remove 
the influence of transients due to the initialization and focus 
on the steady-state/periodic solution which will then be used 
to compute the mean pressure drop. Since the FOM uses a 
splitting approach, we also stored the intermediate velocity 
and pressure from the inner iterations of the PISO algorithm 
to reduce the error propagation and enhance stability in the 
ROM. In total, 6150 snapshots for both velocity and pressure 
are used for the training of the ROM.

POD is then applied to the snapshots for the calculation of 
velocity and pressure subspaces as described in Sect. 2.5.1. 
The tolerance selected for both the velocity and pressure 
fields is 10−4 resulting in Nv = 330 and Np = 282 modes, 
respectively. For the velocity we have considered an inner 
energy product by using the mass matrix of the mean geom-
etry as the norm, i.e., �h = Mh , while for the pressure POD 
we have set �h = Ih (Quarteroni et al. 2016).

Once the POD modes have been calculated, we solve 
the ROM Eq. (8) for each training case to approximate the 
hemodynamic solutions obtained by the FOM. Simulations 
are conducted for t ∈ [0, 0.1] s with Δt = 5 × 10−6 s and 2 
correction iterations of the PISO algorithm. The matrices of 
the algebraic description of the NS operators are saved for 
t ∈ [0, 0.1] s at intervals of Δt = 2.5 × 10−3 s. In total, 3000 
snapshots are stored for solution-dependent operators and 
75 for the other NS operators. For the right-hand side of the 
pressure-Poisson equation, �h

(
�h

)BCN , we have also stored 
the intermediate operators obtained during the PISO inner 
iteration, leading to a total of 6000 snapshots available for 
the training.

DEIM is then applied to all operators and source terms 
obtained from the ROM with tolerances and total num-
ber of components reported in Table 2. The table also 
reports the number of bases and coefficients that allow 
reconstruction of the NS algebraic operators within the 
selected tolerance. Each coefficient can be calculated from 
a specific component of the algebraic matrix representa-
tion of the operator. By mapping the relative degrees of 
freedom to the corresponding mesh nodes, it is possible to 
identify the reduced mesh, which is a subset of the original 
domain required for the calculations of the DEIM coef-
ficients. Therefore, since when using the HROM we are 

Fig. 3   Output of geometric 
parametrization: a mean shape 
and magic points (red spheres) 
for the case with � = 1 × 10−4 , 
b first and c second reconstruc-
tion modes: the yellow shape 
corresponds to the minimum 
value of the reconstruction 
coefficient, the blue shape to the 
maximum value

Fig. 4   Reconstruction errors 
for a training and b test cases 
with parameter variations 
given in Table 1. The three 
cases presented correspond to 
� = 1 × 10−2 and K = 3 (blue 
squares), � = 1 × 10−3 and 
K = 5 (orange triangles) and 
� = 1 × 10−4 and K = 7 (green 
points). Errors are computed as 
the maximum distance between 
two corresponding nodes and 
shown relative to the reference 
diameter, d0
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only required to assemble the algebraic NS operators for 
the cells of the reduced mesh, during the online phase we 
use the geometric parametrization to reconstruct the cells 
of the reduced mesh, decreasing the computational cost 
compared to the reconstruction of the full mesh. In Fig. 5, 
panels a to d, we show the reduced mesh for the convec-
tive, Laplacian, pressure-gradient and pressure-Laplacian 
operators.

We chose to perform DEIM on the ROM operators rather 
than on those of the FOM to reduce the propagation of numeri-
cal errors when reconstructing the source terms of the momen-
tum and pressure equations. In fact, the approximation of the 
solution with the RB of velocity and pressure introduces an 
error that is amplified by the derivatives in the formulation of 
the algebraic terms. By using the algebraic operators obtained 
from the ROM, this error is eliminated since the terms are built 
only from the bases used for the projection.

Finally, we used HROM to predict the pressure drop in 
the geometries of the database for selected inlet flow veloc-
ities. The time integration method is the same as for the 
ROM. Figure 6a shows the time-averaged pressure drop, ΔP , 
in mmHg predicted by the FOM (horizontal axis) and ROM 
and HDEIM (vertical axis; circles and triangles, respec-
tively). This is to compare the approximation errors intro-
duced by the Galerkin projection and by the reconstruction 

Table 2   DEIM tolerances and number of bases retained for NS opera-
tors of Eq. (5)

For the momentum conservation equations, �
N

(
�
h

)
 and �

N

(
�
h

)BCD 
are the algebraic form of the convective operator and the correspond-
ing discretization of the Dirichlet boundary conditions, respectively; 
��

N
 , ��BCD

N
 and ��BCN

N
 , are the algebraic form of the Laplacian opera-

tor and the terms deriving from the discretization of the Dirichlet and 
Neumann boundary conditions, respectively; �

N
 and �

N
 are the alge-

braic form of the pressure-gradient and inertia terms. In the pressure-
Poisson equations, �

N

(
�
h

)
 and �

N

(
�
h

)BCN are the algebraic form of 
the Laplacian and the right-hand-side of the equations, respectively

Operator � Bases

Momentum conservation equations
 �N

(
�h

)
10−8 1443

 ��N 10−8 38
 �N 10−8 33
 �N 10−8 16

 �N

(
�h

)BCD 10−8 2

 ��BCD

N
10−8 2

 ��BCN

N
10−8 1519

Pressure-Poisson equations
 �N

(
�h

)
10−8 697

 �N

(
�h

)BCN 10−8 2001

Fig. 5   Reduced mesh for NS operators of the HROM. The panels rep-
resent the cells of the full mesh (red elements) required for the calcu-
lation of the coefficients used to impose the interpolation constraints 
on DEIM. The background geometry refers to the mean geom-

etry obtained from the geometric parametrization (transparent back-
ground). The cases refer to the algebraic description of the a convec-
tive operator, �N

(
�h

)
 , b Laplacian operator, ��N , c pressure-gradient 

operator, �N and d pressure-Laplacian operator �N

(
�h

)

Fig. 6   Comparison of time-
averaged pressure drop predic-
tions from FOM, ROM and 
HROM for the training set. a 
compares the pressure drop 
determined with the FOM (hori-
zontal axis) to that calculated 
with the ROM (green dots) and 
the HROM (orange triangles), 
while b shows the relative errors 
in the pressure predictions: eR 
(green dots) refers to the relative 
error between FOM and ROM, 
while eH (orange triangles) to 
the relative error between FOM 
and HROM
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of the operators using DEIM. Figure 6b shows the error for 
each case relative to the corresponding full-order model. 
Specifically, eR refers to the relative error in the pressure 
drop prediction between FOM and ROM, while eH refers 
to the relative error in the pressure drop prediction between 
FOM and HROM. Time-averaged quantities are calculated 
in the time range [0.04–0.10] s.

Figure 7 compares the pressure predictions between ROM 
and HROM for the 25 test cases not included in the training 
(Fig. 7a) and the relative error, eH , is plotted as function of 
the FOM pressure drop in Fig. 7b.

In Figs. 8 and 9 we show the time-averaged velocity mag-
nitude and pressure fields for two cases with similar geom-
etry but different physical parameters, yielding section-aver-
aged inlet velocities of 0.34ms−1 and 1.05ms−1 , respectively 
. We refer to the reconstructed velocity and pressure fields 
from HROM as �r and pr , respectively, which, in the spirit 
of the POD decomposition, are obtained as �r = �u�Nv

 and 
pr = �ppNp

 . In the plots, we compare the predictions of 
FOM and HROM and show the relative errors. Pressure 
fields shown in the respective right panels of Figs. 8 and 9 
contain a region downstream of the stenosis with negative 

Fig. 7   Comparison of time-
averaged pressure drop predic-
tions from FOM and HROM for 
the 25 test cases. a compares 
the pressure drop from the FOM 
(horizontal axis) to that calcu-
lated with the HROM, while b 
shows the relative errors in the 
pressure predictions between 
FOM and HROM ( eH , orange 
triangles) as function of the 
pressure drop
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Fig. 8   Contours of time-averaged velocity (left panels) and pres-
sure fields (right panels) for the case described by the parameters 
�g,0 = 3.4 mm, �g,1 = 0.48 , �g,2 = 1.1 × 10−4 , �g,3 = 0.47 , �g,4 = 0.97 
and �p = 0.34  ms−1 . The time-averaged pressure drops predicted by 
FOM and HROM are 5.69  mmHg and 5.59  mmHg, respectively. 
The prediction error eH is thus 0.1 mmHg (2%). The maximum error 
in the pressure field reconstruction is approximately 30%. a and b 

Respectively, velocity magnitude, ||�h|| , and pressure, ph , predic-
tions from the FOM. c and d Respectively, the reconstructed velocity 
magnitude field, ||�r|| , and pressure, pr , predictions from the HROM. 
Finally, panels e and f illustrate the absolute error in velocity and 
pressure of the HROM with respect to the FOM, showing the mag-
nitude of velocity difference, ||�r − �h|| , and difference in pressure, 
pr − ph , respectively
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pressure values. We emphasize that these values are relative 
to zero pressure prescribed at the outlet and indicate that 
after the stenosis there is a partial recovery of the pressure 
which then approaches zero.

4 � Discussion

In this study, we have presented a novel computational 
approach based on a parametrized reduced-order model of 
the Navier–Stokes and continuity equations for accelerating 
the calculation of pressure drop along blood vessels. This 
is relevant for the functional assessment of coronary artery 
stenoses. The computational speedup is obtained by address-
ing two aspects of the standard pipeline for flow modeling: 
mesh generation and hemodynamic calculations (steps C and 
D of Fig. 1, respectively).

We have considered a realistic set of synthetic geometries 
with a geometric variability representing the most impor-
tant anatomic features of coronary arteries such as diameter 
scaling and tapering, stenosis severity, position and length. 
Itu et al. (2016) have prescribed a similar set of geomet-
ric parameters to generate synthetic domains to compute 
the hemodynamic solution in a simplified one-dimensional 
Navier–Stokes model. Our approach is different in that we 
utilize the parametrization simply as a means to control the 

variability of the shapes used to populate the database. Our 
geometric parametrization method can, in fact, identify auto-
matically a suitable mapping based on the geometries pro-
vided in the database, allowing for an easy adaptation to gen-
eral shapes for which a parametric description is not known 
or imposed a priori. This approach allows to reconstruct 
the computational domain in vessels of interest from con-
trol points on its surface. To our knowledge, this is the first 
example of geometric parametrization and reconstruction 
able to handle arbitrary shape variations based on DEIM. 
Furthermore, in contrast to approaches based on neural net-
works, our method derives directly from the fundamental 
laws of fluid mechanics as described by the incompressible 
Navier–Stokes equations rather than emulating certain char-
acteristics of fluid dynamics.

We have shown that DEIM recovers the correct map-
ping using a number of modes comparable with the number 
of parameters selected for the generation of the anatomic 
variability. The magic points are clustered where the larg-
est deformations are found. Mesh generation with the con-
ventional pipeline takes on average 2 s on a single CPU 
core (Intel(R) Xeon(R) E5-1630), but only 0.19 s with the 
proposed geometric reconstruction, providing a speedup of 
about a factor of 10. Of the 0.19 s, 1.5 ms are required, 
on average, for computing the mesh coordinates, while the 
remaining time is overhead for writing the point coordinates 

Fig. 9   Contours of time-averaged velocity (left panels) and pres-
sure fields (right panels) for the case described by the param-
eters �g,0 = 3.0  mm, �g,1 = 0.48 , �g,2 = 0.75 × 10−4 , �g,3 = 0.04 , 
�g,4 = 0.93 and �p = 1.05  ms−1 . The time-averaged pressure drops 
predicted by FOM and HROM are 41.74  mmHg and 38.68  mmHg, 
respectively. The prediction error eH is thus 3 mmHg (8%). The maxi-
mum error in the pressure field reconstruction is approximately 10%. 

a and b Respectively, velocity magnitude, ||�h|| , and pressure, ph , 
predictions from the FOM. c and d Respectively, the reconstructed 
velocity magnitude field, ||�r|| , and pressure, pr , predictions from the 
HROM. Finally, e and f illustrate the absolute error in velocity and 
pressure of the HROM with respect to the FOM, showing the mag-
nitude of velocity difference, ||�r − �h|| , and difference in pressure, 
pr − ph , respectively
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to file. This time intensive data exchange via files could be 
circumvented by coupling our code to OpenFOAM.

The parametric HROM is derived from a FOM that uses 
the OpenFOAM FV framework to discretize and solve the 
NS equations. Two aspects contribute to the novelty of 
the method: the fully nonlinear parametrization in a FV 
approximation and the pressure–velocity coupling of the 
NS equations using the PISO splitting scheme. Another 
standout feature of our approach compared to the state-
of-the-art is automatically satisfied ROM stability. Earlier 
models based on FEM required extra terms to both recover 
the pressure–velocity coupling and ensure system stability. 
Our methodology reduces computational cost substantially: 
each time step requires the solution of a system of 330 and 
282 equations for velocity and pressure field, respectively, 
compared to 225,000 and 75,000, respectively, for the FOM. 
Considering the computational time for the generation of the 
time-dependent operators and the solution of the system of 
equations with PISO, the FOM requires, on average, 2.5 s 
on a single core for each time step, while the ROM requires 
0.11 s on average. This corresponds to a speedup of a factor 
of about 25. The times reported here include overhead for 
data exchange, which, as mentioned before, could be circum-
vented by coupling our code to OpenFOAM.

The errors observed between FOM and ROMs are 
linked to the complexity of the flow structures, as illus-
trated in Figs. 8 and 9. These two cases also show that the 
prediction errors in the pressure drop, eH , is lower than 
the local maximum errors in the pressure fields, indicating 
that the output variable of interest is better approximated 
by the HROM than the full field. In Fig. 6 we have shown 
that the maximum prediction errors eR and eH are bounded 
by 25%, with a maximum absolute value below 8 mmHg. 
We observe that these two errors are very close, indicat-
ing negligible additional errors in the HROM introduced 
by the approximation of the NS operators with DEIM. We 
also find that the ROM and HROM mostly underestimate 
the pressure drop. A possible reason for this may be the 
fact that we neglect the smallest flow structures with our 
POD basis, and therewith also some of the inherent vis-
cous dissipation. The errors eH for training and test sets are 
very similar (Figs. 6a, 7a), indicating that the model could 
be used for making predictions for new cases not included 
in the training set. In addition, the magnitude of these 
errors is within the range of those introduced by the cath-
eter wire during invasive FFR measurements (Ashtekar 
et al. 2007; de Vecchi et al. 2014), showing the potential 
of the method for the generation of reduced-order models 
fast enough for pressure drop predictions for clinical appli-
cations. The approximation error eH , which is the com-
bined result of approximations of geometry, Navier–Stokes 
operators and POD modes, could be reduced by increasing 
the number of POD bases considered. However, this can 

quickly escalate the computational cost. In fact, we need to 
point out that while in the FOM a sparse system of equa-
tions needs to be solved, the system matrices in the ROM 
are dense. The optimization of accuracy and speedup will 
be fundamental in future clinical applications. Indeed, we 
have shown that errors are not uniformly distributed in 
the full range of pressure drop predictions. High predic-
tion accuracy must be achieved in cases where the FFR 
value is in the range of 0.75–0.85, since 0.8. is commonly 
used as the threshold below which a stenosis is considered 
functionally significant. We have given the same weight to 
all solution snapshots used in the POD and DEIM calcula-
tions. For clinical applications, the cases close to the FFR 
threshold value of 0.8 should receive a higher weight, and 
would thus increase the accuracy of the predictions in that 
FFR region.

5 � Conclusion

We have presented a methodology for generating a para-
metrized reduced-order model (HROM) to predict the 
pressure drop along a blood vessel. We have used an 
offline––online splitting of the solution process combined 
with proper orthogonal decomposition (POD) and the dis-
crete empirical interpolation method (DEIM) to reduce the 
computational cost associated with mesh generation and the 
solution of the hemodynamic equations. The computational 
domain inside the lumen is defined from the assembly of 
precomputed geometric bases weighted by corresponding 
coefficients computed from the coordinates of a few sampling 
points on the vessel wall. In our example case, this has led to a 
speedup of about a factor of 10 compared to the conventional 
mesh generation process. This parametrization works with 
arbitrary shape variations, and without the need for defining 
ad hoc functions or mappings. To our knowledge, this is the 
first application of such a flexible approach for the generation 
of a parametric computational domain that does not require 
an analytical description of the anatomical variations and that 
can be directly coupled with the reconstruction method of 
the NS algebraic operators. A more substantial reduction in 
computational cost is achieved with the HROM for the incom-
pressible Navier–Stokes equations, which can, principally, be 
adapted to any vessel of the body. To our knowledge, it is the 
first application of a complete parametric nonlinear reduction 
approach to the finite volume description of the Navier–Stokes 
equations using open-source libraries. Numerical results show 
good overall accuracy of the HROM in predicting hemody-
namic indices, and a speedup of about a factor of 25 compared 
to the full-order model. Errors are lower than those incurred 
during invasive acquisitions of pressure drop across stenoses 
in coronary arteries. Altogether, the methodology described 
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herein may allow for the development of a clinically viable 
framework for the noninvasive assessment of the functional 
severity of arterial stenoses.
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