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Abstract
A profound analysis of pressure and flow wave propagation in cardiovascular systems is the key in noninvasive assessment 
of hemodynamic parameters. Pulse transit time (PTT), which closely relates to the physical properties of the cardiovascular 
system, can be linked to variations of blood pressure and stroke volume to provide information for patient-specific clinical 
diagnostics. In this work, we present mathematical and numerical tools, capable of accurately predicting the PTT, local pulse 
wave velocity, vessel compliance, and pressure/flow waveforms, in a viscous hyperelastic cardiovascular network. A new 
one-dimensional framework, entitled cardiovascular flow analysis (CardioFAN), is presented to describe the pulsatile fluid–
structure interaction in the hyperelastic arteries, where pertaining hyperbolic equations are solved using a high-resolution 
total variation diminishing Lax–Wendroff method. The computational algorithm is validated against well-known numerical, 
in vitro and in vivo data for networks of main human arteries with 55, 37 and 26 segments, respectively. PTT prediction is 
improved by accounting for hyperelastic nonlinear waves between two arbitrary sections of the arterial tree. Consequently, 
arterial compliance assignments at each segment are improved in a personalized model of the human aorta and supra-aortic 
branches with 26 segments, where prior in vivo data were available for comparison. This resulted in a 1.5% improvement 
in overall predictions of the waveforms, or average relative errors of 5.5% in predicting flow, luminal area and pressure 
waveforms compared to prior in vivo measurements. The open source software, CardioFAN, can be calibrated for arbitrary 
patient-specific vascular networks to conduct noninvasive diagnostics.

Keywords Subject-specific hemodynamics modeling · Hyperelastic constitutive model · Fluid–structure interaction (FSI) · 
Compliance discontinuity · Pulse transit time (PTT) · Nonlinear wave propagation

1 Introduction

Clinical experiments (i.e., in vivo) and experimental (i.e., 
in vitro) models of the cardiovascular systems initiated sig-
nificant improvement in diagnostic capabilities, stimulating 
development of the fields such as biomedical engineering 
and biomechanics (Bronzino 2005). Followed by compu-
tational simulations, the first numerical model of an artery 
in the cardiovascular system which accounted for the dis-
tensibility of the arteries was developed by (Perktold et al. 
1991). More sophisticated models followed (Alastruey 2006; 

Sherwin et al. 2003b; Formaggia et al. 2003; Dong et al. 
2006; Figueroa et al. 2009) which enhanced our understand-
ing of the mechanism of blood flow and pulse propagation 
in cardiovascular system. With technological advancements, 
current computational models are becoming significantly 
more promising for the future of surgical planning, and 
for studying/monitoring cardiovascular health (van Bakel 
et al. 2018; Gray and Pathmanathan 2018). Appearance of 
FDA-cleared devices such as (Heartflow R  FFRCT and the 
Medtronic CardioInsight R  Cardiac Mapping System) and 
the addition of new FDA regulations (Gray and Pathmana-
than 2018) are more supporting evidence that the computa-
tional methods are now producing clinically viable results.

Computational models can noninvasively capture the 
mechanistic behavior in a studied region of the cardiovas-
cular system. When calibrated, these models can provide 
patient-specific data using pulsatile blood flow properties. 
Validated computational models have a significant advantage 

 * Yashar Seyed Vahedein 
 Yashar.Seyed.Vahedein@rit.edu

 Alexander S Liberson 
 asleme@rit.edu

1 Rochester Institute of Technology, 76 Lomb Memorial 
Drive, Rochester, NY 14623, USA

http://orcid.org/0000-0003-1034-060X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10237-019-01163-z&domain=pdf


1530 Y. Seyed Vahedein, A. S. Liberson 

1 3

over invasive, costly and time-consuming experimental mod-
els and clinical tests. However, they require clinical measure-
ments for calibration and evaluation of the patient-specific 
data (Itu et al. 2017). Alternatively, the data collected from 
computational models can be combined with experimental/
clinical measurements to improve diagnostics capabilities 
of the current devices (Data Assimilation (Veneziani and 
Vergara 2013)).

Cardiovascular disorders and medical interventions can 
be diagnosed by quantification and monitoring distributions 
of the cardiac output, blood pressure, blood flow, pulse wave 
velocity (PWV) and arterial compliance along the aorta or 
any of the large arteries of interest (Nichols and Edwards 
2001). In addition, the arterial wall stiffness, which gov-
erns the distensibility of arterial walls, along with the wave 
reflections at the peripheral vascular bed have been clinically 
identified as the primary biomarkers of the pulse wave prop-
agation and cardiovascular health (Mitchell 2009). In recent 
years, extensive work has been done on measuring wave 
reflections and PWV (Tavallali et al. 2018), or its surrogate 
pulse transit time (PTT) (Djelić et al. 2013; Pereira et al. 
2015). The relation between PWV(or PTT) and cardiovas-
cular diseases, such as a reduction in PTT as an indicator of 
hypertension (García et al. 2014; Liang et al. 2018), among 
others (Foo and Lim 2006; Sharwood-Smith et al. 2006), 
have been previously studied. This has made the accurate 
prediction of pulse wave propagation an indispensable part 
of the recent cardiovascular simulations (Poleszczuk et al. 
2018).

New advances in the computer power have provided 
researchers with the ability to model large-scale 1D and 
3D models (Shi et al. 2011; Humphrey 1995). In contrast 
to local 3D geometrically accurate models, reduced-order 
models are not yet widely available as the diagnostic means 
for physicians. These models are usually validated against 
in vitro data (Anliker et al. 1970; Westerhof et al. 1971), 
since a physiologically accurate data calibration and vali-
dation is required to overcome the natural noise in the car-
diovascular system (Veneziani and Vergara 2013). Global 
1D models introduce acceptable accuracy in capturing the 
physiological mechanisms of blood hemodynamics while 
having a marginally faster convergence rate compared to 
3D models. Their application is justified by the long-wave 
approximation, making them ideal to be coupled with a 
local 3D model of a confined area of interest (van de Vosse 
and Stergiopulos 2011) or lumped parameter (0D) models 
replacing the outlet to the rest of a cardiovascular network.

The majority of theoretical models developed to describe 
the fluid–structure interaction (FSI) in the vascular circu-
latory system use linear elastic or viscoelastic constitutive 
equations for the wall coupled with the one-dimensional 
averaged momentum equation for the fluid. However, the 
stress–strain relationship for biological tissue is essentially 

nonlinear (Fung et al. 1979). Fung et al. introduced an ani-
sotropic model, which accounts for the directionality of the 
elastic properties. The model constants can be calibrated 
by measuring the pressure and diameter of the main arter-
ies with clinical or experimental measurements. (Humphrey 
and Taylor 2008) mentioned that the physical nonlinearity 
is crucial for an accurate prediction of pulsatile blood flow 
properties in case of studying an aortic aneurism. It was 
proven by (Liberson et al. 2016) that the match of measured 
and estimated values of PWV can be only obtained when the 
hyperelasticity of arterial wall is introduced.

To the knowledge of authors, the current numerical 
algorithms applied to the 1D (reduced order) models do not 
necessarily preserve the monotonic property. Monotonic-
ity preserving (i.e., high resolution) schemes can retain the 
shape of waveform without creating artificial oscillations 
(Harten 1983). This approach may not cause a significant 
difference when a smooth solution exists, such as for pres-
sure or flow waveforms in healthy patients or when study-
ing hypertension (Segers et al. 2007). However, in case of 
a discontinuity in the properties, e.g., stented or prosthetic 
artery (Kolodgie et al. 2007), the only class of solvers that 
can provide a solution without simplistic smoothing of the 
waveforms (Formaggia et al. 2003) is the monotonicity pre-
serving solvers. Monotonicity preserving or total variation 
diminishing (TVD) schemes can also be used for continuous 
monitoring/prediction of cardiovascular health due to the 
discontinuous nature of cardiovascular events. These numer-
ical schemes are free of dispersion caused by approximating 
the odd derivatives in the Taylor expansion of the governing 
partial differential equations (PDEs), making them ideal for 
resolving discontinuous properties.

The general approach of Hamilton’s variational princi-
ple is utilized here to construct a unique form of the FSI 
equations governing the blood flow in the arterial system. 
The quasi-1D-reduced FSI model is simple to execute and 
alter, can be coupled to geometrically multiscale simulations 
(Vahedein and Liberson 2017; Vahedein et al. 2018) and pro-
vides quick solutions for the hyperbolic PDEs governing the 
nonlinear pulsatile flow in an arbitrary arterial network. The 
utilized approach demonstrates an improvement in accuracy 
due to the account of hyperelastic wall properties, along with 
the employment of a high-resolution monotone numerical 
scheme. The created software, named CardioFAN (Cardio-
vascular Flow Analysis), is validated against available data 
from numerical, in vitro and in vivo experiments for net-
works of arteries with 55, 37 and 26 main arterial segments 
(Alastruey 2006; Matthys et al. 2007; Alastruey et al. 2011, 
2012, 2016), respectively. The effect of physical nonlinear-
ity on the correct calculation of the PTT, pressure, flow and 
luminal vessel area is displayed. The physics-based nonlin-
ear constitutive framework can be adequately tested, cali-
brated and applied for patient-specific clinical diagnosis and 
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prediction. We present the algorithm for calculating numeri-
cal PTT for hyperelastic arteries, sensitive to variation of the 
blood pressure and the stroke volume. This PTT calculation 
technique can also complement the studies investigating the 
feasibility of tracking variations of cardiovascular markers 
by measurements of the PTT or PWV (Carek et al. 2017; 
Mukkamala et al. 2015). The new method is used here to 
improve the calculation of the speed of wave propagation 
based on the prior in vivo data provided by (Alastruey et al. 
2016). Compared to prior numerical simulations of this data, 
CardioFAN improved the flow, luminal area and pressure 
waveform predictions by 1.5%, with averaged relative errors 
smaller than 5.5% between simulated and in vivo waveforms. 
As shown in Sect. 3.3, with the current method, assigning a 
uniform or nonuniform speed of propagation values as the 
input properties of each segment, leads to improved wave-
form predictions. CardioFAN is now available for free and 
can be accessed from the provided links. Reliability test of 
this code conducted here is an important step toward prepar-
ing it for noninvasive and patient-specific diagnostics and 
data assimilation (Veneziani and Vergara 2013) purposes.

2  Methods

2.1  Blood properties

Although blood rheology is proved to be non-Newtonian 
(Pries et al. 1992), previous studies have shown that the 
blood viscosity model does not significantly affect the PWV 
when simulating large human arteries (Parkhurst et al. 2012; 
Caro et al. 2011). According to (Sankar and Hemalatha 
2007), non-Newtonian fluid model is only required for small 
arteries with diameters D < 100 𝜇m , where the shear rate 
reduces to less than 1 s−1 . Therefore, for the larger arteries, 
we can use the Newtonian flow assumption. On the other 
hand, 90% of the blood consists of water (Caro et al. 2011), 
and since the suspended materials are several orders of 
magnitudes smaller than arterial diameter, the blood can be 
considered homogeneous and incompressible with a density 
of �f = 1050 kg∕m3 and viscosity of � = 4.0 mPa.s (Caro 
et al. 2011) (used in 55 segment case, Sect. 3.1). We used 
�f = 1050 kg∕m3 , � = 2.0 mPa.s and �f = 1060 kg∕m3 , 
� = 3.5 mPa.s for the in vitro (Matthys et al. 2007) and in 
vivo (Alastruey et al. 2016) validation cases, respectively.

2.2  Governing equations

Reduced mathematical model for cardiovascular networks 
results in a hyperbolic set of partial differential equa-
tions, describing interaction of an incompressible blood 
fluid motion with a viscous hyperelastic vessel wall. The 
averaging across the section of a flow path is based on the 

Hamilton’s variational principle governing the process of a 
fluid–structure interaction (Liberson et al. 2017)

Here, �Ifluid , �Isolid are the variations of action components 
across fluid and solid volumes ∀fluid(t) , ∀solid(t) ; t – time, �f  
density of the fluid, Lf  , Ls - the Lagrangian density functions 
for fluid and solids, respectively.

2.2.1  Fluid domain

As it is mentioned by (Berdichevsky 2009), variation of the 
Lagrange function density in Eulerian coordinates can be 
written as follows:

where V – is a velocity vector, U – is an internal energy as a 
function of density, S – entropy, ∇u (gradient of a displace-
ment vector u) - a distortion tensor and T – is temperature. 
The variation of the function must vanish for any admissible 
variations �u The derivation of fluid flow equations based on 
the Hamilton’s variational principle is previously shown in 
detail (Liberson et al. 2017). Here, the effect of gravity force 
is added to the reduced momentum equation which affects 
the circulation when patient is in standing upright position

where g� is a gravitational acceleration in the direction of 
the streamline, f (r) , �(r) - the specified function distributions 
of axial velocity and displacement accordingly, r – radial 
coordinate, R- internal wall radius P – blood pressure, V  
– averaged across the flow path section fluid velocity, � , � 
are the axial deviatoric and shear stress tensor components 
accordingly.

(Schultz et al. 2008) showed that velocity profile is mostly 
flat in large arteries, unlike peripheral arteries where profile 

(1)

�I =�Ifluid + �Isolid =

=

t2

∫
t1

[
∮∀fluid(t),

�f �Lf d∀ + ∮∀solid(t),

�Lsd∀

]
dt = 0

(2)�Lf = �

(
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2
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�V

�t
+

�

�x

(
a1

P

�f
+ a2V

2
)

=
1

a0�

[
∫ rf (r) �(x,r,t)dr − R �(x,R,t)

]
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a1 = ∫ r�(r)f (r)dr;
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1

a0 ∫ r�(r)2f (r)dr
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is close to the parabolic shape (Olufsen et al. 2000). In case 
of Newtonian fluid ( � = 2�f �

�V

�x
 , � = �f �

�V

�r
, � – kinematic 

viscosity), by utilizing the generalized Hagen-Poiseuille 
velocity profile �(r) = �+2

�

[
1 −

(
r

R

)�]
 and a constant profile 

for the displacement distribution f (r) = 1 , Eq. (3) takes the 
form presented in (Peiró and Veneziani 2009)

Momentum Eq. (4) is complemented by an averaged over 
the cross section continuity equation (Sherwin et al. 2003a)

where � is the circumferential strain (normal wall displace-
ment normalized to radius R), A, A0 cross-sectional areas 
in the loaded and the stress-free conditions. Constitutive 
“tube model”, closing these two equations for unknown vari-
ablesA , P and V , follows from the analysis of a solid domain.

2.2.2  Solid domain: the hyperelastic Fung’s model 
and the generalized tube law

Consider a circular thin-wall cylinder in the polar system 
of coordinates. Let R be the radius of the wall under the 
load, R0 – radius in a load free state, h - the wall thickness, 
�w-density of the wall. Introducing wall kinetic energy K, 
elastic energy Uel , dissipative energy Ud and work of external 
load Wp , the Lagrangian density function relating to the solid 
domain can be presented as

The normal velocity of the moving wall R0
d�

dt
 defines kinetic 

energy per unit length

Internal elastic energy is composed of a hyperelastic strain 
energy (Fung et al. 1979) and energy, accumulated by a lon-
gitudinal prestress force N per unit area

(4)

�V

�t
+

�

�x

(
�
V
2

2
+
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)
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(
�2V

�x2
− 2(� + 2)

V
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)
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(5)
�A
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+

�
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(
VA

)
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(6)Ls = �K −
(
�Uel + �Ud − �Wp

)

(7)K =
1

2
�whR0

2

(
��

�t

)2

(8)Uel =
hc

2

�
eQ − 1

�
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�
1 + R0

2

�
��
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− 1
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Here, Q = a11�
2
�
+ 2a12���x + a22�

2
x
 , and c,  a11, a12, a22 are 

material constants from Fung’s anisotropic model (Fung 
et al. 1979), where �� and�x are the circumferential and axial 
strain components. Strain energy of the wall modeling as a 
system of independent hyperelastic rings is simplified in a 
1D case by settinga12 = a22 = 0, �� = � , where � is the cir-
cumferential strain. As a result, for small strains 
R0

2
(

𝜕𝜂

𝜕x

)2

≪ 1 , arriving at the expression for the strain 
energy of a reduced model

Elementary work produced by the viscous component of 
circumferential stress relating to the Voight-type viscoelastic 
material and an external pressure reads

where Γ is the viscosity constant. Calculating vari-
ational derivative of the Lagrange function Ls (Eq. (6)) ( 
Ls = Ls(�, �t, �x), �t =

��

�t
, �x =

��

�x
)

obtains the of motion of an axisymmetric cylinder

The physics-based “tube law” follows now from Eq. (12), 
where we ignore expansion terms of the fifth degree in � 
and higher

Note that partial derivative of the circumferential stress, 
�� =

PR0

h
 , by circumferential strain, � , at a zero load repre-

sents tangential modulus, E , at a stress-free state ( �P is the 
Poisson’s ratio)

According to Eqs. (13) and (14), the constitutive model 
is presented as a superposition of a viscoelastic and a 
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hyperelastic terms characterized by the Fung’s hyperelastic 
coefficient a11 and a tangential modulus E

Here, cMK =

√
Eh

2�R0

 – the Moens-Korteweg speed of pulse 

wave propagation, � =
Γ

E
 . By setting a11 = 0 , replacing 

� =
√

A

A0

− 1 , we retain the classic form of the tube law for 
linear viscoelastic material (Alastruey et al. 2011). Specify-
ing in addition � = 0 results in a linear elastic tube law

2.2.3  Reorganizing the hyperelastic vessel formulation

In the following, we simplify the notation by denoting the 
cross-sectional area averaged axial velocity by V instead of 
V . Assuming the generalized Hagen-Poiseuille radial velocity 
profile with � = 9 , justified by (Smith et al. 2002), and neglect-
ing contribution of the axial stress component compare to the 
shear stress, Eqs. (4) and  (5) read

Here, PA =
�P

�A
 , and A = A0(� + 1)2 . f relates to the viscous 

source term (Alastruey 2006), where k = −22�� (since 
� = 9 ), and kinematic viscosity � =

�

�
.

2.2.4  The characteristic analysis

When enforcing numerical algorithm to the hyperbolic sys-
tem, it is useful to invoke the characteristic variables, while 
applying the characteristic properties to the time marching 
algorithm and implementation of boundary conditions. Con-
sidering arbitrary pressure – area relationship, P = P(A) , 
rewrite the homogeneous system of Eq.  (17) in the following 
nonconservative quasi-linear form

(15)
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h
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E�ea11�
2

= 2�f c
2
mk
�ea11�

2

+ 2�c2
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hΓ
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��

�t

or in a truncated form

P ≅ 2�c2
mk
�
(
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2
)
+ 2�f c

2
mk
�
��

�t
+ O(�5)

(16)P ≅ 2�f c
2
mk
�

(17)

�Q

�t
+
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�x
= f ;
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[
A

V

]
; F =

[
AV

V2

2
+

P

�f

]
; f =

[
0

−
22kV

A
+ g�

]
;

(18)
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�x
+ A

�V

�x
= 0

�V

�t
+ V

�V

�x
+

PA

�f

�A

�x
= 0

where PA =
�P

�A
 . Multiplying each equation in system of 

Eq. (18) by unknown coefficients l1andl2 , respectively, cre-
ate a linear combination

Now associate each bracket of Eq. (19) with a substantial 
derivative of a relating variable

The latter is equivalent to the eigenvalue problem, where the 
eigenvalue � =

dx

dt
 determines direction of the wave propaga-

tion in a time -space domain (t, x)

By equating to zero, the relating determinant

obtains two characteristic directions

Once eigenvalues found, the normalized eigenvector com-
ponents follow from Eq.  (21)

Compatibility conditions for nonlinear hyperbolic equations 
can be determined by integrating the differential form fol-
lowing from Eqs. (19), (20), (24)

So that the characteristic (Riemann) variables W1,2 read
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+
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√
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√
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√
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With an employment of the hyperelastic constitutive model 
(i.e., no viscoelasticity), Eq. (15), consider pressure as a 
function of area, and its derivative in an expanded form of 
the exponential

By substituting Eq. (27) into Eqs. (23) and (26), we obtain 
velocities of two simple waves propagating in opposite 
directions, and characteristic variables

Equations (28) and (29) pinpoint results of a mathematical 
analysis of the wave propagation in compliant hyperelastic 
arteries, filled with a moving incompressible fluid. Here, 
W1 and W2 propagate information on velocity and pressure 
from proximal to distal and distal to proximal locations, 
respectively. By setting hyperelastic material coefficient 
to zero, 

(
a11 = 0 or k� = kw = 1

)
 , the known expressions 

relating to the linear elastic arterial wall are obtained (Peiró 
and Veneziani 2009). Note that Eqs. (27) – (29) can also be 
presented in the exponential form of the hyperelastic con-
stitutive model.

2.3  Numerical discretization: finite volume method

CardioFAN utilizes two numerical schemes to solve set of 
Eq. (17), for different purposes of arterial simulations. First 
method is a classical explicit Lax–Wendroff scheme, that is 
stable when reproducing a smooth transient solution and is a 
counterpart of the Taylor-Galerkin method. However, when 
resolving discontinuity in geometry, physical properties or 

(27)

P = 2�c2
mk

���
A

A0

− 1

�
+ a11

��
A

A0

− 1

�3
�

PA =
�P

�A
=

�c2
mk√
AA0

�
1+3a11

��
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A0

− 1
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�

(28)

�1,2 =V ± cmk
4

√
A
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k�,
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√
1+3a11

(√
A

A0

− 1

)2

(29)
W1,2 =V ± 4cmk

4

√
A

A0

kw,

kw ≅1 + a11

(
1.5+0.3

A

A0

−

√
A

A0

)

the time-dependent load function Lax–Wendroff results in 
false spurious oscillations, giving physically unrealistic or 
unstable results (as shown in Sect. 3.1). In these cases, a 
monotonicity preserving total variation diminishing (TVD) 
modification of Lax–Wendroff scheme (Harten 1983; Roe 
1984) is utilized to reduce the numerical dispersion. The lat-
ter is exceptionally important when modeling waves propa-
gating through compliant sites that underwent endovascu-
lar aneurysm repair by arterial stent placement (Back et al. 
1994). To expedite convergence to the pulsatile conditions, 
the linear acoustic solution (Mungkasi and Ningrum 2016) 
was used to initialize the time marching process based on the 
TVD Lax–Wendroff scheme. Discretization of the nonlinear 
set of Eq. (17) is discussed with more detail in appendix 
A. The comparison between the results obtained by TVD 
and classic Lax–Wendroff methods, in discontinuous waves, 
is detailed in our previous work (Liberson et al. 2017). In 
Sect. 3.1, the advantages of using TVD method against other 
non-TVD methods are explored for a manufactured case of 
a stented artery.

2.4  Boundary conditions

2.4.1  Inlet

Inlet flow rate is prescribed by enforcing known blood flow 
waveform,Q(t), as a function of time at the inlet. At the root 
of aorta, this known variable is imposed at the edge of the 
first element. To calculate the inlet velocity and a cross sec-
tion area, the flow rate equation is complemented by the 
backward running characteristic, as shown by Eq. (30). This 
assignment is previously shown to provide physiological 
waveform shapes (see (Willemet et al. 2011)).

where W2 is the backward propagating invariant, Eq. (29), 
calculated at the first cell n = 1 . In case of the hyperelastic 
form of the FSI formulation, Eqs. (28) and  (29) are utilized, 
where Eq. (30) takes the following form

(30)

VinAin = Q0(t)

Vin − 4

[
cMK

(
A

A0

) 1

4

]

in

=
(
W2

)
1

(31)

VinAin = Q0(t)

W2 = V − 4cmk
4

√
A

A0

kw,

kw ≅ 1 + a11

(
1.5 + 0.3

A

A0

−

√
A

A0

)
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2.4.2  Outlet boundary condition (RCR lumped parameter 
model)

Three-element Windkessel model, characterized by resist-
ance (R1), capacitance (CT) and second resistance (R2) (i.e., 
RCR), is used to define the terminal BC at the truncated 
outlets. Details of different types of lumped parameter (i.e., 
0-Dimensional) terminal models can be found in (Grinberg 
and Karniadakis 2008; Alastruey et al. 2008). Eq. (32) pre-
sents the differential form of the boundary condition, compris-
ing time-dependent pressure ( Pe ) and flow (VA) at the exit of 
the truncated vessel. The terminal condition is complemented 
by the forward propagating invariant W1 arriving at the trun-
cated section from the center of last cell, n = N , of the vessel

Arterial conduit resistance ( RC ) and peripheral resistance 
( RP ) of the arteries need to be specified. One method is 
based on measurements of the mean arterial pressure ( Pm ), 
outlet pressure relating to microcirculation site, ( Pout) and 
the mean flow at the root of the arteries ( Qin ). Total arterial 
compliance ( CT ) can then be found by measuring the time of 
diastolic decay ( �) of the pressure (Xiao et al. 2014)

The conduit and peripheral compliances are calculated by 
a summation of the compliances of all 1D segments (Xiao 
et al. 2014)

Here, Ad , Cd are the diastolic area and speed of wave propa-
gation, Q

j

out
 - the jth segment outlet flow rate, and C̃j is the 

terminal compliance at the jth segment
If measurement is not plausible, RT and CT can be approx-

imated with the iterative method introduced by (Xiao et al. 
2014). Terminal compliance is then corrected as follows

(32)̇(VA)T =

[
Ṗe

Rc

+
Pe − Pout

RcRpCT

−

(
1 +

Rc

Rp

)
VA

RcCT

]

T

(33)

RT =
Pm − Pout

Qin

, Pm = P0 +
1

3
(Ps − Pd)

RC =
�CMk, seg

Ad

, RT = RC + RPCT =
�

RT

(34)

CT = Cp + CC, Cc =

N∑
i=1

Cj
seg
, Ci

seg
=

AdL

𝜌f
(
Cd

)2 ,

C̃j = CP

RP

RC + RP

= CP

Q
j

out

Qin

Ad =
1

L ∫
L

0

Ad(x)dx, Cd =
1

L ∫
L

0

Cd(x)dxe

Since Eq. (32) is a time-dependent differential equation, its 
discretized version is used at each time step. Being comple-
mented by the forward propagating characteristic variables 
at the last cell, Eq. (32) can be solved for velocity and pres-
sure, and thus cross-sectional area, at each time step. For 
simplicity, linear forward propagating characteristic (LeV-
eque 2002) can also be considered at the last cell.

2.4.3  Bifurcated joints

Splitting flow junctions are typical alignments in the arterial 
system. Let V1, P1 A1indicate velocity, pressure and cross-
sectional area of a parent vessel at the junction interface, 
andV2, P2 A2 , V3, P3 A3 – the corresponding properties of 
daughter vessels at the interface. The following assumptions 
are made to simplify the junction matching procedure: 1) 
energy losses at the junctions are ignored (Matthys et al. 
2007), 2) pressure changes across the junction is neglected, 
P1 = P2 = P3 = P . Since the pressure values algebraically 
relate to the cross-sectional areas, (Eq. (15)), there are only 
four independent quantities V1,V2,V3,P which need to be 
specified. To close the problem, the conservation of mass 
and extrapolation of forward and backward propagating 
invariants present,

where W1 is the forward running invariant calculated at the 
center of the last cell of a parent vessel (vessel 1); 

(
W2

)
2,3

 
are the backward running invariant calculated at the first cell 
of the daughter vessels (vessels 2 and 3)

2.4.4  Connectivity matrix and specification of the segment 
properties

The connectivity condition of the small segments is vital 
for generating a patient-specific network of vessels to solve 
the set of governing equations. The following properties are 
assigned for each vessel inside matrices, to account for the 
variations over the elements of each segment. The properties 
of interest for each segment are its length, speed of pulse 

(35)Cj = C̃j
RP + RC

RP

(36)

V1A1 = V2A2 + V3A3

V1 + 4

[
cMK1

(
A

A0

) 1

4

]

1

= W1,

V2,3 − 4

[
cMK2,3

(
A

A0

) 1

4

]

2

=
(
W2

)
2,3
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wave propagation in that vessel and angle from the reference 
point. In addition, cross-sectional area (as a function of the 
axial distance) of the segments from their initial point, con-
nectivity matrix describing the connection of nodes to ves-
sels and to each other (shown in Fig. 1) and terminal resist-
ance and compliances are defined as inputs to the model.

3  Results and discussion

Peripheral pressure measurements, with techniques such as 
upper arm or wrist cuff BP monitors, can provide estimates 
of the central systolic and diastolic pressure, while applana-
tion tonometry can obtain the pressure pulse waveform. This 
information is usually used for calibrating (Funamoto and 
Hayase 2012) a computational model or for data assimila-
tion purposes (Vennin et al. 2015). Although usually used 
by clinicians, pulse-wave amplification at the peripheral 
artery renders peripheral measurements inadequate to rep-
resent the aortic or central arterial pressures (Sharman et al. 
2008; McEniery et al. 2008). In addition, antihypertensive 
medications have different effects on central pressure despite 
similar reductions in brachial blood pressure (Reule and 
Drawz 2012). Central aortic pressure is a better predictor of 
cardiovascular outcome after any alterations in the normal/
resting functionality of the cardiovascular system (Sharman 
et al. 2008; Nelson et al. 2010). Thereby, this is essential to 
develop a reliable noninvasive method to measure the central 
blood pressure contrary to the currently available invasive 
catheter method (McEniery et al. 2014). The first step is to 
develop a computational hemodynamics-based approach for 
data assimilation, requiring a reliable computational frame-
work. To evaluate the accuracy of the computational model, 
the patient-specific calibration and computational results 

validation against a manufactured case of stented artery and 
three well-known cases of arterial networks in the literature 
are presented here:

1. Manufactured case of stented artery We demonstrate 
the blood flow and pressure waveforms in reduced-order 
arterial system models with stents, as an example of 
arteries with discontinuous vessel wall properties. We 
validate and compare the results of the TVD Lax–Wen-
droff-based solver against a manufactured exact solution, 
and other non-TVD numerical schemes such as Lax–
Wendroff and MacCromack (Sect. 3.1).

2. Numerical The blood flow and pressure in 55 main 
arteries of a human body are simulated (Sect. 3.2). The 
results are compared against the numerical work, pro-
vided by a discontinuous Galerkin model presented by 
(Alastruey et al. 2012) and (Sherwin et al. 2003b).

3. In vitro Blood flow and pressure in 37 main arteries of 
the human body are simulated, calibrated and compared 
against an in vitro model of the 37 arteries, developed 
by Matthys et al. (Matthys et al. 2007) (Sect. 3.3).

4. In vivo A patient-specific model is generated, using 
MRI-based measurements of the arterial diameters 
and flow along the aorta and pressure measurements 
at supra-aortic vessels, as presented in (Alastruey et al. 
2016). The blood flow model results are compared 
against the measurements and show improvements com-
pared to prior numerical predictions (Sect. 3.4).

As demonstrated here, reduced-order blood flow simulation 
platform, CardioFAN, provides accurate prediction of blood 
flow and pressure. This includes the range, systolic and dias-
tolic values and the shape of the waveforms in all three cases 
and the luminal area values for in vivo case, where clinical 
measurements are available to compare.

Computational Framework Specifications: Mesh- 
dependence was studied to achieve reliable results for each 
of the large arterial networks. The Lax–Wendroff version 
of the code performs calculations for all vessels during five 
cardiac cycles in less than 5 minutes and with a normal 4 
CPU cores, 16 GB RAM personal computer (PC). Numeri-
cal PTT calculations and viscoelastic calculations can be set 
to on or off, which affect the computation time. CardioFAN 
is accessible through the provided links1.

3.1  Discontinuous arterial wall properties

Time marching methods are applied to model pulsa-
tile hemodynamic flow in a stented elastic artery. The 

Fig. 1  Example of the 37 main arteries geometry generated by con-
necting nodes and vessels in one matrix. Each node will fill out 
the information required for 1 row of the following matrix: [Node# 
Upstream-Vessel# First-Downstream-Vessel# Second-Downstream-
Vessel#] Inflow flow boundary condition (BC) is imposed at the first 
node, and three-element Windkessel model at truncated locations

1 CodeOcean Repository: CodeOcean
 Github (Zenodo) Repository: Zenodo
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Moens-Korteweg speed of propagation exhibits jumps due 
to the difference in compliance between “rigid” stent and a 
“soft” arterial wall. It is also possible to abruptly change the 
speed of propagation due to the change of the cross-sectional 
area in case of certain pathologies, e.g., stenosis or an aneu-
rism. Compliance discontinuity is currently being handled 
in two ways in the literature: 1) data regularization, where 
the properties across the junction interface are artificially 
smoothed to eliminate discontinuity (Tortoriello and Pedriz-
zetti 2004), 2) domain decomposition, where the coupling 
between two segments is accomplished providing flow and 
momentum continuity across the interface (Formaggia et al. 
2003). However, the algorithm utilized here is a regular time 
marching method applied to the system of partial differential 
equations with variable coefficients and without any prelimi-
nary regularization or domain splitting.

We consider a tube model consisting of 3 segments, 
as shown in Fig. 2. The middle segment represents a vas-
cular stent implanted into the arterial vessel. After a few 

months of the stent implantation, the stent struts fuse with 
the tissue growth creating a composite structure with rel-
atively rigid monolithic properties within an elastic arte-
rial tube. Each segment relates to the local spatial coordi-
nate xi , 0 ≤ xi ≤ Li, i = 1, 2, 3 as shown in Fig. 2. The 
Moens-Korteweg velocity of propagation at each segment 
is denoted by cMK,i.

For numerical results, we take L1 = L3 = 0.2 m , 
L2 = 0.05 m ; cMK,1 = cMK,3 = 4

m

s
, cMK,2 = 10m∕s; � = 1000

kg

m3
 ; 

A0 = 0.0314 m2 . The total number of uniformly distributed 
computational cells is set to N = 90 . Inlet boundary condi-
tion for the volume rate and exit boundary condition for the 
pressure are given in Appendix B by equations (B7) and 
(B8), where Q0 = 50

mL

s
, p = 13.3 kPa, pa = 2.66 kPa are 

the flow rate, mean aortic blood pressure and magnitude of 
the pulse pressure, respectively. The Courant-Friedrichs-
Lewy number calculated based on the wave speed of propa-
gation inside stent is CFL = 1.

Figure 3 presents solution of the linearized problem for 
the pulsatile flow inside stented artery, obtained by three 
different numerical methods. Second-order approximation 
schemes such as Lax–Wendroff and MacCormack, giving an 
accurate result for the smooth solutions (LeVeque 2002), fail 
near discontinuities where spontaneous oscillations are gen-
erated. The TVD scheme apparently has an advantage keep-
ing the solution varying monotonically as seen in Fig. 3c.

In the second test, we imposed the same arterial wall 
properties as in linear case, for a model of stented artery 
with the nonlinear governing equations to describe its FSI 

Fig. 2  Schematics and dimensions of a hypothetical stented artery

Fig. 3  Test on numerical resolution with different methods in case of a stented artery. a Lax–Wendroff, b MacCormack, c TVD method (circles) 
vs closed-form solution (solid line). Results are shown at physical time t=1 s
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behavior. A half-sine flow wave with a maximum magnitude 
of 250 mL/s was imposed at the inlet, accompanied by a non-
reflective outlet BC. Flow and pressure results were recorded 
along the tube axis in different instances of time. Figure 4 
illustrates a comparison between the results of a second-
order Lax–Wendroff and a nonlinear TVD Lax–Wendroff 
(Eqs. (A5)–(A7) in “Appendix A”). The artificial oscillations 
in the Lax–Wendroff compared to nonlinear TVD method 
shows the sensitivity of non-TVD methods to discontinuity 
in properties, suggesting the benefit of using TVD schemes 
for arterial models with discontinuous wall properties.

3.2  Validation against numerical data of 55 main 
human arteries

The model for 55 main arteries is presented by (Sherwin 
et al. 2003b), (Reymond et al. 2009) and (Alastruey et al. 
2012) based on physiological input data extracted from a 
young healthy patient. They also show a numerical model of 
the network which was validated with available MRI data for 
flow and pressure data at the peripheral locations (Reymond 
et al. 2009). Here, this model is recreated in CardioFAN 
by defining the connectivity matrix and input parameters 
based on the network presented in (Alastruey et al. 2012). 

Fig. 4  Test on numerical resolution in case of the nonlinear model of 
a stented artery. (top) Lax–Wendroff, (bottom) TVD Lax–Wendroff 
with van leer flux limiters. Pressure and flow results are shown at 
physical time t=1.4 s. Blue and yellow lines indicate normal artery 
wall and the middle orange line indicates the stented portion of the 
artery

Fig. 5  Schematics and validation of the 55 segments model of human 
arteries. The model is recreated based on the arterial network pre-
sented in (Alastruey et  al. 2012). Evaluated points along the aorta 
are indicated with red circles and presented at the left side (P at top 
and Q at bottom). Carotid aorta, left brachial artery, renal and femoral 

arteries, vessels 15,21,38,46, highlighted by blue dots and presented 
at the right side. Dotted markers represent the original data, and solid 
lines are the results obtained using CardioFAN (view the colored 
plots in online version)
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Vessel properties, such as vessel lengths, radii and speed of 
propagation at each segment, are provided as inputs to the 
software (check the link to CardioFAN for testing the code 
for 55 vessels). At the ascending aorta, the flow as a function 
of time is imposed for one cardiac cycle and at the terminal 
boundaries, resistances and compliances for the RCR model 
are specified. Figure 5 demonstrates results provided by Car-
dioFAN overlaid on top of the numerical results previously 
presented by (Alastruey et al. 2012).

As shown in Fig. 5, a good agreement between the results 
from CardioFAN and the numerical results from (Alastruey 
et al. 2012) was obtained. These results clearly capture fea-
tures such as systolic peak an diastolic decay and the dicrotic 
notch, better than our previously presented Lax–Wendroff-
based linear elastic numerical simulation (Vahedein and Lib-
erson 2018a). In contrast to the recreated work, instead of 
viscoelastic properties, we were able to retrieve the systolic 
peak for the data in peak of the pressure waveform (e.g., 
femoral artery, purple plot in top right), by correct selec-
tion of Fung parameter “a” (selected to be in 1.3-1.8 range, 
extracted from (Dúóng et al. 2017)). Although CardioFAN 
is capable of solving viscoelastic arterial wall properties, it 
has minor effect on the flow and pressure in large arteries 
(Bergel 1961), or in higher frequency waves (Ghigo et al. 
2016). Therefore, neglecting the viscoelastic properties, we 
were able to reduce the computational time significantly 
while getting accurate predictions compared to a model with 
viscoelastic properties.

3.3  Validation against in vitro data of 37 main 
human arteries

We compare a numerically recreated model of 37 main arter-
ies, with an experimental silicone-based compliant model of 
the arteries (Matthys et al. 2007). Water-glycol mixture with 
a density of � = 1050 kg m −3 , and viscosity of � = 2.5 mPa 
s was used to imitate blood (for more details on experimen-
tal setup, refer to (Matthys et al. 2007)). Simple terminal 
resistance tubes provisioned for this model allows the exper-
imental model of Matthys et al., to reproduce the main fea-
tures of pressure and flow, as observed in vivo (such as the 
dicrotic notch, diastolic decay and peaking and steepening 
of pulse pressure away from the heart). Here, the properties 
of these vessels, such as, vessel length, radii, and wall thick-
ness (see (Matthys et al. 2007) or (Alastruey et al. 2011)), 
are used to recreate this network of arteries. At the inlet, 
we have prescribed a given flow waveform, resulting in 70 
beats per minute with stroke volume of 70 ml at the root. 
Similar to experimental setup, simple resistance terminal 
boundary conditions are imposed to numerical model. The 
simple resistance tubes at the experimental setup produce 

non-physiological oscillations at the peripheral locations (as 
mentioned by Matthys et al.); however, our code is able to 
capture the frequency of these oscillations. Energy losses at 
the network bifurcations have secondary effect on flow and 
pressure waveform predictions (as shown by Matthys et al.) 
and therefore not considered here. Resulting waveforms are 
presented in Fig. 6, at different locations along the arterial 
tree.

Good agreement is obtained between numerical predic-
tions and the experimental data for blood pressure and 
flow rate in various parts of the 37 arteries model. We 
see that the numerical model can completely capture the 
pressure waveform features, such as systolic peak, dicrotic 
notch and the diastolic decay of the waveforms. On the 
other hand, flow oscillations are fully captured, with mag-
nitude being overpredicted at the most peripheral loca-
tions. The flow waveform errors are in complete agree-
ment with numerical model developed by (Matthys et al. 
2007; Alastruey et al. 2011) for the same in vitro data, and 
as mentioned before, relates to the discrepancies in flow 
waveform measurements. The averaged relative root mean 
squared errors over all segments in each network genera-
tion sequence, calculated at the experimental measurement 
locations was previously reported as not exceeding 4% 
for pressure and 19% for flow predictions. The individual 
errors for each segment was reported in (Alastruey et al. 
2011), showing a range of 4.7 to 35.3% error in flow rate 
predictions. For CardioFAN, averaged relative RMSE in 
the evaluated locations are provided in Table 1. The errors 
are smaller than the previously reported values, even in the 
location of abdominal aorta and without using a viscoelas-
tic model, except for Left Ulnar artery location.

Compared to pressures, the larger errors demonstrated 
in flow rate predictions correlate with the large uncer-
tainties in experimental measurement of flow waveform 
(Matthys et al. 2007). The standard deviation of these 
measurements, captured with an ultrasonic volume flow 
meter, have not been displayed here (they can be viewed in 
(Matthys et al. 2007)). In addition, viscoelastic solver may 
help in improving the results of oscillating flow locations, 
especially since the experimental setup was designed with 
viscoelastic material (Alastruey et al. 2011).

3.4  Validation against in vivo data of 26 main 
human arteries

The 26 segments model, comprising aorta and supra-
aortic segments, has been created based on the in vivo 
data presented by (Alastruey et al. 2016). To minimize 
uncertainty in their in vivo acquisition of noninvasive 
hemodynamic data, a rich array of 3D and 2D SSFP MRI 
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clinical data was used to create the subject-specific geom-
etry. Heart rates have been measured by MRI and appla-
nation tonometry and the flow rate measured using PC 
MRI. This resulted in a more consistent determination of 
cross-sectional area distributions and flow rates across the 
aorta, which serves as the input for numerical modeling 
and computational results validation.

3.4.1  Preparing the input parameters and boundary 
conditions

In order to extract model input parameters, the method pre-
sented by (Xiao et al. 2014) is used for calculating indi-
vidual resistances and compliances at the truncated arteries 
(as explained in Sect. 2.4.2). In (Alastruey et al. 2016), the 
speed of wave propagation at each segment was prescribed 
based on a foot-to-foot method (Gaddum et al. 2013) as a 
constant value. Here, we suggest an improved method for 
calculating the speed of propagation in section 3.3.2, which 
results in a better prediction of the flow rate, cross-sectional 
area and pressure waveforms along the flow path. Recreated 
model using CardioFAN is able to test the accuracy of the 
code against the actual patient-specific data. The properties 
of each segment were assigned based on the data presented 
in (Alastruey et al. 2016). Following Alastruey et al., we 
have adopted two of the most successful simulation cases:

1. BEST AREA Outlet pressure is selected to be equal to 
capillary pressure commonly used at the outlet of 1D 
models (Parazynski et al. 1993), Pout = 4400 kPa. The 
total resistance and compliance parameters are altered 
iteratively (according to the technique introduced by 

Fig. 6  Schematics and validation of the 37 segments model of human 
arteries. Model recreated based on the in vitro network presented in 
(Matthys et al. 2007). Evaluated points along are marked by red cir-
cles. P and Q plots are shown for vessels 10-14-27-34, representing 
aortic arch II, left ulnar artery, abdominal aorta III and right ante-

rior tibial arteries. Blue markers represent the original in vitro data, 
whereas, solid lines and dotted lines represent the results obtained 
using CardioFAN with RCR and R terminal boundary models, 
respectively (view the colored plots in online version)

Table 1  Average relative errors of the numerical pressures and flows 
in all the evaluated locations of the network

Average relative errors in flows are calculated with respect to experi-
mental data and local maximum as proposed in (Xiao et  al. 2014). 
Bold numbers refer to the Resistance (R) terminal boundary model 
and normal text relate to RCR terminal boundary model, with a con-
stant compliance C=10−11 m3 Pa−1

Location � pressure (%) � flow (%)

Aortic Arch II 0.89 1.15 9.40 8.83
Abdominal Aorta III 1.49 1.75 20.46 24.20
Left Ulnar 2.24 2.47 12.02 12.73
Right anterior tibial 1.53 1.82 10.10 7.41
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(Xiao et al. 2014)), to match the diastolic pressure and 
the range of pressure at the carotid artery location, 
where the in vivo data was available. To comply with 
the recreated work this method is named BEST AREA, 
since it provides the most accurate cross – sectional area 
and flow predictions.

2. BEST PRESSURE Outlet pressure is selected to be equal 
to the average value of the fitted pressure to the diastolic 
decay of the supra-aortic pressures as a function of time, 
captured using applanation tonometry. This pressure is 
Pout = 9200 kPa, and the total resistance and compliance 
parameters are not required to be altered (or need a few 
iterations) since the outlet pressure is a patient-specific 
value.

  This prescription of the boundary conditions is named 
as BEST PRESSURE, since it provides the most accurate 
prediction of the pressure waveform at the left carotid 
artery.

Pout (outlet pressure at exit branches),Qout (mean outlet flow 
rate at exit branches) and Qin , (the mean flow rate at the 
aortic root) are all measured by (Alastruey et al. 2016). This 
enables the calculation of peripheral resistance and compli-
ances for each outlet segment (see Sect. 2.4.2). The algo-
rithm for calculating the RCR parameters is embedded in 
CardioFAN.

3.4.2  Improved method for calculating the speed 
of propagation

Foot-to-foot method was previously used by (Alastruey et al. 
2016) to assign the Moens-Korteweq speed of propagation 
( Cmk ) as the speed of sound in a fluid–structure interac-
tion system. The evaluated flow waveforms for foot-to-foot 
method were related to the path connecting the ascending 
aorta to the abdominal aorta (Asc 1 to Desc 4 in Fig. 5).

Numerically calculated PWV have been previously used 
to validate experimentally measured PWV based on flow or 
pressure waveforms (Trachet et al. 2010; Obeid et al. 2017). 
It was illustrated in (Liberson et al. 2017) and (Lillie et al. 
2016), that the modified value of the PWV calculated as 
the speed of a forward propagating Riemann invariant, can 
significantly improve prediction of the blood pressure as a 
function of the PWV.

Associating the measured speed of propagation values 
reported by (Alastruey et al. 2016) (named there as cd ) with 
the calculated PWV, Eq. (28) was used to recalculate the 
Moens-Korteweq speed of sound at each segment

(37)PWV = cd = V + cmk
4

√
A

A0

k�

Since the slope of a forward running characteristic line is 
determined by PWV

Equation (38) serves to calculate the PTT required for the 
pulse wave to propagate between two specified sections 
along the flow pathway. Using the second order of accu-
racy Heun’s method (Chapra and Canale 1997), Eq. (38) 
is integrated by specifying the starting location for PTT 
evaluation.

Starting from CMK = cd , assigned in (Alastruey et al. 
2016) for each segment, CMK was incrementally reduced 
until the numerically calculated PTT matched the clinical 
value of 63 ms , obtained from foot-to-foot method (Gad-
dum et al. 2013). Foot-to-foot method includes deduction 
of the starting location for PTT evaluation. The numeri-
cally calculated PTT is shown in Fig. 7 as a function of the 
PTT calculation start time along the second cardiac cycle. 
The intersection of the maximum derivative of the flow 
waveform systolic rise and the extended horizontal line 
from diastolic flow is employed to pinpoint the PTT cal-
culation starting point matching experimentally obtained 
foot-to-foot PTT.

Figure 7 shows that the computational PTT, based on the 
modified (reduced)CMK , and relating to the same starting 
point as the experimental foot-to-foot method, matches the 
experimental value ofPTT ≈ 63 ms.

(38)
dt

dx
= PWV−1(x, t)

Fig. 7  PTT as a function of the calculation start time. The time dur-
ing the second cardiac cycle is shown in the x-axis (top figure). The 
flow waveform corresponding to the same time scale is presented 
(bottom figure). The crossing of the maximum derivative of the flow 
waveform systolic rise and the extended horizontal line from diastolic 
flow is the start time of PTT calculation from foot-to-foot method, as 
shown by Alastruey et al. PTT calculation pathway is from ascending 
aorta (Asc Aorta 1) to the abdominal aorta (Desc Aorta 4)
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Application of the described technique resulted in a 4.5% 
decrease in the speed of propagation, which corresponds 
to the 9.2% decrease in tangential modulus ( E ), assigned 
at each segment. Therefore, instead of CMK = 4.56 m/s, we 
use CMK = 4.36 m/s in CardioFAN. Figures 5 and 6 show the 
resulted flow, cross-sectional area (luminal area) and pres-
sures which imply improvement in predicting their wave-
form with corrected CMK.

Another interesting result of this correction is for nonuni-
form values of cd or PWV, previously presented by Alastruey 
et al. (2016). Although the individual values of the PWV for 
each segment were not measured, QA loop method Rabben 
et al. (2004) was used to provide Cd for all segments. We 
reduced the nonuniform CMK (again starting from CMK = cd 
values) with a single multiplier until the numerically cal-
culated PTT matched the PTT from foot-to-foot method 
( PTT = 63 ms). As a result, the corresponding Cmk in all 
segments are found to be lower by 20% than the previously 
reported nonuniform Cd values. It also resulted in improved 
flow, luminal area and pressure predictions compared to the 
results presented in (Alastruey et al. 2016).

3.4.3  in vivo Validation results with BEST PRESSURE 
and BEST AREA cases

Uniform CMK Figure 8 shows the results of both BEST 
PRESSURE and BEST AREA models for uniform speed 
of propagation (i.e., arterial stiffness). The results relate 
to the corrected constantCMK applied to all segments, with 
resistances and compliances calculated and matched at the 
terminal locations. The compliance and resistances are cor-
rected with the iterative method described in (Xiao et al. 
2014), to correctly capture waveform range and diastolic 
pressure, respectively. The corrected values are R = 1 × RT 
and Cj = Cj∕1.5 for BEST PRESSURE and R = 3.3 × RT 
and Cj = Cj∕1.6 for BEST AREA case. We have applied the 
Fung constant a = 8 , and a = 2 , respectively, to account for 
hyperelastic properties. These values are assigned as a con-
stant number to all vessels. They were found iteratively by 
calibrating CardioFAN to the in vivo pressure data of the 
left carotid artery (i.e. segment #24). It should be noted that 
by having more PTT data available, the individual values of 
Fung hyperelastic constant can further improve the results.

The BEST PRESSURE, which prescribes a patient-spe-
cific terminal pressure measured at the common carotid 

Fig. 8  Schematics and validation of the 26 segments model of arter-
ies along the aorta and supra-aortic vessels with uniform speed of 
propagation. The model recreated in CardioFAN based on the same 
network presented in (Alastruey et al. 2016). Evaluated points on the 
left and right are specified on the schematics with red circles (seg-
ments 2-17-19) and blue triangles (segments 10-13-24), respectively. 

Pressure (P), flow (Q) and luminal area (A) plots show results of 
BEST AREA method (red dotted lines), BEST PRESSURE method 
(blue solid lines) and clinical in vivo measurements where available 
(black solid lines). Results are evaluated at the inlet of these seg-
ments, except for the common carotid artery, evaluated at the outlet of 
the segment (view the colored plots in online version)
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artery, provides a good match with the clinically measured 
pressure at the same location and flow rates across all ves-
sels; however, it under-predicts the luminal area as shown 
in Fig. 5. On the other hand, the BEST AREA case, pre-
scribing the capillary pressure at the terminal boundaries, 
correctly predicts the luminal AREA in all locations, but 
it over-predicts the diastolic decay of the pressure at the 
common carotid artery. These results are in agreement with 
the 1D and 3D numerical predictions previously obtained 
by (Alastruey et al. 2016). Average relative errors of these 
predictions are shown in Table 2. The average relative errors 

for flow, luminal area and pressures, predicted with the cor-
rected uniform CMK , are smaller than 5.2%, 2.8% and 9% for 
BEST AREA and 7.6%, 7.1% and 1.6% for BEST PRESSURE 
cases (compared to 7%, 4% and 11% for BA and 9% 8% 4% 
for BP reported in (Alastruey et al. 2016)), respectively. We 
see an average of 1.5% improvement using the hyperelastic 
model with constant CMK.

NonUniform CMK : flow, luminal area and pressure results 
for corrected nonuniform Cmk applied to each segment are 
shown in Fig. 9. Interested reader can refer to CardioFAN 
and run the nonuniform CMK by changing the designated 

Table 2  Average relative errors 
of the numerical pressures, 
flows and luminal areas 
evaluated against clinical 
measurements along aorta and 
left common carotid artery

The RMSEs are measured with the method described in (Xiao et al. 2014). Bold text refers to BEST AREA 
and normal text refer to BEST PRESSURE models

Location � pressure (%) � flow (%) � area (%)

Asc Aorta (V2) – – 1.13 1.44 1.00 3.46
Desc Aorta (V10) – – 5.13 4.31 1.61 5.75
Desc Aorta (V13) – – 3.72 3.94 1.38 5.57
Desc Aorta (V17) – – 3.49 6.69 1.10 4.83
Desc Aorta (V19) – – 4.11 7.55 2.73 7.03
Left CCA (V24) 8.79 1.56 - - - -

Fig. 9  Schematics and validation of the 26 segments model of arter-
ies along the aorta and supra-aortic vessels with nonuniform speed of 
propagation. The model recreated in CardioFAN based on the same 
network presented in (Alastruey et al. 2016). Evaluated points on the 
left and right are specified on the schematics with red circles (seg-
ments 2-17-19) and blue triangles (segments 10-13-24), respectively. 

Pressure (P), flow (Q) and luminal area (A) plots show results of 
BEST AREA method (red dotted lines), BEST PRESSURE method 
(blue solid lines) and clinical in vivo measurements where available 
(black solid lines). Results are evaluated at the inlet of these seg-
ments, except for the common carotid artery, evaluated at the outlet of 
the segment (view the colored plots in online version)
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parameter at the input and assigning the correctedCMK . The 
compliance and resistances are corrected with the iterative 
method described by Xiao et al., to correctly capture wave-
form range and diastolic pressure, respectively. The BEST 
PRESSURE case required no correction for R and Cj ; how-
ever, for the BEST AREA case R = 3.2 × RT and Cj = Cj∕2 
are used. We have applied the Fung constant a = 4 , and 
a = 8 , respectively, to account for hyperelastic properties, 
found iteratively by calibrating CardioFAN to the in vivo 
pressure data of the left carotid artery (i.e. segment 24).

Compared to (Alastruey et al. 2016), the results are dem-
onstrating better prediction of flow rate (Q), luminal area (A) 
and pressure (P) using the TVD algorithm with hyperelas-
tic vessel walls in both cases with uniform and nonuniform 
CMK values. The nonuniform case CMK shows a very good 
accuracy at predicting the luminal area peaks near systole. 
Accuracy can be further improved if the exact value of nonu-
niform CMK (or its consequent elastic modulus) is known at 
each segment. With the current available measurements, the 
numerically calculated Q, A and P waveforms with uniform 
CMK are more promising and therefore suggested for future 
studies.

4  Implications on the noninvasive 
diagnostics

The arterial pulse has historically been an essential source of 
information in the clinical assessment of health. Validation 
of the CardioFAN against prior numerical, in vitro and espe-
cially in vivo measurements combined with the improved 
method for PTT and PWV calculation, demonstrate reli-
ability of the algorithm and its potential application to early 
patient-specific prediction/diagnostics of cardiovascular bio-
markers. This algorithm can be used for noninvasive moni-
toring of the pressure, flow and luminal area waveforms, 
with minimal calibration of terminal resistance/compliances 
and Fung’s constant a.

Due to the low-dispersive property, it will also be pos-
sible to use the TVD version of the code for calculating the 
pulse-wave propagation in the stented or prosthetic arteries, 
where discontinuous properties exist.

Further clinical studies with temporal pressure measure-
ments available at all terminal boundaries are required to 
confidently suggest the reduced-order numerical techniques 
for clinical applications. Combined with noninvasive clinical 
measurements (data assimilation (Veneziani and Vergara 
2013)) CardioFAN may provide patient-specific prediction 
of the central blood pressure, flow, stroke volume and arte-
rial compliances.

5  Conclusion

We present a new monotonic TVD Lax–Wendroff-based 
platform for calculating patient-specific blood pressure, 
flow rate, luminal cross-sectional area and pulse transit 
time (PTT) inside an arbitrary cardiovascular network. This 
platform is free to use under the terms of the included open 
source license for CardioFAN. The variational formulation 
presented here and in our previous work makes this code 
ready to be coupled to 3D FSI modules to study 3D effects 
of diseases such as arterial aneurysms. Inlet and terminal 
boundary conditions are calculated based on minimal clini-
cal or experimental calibration measurements, making it 
easy to run the model for patient-specific cases.

Three new validation tests are conducted here against 
numerical, as well as in vitro and in vivo data from three dif-
ferent geometries in the literature. These geometries and the 
vessel properties are prescribed in a demonstration version 
of CardioFAN, showing results of similar or improved errors 
compared to previous numerical simulators. We introduce 
a new numerical method for calculating the numerical PTT 
and use it in conjunction with experimental PTT to correct 
the speed of pulse propagation in arteries. This resulted in an 
average of 1.5% improvement in prediction of the clinically 
measured flow, luminal area and pressures. The correspond-
ing average error of prediction is now smaller than 5.2%, 2.8% 
and 9% in BEST AREA and 7.6%, 7.1% and 1.6% for BEST 
PRESSURE simulation cases (refer to Sect. 3.4), respectively.

The reliability tests conducted here and the new method 
for calculating the corrected global PWV are building the 
groundworks for implementing CardioFAN as a means for 
noninvasive diagnostics of biomarkers. Further investiga-
tions can be focused on the reconstruction of patient-specific 
central pressure and flow (or stroke volume), using minimal 
peripheral measurements and calibration.
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Appendix A

Lax–Wendroff Method:
Nonlinear conservation equations listed in Eq. (17) can 

be rearranged as follows

Jacobian matrices of vector functions FQ =
�F

�Q
, fQ =

�f

�Q
 of 

Eq. (17) are

A detailed discretization based on Lax–Wendroff scheme is 
previously shown in (Vahedein and Liberson 2018b). Fol-
lowing notation typical for finite volume methods (as shown 
by (LeVeque 2002)), here the space domain is discretized 
with uniformly distributed cells, whose center points are 
indicated by a low integer index j, and the edge points are 
noted by fractional indices j ± 1

2
 . Associating flux functions 

with the cell edges we get the Lax–Wendroff-based discre-
tized solution

where n refers to the current time step, and Δt is the time 
step. The convergence criteria for the Lax–Wendroff scheme 
is defined by Courant–Friedrichs–Lewy (CFL) condition

High-Resolution Lax–Wendroff Scheme (TVD Method):
As shown in (LeVeque 2002), the dispersive nature 

of all non-monotone methods, including Lax–Wendroff, 
causes artificial oscillations in the vicinity of discontinui-
ties. The idea behind high-resolution schemes is in intro-
duction of the flux limiters, that correct the flux terms 
depending on the local solution behavior, retaining mono-
tonicity in case of a discontinuity.

(A1)
�Q

�t
= f −

�F(Q)

�x
;

(A2)FQ = H =

[
V A
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V

]
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k
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−
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(
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(A4)CFL =
�(V + cMK)max

Δx
≤ 1

Following Leveque, we present fluxes in a form reveal-
ing explicitly diffusive flux components F̃

j+
1

2

 (upper index 
dropped for simplicity)

where I - identity matrix, R
j+

1

2

 , �
j+

1

2

 – are the modal and 
eigenvalue matrices of Jacobian matrix H

j+
1

2

 . The correction 
flux, satisfying to the monotonicity conditions is based on a 
substitution of the eigenvector increment �W

j+
1

2

 by its lim-
ited version �W̃

j+
1

2

 (LeVeque 2002)

Appendix B

Exact Manufactured Solution for Linear Wave in Stented 
Artery): A closed-form solution for the harmonic linear wave 
analysis is derived for the case of a stented artery depicted in 
Fig. 2. Alternatively, the system (17) can be recast in terms 
of conserved variables: the total pressure P0 = p +

1

2
�V2and 

a flow rate q = AV

A linear elastic tube law complements the system (B1) in the 
form of the following pressure – area relationship

The linearization around zero point for transmural pressure 
and the flow rate reads

(A5)
F
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To eliminate cross-sectional area A we substitute Eq. (B4) 
into Eq. (B3), recasting final system of equations in terms 
of conserved variables ( p, q)

An explicit closed-form solution has been manufactured in 
the form of a single harmonic wave satisfying Eq. (B5) for 
each segment

Here, qi
(
xi
)
, pi

(
xi
)
 are the flow rate and pressure distribu-

tions for each segment as functions of a local axial coordi-
nate xi (Fig. 2); � is the frequency of the harmonic wave; 
cMK,i is the Moens-Korteweg speed of propagation for each 
segment, i = 1, 2, 3 (corresponding to artery, stent and 
artery configuration in Fig. 2). Six unknown constants C1i , 
C2i satisfy to the inlet boundary conditions for the flow rate

exit boundary condition for the pressure

and four matching conditions at each interface
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