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Abstract
Most stress-based hemolysis models used in computational fluid dynamics (CFD) are based on an empirical power law corre-
lation between hemolysis generation and the flow-induced stress and exposure time. Empirical model coefficients are typically 
determined by fitting global hemolysis measurements in simplified blood shearing devices under uniform shear conditions and 
with well-defined exposure times. CFD simulations using these idealized global empirical coefficients are then performed to 
predict hemolysis in a medical device with complex hemodynamics. The applicability, however, of this traditional approach 
of using idealized coefficients for a real device with varying exposure times and non-uniform shear is currently unknown. 
In this study, we propose a new approach for determining device- and species-specific hemolysis power law coefficients (C, 
a, and b). The approach consists of calculating multiple hemolysis solutions using different sets of coefficients to map the 
hemolysis response field in three-dimensional (C, a, b) parameter space. The resultant response field is then compared with 
experimental data in the same device to determine the coefficients that when incorporated into the locally defined power law 
model yield correct global hemolysis predictions. We first develop the generalized approach by deriving analytical solutions 
for simple uniform and non-uniform shear flows (planar Couette flow and circular Poiseuille flow, respectively) that allow 
us to continuously map the hemolysis solution in (C, a, b) parameter space. We then extend our approach to more practical 
cases relevant to blood-contacting medical devices by replacing the requirement for an analytical solution in our generalized 
approach with CFD and Kriging surrogate modeling. Finally, we apply our verified CFD-based Kriging surrogate modeling 
approach to predict the device- and species-specific power law coefficients for developing laminar flow in a small capillary 
tube. We show that the resultant coefficients are much different than traditional idealized coefficients obtained from simplified 
uniform shear experiments and that using such idealized coefficients yields a highly inaccurate prediction of hemolysis that 
is in error by more than 2000% compared to experiments. Our approach and surrogate modeling framework may be applied 
to more complex medical devices and readily extended to determine empirical coefficients for other continuum-based models 
of hemolysis and other forms of flow-induced blood damage (e.g., platelet activation and thrombosis).

Keywords Hemolysis · Blood damage · Power law model · Kriging surrogate modeling

1 Introduction

Flow-induced damage to red blood cells (RBCs) and the sub-
sequent release of hemoglobin, termed mechanical hemoly-
sis, can be detrimental in a variety of blood-contacting medi-
cal devices (e.g., blood pumps and heart valves). The fluid 
dynamics of mechanical hemolysis has been studied since 
the 1960s (Kusserow and Kendall 1963; Blackshear et al. 
1965, 1966), and since then, it has become widely accepted 
that hemolysis is primarily a function of the magnitude of 
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flow-induced stress that RBCs are exposed to and the time 
duration of exposure.

Traditionally, in vitro experiments are performed to quan-
tify the hemolytic potential of a blood-contacting medical 
device. Over the past several decades, however, computational 
fluid dynamics (CFD) has become more widely adopted and 
used to predict hemolysis potential (e.g., Bludszuweit 1995; 
Pinotti and Rosa 1995; Apel et al. 2001; Song et al. 2003; Gou-
bergrits and Affeld 2004; Fraser et al. 2012; Goubergrits et al. 
2016). Currently, CFD is capable of predicting relative levels 
of hemolysis in medical devices, which is valuable for com-
parative purposes (e.g., design optimization, evaluating the 
influence of minor changes to an existing device). But, reliably 
predicting absolute hemolysis levels compared to experiments 
has proved to be much more challenging (e.g., see Taskin et al. 
2012; Yu et al. 2017). Consequently, CFD cannot yet be relied 
upon to accurately predict the true hemolytic potential and, 
thus, the safety of medical devices in regulatory evaluations 
(Malinauskas et al. 2017).

There are two common approaches to numerically model 
flow-induced mechanical hemolysis: strain-based models 
(Arora et al. 2004; Chen and Sharp 2010; Vitale et al. 2014; 
Ezzeldin et al. 2015; Sohrabi and Liu 2017; Toninato et al. 
2017) and stress-based power law models (Grigioni et al. 
2005; Fraser et al. 2012; Taskin et al. 2012; Hariharan et al. 
2015; Heck et al. 2017). Most strain-based models use a multi-
scale approach to predict the strain that individual RBCs 
undergo in response to spatial and temporal gradients in the 
surrounding flow field. The blood cells in strain-based models 
are resolved at varying levels of fidelity, ranging from RBCs 
being approximated as deforming ellipsoidal droplets (Arora 
et al. 2004) to high-fidelity modeling of RBC fluid–struc-
ture interaction using a coarse-grained particle dynamics 
approach (Ezzeldin et al. 2015). Recent strain-based multi-
scale modeling by Sohrabi and Liu (2017) has even extended 
this approach to the molecular scale to predict hemoglobin 
released from deformable RBCs due to either rupture of the 
cell membrane at large strains or the formation of nanopores 
in a stretched RBC membrane and the subsequent escape of 
hemoglobin molecules (termed sublethal or sublytic hemoly-
sis) at smaller strains. Though such multi-scale models have 
the future potential to accurately predict absolute hemolysis 
levels for an entire device from first principles, due to their 
computational expense high-fidelity multi-scale approaches 
are presently restricted to modeling a small number of RBCs. 
Additionally, more accurate predictions of RBC damage from 
first principles using such multi-scale approaches await a more 
firm theoretical and experimental underpinning of some of the 
underlying cellular and molecular biophysics, particularly with 
regard to sublytic hemolysis (e.g., see Ezzeldin et al. 2015; 
Sohrabi and Liu 2017).

In contrast, stress-based power law models utilize a con-
tinuum approach that relies on the empirical correlation first 

proposed by Giersiepen et al. (1990) that relates plasma free 
hemoglobin generation to the shear stress magnitude ( �shear ) 
in Pascals and exposure time ( texp ) in seconds:

Here, H is the relative fraction of plasma free hemoglobin 
to the total blood hemoglobin (which is comprised of both 
free hemoglobin in the plasma and hemoglobin that remains 
within intact RBCs), Hct is the percent hematocrit, fHb is the 
plasma free hemoglobin concentration (mg/dl plasma), Hb 
is the total blood hemoglobin concentration (mg/dl blood), 
and C, a, and b are empirical coefficients. Note that the mul-
tiplier (1 − Hct∕100) is required to accommodate the differ-
ing definitions of fHb and Hb, which are defined in terms 
of plasma volume and total blood volume, respectively. The 
dimensionless empirical coefficients a and b and the dimen-
sional coefficient C (with units of Pa−1s−1 ) are typically 
determined from measurements of hemolysis in Couette-
type shearing devices under uniform shear conditions (e.g., 
see Heuser and Opitz 1980; Zhang et al. 2011; Ding et al. 
2015 and Table 1).

Historically, continuum-based power law models have 
been the most popular approach to predicting mechanical 
hemolysis using CFD as they are readily incorporated into 
existing CFD software using either an Eulerian or Lagran-
gian formulation at the macroscale. However, there are 
several major challenges with using power law models to 
accurately predict absolute hemolysis levels that have yet 
to be fully addressed. At their core, most power law models 
recast the global empirical correlation of Eq. 1 to a form 
such that it is applied locally at either every point along 

(1)H =

(
1 − Hct∕100

)
fHb

Hb
= C ta

exp
�b
shear

.

Table 1  Global empirical power law coefficients for H = C ta
exp

�b
shear

 
developed from experiments acquired in Couette-type shearing 
devices with laminar flow, uniform shear conditions, and with well-
defined exposure times

a Developed by Song et al. (2003) using the experimental data of Heu-
ser and Opitz (1980)
b Coefficients derived from the same experimental data

Refs. Animal Species C a b

Giersiepen et al. 
(1990)

Human 3.62 × 10−7 0.785 2.416

Song et al. (2003)/
Heuser and Opitz 
(1980)a

Porcine 1.8 × 10−8 0.765 1.991

Zhang et al. (2011)b Ovine 1.228 × 10−7 0.6606 1.9918
Ding et al. (2015) Human 3.458 × 10−8 0.2777 2.0639
Ding et al. (2015) Porcine 6.701 × 10−6 0.2778 1.0981
Ding et al. (2015)b Ovine 1.228 × 10−7 0.6606 1.9918
Ding et al. (2015) Bovine 9.772 × 10−7 0.2076 1.4445
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a streamline (for Lagrangian methods) or at every point 
in the flow domain of the device (for Eulerian methods). 
These local power law formulations still require the empiri-
cal coefficients C, a, and b, and, in the absence of more 
appropriate values, investigators typically use power law 
coefficients originally obtained by fitting the global cor-
relation of Eq. 1 using hemolysis data acquired in laminar 
Couette flow shearing devices under uniform shear con-
ditions and with well-defined exposure times (Table 1). 
Computational simulations are then performed to predict 
the hemolytic potential of a medical device, such as a blood 
pump, with a complex hemodynamic flow field that often 
includes turbulence, highly non-uniform stress (both exten-
sional and shear), and where there are not well-defined 
stress exposure times. This traditional approach to predict-
ing hemolysis in blood-contacting medical devices using 
CFD and continuum-based power law models is illustrated 
in Fig. 1a.

The applicability, however, of using global power law 
coefficients derived from simplified experiments to predict 
the spatial distribution of hemolysis production based on 
local values of stress in a medical device with extremely 
complex flow conditions is currently unknown. The wide 
range of power law coefficients reported in the literature 
from experiments in Couette-type devices with similar uni-
form shear conditions (Table 1) seems to indicate that coef-
ficients may be device-specific, even for simplified devices. 
Indeed, the existence of device-specific power law coeffi-
cients may be one of the main reasons why it is so challeng-
ing to predict absolute hemolysis levels in medical devices 
using coefficients from simplified experiments (e.g., see 
Taskin et al. 2012; Yu et al. 2017). To further complicate 
matters, hemolysis power law coefficients also depend on 
the species of animal blood used in experiments (Ding et al. 
2015; see Table 1).

In application, if hemolysis power law coefficients are 
device- and species-specific, it is currently unclear how to 
best determine reliable coefficients for a specific device and 
for a specific species of animal blood. As concluded by Yu 
et al. (2017), who found that using different sets of coef-
ficients from the literature yields hemolysis predictions in a 
rotary blood pump that vary by up to a factor of 50, estab-
lishing more reliable hemolysis power law coefficients is 
“essential to increase prediction accuracy.” The challenge is 
that, in medical devices with complex flow fields and highly 
non-uniform stress, a global power law is difficult to define 
because of the ambiguity of defining a characteristic stress 
and exposure time. Rather, in such practical applications the 
power law must be defined and applied in a local fashion, in 
which case the power law coefficients represent values that 
yield correct global hemolysis predictions when the power 
law is applied locally.

Here, we propose a new approach for determining device- 
and species-specific hemolysis power law coefficients that is 
conceptually illustrated in Fig. 1b. The approach requires: 
(i) quantification of the entire flow field in the device and 
(ii) hemolysis measurements. Given detailed quantifica-
tion of the velocity field from CFD (or from whole-field 
velocity measurements—e.g., via volumetric particle image 
velocimetry), the stress field may be calculated and the 
power law applied locally to determine the coefficients that 
yield global hemolysis predictions that match the hemoly-
sis measurements. Theoretically, the resultant device- and 
species-specific power law coefficients can then be applied 
in the same device to predict hemolysis at different operat-
ing conditions, or perhaps even in similar devices. In either 
case, compared with the traditional approach of using local 
power law formulations with global empirical coefficients 
derived from simplified experiments (Fig. 1a), this approach 
offers the hope of more accurately predicting hemolysis 
levels in blood-contacting medical devices—at least until 

Fig. 1  a Traditional and b proposed approach for predicting the 
hemolytic potential of a blood-contacting medical device using CFD 
and continuum-based power law models. In the traditional approach 
(a), global empirical power law coefficients obtained from simpli-
fied experiments (Table 1) are used to predict hemolysis in medical 
devices with extremely complex flow conditions. In the proposed 
approach (b), device-specific power law coefficients are obtained by 
combining experimental hemolysis measurements and CFD simula-
tions (see the main text for details). Theoretically, these device-spe-
cific coefficients may then be applied to predict the hemolytic poten-
tial of the same device at different operating conditions, or perhaps 
even similar devices, denoted here as Real Device #2 
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more advanced physics-based models are developed that are 
capable of accurately predicting absolute hemolysis levels 
in a device.

2  Objectives

The objectives of this study are to:

1. Develop a novel approach for determining device- and 
species-specific hemolysis power law coefficients. We 
choose a specific form of the hemolysis power law 
model that permits the derivation of analytical solutions 
for simplified cases (planar Couette flow and circular 
Poiseuille flow), allowing us to develop and verify our 
generalized methodology using analytical methods. We 
then extend our generalized approach to more practi-
cal cases relevant to blood-contacting medical devices 
wherein analytical solutions are unavailable. Here, we 
replace the requirement for an analytical solution in our 
generalized approach with CFD and a numerical method 
known as surrogate modeling, which we also verify by 
comparing with the results obtained using exact analyti-
cal solutions.

2. Apply our verified CFD and surrogate modeling 
approach to investigate the applicability of the tradi-
tional approach of using global empirical coefficients 
obtained from simplified experiments to predict hemoly-
sis in a device with highly non-uniform stress. Here, we 
strategically choose a case (developing laminar flow in a 
capillary tube) with appreciable non-uniform stress due 
to laminar flow in a relatively simple geometry. Impor-
tantly, this allows us to have a high degree of confidence 
in our CFD simulations and to avoid the complications 
of turbulence modeling and the uncertainties associated 
with the influence of turbulence on hemolysis. Given 
available experimental data in this capillary tube geom-
etry, using our CFD and surrogate modeling approach 
we predict the device- and species-specific hemolysis 
power law coefficients for this case and compare them 
with traditional empirical coefficients obtained from 
simplified experiments (Table 1). We also show the error 
incurred by using traditional power law coefficients to 
predict hemolysis in this device using CFD.

3  Materials and methods

3.1  Governing equations

In this study, we consider the laminar, incompressible flow 
of blood that is treated as a Newtonian fluid. Though blood 
is viscoelastic and shear-thinning, it behaves as a Newtonian 

fluid when the shear rate is above approximately 100 s−1 
(Aycock et al. 2016), as it is in most regions of the cases 
considered in the present study. Under these conditions, the 
flow is governed by the incompressible continuity

and Navier–Stokes equations

where u is the velocity vector, p is pressure, � is density, and 
� is the kinematic viscosity.

For hemolysis, we use the Eulerian power law model. The 
advantage of this specific hemolysis model for the present 
study is that analytical solutions can be derived for simpli-
fied cases (e.g., see Hariharan et al. 2015), allowing us to 
develop and verify our generalized methodology for predict-
ing device-specific coefficients. The analytical solutions are 
also valuable for verifying results from numerical modeling 
and simulation.

Following the approach of others (Garon and Farinas 
2004; Trias et al. 2014; Yu et al. 2017), the Eulerian power 
law model can be derived beginning with Eq. 1. The power 
law relationship is first rewritten as

where H′ is a linearized plasma free hemoglobin fraction 
defined for mathematical convenience to linearize Eq. 1 with 
respect to time. This form of the hemolysis power law can be 
temporally differentiated and cast to an Eulerian reference 
frame, yielding a partial differential equation for the produc-
tion and transport of H′:

The right-hand side of Eq. 5 represents the local production 
of the linearized plasma free hemoglobin fraction, H′ , due to 
flow-induced stress, which can be non-uniform and include 
non-shear (extensional) stress components—both of which 
are deviations from the uniform shear conditions used to 
develop the underlying global empirical power law relation-
ship of Eq. 1 (e.g., see Giersiepen et al. 1990; Zhang et al. 
2011; Ding et al. 2015).

3.2  Scalar stress

The Eulerian power law model of Eq. 5 requires a scalar 
measure, � , of the flow-induced stress, which is a second-
order tensor. For the laminar, incompressible flow of blood 
considered in this study the flow-induced stress is due to 
viscous effects. The viscous stress tensor is defined as

(2)∇ ⋅ � = 0

(3)
��

�t
+ (� ⋅ ∇)� = −

∇p

�
+ �∇2

�

(4)H� = H1∕a =
(
C �b

)1∕a
t

(5)�H�

�t
+ (� ⋅ ∇)H� =

(
C �b

)1∕a
.
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where � is the dynamic viscosity and S is the strain rate 
tensor:

To quantify the magnitude of the viscous stress tensor, we 
define an effective scalar stress as:

As recently noted by Faghih and Sharp (2016), Eq. 8 is 
the most appropriate scalar measure of stress for use in the 
hemolysis power law model as it yields the fluid shear stress 
under pure shear conditions. This is especially critical if the 
power law model is used with empirical coefficients derived 
from experiments in Couette-type shearing devices under 
uniform shear conditions, which is traditionally the case (see 
Fig. 1a and related discussion).

3.3  Hemolysis indices

In “Appendix 1”, we provide a thorough introduction to the 
various hemolysis indices that are used in the present study. 
Here, we briefly define each of the indices and refer the 
reader to “Appendix 1” for further details.

For a single-pass experiment, the hemolytic potential of 
a blood-contacting medical device is typically quantified in 
terms of a single-pass index of hemolysis defined as:

Physically, IHsp represents the relative mass fraction of the 
total blood hemoglobin that is released from the RBCs as 
blood flows through the device. By definition, IHsp must be 
between 0 and 1.

For a multi-pass experiment, the hemolytic potential of 
a device is often quantified in terms of a “modified index of 
hemolysis” (MIH) defined as

where V is the total volume of blood in the flow loop, Q is 
the volumetric flow rate, and �t is the time duration of the 
experiment (Mueller et al. 1993). In general, MIH physically 
represents the relative fraction of the total blood hemoglobin 
that is released from the RBCs per pass through the device. 
By definition, then, MIH must be between 0 and 106.

To directly compare with hemolysis experiments, an 
appropriate index of hemolysis must be calculated from 

(6)� = 2��

(7)� =
1

2

(
∇� + (∇�)T

)
.

(8)� =

√
1

2
� ∶ �.

(9)IHsp =

(
1 − Hct∕100

)
fHb

Hb
.

(10)MIH = 106

(
1 − Hct∕100

)
fHb

Hb

(
V

Q�t

)

analytical or numerical solutions of flow and hemolysis in a 
device. As derived in “Appendix 1”, given an analytical or 
numerical solution of flow and hemolysis, we can calculate 
an effective single-pass index of hemolysis as:

where the integration is performed over the outlet of the 
flow domain. This may be directly compared with experi-
mental values of IHsp from single-pass measurements. For 
multi-pass devices, analytical or numerical predictions of 
IHoutlet may be scaled by 106 and directly compared with 
experimental values of MIH.

3.4  Analytical and numerical methods

In general, predictions of the hemolytic potential of a medi-
cal device using the Eulerian power law model are obtained 
following the steps summarized in Algorithm 1. In the rare 
case that closed-form analytical solutions are available for 
all steps in Algorithm 1, the governing equations can be 
solved exactly to predict hemolysis. Importantly, it should 
be noted, however, that such predictions still depend on the 
power law coefficients, C, a, and b. But, in general, exact 
flow and hemolysis solutions are not available in a real 
device, in which case CFD is used to numerically compute 
each of the steps in Algorithm 1. 

In the present study, we derive closed-form analytical solu-
tions for hemolysis in two simplified cases: planar Couette 
flow and circular Poiseuille flow. Given appropriate assump-
tions in each case, the governing equations are simplified and 
exact solutions are derived for each step in Algorithm 1. In 
the final step, the index of hemolysis is calculated by symbolic 
integration of Eq. 11 using Mathematica (version 11.1).

As a third more general case, we consider hemolysis in 
the developing laminar flow in a small capillary tube, for 
which a closed-form analytical solution does not exist. In 

(11)IHoutlet = Houtlet =
∫
outlet

(H �) ⋅ d�

∫
outlet

� ⋅ d�
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this case, CFD is used to numerically solve each step in 
Algorithm 1. Assuming steady-state conditions, the Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) 
algorithm is used to numerically solve Eqs. 2 and 3 in 
OpenFOAM (version 2.4) using second-order accurate 
spatial discretization schemes. The normalized solution 
residuals are forced to be less than 10−4 to ensure itera-
tive convergence of the steady-state solution. Values of 
various primitive solution variables (minimum and maxi-
mum pressure, maximum velocity) and integrated quanti-
ties (outlet flow rate, integrated force) are also monitored 
throughout the simulation to assess iterative convergence.

Given the flow solution and the resultant stress field 
(steps 1–3 in Algorithm 1), the production and transport 
of H′ are computed using a custom Eulerian power law 
hemolysis solver developed in OpenFOAM. Quasi-steady 
hemolysis solutions are obtained by solving Eq. 5 using 
second-order accurate spatial discretization schemes and 
the SLTS stabilized local time-stepping scheme available 
in OpenFOAM with a local Courant number of 0.1. Quasi-
steady convergence of the solution is assessed by monitor-
ing the H′ field and the integrated flux of H′ at the outlet. 
Finally, given the steady flow and hemolysis solutions, the 
index of hemolysis at the outlet, IHoutlet , is calculated by 
numerically integrating Eq. 11 in OpenFOAM.

To ensure correct implementation of the Eulerian power 
law model in OpenFOAM, a rigorous verification of the 
hemolysis solver was performed. This included compar-
ing simulation results using a relatively fine mesh with 
exact analytical solutions of flow and hemolysis for steady, 
axisymmetric fully developed flow in a small capillary 
tube (i.e., circular Poiseuille flow). In summary, the com-
parison showed a maximum percent difference between the 
CFD and analytical solutions of less than approximately 
0.1% for velocity, viscous scalar stress, plasma free hemo-
globin fraction, and the index of hemolysis at the outlet of 
the tube. Given the close correspondence between the CFD 
and analytical solutions, this confirms that the Eulerian 
power law model is implemented correctly in OpenFOAM.

3.5  Three‑dimensional (C, a, b) parameter space

To determine device- and species-specific hemolysis 
power law coefficients, given the flow field solution in 
a device (steps 1–3 in Algorithm 1), the Eulerian power 
law model can be solved using different combinations of 
power law coefficients (C, a, b) and the results compared 
with experimental hemolysis data. As schematically illus-
trated in Fig. 2, by mapping the hemolysis response field in 
three-dimensional (C, a, b) parameter space we can iden-
tify the power law coefficients that, when incorporated into 
the Eulerian power law model (Eq. 5), yield hemolysis 

predictions of IHoutlet (Eq. 11) that match experimental 
measurements of either IHsp (Eq. 9) or MIH (Eq. 10) from 
single-pass or multi-pass experiments, respectively. That 
is, conceptually the device- and species-specific coeffi-
cients are determined by mapping all possible solutions of 
IHoutlet(C, a, b) in three-dimensional parameter space and 
comparing the results with experimental data to determine 
what combinations of C, a, and b yield hemolysis predic-
tions that match the experiments.

3.6  Kriging surrogate modeling

In cases where closed-form analytical solutions exist for all 
steps of Algorithm 1, IHoutlet is continuously defined as a 
function of C, a, and b. Accordingly, all possible hemolysis 
solutions are easily mapped in three-dimensional (C, a, b) 
parameter space using the analytical solution. In general, 
however, this is not the case in a real device, where closed-
form analytical solutions do not exist. In such practical 
cases, all steps of Algorithm 1 must be solved numerically 
using CFD. Given the computational expense of CFD and 
the fact that a separate CFD simulation is required to pre-
dict hemolysis for each combination of C, a, and b, it is not 
generally possible to map the entire three-dimensional (C, 
a, b) parameter space with high fidelity. For this, we use a 
technique known as Kriging surrogate modeling.

Fig. 2  Schematic illustration of the three-dimensional (C,  a,  b) 
parameter space used to determine device- and species-specific 
hemolysis power law coefficients. Note that the C parameter is log10-
transformed for visualization purposes to accommodate the wide 
range of possible values in contrast to the comparatively narrow range 
of values expected for the a and b parameters (see Table 1)
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Surrogate modeling (also known as metamodeling 
or response surface modeling) is a method used to fit or 
interpolate the results from expensive computer simula-
tions using a comparatively inexpensive surrogate response 
function that may be leveraged to predict results between 
simulation data points in the parameter (or design) space of 
interest (Jones 2001; Forrester et al. 2008). There are two 
general classes of surrogate models: interpolating and non-
interpolating. When used with deterministic computer simu-
lations, interpolation-based surrogate modeling methods are 
preferred because they interpolate the computer simulation 
results and are, thus, guaranteed to return the same result as 
the computer simulation at parameter space locations where 
simulation data exist. Additionally, interpolation-based 
methods better capture the shape of complex, multimodal 
response functions compared to non-interpolating response 
surface methods that fit a polynomial function to the simula-
tion data (Jones 2001; Forrester et al. 2008).

Surrogate modeling using Kriging interpolation—or 
Kriging surrogate modeling—is especially powerful because 
it has a statistical underpinning that provides an estimate of 
the error in the interpolation, termed the “predictor” (Jones 
2001). Given an initial set of simulation data points, a Krig-
ing predictor is constructed that includes an estimate of the 
error. The estimated error is then used to identify parameter 
space locations where new simulation data can be added to 
improve (or update) the predictor in subsequent iterations. In 
this way, Kriging surrogate modeling can be used to either: 
(i) obtain a high-fidelity representation of the global param-
eter space by driving down the maximum predicted error, or 
(ii) search for a global optimum by exploiting the surrogate 
to drive down the local error in the vicinity of the predicted 
optimum location (Jones 2001; Forrester et al. 2008).

In the present study, we developed a Kriging surrogate 
modeling framework in Python that uses the pyKriging 
package (Paulson and Ragkousis 2015) to construct a Krig-
ing surrogate of the hemolysis response field in three-dimen-
sional (C, a, b) parameter space from CFD data obtained 
from simulations performed using OpenFOAM. As illus-
trated in Algorithm 2, the framework manages the genera-
tion of an initial sampling plan, launching CFD simulations, 
reading the CFD output, constructing the Kriging predic-
tor, generating infill points using either a root mean squared 
error (RMSE) or expected improvement (EI) criterion (or 
both), updating the Kriging predictor with new CFD results, 
searching the predictor for the global optimum, tracking the 
location of the global optimum, and monitoring convergence 
of the algorithm. Given the required user input (step 1 in 
Algorithm 2), the surrogate modeling framework is run in 
an automated fashion in a parallel computing environment to 
facilitate the execution of multiple concurrent CFD simula-
tions that can each be run in serial or in parallel. 
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The present Kriging surrogate modeling framework may 
be used to either: (i) obtain an accurate global representation 
of the hemolysis response field for parameter space explora-
tion and comparison with experimental data, or (ii) find the 
global optimum, corresponding to the parameter space loca-
tion (C, a, b)opt that yields a unique numerical prediction that 
matches experimental data. The choice depends on the spe-
cific application and the behavior of the hemolysis response 
field—in particular, whether a unique global optimum exists.

4  Results

This section is organized as follows:

• In Sect. 4.1 (Analytical: planar Couette flow), we develop 
a novel approach for determining device- and species-
specific hemolysis power law coefficients. We consider 
hemolysis in a uniform shear flow (fully developed 
boundary-driven channel flow; Fig. 3a), a case for which 
an analytical solution exists for the Eulerian power law 
model. We first investigate the behavior of the hemolysis 
response field, IHoutlet , in (C, a, b) parameter space and 
then compare with the hemolysis experiments of Ding 
et al. (2015) in developing a generalized approach for 
determining device- and species-specific coefficients.

• In Sect. 4.2 (Analytical: circular Poiseuille flow), we 
investigate the behavior of the hemolysis response field 
for a non-uniform shear flow (fully developed pipe flow; 
Fig. 3b) using exact analytical solutions. Here, we extend 

our generalized approach for determining device-specific 
coefficients to more practical cases with non-uniform 
flow-induced stress, where a global empirical power 
law is more difficult to define due to the lack of a single 
characteristic value of shear stress with a corresponding 
exposure time.

• In Sect. 4.3 (Numerical: device-specific coefficients for 
developing flow in a small capillary tube), we replace the 
requirement for an analytical solution in our generalized 
approach with CFD and Kriging surrogate modeling. 
After rigorously verifying our CFD-based Kriging sur-
rogate modeling approach (in “Appendix 3”), we apply 
it in Sect. 4.3 to investigate the applicability of the tra-
ditional approach of using global empirical coefficients 
obtained from simplified experiments to predict hemoly-
sis in a device with highly non-uniform stress. Here, we 
strategically choose developing laminar flow in a capil-
lary tube (Fig. 3c), a case with appreciable non-uniform 
stress due to laminar flow in a relatively simple geom-
etry. This allows us to have a high degree of confidence 
in our CFD simulations and to avoid the complications 
of turbulence modeling and the uncertainties associated 
with the influence of turbulence on hemolysis. We first 
perform a mesh refinement study to ensure the accu-
racy of our CFD simulations (with details provided in 
“Appendix 4”). We then combine our CFD-based Kriging 
surrogate model predictions with the experimental data 
of Kameneva et al. (2004) to determine the device- and 
species-specific hemolysis power law coefficients. These 
coefficients are compared with traditional coefficients 
derived from Couette-type devices under uniform shear 
conditions (Table 1), and the accuracy of hemolysis pre-
dictions using such traditional idealized coefficients is 
assessed.

4.1  Analytical: planar Couette flow

4.1.1  Analytical solution

Assuming steady-state, two-dimensional fully developed 
flow with no-slip conditions at the boundaries, the classical 
planar Couette solution for the velocity distribution in the 
channel is:

where U is the speed of the upper boundary and w is the 
channel gap width (see Fig. 3a). This linear velocity pro-
file yields a constant viscous scalar stress, calculated from 
Eqs. 6–8 as:

(12)u(y) =
Uy

w

(13)� =
||||
�U

w

||||

(a)

(b)

(c)

Entry length,

Boundary layer

Fig. 3  Schematic illustration of the benchmark cases considered 
in the present study that include a planar Couette flow (fully devel-
oped boundary-driven channel flow), b circular Poiseuille flow (fully 
developed pipe flow), and c developing laminar flow in a small capil-
lary tube
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where � is the dynamic viscosity. Given the velocity and 
stress distributions in the channel and assuming an inlet 
plasma free hemoglobin fraction of zero ( H(x = 0, y) = 0 ), 
the analytical solution of the Eulerian power law model 
(Eq. 5) is:

where x is the distance from the inlet in the x-coordinate 
direction. Finally, the index of hemolysis at the channel out-
let, IHoutlet , is calculated as the integrated flux of H(x, y) at 
the outlet, located at x = L , normalized by the integrated 
outlet flow rate (Eq. 11), yielding a closed-form analytical 
solution

that is confined to a restricted domain in (C,  a,  b) 
parameter space with a < 2 . Here, we assume that 
C, a, b, L,w,�,Uavg ∈ ℝ and L,w,𝜇,Uavg > 0.

(14)H(x, y) = C �b
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4.1.2  Behavior of hemolysis solution

Given the analytical expression in Eq. 15, we can map the 
IHoutlet response field from the Eulerian power law model 
in three-dimensional (C, a, b) parameter space. To deter-
mine the power law coefficients that yield global hemolysis 
predictions of IHoutlet that match experimental measure-
ments, here we use the experimental correlation of Ding 
et al. (2015) for IHsp (see Table 1) from measurements using 
bovine blood in a Couette-type shearing device with similar 
uniform shear conditions as in the present planar Couette 
flow case. That is, at a specific operating condition charac-
terized by specific values of shear stress and exposure time, 
we use the analytical solution of Eq. 15 to map IHoutlet as a 
function of C, a, and b. We next extract the value of IHoutlet 
in (C, a, b) parameter space that matches the experimental 
hemolysis value from the Ding et al. (2015) correlation for 
bovine blood at the same condition. The device- and spe-
cies-specific power law coefficients are then determined by 
identifying the location in (C, a, b) parameter space where 
IHoutlet matches the experimental hemolysis value (see 
Sect. 3.5 for further discussion).

As shown in Fig. 4a, at a single operating condition 
( � = 300 Pa, texp = 0.25 s ) the extracted values of IHoutlet 
that match experimental hemolysis data ( IHoutlet = 0.00277 ) 
form a continuous isosurface that sweeps through the (C, 

Fig. 4  Map of the index of hemolysis at the outlet, IHoutlet , in three-
dimensional (C, a, b) parameter space for planar Couette flow (fully 
developed boundary-driven channel flow). a IHoutlet response field 
for a single operating condition ( � = 300 Pa, texp = 0.25 s ). An iso-
surface of IHoutlet = 1.0 is shown as the delineation between physical 
( IHoutlet ≤ 1.0 ) and non-physical ( IHoutlet > 1.0 ) hemolysis solutions. 
An isosurface of IHoutlet = 0.00277 is also shown, extracted from the 
IHoutlet response field at a value corresponding to the value calculated 

from the experimental correlation of Ding et al. (2015) for IHsp in a 
Couette-type shearing device under the same conditions using bovine 
blood (see Table  1). b Variation in the extracted experimental iso-
surface with variable shear stress ( � = 25 − 300 Pa ) and a constant 
exposure time ( texp = 0.25 s ). c Variation in the extracted experimen-
tal isosurface with variable exposure time ( texp = 0.05 − 1.35 s ) and a 
constant shear stress ( � = 250 Pa)
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a, b) parameter space. This is especially significant for two 
reasons. First, it means that in a Couette shearing device, at 
a single operating condition, there are an infinite number of 
combinations of power law coefficients that yield the same 
hemolysis solution defined along a common isosurface. 
All Eulerian power law model solutions for IHoutlet that lie 
along this isosurface match experimental hemolysis data. 
This leads us to the second important point: Because there 
is not a unique combination of C, a, and b that yields a 
hemolysis prediction that matches experiments at a single 
condition (i.e., a unique global optimum), standard optimiza-
tion techniques cannot be utilized to obtain device-specific 
power law coefficients by minimizing an objective function 
at a single operating condition (see Algorithm 2 and related 
discussion). As mentioned in Sect. 3.6, this directly affects 
our Kriging surrogate modeling strategy, which will be later 
addressed in Sect. 4.3.

Considering the behavior of the hemolysis solution 
at a single condition, we note that for large values of C 
and b the present form of the Eulerian power law model 
(Eq. 5) can yield highly non-physical hemolysis solutions 
( IHoutlet ≫ 1.0 ). From Fig. 4a, we see that the IHoutlet solu-
tion varies smoothly from a value approaching zero as C 
and b approach zero, to extremely large, non-physical val-
ues ( IHoutlet ∼ 1 × 1010 ) at the opposite corner of the (C, a, 
b) parameter space domain. From the definitions of H and 
IHoutlet (Eqs. 1 and 11, respectively), the plasma free hemo-
globin concentration cannot exceed the total blood hemo-
globin concentration, Hb . Thus, IHoutlet cannot be greater 
than unity. This delineation between physical and non-phys-
ical solutions is visualized as an isosurface of IHoutlet = 1 in 
Fig. 4a, which illustrates the extent of non-physical solu-
tions that are possible using the current form of the Eulerian 
power law model.

To characterize how the hemolysis solution varies over 
multiple conditions, we extract experimental isosurfaces 
(i.e., isosurfaces extracted from the IHoutlet response field 
that correspond to values calculated from the empirical 
correlation of Ding et al. (2015) for bovine blood) over a 
range of conditions by systematically varying shear stress 
and exposure time. As shown in Fig. 4b, as the magnitude 
of the shear stress varies at a fixed exposure time, the experi-
mental isosurfaces rotate about a line of intersection that 
lies in a plane corresponding to b = 1.4445 , which is equal 
to the value of the b parameter from the Ding et al. (2015) 
correlation. That is, when we fix the exposure time and vary 
the shear stress, a single unique value of the b parameter 
( b = 1.4445 ) exists that, when used in the Eulerian power 
law model (Eq. 5), yields hemolysis predictions that match 
experiments at all conditions. This unique value of b is equal 
to the value of the b parameter from the experimental cor-
relation of Ding et al. (2015) for bovine blood (Table 1) 
that was used to obtain the experimental hemolysis data. 

Similarly, from Fig. 4c we see that as the exposure time var-
ies at a fixed shear stress, the experimental isosurfaces rotate 
about a line of intersection that lies in a plane corresponding 
to a = 0.2076 , which is equal to the value of the a parameter 
in the Ding et al. (2015) correlation used to calculate the 
experimental hemolysis values. In each case, this behavior 
stems from the mathematical form of the power law (Eq. 1), 
wherein the shear stress ( �shear ) is raised to the power of b 
and exposure time ( texp ) is raised to the power of a.

4.1.3  Generalized approach for determining 
device‑specific coefficients

In theory, it is not all that surprising here that, when we 
extract isosurfaces of IHoutlet from Eulerian power law model 
solutions that match experimental hemolysis values, we 
recover the power law coefficients of the empirical correla-
tion that was used to obtain the experimental values. Admit-
tedly,—in the present case this is of little value; if we know 
the power law coefficients in the Couette shearing device 
from an experimental correlation there is no need to use 
the Eulerian hemolysis model to calculate them. In general, 
however, global power law correlations do not exist for real 
medical devices with complex hemodynamic flow condi-
tions due to the lack of a well-defined characteristic shear 
stress and exposure time in the device (see Sect. 1 for related 
discussion). Thus, the significance of the present results for 
planar Couette flow is that they demonstrate a methodology 
for calculating device-specific power law coefficients that 
may be extended to real devices, where a global power law 
correlation does not exist.

From this perspective, these results have an important 
implication concerning the practical implementation of such 
a methodology due to the nature of how the hemolysis solu-
tion varies across operating conditions. As shown here, if 
shear stress is varied but exposure time is fixed, we obtain a 
unique value of b. But, an infinite number of combinations 
of C and a defined along a line in (C, a, b) parameter space 
(e.g., the line of intersection shown in Fig. 4b) may be used 
to match experimental hemolysis measurements. Similarly, 
if exposure time is varied and shear stress is fixed, we obtain 
a unique value of a, but an infinite number of combinations 
of C and b may be used to match experiments (e.g., see 
Fig. 4c). Thus, at least for planar Couette flow, to obtain a 
unique set of power law coefficients for a specific device 
using a particular species of animal blood, we must vary 
both shear stress and exposure time.

Using this approach, we determine device- and species-
specific power law coefficients for planar Couette flow 
using bovine blood as follows. We first calculate the IHoutlet 
response field from analytical solutions of the Eulerian 
power law model at three conditions that span a range of 
shear stress and exposure time values ( � = 50 Pa, texp = 1.2 s ; 
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� = 150 Pa, texp = 0.25 s ;  � = 250 Pa, texp = 0.05 s ).  For 
each condition, we extract an isosurface of IHoutlet that cor-
responds to the experimental value calculated from the 
empirical correlation of Ding et al. (2015) for bovine blood 
at the same shear stress and exposure time. We then search 
for common points of intersection among all three isosur-
faces that correspond to unique values of C, a, and b that 
yield hemolysis solutions that match the experiments at all 
three conditions. In practice, we found that this is most eas-
ily accomplished by performing a Boolean intersection of 
two of the isosurfaces and repeating this for each of the three 
combinatorial pairs available among the three isosurfaces. 
This yields a set of three lines of intersection (one for each 
combinatorial pair of the three isosurfaces) that are easily 
interrogated for any common points of intersection.

As shown in Fig. 5a, for any two conditions the experi-
mental isosurfaces intersect to form a curve—or line of 
intersection—in (C, a, b) parameter space along which an 
infinite number of combinations of C, a, and b are defined 

that yield hemolysis solutions that match the experimental 
value at both conditions. Boolean intersection of the three 
available combinatorial pairs of isosurfaces yields a set of 
three lines of intersection. As illustrated in Fig. 5b, the three 
lines of intersection themselves intersect at a single com-
mon point that defines the location in (C, a, b) parameter 
space where Eulerian power law model solutions match 
values calculated from the experimental correlation of 
Ding et al. (2015) at all three conditions—i.e., the device-
specific power law coefficients for this particular species 
of animal blood, denoted (C, a, b)device . In this manner, the 
device-specific power law coefficients are determined to be: 
Cdevice = 9.772 × 10−7, adevice = 0.2076 , and bdevice = 1.4445 , 
which are identical to the empirical coefficients of Ding et al. 
(2015) for bovine blood. This confirms that, at least for pla-
nar Couette flow, this approach may be used to determine 
device- and species-specific hemolysis power law coeffi-
cients. Note, however, that it requires the analysis of mul-
tiple operating conditions that span a range of shear stress 
and exposure time values to determine a single unique set 
of device-specific coefficients, which has several practical 
implications that are addressed in the following sections.

4.2  Analytical: circular Poiseuille flow

We next apply the foregoing approach to circular Poiseuille 
flow, a case with non-uniform shear conditions where a 
global empirical power law is more difficult to define due to 
the lack of a single characteristic value of shear stress with 
a corresponding exposure time.

4.2.1  Analytical solution

Assuming steady-state, axisymmetric fully developed flow 
with no-slip conditions at the boundaries, the classical Poi-
seuille solution for the velocity distribution in a tube of cir-
cular cross section is:

where ux(r) is the axial velocity as a function of the radial 
coordinate r, R is the radius of the tube, and dp/dx is the 
applied pressure gradient along the tube. For convenience, 
Eq. 16 can also be written in terms of the average cross-
sectional velocity, defined as

which yields
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Fig. 5  Device- and species-specific hemolysis power law coefficients 
for planar Couette flow. a Isosurfaces of IHoutlet in (C, a, b) param-
eter space extracted from analytical solutions of the Eulerian power 
law model that correspond to values from the experimental correla-
tion of Ding et al. (2015) for IHsp in a Couette-type shearing device at 
three conditions using bovine blood. The intersection of each isosur-
face with the others was calculated and is illustrated here as lines of 
intersection. b Enlarged view of the inset shown in panel a depicting 
the lines of intersection between the three isosurfaces, with the lines 
color-coded by the two isosurfaces that form the intersection (e.g., the 
cyan line of intersection is formed by the intersection of the blue and 
green isosurfaces in a). As illustrated, the three lines of intersection 
themselves intersect at a common point in (C, a, b) parameter space 
that corresponds to the location of the device- and species-specific 
power law coefficients, denoted as (C, a, b)device
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This parabolic velocity profile yields a linear viscous scalar 
stress, calculated from Eqs. 6–8 as:

Given the velocity and stress distributions in the tube and 
assuming an inlet plasma free hemoglobin fraction of zero 
( H(x = 0, r) = 0 ), the analytical solution of the Eulerian 
power law model (Eq. 5) is:

where x is the distance from the inlet in the axial direction 
(see Fig. 3b). Finally, the index of hemolysis at the tube 
outlet, IHoutlet , is calculated as the integrated flux of H(x, r) 
at the outlet, located at x = L , normalized by the integrated 
outlet flow rate (Eq. 11), yielding a closed-form analytical 
solution

that is confined to a restricted domain in (C, a, b) parameter 
space with b > −2 and a < 2 . Here, � (z) is the Euler gamma 
function, C, a, b, L,R,�,Uavg ∈ ℝ , and L,R,𝜇,Uavg > 0.

4.2.2  Behavior of hemolysis solution

Given the analytical expression in Eq. 21, we can map the 
hemolysis response field from the Eulerian power law model 
in (C, a, b) parameter space. To compare with experiments, 
here we leverage the hemolysis data of Kameneva et al. 
(2004) acquired using a recirculating suspension of bovine 
red blood cells flowing through a small capillary tube with a 
radius of 0.5 mm and a length of 70 mm. Because the experi-
ments of Kameneva et al. (2004) are multi-pass, we convert 
the reported values of plasma free hemoglobin concentration 
to values of MIH using Eq. 10 (see “Appendix 2” for details). 
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As described in Sect. 3.3, to directly compare the Eulerian 
power law model results with experimental values of MIH, 
we scale IHoutlet by 106 . In this way, we calculate analytical 
solutions of MIH for steady, axisymmetric fully developed 
laminar flow in a capillary tube of the same dimensions and 
with flow at the same average wall shear conditions ( �wall 
of 200, 300, and 400 Pa) as reported by Kameneva et al. 
(2004). At each operating condition, we use the analytical 
solution of Eq. 21 to map MIH as a function of C, a, and b. 
As before, we then extract the value of MIH that matches 
the experimental MIH value of Kameneva et al. (2004) at 
the same conditions. Importantly, at each condition, we 
also consider the uncertainty in the experimental hemolysis 
measurements by extracting the MIH values associated with 
the reported standard deviation in the measured mean value.

Considering the behavior of the hemolysis solution at a 
single condition, the variation in the MIH response field for 
circular Poiseuille flow is similar to the variation in IHoutlet 
observed for planar Couette flow. As shown in Fig. 6a, MIH 
varies smoothly from a value approaching zero as C and b 
approach zero, to extremely large, non-physical values at the 
opposite corner of the (C, a, b) parameter space domain. As 
discussed in Sect. 3.3, MIH cannot physically exceed a value 
of 106 . As observed from Fig. 6a, however, the present form 
of the Eulerian power law model yields highly non-physical 
solutions ( MIH ≫ 106 ) for large values of C and b.

Similar to planar Couette flow, at a single operating 
condition the extracted values of MIH that match the mean 
experimental hemolysis data form a continuous isosurface 
that sweeps through the (C, a, b) parameter space (Fig. 6a). 
Here, however, we also account for the uncertainty in the 
hemolysis measurements by extracting isosurfaces of MIH 
that correspond to the reported standard deviation in the 
experiments ( MIH = 28.84 ± SD in Fig.  6a). The two 
bounding ±SD isosurfaces sweep a small volume in (C, a, 
b) parameter space wherein the Eulerian power law model 
results fall within the uncertainty bounds of the experimen-
tal data. That is, any combination of C, a, and b within this 
small volume may be used in the Eulerian power law model 
to yield hemolysis results that match the experimental data 
to within the uncertainty of the measurements.

To characterize how the hemolysis solution varies over 
multiple conditions, we extract isosurfaces of MIH that 
correspond to the mean experimental measurements of 
Kameneva et al. (2004) at three operating conditions ( �wall 
of 200, 300, and 400 Pa). As shown in Fig. 6b, c, Boolean 
intersection of the three available combinatorial pairs of 
isosurfaces yields a set of three lines of intersection. Unlike 
the foregoing Couette flow case, however, the three lines 
of intersection themselves do not intersect at a single com-
mon point, indicating that there is not a single unique set 
of power law coefficients for this case that may be used to 
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predict hemolysis levels that match the mean hemolysis data 
of Kameneva et al. (2004) at all three conditions.

4.2.3  Generalized approach for determining 
device‑specific coefficients

The lack of a single unique set of device-specific coefficients 
for fully developed flow in the capillary tube is likely due 
to the limited range of shear stress and exposure time val-
ues across the three operating conditions. In the foregoing 
Couette flow case, we observed that both shear stress and 
exposure time must span a relatively wide range of values 
in order for the extracted experimental isosurfaces to shift 
appreciably enough such that they intersect at a common 
point. To obtain a single unique set of device-specific coef-
ficients for planar Couette flow, the shear stress was varied 
by a factor of 5 ( � = 50 − 250 Pa ) and exposure time was 
varied by a factor of 24 ( texp = 0.05 − 1.2 s ). This range of 
values corresponds to the approximate range of shear stress 
and exposure time in the experiments of Ding et al. (2015), 
which was made possible by using two Couette-type shear-
ing devices (one for low shear and one for high shear condi-
tions) and by independently controlling the rotational speed 
of the rotor and the flow rate through each device. In this 

way, a wide range of flow conditions was achieved, ranging 
from low shear with a short exposure time (using a slow 
rotational speed and a high flow rate) to high shear with 
a long exposure time (using a fast rotational speed and a 
low flow rate). In contrast, because the capillary tube length 
is fixed in the present case and only the flow rate changes 
between conditions, the shear stress and exposure time can-
not be independently controlled, thereby limiting the range 
of values that are obtainable—here, both the wall shear stress 
and the average exposure time vary by only a factor of 2 
( �wall = 200 − 400 Pa and average texp = 0.0088 − 0.0176 s ). 
As a result, the extracted MIH isosurfaces in Fig. 6b do not 
shift appreciably enough across conditions such that they 
all intersect at a common point in (C, a, b) parameter space.

How, then, can we determine an appropriate set of device-
specific coefficients for the capillary tube? Given the uncer-
tainty in the experimental measurements, it turns out that 
it is not critical that the extracted mean MIH isosurfaces 
do not intersect at a common point to give a single, unique 
set of device-specific coefficients. In fact, there is a range 
of coefficients that may be used in the Eulerian power law 
model to match experiments at all conditions to within 
the uncertainty of the measurements. This range of coef-
ficients is defined by a small envelope in (C, a, b) parameter 

Fig. 6  Device- and species-specific hemolysis power law coef-
ficients for circular Poiseuille flow. a Map of the modified index of 
hemolysis, MIH, in (C, a, b) parameter space for a single operating 
condition ( �wall = 400 Pa ). An isosurface of MIH = 106 is shown 
as the delineation between physical ( MIH ≤ 106 ) and non-physical 
( MIH > 106 ) hemolysis solutions. Isosurfaces of MIH = 28.84 ± SD 
are also shown, which correspond to the experimental hemolysis 
measurements of Kameneva et  al. (2004) in a small capillary tube 
with �wall = 400 Pa using a suspension of bovine red blood cells. The 
dark gray isosurface corresponds to the measured mean value, and the 
light gray isosurfaces correspond to the mean value plus and minus 

one standard deviation (SD). b Isosurfaces of MIH that correspond 
to the mean experimental measurements of Kameneva et  al. (2004) 
at three operating conditions ( �wall of 200, 300, and 400  Pa). The 
intersection of each of the isosurfaces was calculated and is illustrated 
here as lines of intersection. c Enlarged view of the lines of intersec-
tion depicted in b, with the lines color-coded by the two isosurfaces 
that form the intersection (e.g., the magenta line of intersection is 
formed by the intersection of the blue and red isosurfaces in b). As 
illustrated, the three lines of intersection themselves do not intersect 
at a common point in (C, a, b) parameter space (see the main text for 
details and the implications)
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space that encompasses hemolysis values that fall within 
the uncertainty bounds of the experimental data, identi-
fied here by the isosurfaces corresponding to the measured 
mean MIH plus and minus one SD at each condition (see 
Fig. 6a). We note that all three lines of intersection shown 
in Fig. 6b, c are contained within this envelope and that 
the magenta line, formed by the intersection of the 200 Pa 
and 400 Pa isosurfaces (blue and red isosurfaces in Fig. 6b, 
respectively), passes through approximately the center of 
the envelope. Accordingly, to quantify a set of appropriate 
device-specific coefficients we can fit a parametric curve to 
the 200–400 Pa line of intersection. This is the approach that 
we use to calculate device- and species-specific coefficients 
for the capillary tube in Sect. 4.3, where we eliminate the 
primary limitation of the present analysis—the assumption 
of fully developed flow—and use CFD and Kriging sur-
rogate modeling in lieu of analytical solutions to map the 
hemolysis response field.

4.3  Numerical: device‑specific coefficients 
for developing flow in a small capillary tube

In general, exact analytical solutions of flow and hemolysis in 
a real medical device do not exist, thus requiring an alterna-
tive approach to map the hemolysis response field in (C, a, b) 
parameter space. Here we use CFD-based Kriging surrogate 
modeling. Analytical solutions have, nonetheless, proved to be 
valuable in elucidating the nature of the Eulerian power law 
model solution and for establishing a methodology for deter-
mining device-specific coefficients. Importantly, in Sects. 4.1 
and 4.2 we showed that there is not a unique global optimum 
in the hemolysis response field at a single condition for both 
planar Couette flow and circular Poiseuille flow. Accordingly, 
standard optimization techniques cannot be utilized to obtain 
device-specific power law coefficients by minimizing an objec-
tive function at a single operating condition (e.g., see Algo-
rithm 2 and related discussion). Thus, here we use Kriging 
interpolation to construct a globally accurate surrogate model 
of the hemolysis field in (C, a, b) parameter space from CFD 
data obtained from simulations performed using the previously 
verified hemolysis solver developed in OpenFOAM (Sect. 3.4). 
The globally accurate surrogate model is then explored and, as 
before, device-specific values of C, a, and b are identified by 
extracting isosurfaces of MIH that correspond to experimental 
hemolysis measurements at the same conditions. In “Appendix 
3,” we present the results of a verification study performed 
to assess the accuracy of our CFD-based Kriging surrogate 
modeling framework by comparing with analytical solutions 
for circular Poiseuille flow. Here, we apply our verified Krig-
ing surrogate modeling approach to predict the device- and 
species-specific coefficients for developing laminar flow in the 
capillary tube of Kameneva et al. (2004).

The primary limitation of the forgoing analytical analy-
sis for circular Poiseuille flow in Sect. 4.2 is our assump-
tion of fully developed flow in the capillary tube. In real-
ity, the flow is not fully developed along the entire length 
of the tube in the experiments of Kameneva et al. (2004). 
The fully developed flow assumption was invoked to obtain 
an analytical solution that was used to map the continuous 
hemolysis response field in (C, a, b) parameter space to: 
(i) understand the nature of the solution and to develop a 
generalized approach for predicting device-specific power 
law coefficients (Sect. 4.2) and (ii) to verify our CFD-based 
Kriging surrogate modeling framework (see “Appendix 3”). 
However, at the conditions of the experiments the flow is 
not entirely fully developed, particularly at the higher flow 
rate conditions. According to White (2011), the accepted 
correlation for the entrance length for laminar flow in a tube 
is Le∕d ≈ 0.06ReD . In the experiments of Kameneva et al. 
(2004), at the lower flow rate condition with �wall = 200 Pa 
the reported Reynolds number, ReD , is 550. Thus, the 
entrance length is estimated to be 33 mm. Given that the 
capillary tube length is 70 mm, 47% of the upstream length 
contains developing flow. At the highest flow rate condi-
tion with �wall = 400 Pa , the reported ReD is 1000 and the 
entrance length is calculated to be 60 mm. Thus, approxi-
mately 86% of the upstream length contains developing flow 
and only 14% of the length near the capillary tube outlet 
contains fully developed flow.

To determine the device-specific coefficients requires 
consideration of the developing flow and hemolysis in the 
entry region of the tube, a case for which an analytical solu-
tion does not exist, thus requiring the use of our CFD-based 
Kriging surrogate modeling framework. To obtain devel-
oping flow conditions that replicate the experiments of 
Kameneva et al. (2004), we constructed a CFD model of the 
capillary tube that includes the large inlet contraction that 
was placed upstream of the tube in the experimental flow 
loop (see “Appendix 4”). We also included a short (1 cm) 
straight inlet tube upstream of the contraction and applied 
fully developed flow conditions at the upstream inlet with a 
pressure drop equal to that measured in the experiments (see 
“Appendix 2”). Steady-state axisymmetric CFD simulations 
were then performed to replicate the developing flow condi-
tions present in the capillary tube at each operating condition 
( �wall of 200, 300, and 400 Pa). To ensure the accuracy of 
the CFD simulations, we also performed a mesh refinement 
study, the results of which are presented in “Appendix 4”.

Given the computed steady-state flow solution at each 
condition, we use our verified CFD-based Kriging surrogate 
modeling framework to predict the device-specific power 
law coefficients for the developing laminar flow of a suspen-
sion of bovine red blood cells through the capillary tube. 
Qualitatively, we observe that the behavior of the hemolysis 
solution at a single operating condition (Fig. 7a) is similar 
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to that observed for both planar Couette flow and circular 
Poiseuille flow, which includes the presence of highly non-
physical solutions at large values of C and b. To calculate 
device-specific coefficients, we computed surrogate model 
predictions at all three conditions ( �wall of 200, 300, and 
400 Pa). We then extracted isosurfaces corresponding to 
the hemolysis measurements of Kameneva et al. (2004) at 
each condition, performed a Boolean intersection of each 
of the isosurfaces, and calculated the lines of intersection 
that are used to determine the device-specific coefficients 
(see Sect. 4.2). This yields the 200–400 Pa line of inter-
section shown in Fig. 7b. To quantify a set of appropriate 
device-specific coefficients, we fit a parametric curve to the 
200–400 Pa line of intersection, yielding

where � is the parametric variable defined as 0 ≤ � ≤ 1 . 
As shown in Sect.  4.2 for circular Poiseuille flow, the 
200–400 Pa line of intersection passes through approxi-
mately the center of the small envelope in (C, a, b) param-
eter space that encompasses hemolysis values corresponding 
to the uncertainty bounds of the experimental data at all 
three conditions ( �wall of 200, 300, and 400 Pa). Thus, this 
parametric curve defines a set of device-specific hemoly-
sis power law coefficients for the developing laminar flow 
of a suspension of bovine red blood cells through a small 
capillary tube that yields hemolysis predictions that match 
the measurements of Kameneva et al. (2004) to within the 
reported uncertainty in the experiments.

Comparing the device-specific coefficients defined along 
this parametric curve with the power law coefficients of 
Ding et al. (2015) from measurements in a Couette-type 
shearing device using bovine blood, there is a large differ-
ence—particularly in the values of the C and b coefficients. 
This large difference is dramatically illustrated in Fig. 7b, 
where we also plot the location of the power law coefficients 
of Ding et al. (2015) in (C, a, b) parameter space. As shown, 
the range of the a coefficient ( 0.1 ≤ a ≤ 1 ) encompasses the 
value of 0.2076 from Ding et al. (2015); however, the range 
of both the C and b coefficients do not encompass the Ding 
et al. (2015) values. From the parametric equation (Eq. 22), 
the coefficient b, which has a range of 2.0 ≤ b ≤ 3.1 , is com-
paratively larger than the value of 1.4445 from Ding et al. 
(2015). More significantly, however, the C coefficient, which 
has a range of 1.5 × 10−10 ≤ C ≤ 1.24 × 10−9 , is between 
about 800 and 6500 times less than the C coefficient of Ding 
et al. (2015). Since both experiments use bovine red blood 
cells, these differences are not due to species differences in 

(22)

C(�) = 2.34 × 10−9�4 − 6.63 × 10−9�3

+ 7.48 × 10−9�2 − 4.28 × 10−9� + 1.24 × 10−9,

a(�) = 0.2�2 + 0.7� + 0.1,

b(�) = −0.4�2 + 1.5� + 2.0

Fig. 7  Device- and species-specific hemolysis power law coefficients 
for developing laminar flow of a suspension of bovine red blood cells 
through a small capillary tube calculated using CFD-based Krig-
ing surrogate modeling. a Map of the modified index of hemolysis, 
MIH, in (C, a, b) parameter space for a single operating condition 
( �wall = 400 Pa ). The 40 CFD sample points used to construct the sur-
rogate model are shown. An isosurface of MIH = 28.84 is also shown, 
which corresponds to the mean experimental data of Kameneva et  al. 
(2004) from hemolysis measurements in a small capillary tube with 
�wall = 400 Pa using a suspension of bovine red blood cells. The iso-
surface of MIH = 106 illustrates the delineation between physical 
( MIH ≤ 106 ) and non-physical ( MIH > 106 ) hemolysis solutions. b 
Line of intersection obtained by performing a Boolean intersection of 
the isosurfaces of MIH extracted from the computed hemolysis response 
field corresponding to the mean experimental measurements of Kame-
neva et al. (2004) at two operating conditions ( �wall of 200 and 400 Pa). 
A parametric curve fit of the 200–400  Pa line of intersection yields: 
C(�) = 2.34 × 10−9�4 − 6.63 × 10−9�3 + 7.48 × 10−9�2 − 4.28 × 10−9�

+1.24 × 10−9, a(�) = 0.2�2 + 0.7� + 0.1 , and b(�) = −0.4�2 + 1.5�+
2.0 , where � is the parametric variable defined as 0 ≤ � ≤ 1 . For com-
parison, the location of the power law coefficients of Ding et  al. (2015) 
obtained from measurements in a Couette-type shearing device using 
bovine blood is also shown
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RBC fragility. Rather, the differences are more likely due to 
device-specific differences in the flow conditions—in par-
ticular, the uniform versus non-uniform shear conditions 
present in Couette versus developing pipe flow, respectively.

Such large differences in the power law coefficients raises 
the important practical question of how inaccurate the Eule-
rian power law model solution would be if we were to use 
the coefficients of Ding et al. (2015) to predict hemolysis in 
the capillary tube of Kameneva et al. (2004). From the MIH 
map for developing pipe flow with �wall = 400 Pa (Fig. 7a), 
we extract the MIH value in (C, a, b) parameter space cor-
responding to the Ding et al. (2015) coefficients for bovine 
blood. This yields an MIH value of 609, compared with 
MIH = 29 ± 9 from the hemolysis experiments of Kameneva 
et al. (2004) (see “Appendix 2”). That is, using the Ding 
et al. (2015) power law coefficients, developed from uniform 
shear experiments, in the Eulerian power law model to com-
pute hemolysis for developing laminar flow in the capillary 
tube of Kameneva et al. (2004), we obtain a prediction of 
MIH that is in error by more than 2000% compared to the 
experimental measurements. This highlights the inadequacy 
of the traditional approach of using idealized coefficients 
obtained from simplified experiments under uniform shear 
conditions to predict hemolysis even for the relatively simple 
non-uniform shear flow present in a capillary tube.

5  Discussion

In this study, we develop a novel approach for determin-
ing device- and species-specific hemolysis power law coef-
ficients. We choose to use a form of the Eulerian power law 
model that permits the derivation of analytical solutions 
for simplified cases (planar Couette flow and circular Poi-
seuille flow), allowing us to develop and verify our general-
ized methodology using analytical methods. We then extend 
our generalized approach to more practical cases relevant to 
blood-contacting medical devices wherein analytical solu-
tions are unavailable. Here, we replace the requirement for 
an analytical solution in our generalized approach with CFD-
based Kriging surrogate modeling, which we also verify by 
comparing with the results obtained using exact analytical 
solutions. Finally, we apply our verified CFD-based Krig-
ing surrogate modeling approach to predict the device- and 
species-specific hemolysis power law coefficients for devel-
oping laminar flow in the small capillary tube of Kameneva 
et al. (2004). We strategically choose this case because it 
contains appreciable non-uniform stress due to laminar flow 
in a relatively simple geometry, allowing us to have a high 
degree of confidence in our CFD simulations and to avoid 
the complications of turbulence modeling and the uncertain-
ties associated with the influence of turbulence on hemoly-
sis. We find that the device- and species-specific hemolysis 

power law coefficients for the capillary tube are much dif-
ferent than traditional empirical coefficients obtained from 
Couette-type device with uniform shear flow, and that using 
such idealized traditional coefficients yields a highly inac-
curate prediction of hemolysis that is in error by more than 
2000% compared to experimental measurements.

The CFD-based Kriging surrogate modeling approach 
that we present here is a powerful practical tool for deter-
mining device- and species-specific hemolysis power law 
coefficients in blood-contacting medical devices. It may be 
readily used to determine empirical power law coefficients 
in complex devices (e.g., blood pumps, heart valves) for any 
species of animal blood. To date, determining such coeffi-
cients in devices with complex flow fields and highly non-
uniform flow-induced stress has been challenging due to the 
ambiguity of defining a characteristic stress and exposure 
time (see Sect. 1 for related discussion). We envision that 
our approach may be leveraged in two ways:

1. In the near term, our approach may be used to assemble a 
database of device- and species-specific empirical coef-
ficients for the power law model for a range of devices 
and species of animal blood. This database of coeffi-
cients may then be used as a resources by others, who 
can select the most appropriate set of empirical coef-
ficients to characterize the hemolytic potential of their 
device using the power law model. This is the approach 
that we propose in Fig. 1b. While the applicability of 
our proposed approach of applying device-specific coef-
ficients from one device to predict the hemolytic poten-
tial of a second, similar device needs to be assessed in 
future work, we believe that it represents an advance 
over the traditional approach of using idealized global 
empirical coefficients derived from simplified uniform 
shear experiments in complex medical devices (Fig. 1a). 
Indeed, as we demonstrate in Sect. 4.3, this traditional 
approach yields extremely poor predictions of hemolysis 
even in a relatively simple capillary tube. We believe 
that, in the near term, our proposed approach may be 
used in lieu of the traditional approach to improve the 
predictive accuracy of the hemolysis power law model 
until more advanced physics-based models are devel-
oped.

2. In the intermediate and long term, our CFD-based Krig-
ing surrogate modeling framework may be used to deter-
mine empirical coefficients in more advanced hemolysis 
models. As demonstrated here and noted by others, the 
standard power law model has a number of deficien-
cies that include the possibility of highly non-physical 
solutions, a lack of universal empirical coefficients that 
may be used to accurately predict hemolysis in different 
devices, the inability to account for accumulated damage 
to RBCs (Grigioni et al. 2004), and use of a scalar stress 
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that is unable to account for differences in hemolysis 
due to shear versus extensional stress (Faghih and Sharp 
2018). In the future, more advanced physics-based mod-
els should be developed that address each of these limi-
tations to enable more accurate prediction of absolute 
hemolysis levels in blood-contacting medical devices. 
Importantly, our CFD-based Kriging surrogate modeling 
framework is not restricted to the power law model. It 
may be used to determine empirical coefficients that 
will undoubtedly exist in new and improved continuum-
scale hemolysis models. More generally, we note that 
our approach may also be used to determine coefficients 
used in models of other forms of flow-induced blood 
damage—e.g., platelet activation (Alemu and Bluestein 
2007; Bodnár 2014) and thrombosis (Taylor et al. 2016). 
Depending on the form of the blood damage model and 
the behavior of the solution, a unique global optimum 
may exist in the response field for a single operating 
condition. In this case, the optimization option present 
in our Kriging surrogate modeling framework (Algo-
rithm 2) may be used to minimize an objective function 
to automatically find the location of the global optimum, 
thereby obviating the need to extract isosurfaces of the 
response field across multiple conditions and search for 
common points of intersection.

To our knowledge, this study represents the first rigor-
ous description of an approach to quantify device-specific 
empirical coefficients for a hemolysis model in a device 
with non-uniform shear flow. A previous study by Fraser 
et al. (2012) used CFD and the same Eulerian power law 
model presented here to predict hemolysis in five ven-
tricular assist devices (VADs). Using idealized global 
empirical coefficients from the literature, they note that in 
previous work their CFD hemolysis predictions consider-
ably overpredicted experimental measurements. Because 
of this, they instead used a “gradient descent algorithm” to 
fit CFD predictions to experimental data from two of the 
VADs to develop an improved set of power law coefficients 
that were used in subsequent simulations. This is similar 
in spirit to the approach presented here. However, Fraser 
et al. (2012) provide no details regarding their approach. 
Thus, it is unclear how they determined coefficients that 
yield hemolysis predictions that best match experimental 
data. Further, the nature of the hemolysis response field in 
(C, a, b) parameter space is not presented or discussed, and 
so it is unclear whether a unique global optimum exists 
for their VADs that yields a single, unique set of power 
law coefficients or whether their gradient descent approach 
located a local optimum. Here, we propose a comprehen-
sive approach for determining device- and species-spe-
cific hemolysis power law coefficients that may be readily 
applied to VADs.

The analytical hemolysis solutions derived in this 
study also represent a new theoretical contribution. Previ-
ous work by Hariharan et al. (2015) derived closed-form 
analytical Eulerian power law model solutions for pro-
files of the plasma free hemoglobin fraction for two of 
the same benchmark cases presented here (planar Cou-
ette flow and circular Poiseuille flow). However, they stop 
short of deriving a closed-form analytical solution for the 
integrated index of hemolysis at the outlet of the device, 
IHoutlet , and mapping the hemolysis response field in (C, 
a, b) parameter space, as we do here.

Lastly, we note a couple limitations of the present study. 
For the reasons described in Sect. 2, we demonstrate our 
CFD-based Kriging surrogate modeling approach in a rela-
tively simple capillary tube geometry. Future work should 
apply our approach in more complex blood-contacting 
medical devices (e.g., Malinauskas et al. 2017; Hariharan 
et al. 2018). However, as other researchers have pointed 
out (Yu et al. 2017; Malinauskas et al. 2017), credible 
hemolysis data from well-controlled experimental studies 
of different flow models and devices are lacking. More 
credible data are needed to develop device-specific hemol-
ysis power law coefficients in complex medical devices 
and to assess our proposed approach of applying device-
specific coefficients from one device to predict the hemo-
lytic potential of a second, similar device (Fig. 1b).

Finally, we note that our approach is somewhat compu-
tationally expensive, as we found that it requires 40 CFD 
simulations per operating condition to accurately map the 
hemolysis response field in (C, a, b) parameter space. The 
Kriging prediction steps of the analysis (steps 5 and 6 
in Algorithm 2) are relatively inexpensive, requiring only 
about 2–3 h to complete in the present study. The remain-
ing wall clock time (i.e., elapsed physical time) is spent 
in performing the requisite CFD simulations. However, 
because our framework is developed to run in a paral-
lel computing environment, individual calculations in 
each batch of CFD simulations can be run concurrently. 
Given adequate computational resources, this significantly 
reduces the total wall clock time required to obtain a surro-
gate model prediction. In this study, our CFD-based Krig-
ing surrogate modeling framework required approximately 
7–8 h of wall clock time on a high-performance computing 
(HPC) system at the US Food and Drug Administration 
to compute the hemolysis response field for each operat-
ing condition for the capillary tube geometry (Sect. 4.3). 
While it will require more computational resources and 
potentially longer wall clock times, performing CFD-based 
Kriging surrogate modeling for complex devices is cer-
tainly feasible on modern HPC systems.
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6  Summary and conclusions

Most stress-based power law models used in CFD leverage 
the global empirical correlation first proposed by Giersie-
pen et al. (1990) that relates hemolysis generation and the 
flow-induced stress and exposure time. Both Lagrangian 
and Eulerian forms of the power law model are derived 
by recasting the global correlation to a local formulation 
that still requires empirical coefficients (C, a, and b). In 
the absence of more appropriate values, investigators typi-
cally utilize coefficients obtained by fitting the global cor-
relation of Giersiepen et al. (1990) using hemolysis data 
acquired in simplified Couette-type shearing devices under 
uniform shear conditions and with well-defined exposure 
times. CFD simulations that use these idealized global 
empirical coefficients are then performed to predict the 
hemolytic potential of a medical device with a complex 
hemodynamic flow field that includes highly non-uniform 
stress and where there is not a well-defined exposure time.

The applicability of this traditional approach of using 
idealized empirical coefficients to predict hemolysis in 
complicated blood-contacting medical devices (Fig. 1a) 
is currently unknown. The wide range of power law coef-
ficients reported in the literature seems to indicate that 
coefficients are device-specific and dependent on the spe-
cies of animal blood. This may partially explain why it is 
so challenging to accurately predict absolute hemolysis 
levels using coefficients from simplified experiments. In 
application, however, if power law coefficients are device- 
and species-specific, it is currently unclear how to best 
determine reliable coefficients—particularly for compli-
cated devices with highly non-uniform flow-induced stress 
and where there is not a well-defined exposure time.

In this study, we propose a new approach for deter-
mining device- and species-specific hemolysis power law 
coefficients (Fig. 1b). Given detailed quantification of the 
flow field in a device, multiple power law model solu-
tions are calculated using different sets of coefficients to 
map the hemolysis response field in three-dimensional (C, 
a, b) parameter space. We then compare the hemolysis 
response field predictions with available experimental data 
in the same device to determine the power law coefficients 
that, when incorporated into the locally defined power law 
model, yield correct global hemolysis predictions for a 
particular device and with a particular species of animal 
blood (i.e., device- and species-specific coefficients). We 
first develop this approach by deriving analytical solutions 
for simple uniform and non-uniform shear flows (planar 
Couette flow and circular Poiseuille flow, respectively) that 
allow us to continuously map the hemolysis solution in (C, 
a, b) parameter space for each case. Given the unavailabil-
ity of analytical solutions for flow and hemolysis in real 

devices, we next develop and verify a practical approach 
to map the hemolysis response field using CFD and Krig-
ing surrogate modeling. To demonstrate the utility of the 
approach, we replicate the flow conditions present in the 
hemolysis experiments of Kameneva et al. (2004) and use 
our CFD-based Kriging surrogate modeling framework to 
determine device- and species-specific power law coeffi-
cients for the laminar flow of a recirculating suspension of 
bovine red blood cells through a small capillary tube. The 
resultant coefficients are compared with traditional coef-
ficients derived from Couette-type devices under uniform 
shear conditions. Finally, the accuracy of the traditional 
approach of using the Eulerian power law model with ide-
alized global empirical coefficients to predict hemolysis in 
the capillary tube is examined.

Our analytical analyses reveal that there is not a single, 
unique set of device-specific coefficients that yields a hemol-
ysis solution that matches experiments at a single operating 
condition. For both uniform and non-uniform shear cases 
(planar Couette flow and circular Poiseuille flow, respec-
tively), the extracted hemolysis response field solutions that 
match experimental data form a continuous isosurface that 
sweeps through the (C, a, b) parameter space. This is signifi-
cant for two reasons: (i) at a single operating condition, an 
infinite number of combinations of power law coefficients 
defined along a common isosurface may be used to match 
experimental data and (ii) because a unique global optimum 
does not exist, standard optimization techniques cannot be 
utilized to obtain device-specific power law coefficients by 
minimizing an objective function at a single operating con-
dition. This informed our approach for determining device-
specific coefficients.

Using analytical solutions for planar Couette flow and 
circular Poiseuille flow, we developed a generalized method-
ology for determining device- and species-specific hemoly-
sis power law coefficients. We first calculate the hemolysis 
response field at multiple operating conditions that span a 
range of shear stress and exposure time values. For each 
condition, we extract an isosurface of the hemolysis field 
prediction ( IHoutlet ) that matches experimental hemolysis 
measurements of IHsp or MIH from single-pass or multi-
pass experiments, respectively. We then perform a Boolean 
intersection of each of the isosurfaces and search for com-
mon points of intersection that correspond to unique values 
of C, a, and b that yield hemolysis solutions that match the 
experiments at all conditions (i.e., the device- and species-
specific coefficients).

Employing this approach, we determined the device-spe-
cific hemolysis power law coefficients for the developing 
laminar flow of a suspension of bovine red blood cells in the 
small capillary tube of Kameneva et al. (2004)—a case for 
which an analytical solution does not exist, requiring the use 
of our CFD-based Kriging surrogate modeling framework. 
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Unlike the foregoing Couette flow case, we found that there 
is not a single, unique set of device-specific power law coef-
ficients for the capillary tube that may be used to predict 
hemolysis levels that match mean experimental measure-
ments at all conditions. We found that this is likely due to 
the limited range of shear stress and exposure time values 
across the operating conditions considered by Kameneva 
et al. (2004). Though seemingly disconcerting, this has 
important practical implications, as it is also likely to be the 
case in other medical devices in which flow-induced stress 
and exposure time do not vary appreciably across condi-
tions. Furthermore, it is unavoidable if we also consider the 
uncertainty in the experimental measurements. To overcome 
this difficulty and to demonstrate a practical approach, we 
calculated a set of device- and species-specific coefficients 
by fitting the parametric curve formed by the intersection of 
the two isosurfaces corresponding to the extreme conditions: 
low shear/long exposure time and high shear/short exposure 
time. We show that this parametric curve defines a set of 
power law coefficients that yield hemolysis predictions that 
match the experimental data of Kameneva et al. (2004) to 
within the reported uncertainty of the measurements at all 
three conditions that we considered.

Compared with traditional coefficients, the device-spe-
cific coefficients that we determined for the capillary tube 
of Kameneva et al. (2004) are much different than the ide-
alized global empirical coefficients reported by Ding et al. 
(2015) from experiments in Couette-type shearing devices 
under uniform shear conditions. In particular, the range of 
the device-specific b coefficient is comparatively larger than 
the Ding et al. (2015) coefficient for bovine blood. More sig-
nificantly, however, the range of the C coefficient is between 
about 800 and 6500 times less than the C coefficient of Ding 
et al. (2015). Because both Ding et al. (2015) and Kameneva 
et al. (2004) used bovine red blood cells, these differences 
are not due to species differences in RBC fragility. It is dif-
ficult to precisely compare the Ding et al. (2015) and Kame-
neva et al. (2004) data due to differences in the experiments 
(single-pass vs. multi-pass, short- vs. long-time duration, 
30% vs. 24% hematocrit, use of whole blood versus washed 
RBCs suspended in 10% dextran solution). However, due to 
more preparation steps, the potential for damage accumula-
tion in multi-pass experiments, and the loss of the protective 
effect of plasma (Kameneva et al. 1997), we would expect 
that the washed RBCs used by Kameneva et al. (2004) may 
have been more fragile than the whole blood RBCs used by 
Ding et al. (2015). Thus, the significantly greater C coef-
ficient obtained by Ding et al. (2015) is most likely due to 
device-specific differences in the flow conditions.

Finally, to highlight the importance of using device-spe-
cific power law coefficients, we compare hemolysis predic-
tions in the capillary tube using the idealized global empiri-
cal coefficients of Ding et al. (2015) for bovine blood with 

the experimental data of Kameneva et al. (2004). We found 
that using traditional empirical coefficients yields a hemoly-
sis prediction that is in error by more than 2000% compared 
to experiments. That is, even for the relatively simple flow 
conditions present in a capillary tube, using idealized power 
law coefficients from uniform shear experiments leads to 
extremely poor hemolysis predictions. It is no wonder that it 
is challenging to accurately predict absolute hemolysis levels 
in medical devices with complex flow conditions using the 
traditional approach (Fig. 1a).

Our CFD-based Kriging surrogate modeling framework 
that we present here is a powerful practical tool for deter-
mining device- and species-specific hemolysis power law 
coefficients for blood-contacting medical devices. In the near 
term, our approach may be used to assemble a database of 
empirical coefficients for the power law model for a range 
of devices and species of animal blood, which may then 
be used as a resources by others to characterize the hemo-
lytic potential of their device. We believe that this approach 
(Fig. 1b) may be used in lieu of the traditional approach 
(Fig. 1a) to improve the predictive accuracy of the hemolysis 
power law model until more advanced physics-based models 
are developed. In the intermediate and long term, our CFD-
based Kriging surrogate modeling framework may also be 
used to determine empirical coefficients that will undoubt-
edly exist in new and improved continuum-scale hemolysis 
models, and for models of other forms of flow-induced blood 
damage (e.g., platelet activation and thrombosis).
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Appendix 1: Hemolysis indices

In the approach presented here, we combine either analyti-
cal or numerical solutions of the Eulerian power law model 
with experimental data to determine device-specific hemoly-
sis power law coefficients. A thorough understanding of the 
experiments is thus required—in particular, the way in which 
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the hemolysis data are measured and how this is replicated in 
the analytical or numerical approach. This in turn depends on 
the type of hemolysis experiment that is performed, of which 
there are two types: single-pass and multi-pass.

For a single-pass experiment, a given volume of blood 
passes through the device once over an elapsed period of 
time. The blood that passed through the device is then thor-
oughly mixed and a small volume ( ∼ 1 ml ) is sampled and 
centrifuged to separate the remaining red blood cells from 
the plasma and other blood elements. The concentration of 
plasma free hemoglobin, fHb, is then measured using spec-
trophotometry (Malinauskas 1997). Since fHb is measured 
in the absence of the remaining red blood cells, it has units 
of mass per volume of plasma (typically mg/dl). Given the 
total blood hemoglobin concentration (in units of mg/dl 
of whole blood), Hb, and the percent hematocrit, Hct , the 
hemolytic potential of the device is typically quantified in 
terms of a single-pass index of hemolysis:

Physically, IHsp represents the relative mass fraction of the 
total blood hemoglobin that is released from the RBCs as 
blood flows through the device. By definition, IHsp must be 
between 0 and 1.

In multi-pass experiments, hemolysis measurements are 
typically performed with the medical device placed in a flow 
loop with recirculating whole blood (Fig. 8a). A small sam-
ple ( ∼ 1 ml) of blood is drawn at incremental time points 
(e.g., every 30 min) and similarly centrifuged and assayed 
for fHb as described previously. Measurements of fHb are 
then plotted versus time, which typically yields a linear rela-
tionship (e.g., see Fig. 8b) as long as the release of plasma 
free hemoglobin is small compared to the total amount of 
hemoglobin—namely, if 

(
1 − Hct∕100

)
fHb ≪ Hb . Given 

fHb, Hb, and Hct , the hemolytic potential of the device is 
often quantified in terms of a “modified index of hemolysis” 
(MIH) defined as

where V is the total volume of blood in the flow loop, Q is 
the volumetric flow rate, and �t is the time duration of the 
experiment (Mueller et al. 1993). The units of V, Q, and �t 
are arbitrary as long as the quantity (V∕Q�t) is dimension-
less. The 106 scaling factor is introduced by convention to 
obtain quantitative values of reasonable magnitude.

Close inspection of the definition of MIH reveals that 
it effectively represents a scaled form of IHsp , defined per 
pass through the multi-pass system and scaled by 106 . This 
is evident by considering that (Q�t) is the total volume of 

IHsp =

(
1 − Hct∕100

)
fHb

Hb
.

MIH = 106

(
1 − Hct∕100

)
fHb

Hb

(
V

Q�t

)

blood pumped through the flow loop of volume V during 
the experiment. The term (Q�t)∕V  is thus the total effective 
number of passes that the blood has made through the flow 
loop. Accordingly, in dividing the right-hand side of MIH 
by (Q�t)∕V  , the measurements of fHb are effectively nor-
malized by the number of passes through the device. This is 
readily apparent if we consider an experiment in which all 
of the blood passes through the flow loop once (i.e., a single-
pass), in which case Q�t = V  and from the definitions of 
IHsp and MIH we see that MIH = 106IHsp in this case. Thus, 
in general, MIH physically represents the relative fraction of 
the total blood hemoglobin that is released from the RBCs 
per pass through the device. By definition, then, MIH must 
be between 0 and 106.

To directly compare with hemolysis experiments, an 
appropriate index of hemolysis must be calculated from 
analytical or numerical solutions of flow and hemolysis in 

(a)
Pump

inlet outlet
Device

ΔP

Flow
Meter

Q

Time (min)

fH
b 

(m
g/

dl
)

T Thermistor

inlet outletDevice

(b)

(c)

Blood Sample
Port

Fig. 8  Multi-pass experimental flow loop used for hemolysis test-
ing versus the computational domain used for CFD simulations. a 
Schematic diagram of a typical flow loop used to acquire multi-pass 
experimental measurements of hemolysis generated by a medical 
device. b Notional plot of plasma free hemoglobin concentration 
(fHb) measured at various time points during experiments performed 
in the flow loop. The fHb versus time trend is generally linear for a 
well-controlled experiment as long as the release of plasma free 
hemoglobin is small compared to the total amount of hemoglobin—
i.e., if 

(
1 − Hct∕100

)
fHb ≪ Hb . c Schematic diagram of a computa-

tional domain typically used in CFD simulations performed to predict 
the hemolytic potential of a medical device
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a medical device. This is complicated by two factors. First, 
the physical domain represented in the analytical or compu-
tational model is generally not the same as the experimental 
domain. For example, the computational domain used for 
CFD is usually restricted to the device alone and does not 
include the entire flow loop (Fig. 8c). Second, analytical or 
numerical calculations are typically performed to predict 
device performance at steady state using a value of H = 0 at 
the inlet (Fig. 8c), as opposed to simulating the full hemo-
lytic time history of the device (e.g., Fig. 8b).

Both of these complications are addressed by deriving 
an equivalent index of hemolysis that may be calculated 
from steady-state analytical or numerical solutions in any 
flow domain with an inlet and outlet. Considering a control 
volume containing only the device (Fig. 8c) and assum-
ing an inlet value of H = 0 , the production rate of H in the 
device at steady state may be calculated from conserva-
tion of mass as the integrated flux of H at the outlet—i.e., 
ḢDevice = ∫

outlet
(H �) ⋅ d� , where d� is the outlet area vec-

tor. If we normalize this by the integrated outlet flow rate 
( ∫

outlet
� ⋅ d� ), we arrive at an expression that is equivalent 

to calculating the volume-weighted value of H at the outlet:

which also represents an effective single-pass index of 
hemolysis that may be directly compared with experimental 
measurements. Akin to the “bulk temperature” used in the 
field of heat transfer (Bird et al. 2002), this single-pass defi-
nition of IHoutlet physically represents the index of hemolysis 
that would be measured if all of the blood having passed 
through the device were to be collected and well mixed. 
Accordingly, when comparing to single-pass measurements, 
IHoutlet is directly related to the experimental value of IHsp . 
For multi-pass measurements, given that MIH represents a 
scaled form of IHsp defined per pass of blood through the 
system, steady-state analytical or numerical predictions of 
IHoutlet for a multi-pass device may be scaled by 106 and 
directly compared with experimental values of MIH.

Appendix 2: Analysis of Kameneva et al. 
(2004) hemolysis data

Plasma free hemoglobin concentration: Using Plot Digitizer 
(http://plotd igiti zer.sourc eforg e.net), the data in Table 2 
were extracted from Fig. 6 of Kameneva et al. (2004) for 
the increase in plasma free hemoglobin concentration, fHb, 
from their laminar flow experiments.

Experimental parameters: Kameneva et al. (2004) report 
that the hematocrit ( Hct ) of the red blood cell (RBC) sus-
pension was 24.0%, the volume (V) of the flow loop was 

IHoutlet = Houtlet =
∫
outlet

(H �) ⋅ d�

∫
outlet

� ⋅ d�

250 ml, and the time duration of each experiment ( �t ) was 
90 min.

Flow rate: We also need the flow rate at each condition, 
which is not provided, to calculate the modified index of 
hemolysis (MIH). Kameneva et al. (2004) report that they 
measured the pressure drop, �p , across the capillary tube and 
used the following simplified force balance to calculate the 
average wall shear stress, �wall , at each condition:

where R and L are the radius and length of the tube, respec-
tively. Note that this expression neglects entrance effects in 
the developing flow region of the capillary tube and, there-
fore, implicitly assumes that the flow is fully developed. In 
theory, we could extend this fully developed flow relation-
ship and calculate an estimate of the flow rate at each con-
dition using the analytical circular Poiseuille flow solution 
for volumetric flow rate as a function of wall shear stress. 
However, the flow in the capillary tube of Kameneva et al. 
(2004) is not fully developed, especially at the higher flow 
rate conditions (see Sect. 4.3). Thus, any flow rate estimate 
calculated assuming fully developed flow would be incor-
rect. A more accurate approach is to use CFD to replicate 
the developing flow conditions present in the experiments. 
In this way, as described in Sect. 4.3, we used CFD to com-
pute the laminar developing flow in the capillary tube at 
each condition ( �wall of 200, 300, and 400 Pa). Given the 
CFD solution, we then calculate the volumetric flow rate, Q, 
by numerically integrating the velocity profile at the outlet 
(Table 3).

�p�R2 = 2�RL�wall

Table 2  Increase in plasma free hemoglobin concentration, fHb, 
extracted from Fig.  6 of Kameneva et  al. (2004) for their laminar 
flow experiments. Here, fHbmean is the mean experimental value, and 
fHbmax and fHbmin are the mean plus and minus one standard devia-
tion (SD), respectively

Wall shear 
stress condition 
(Pa)

fHb
min

 (mg/dl) fHb
mean

 (mg/dl) fHb
max

 (mg/dl)

200 2.37 4.67 6.46
300 5.50 12.48 18.94
400 19.83 28.28 37.24

Table 3  Volumetric flow rate, Q, for laminar developing flow through 
the small capillary tube of Kameneva et al. (2004) computed by repli-
cating the geometry and flow conditions using CFD for three operating 
conditions (see Sect. 4.3 for further details)

Wall shear stress condition (Pa) Q (l/min)

200 0.148
300 0.207
400 0.259

http://plotdigitizer.sourceforge.net
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Total blood hemoglobin concentration: The total blood 
hemoglobin concentration, Hb, is not provided by Kameneva 
et al. (2004), but can be estimated. Given the reported hema-
tocrit, we use the following relationship of Briggs and Bain 
(2017) to calculate an estimate of the total blood hemoglobin 
concentration, Hb:

Accordingly, for the Kameneva et al. (2004) experiments 
where Hct = 24.0% , we calculate Hb = 8 g/dl = 8000mg/dl.

Modified index of hemolysis (MIH): Finally, using Eq. 10, 
we calculate the values of MIH (Table 4) for the laminar 
experiments of Kameneva et al. (2004).

Appendix 3: Verification of CFD‑based 
Kriging surrogate modeling

To verify our CFD-based Kriging surrogate modeling frame-
work presented in Sect. 3.6 and to determine the best sur-
rogate modeling strategy, we consider circular Poiseuille 
flow and compare with the analytical solution presented in 
Sect. 4.2. Due to the smooth nature of the hemolysis solu-
tion in (C, a, b) parameter space (see Fig. 6a), we found 
that accurately predicting the global response function 
using Kriging surrogate modeling is not especially chal-
lenging provided that several technical details are prop-
erly addressed. To increase the predictive accuracy of the 
surrogate model in the domain of interest, we restrict the 
parameter space domain to broadly encompass the range of 
values reported in the literature (Table 1) and the range of 
device-specific values observed in the analytical analyses 
for planar Couette flow (Sect. 4.1) and circular Poiseuille 
flow (Sect. 4.2). In particular, the power law coefficient C is 
restricted to be between 10−11 and 10−5 , the coefficient a to be 
between 0.1 and 1, and b is restricted to be between 0.5 and 
4. We note that in choosing the parameter space range for 
the a coefficient, we also took into consideration the fact that 
there are biophysical reasons for why a should in theory be 
less than unity (see Yu et al. 2017). Additionally, we chose 
a lower limit of 0.1 for a to avoid numerical instabilities that 

Hb (g/dl) =
Hct (%)

3
.

develop as the Eulerian power law model source term (the 
right-hand side of Eq. 5), which is raised to the power of 1/a, 
becomes unbounded as a approaches 0.

In applying the Kriging surrogate modeling framework, 
we also found that both the C coefficient and the hemolysis 
response field values need to be log10-transformed to obtain 
an accurate surrogate model. This is because the range of 
the C coefficient spans many orders of magnitude (a much 
wider range compared to the a and b coefficients) as do the 
values of MIH (see Fig. 6a). Accordingly, in preliminary 
analyses we found that log10-transformation of both the C 
coefficient and MIH field values from CFD is required in the 
Kriging interpolation step of the analysis to obtain a surro-
gate model that accurately represents the global hemolysis 
response function.

As shown in Algorithm 2, there are several input param-
eters in the Kriging surrogate modeling framework that need 
to be specified. By comparing with the analytical solution 
for circular Poiseuille flow, we can tune these parameters to 
obtain a globally accurate surrogate model of the hemolysis 
response function. The four main input parameters that need 
to be specified include the parameter space discretization 
level, the number of initial sample points, the number of 
infill points per iteration, and the convergence criterion of 
the algorithm. Because we seek a globally accurate surrogate 
model, we generate infill points using the root mean squared 
error (RMSE) criterion of the hemolysis response function 
obtained from the Kriging predictor (see Sect. 3.6).

In performing Kriging surrogate modeling for circular 
Poiseuille flow with �wall = 400 Pa using different levels of 
(C, a, b) parameter space discretization ( 1003, 2003, 3003 ), 
we found that the predicted MIH field and various extracted 
isosurfaces were indistinguishable between the three cases. 
Thus, in all subsequent analyses we use a uniform parameter 
space discretization of 1003 (i.e., 100 × 100 × 100 ) to obtain 
a high-fidelity representation of the hemolysis response 
function. Additionally, by performing a parametric study 
using different numbers of initial sample points and infill 
points we found that we could obtain a globally accurate 
surrogate model using a set of 40 initial data points with no 
additional infill iterations. While additional infill iterations 
using the RMSE criterion were beneficial when fewer than 
40 initial data points were used, there was little benefit (in 
terms of the predicted maximum normalized RMSE and in 
the accuracy of the predicted MIH field) when infill itera-
tions were used with a Kriging predictor initialized with 40 
or more data points. In this way, with a total of 40 CFD 
simulations (40 initial, no infill) we were able to obtain a 
globally accurate representation of the hemolysis response 
field with a predicted maximum normalized RMSE of less 
than 0.1%.

Table 4  Modified index of hemolysis, MIH, calculated for the lami-
nar experiments of Kameneva et  al. (2004). Here, MIHmean is the 
mean experimental value, and MIHmax and MIHmin are the mean plus 
and minus one SD, respectively

Wall shear stress condi-
tion (Pa)

MIH
min

MIH
mean

MIH
max

200 4.21 8.31 11.49
300 7.03 15.94 24.20
400 20.23 28.84 37.98
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Fig. 9  Verification of CFD-based Kriging surrogate modeling for 
predicting device- and species-specific hemolysis power law coeffi-
cients for circular Poiseuille flow. a Analytical map of the modified 
index of hemolysis, MIH, in (C, a, b) parameter space for a single 
operating condition ( �wall = 400 Pa ). b Numerical map of the MIH 
response field for �wall = 400 Pa obtained using CFD and Kriging 
surrogate modeling. The 40 CFD sample points used to construct 
the surrogate model are also shown. In both panels a and b, an iso-
surface of MIH = 28.84 is shown, which corresponds to the mean 
experimental data of Kameneva et  al. (2004) from hemolysis meas-
urements in a small capillary tube with �wall = 400 Pa using a sus-
pension of bovine red blood cells. An isosurface of MIH = 106 
is also shown in both panels as the delineation between physical 
( MIH ≤ 106 ) and non-physical ( MIH > 106 ) hemolysis solutions. 
c Line of intersection obtained by performing a Boolean intersec-

tion of the isosurfaces of MIH extracted from the analytical hemol-
ysis response field corresponding to the mean experimental meas-
urements of Kameneva et  al. (2004) at two operating conditions 
( �wall of 200 and 400 Pa). A parametric curve fit of the 200–400 Pa 
line of intersection obtained from the analytical solution yields: 
C(�) = 3.23 × 10−10�2 − 1.45 × 10−9� + 1.54 × 10−9, a(�) = 0.9� + 0.1 , 
and b(�) = 0.9� + 1.9 , where � is the parametric vari-
able defined as 0 ≤ � ≤ 1 . d 200–400  Pa line of intersection 
obtained with the same approach as in c, but using numeri-
cal results from CFD and Kriging surrogate modeling. A 
parametric curve fit of the 200–400  Pa line of intersection 
obtained using CFD-based Kriging surrogate modeling yields: 
C(�) = 4.19 × 10−10�2 − 1.56 × 10−9� + 1.58 × 10−9, a(�) = 0.9� + 0.1 , 
and b(�) = 0.9� + 1.9
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Comparing Kriging surrogate model predictions 
with the analytical solution for circular Poiseuille flow 
(Sect. 4.2), the results are in close agreement. As shown in 
Fig. 9a and 9b, the global variation in the surrogate model 
prediction of the MIH response field for the condition with 
�wall = 400 Pa is indistinguishable from the analytical solu-
tion. To quantitatively verify the use of CFD-based Krig-
ing surrogate modeling for determining device-specific 
hemolysis power law coefficients, we also computed sur-
rogate model predictions for circular Poiseuille flow with 
a �wall of 200 and 300 Pa. We then extracted isosurfaces 
corresponding to the hemolysis measurements of Kame-
neva et al. (2004) at each condition, performed a Boolean 
intersection of each of the isosurfaces, and extracted the 
lines of intersection that are used to determine the device-
specific coefficients (see Sect. 4.2). As shown in Fig. 9c, d, 
using Kriging surrogate modeling we obtain a 200–400 Pa 
line of intersection that closely matches that obtained 
with the analytical solution. The parametric curve fit of 
the 200–400 Pa line of intersection is extremely similar 
in each case, with the same parametric equation for a(�) 
and b(�) obtained from analytical and surrogate modeling 
approaches, where � is the parametric variable defined as 
0 ≤ � ≤ 1 . There are relatively small differences between 
the analytical and numerical results for C(�) that range 
from 1–3% at small values of � to less than 7% at large 
values of � . Importantly, however, these differences in C(�) 
are small compared with the reported uncertainty in the 
hemolysis measurements of Kameneva et al. (2004). That 
is, as shown in Sect. 4.2 using the analytical solution, the 
200–400 Pa line of intersection obtained using Kriging 
surrogate modeling falls within the small envelope in (C, 
a, b) parameter space that encompasses hemolysis values 
corresponding to the uncertainty bounds of the experi-
mental data at all three conditions considered ( �wall of 
200, 300, and 400 Pa; see Sect. 4.2 for further discussion). 
Thus, in application such small differences in the analyti-
cal versus numerical C(�) yield insignificant differences in 
the prediction of MIH compared with the uncertainty in 
the measurements.

In summary, given the close correspondence between 
the analytical and numerical results, this verifies the use 
of our CFD-based Kriging surrogate modeling approach 
for predicting device-specific hemolysis power law coef-
ficients. In this case, 40 CFD simulations were used to 
predict the hemolysis response field at each operating con-
dition, requiring a total of 120 CFD simulations for all 
three conditions. If only the extreme conditions ( �wall of 

200 and 400 Pa) are considered to extract the 200–400 Pa 
line of intersection that is used to determine the device-
specific coefficients, this is reduced to a total of 80 CFD 
simulations. Fewer CFD simulations could potentially be 
used, albeit at the cost of a reduction in accuracy of the 
surrogate model predictions and the resultant device-spe-
cific coefficients.

Appendix 4: Capillary tube CFD mesh 
refinement study

To ensure that the CFD results of flow and hemolysis in 
the capillary tube of Kameneva et al. (2004) are insensi-
tive to the mesh resolution, we performed a mesh refine-
ment study comparing CFD predictions at the highest 
flow rate condition ( �wall = 400 Pa ) using two meshes. 
Both meshes have a relatively high spatial resolution to 
resolve the plasma free hemoglobin boundary layer that is 
confined close to the wall when using some combinations 
of power law coefficients (e.g., small values of a and large 
values of b). The axisymmetric medium mesh (Fig. 10b) 
contains approximately 139,000 computational cells. The 
fine mesh (Fig. 10c) was generated by refining the medium 
mesh by a factor of 

√
2 , which resulted in slightly more 

than twice the number of computational cells (approxi-
mately 284,000). Steady-state CFD simulations of the flow 
showed a mere 0.0031% difference in the induced flow 
rate through the capillary tube using the same prescribed 
inlet–outlet pressure difference of 112  kPa (Table  5). 
Three different hemolysis simulations were performed for 
each mesh using different combinations of power law coef-
ficients that span the parameter space range of interest. 
The results showed that the predicted values of MIH using 
the medium and fine meshes differ by between 0.033 and 
3.4%, depending on the combination of power law coef-
ficients (see Table 5). The largest difference was obtained 
using the smallest value of the a coefficient, which is due 
to the need to resolve the large streamwise flux associated 
with the extremely thin plasma free hemoglobin boundary 
layer that develops on the wall when small values of a and 
large values of b are used in the Eulerian power law model. 
Even so, such small differences between the medium and 
fine meshes demonstrate that the flow and hemolysis pre-
dictions are fairly insensitive to further refinement at this 
level of mesh resolution. Thus, the fine CFD mesh was 
used to predict the device- and species-specific hemolysis 
power law coefficients.
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