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Abstract
Articular cartilage is a complex, anisotropic, stratified tissue with remarkable resilience and mechanical properties. It has 
been subject to extensive modelling as a multiphase medium, with many recent studies examining the impact of increasing 
detail in the representation of this tissue’s fine scale structure. However, further investigation of simple models with minimal 
constitutive relations can nonetheless inform our understanding at the foundations of soft tissue simulation. Here, we focus on 
the impact of heterogeneity with regard to the volume fractions of solid and fluid within the cartilage. Once swelling pressure 
due to cartilage fixed charge is also present, we demonstrate that the multiphase modelling framework is substantially more 
complicated, and thus investigate this complexity, especially in the simple setting of a confined compression experiment. 
Our findings highlight the importance of locally, and thus heterogeneously, approaching pore compaction for load bearing 
in cartilage models, while emphasising that such effects can be represented by simple constitutive relations. In addition, 
simulation predictions are observed for the sensitivity of stress and displacement in the cartilage to variations in the initial 
state of the cartilage and thus the details of experimental protocol, once the tissue is heterogeneous. These findings are for the 
simplest models given only heterogeneity in volume fractions and swelling pressure, further emphasising that the complex 
behaviours associated with the interaction of volume fraction heterogeneity and swelling pressure are likely to persist for 
simulations of cartilage representations with more fine-grained structural detail of the tissue.
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1  Introduction

Articular cartilage is found at the opposing ends of bones 
in joints and is thus subject to the extremes of physiologi-
cal mechanics. In turn, cartilage is a complex biomaterial 

whose function is characterised by remarkable resilience and 
mechanical properties (Athanasiou et al. 2013). In particu-
lar, in conjunction with synovial fluid, cartilage maintains 
the separation of abutting joint bones, while supporting and 
spreading extreme loads, as high as 200 kg per square cen-
timetre (Broom and Oloyede 1993; Hodge et al. 1986), and 
yet enables essentially friction-free relative motion of the 
joint bones over a lifetime of loading and unloading cycles.

Hence, a major driver in the mechanical study of cartilage 
tissue is the aim of elucidating how such extreme function 
emerges from cartilage structure. Furthermore, cartilage 
is prone to degeneration and pathology, driving an intense 
interest in the functional impact of degenerative processes 
within cartilage and whether artificial cartilage can be devel-
oped. As part of such investigations, numerous theoretical 
mechanical models for cartilage have been developed though 
most representations are built upon a core framework of a 
biphasic material with a solid phase, representing the carti-
lage collagen meshwork, and a fluid phase representing the 
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interstitial medium (Biot 1941; Mow et al. 1980, 1986). In 
addition, the impact of fixed charge attached to the collagen 
phase has regularly been incorporated from an early stage of 
model development due to its crucial role in cartilage behav-
iour (Lai et al. 1991; Huyghe and Janssen 1997; Gu et al. 
1998; Wilson et al. 2005a). As reviewed in Ateshian (2007) 
and Klika et al. (2016), such models have recently been 
increasingly refined with the inclusion of ever more details 
such as heterogeneous distribution of solid matrix within 
cartilage, heterogeneous Darcy’s law with preferential direc-
tions of flow determined by deformation, fibres, complex 
3D geometries, and compaction effects that is the closing 
of fluid-filled pores (Wilson et al. 2005a, b, 2006; Ateshian 
2007; Wilson et al. 2007; Chen et al. 2006; Ateshian et al. 
2009; Pierce et al. 2013; Manzano et al. 2015, 2016).

Despite the undoubted benefit of having a more detailed 
description for cartilage tissue and hence the prospect of 
capturing its subtler behaviours in a wider context, there is 
also extensive merit in further developing our understand-
ing of the fundamental properties associated with its core 
modelling framework. Such investigations can be directly 
applicable to relatively simple engineered soft tissue mim-
ics (Murakami et al. 2015), as well as understanding aspects 
of more complex systems, in particular in appreciating and 
documenting the sensitivities and subtle behaviours that the 
foundations of soft tissue modelling propagate into feature-
rich frameworks. For instance, the fundamental behaviour of 
the core model, albeit with heterogeneity, provides a base-
line for understanding how mechanical responses broaden as 
increasing structural complexity is captured. Furthermore, 
such core models also provide an ideal platform to explore 
structural transitions in homeostasis, disease, and regenera-
tion, which are essential for understanding musculoskeletal 
mechanics. Spatially, the structural transitions between or 
across tissues (Rossetti et al. 2017) are crucial to under-
standing physiological load carriage. Temporally, capturing 
low-level disease-related changes and feedback mechanisms 
(Brown et al. 2014) is of utility in exploring strongly cou-
pled mechanical/biological processes such as osteoarthritis, 
especially in the context of understanding and optimising 
regenerative treatments. Such applications would require 
the representation of both spatial and temporal transitions 
between the relatively simple mechanics of a biomaterial 
(e.g. Raphael et al. 2017) with those of the more complex 
native tissue. Incorporating heterogeneity with the solid and 
fluid phases, together with fixed charge, our approach can 
thus ultimately provide a well-understood framework for 
representing normal, diseased, synthetic, or regenerating 
cartilage within the same core model while, importantly, 
including spatiotemporal transitions.

To proceed, we first rederive the core 1D biphasic model 
with fixed charged densities. This tracks the mechanics of the 
solid phase and its interspersed interstitial fluid phase, as well 

as the swelling pressure induced by fixed charges, which are 
assumed to be in quasi-equilibrium, a common and well-moti-
vated simplifying assumption (Wilson et al. 2005a, b, 2006, 
2007). In particular, such details are included as the derivation 
of cartilage models in the literature is not unified in the scaling 
of partial stress contributions with volume fractions and in the 
treatment of swelling pressure, which stands out especially 
once heterogeneity is present (Mow et al. 1980, 1986; Wil-
son et al. 2005a; Huyghe and Janssen 1997; Ateshian 2007; 
Klika et al. 2016). Hence, the presented model development 
first focuses on the appropriate inclusion of swelling pres-
sure, not only at the cartilage–external bath interface, but also 
in the bulk, as detailed in Sect. 2.3. The model development 
then secondly focuses on a systematic consideration of initial 
and boundary conditions in Sect. 3.1, as these conditions are 
neither trivial nor follow from first principles and have only 
received detailed attention in relatively few studies (Hou et al. 
1989; Ateshian 2007; Klika et al. 2016).

We subsequently proceed with our primary aim of docu-
menting the behaviour of such core models in the simple set-
ting of a one-dimensional confined compression experiment 
once material heterogeneity is present. However, in Sect. 3, 
we first demonstrate how the spatially homogeneous model’s 
formulation can dramatically simplify for imposed veloc-
ity boundary conditions, where the solid displacement fully 
decouples from the pressure problem. This difference in model 
complexity, including boundary and initial conditions, as a 
result of spatial heterogeneity of the studied sample empha-
sises that heterogeneity in the presence of swelling pressure 
has an extensive impact even in the core framework of carti-
lage modelling. Hence, investigating this impact constitutes 
the overall aim and novelty of this study.

Consequently, we further explore the impact of heteroge-
neity through the use of numerical solutions of the governing 
equations, modelling one-dimensional confined compression 
testing, with a non-uniform initial distribution of volume frac-
tion for the solid tissue phase and the interstitial fluid phase. 
In particular, our goal is to consider effects that are likely to 
be propagated into more complex models regardless of the 
choice of constitutive relation or model generalisation. Thus, 
we consider simple constitutive relations and simple, rotation-
ally symmetric, confined compression testing. In such settings, 
our objective is to examine whether the details of laboratory 
testing, swelling pressure, and heterogeneity lead to sensi-
tivities that quantitatively and substantively alter modelling 
predictions.
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2 � Cartilage as a biphasic electrically 
charged material

We proceed to develop the core biphasic representation of 
cartilage tissue, with a fluid and solid phase that are both 
incompressible and, between them, are space-filling with 
no voids. Firstly, let � denote Lagrangian coordinates for 
the solid phase, with Vs an arbitrary solid-phase Lagrangian 
volume. In contrast, let  s(t) , with  s(0) = Vs , denote the 
associated deformed, Eulerian, solid-phase volume, with � 
constituting Eulerian coordinates. The deformation gradient 
for the solid phase is thus given by FiP = �xi∕�XP, and as 
usual in single-phase continuum mechanics, the deformation 
gradient determinant, J, measures the volume change of an 
infinitesimal volume element. Hence

2.1 � Mass balance

We do not consider any sources or sinks of mass for either 
the solid or fluid phase of cartilage. Adopting summation 
convention for repeated Latin indices throughout the text, 
the mass balance equations are therefore

where t is time, with � ∈ {f , s} labelling the fluid(f) and 
solid(s) phase for both the mass density, �� , and velocity 
field, ��.

Noting that  s(t) is moving with velocity �s and the Reyn-
olds transport theorem,

the solid mass balance can now be rewritten in the local form

It is convenient to express the balance laws using volume 
fractions �� , which are defined as the ratio of the volume of 
phase � in a sufficiently small neighbourhood of � at time t to 
the total volume of both phases in the same neighbourhood. 
Hence, we have the relation �� = ����

T
 , where the true den-

sity ��
T
—mass of a phase per volume of that phase—does not 

change due to incompressibility. Note that the mixture, how-
ever, is compressible as the phase distribution may change 
through fluid being squeezed out of, or sucked into, a volume 

� s

f s(�) dv = �Vs

J(�)f s(�) dV .

(1)
���

�t
+

�

�xi

(
v�
i
��
)
= 0,

0 =� s(t)

[
��s

�t
+

�

�xi

(
vs
i
�s
)]
dv =

d

dt � s(t)

�s(�)dv

=�Vs

�

�t
(J(�)�s(�))dV ,

(2)
�

�t
(J�s) = 0.

with a non-trivial solid phase (Klika et al. 2016). In addi-
tion, the space-filling requirement of the phases requires the 
constraint

so that the cartilage has no voids.
The solid mass balance (2) can be integrated in Lagran-

gian coordinates to yield the equivalent condition

where �s
0
 represents the initial volume fraction distribu-

tion of the solid phase. The fluid mass balance can be reex-
pressed by combining the local mass balances (1) with the 
space-filling condition (3) to yield the conservation of total 
volume balance

2.2 � Momentum balance with no swelling pressure 
and constitutive relations

Thermal, inertial, and gravity effects are typically negligible 
in cartilage (Klika et al. 2016), so that momentum conserva-
tion for the whole tissue is given by ∇ ⋅ �

tot = 0 , where �tot 
is the total stress, which we assume can be decomposed into 
contributions from both phases in proportion to their volume 
fraction so that

However the momentum balance for each phase needs to 
consider interphase momentum exchange. Noting Newton’s 
third law, this is equal and opposite between the phases and 
is given by

where � is a drag coefficient, which is only constrained by 
constitutive choice1, except that � ≥ 0 is required by the Sec-
ond Law via the Coleman–Noll procedure.

Note that we assume a proportionality of the contribu-
tions to the stress from the volume fraction of each phase, 
so that there is no stress contribution in the limit of one of 
the phases being absent given a constitutive choice of fixed 
drag. Furthermore, although this volume fraction scaling 
of the momentum exchange between phases is more gen-
erally appropriate for other constitutive choices, including 
the Kozeny–Carman relation defined below (MacMinn et al. 
2016), we nonetheless deviate from many presentations in 
the literature in its use (Mow et al. 1980, 1986; Huyghe and 
Janssen 1997; Wilson et al. 2005b; Julkunen et al. 2013).

(3)�f + �s = 1,

(4)J�s = �s
0
,

(5)
�

�xi

(
v
f

i
�f + vs

i
�s
)
= 0.

(6)�
tot = �f

�
f + �s

�
s.

�s = −�f = �s�f �(�s − �f ) + Δ�,

1  Throughout the text, a constitutive relation is any relation that is 
necessary for model closure and that is constrained by the Coleman–
Noll procedure to ensure compliance with the Second Law.
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The contribution Δ� is constrained via by the Cole-
man–Noll procedure for thermodynamic consistency (Gur-
tin et al. 2010), which demands no violation of the Second 
Law under any material deformation. One finds from the 
lengthy Coleman–Noll procedure that the most parsimoni-
ous form for Δ� is given by (Klika et al. 2016)

where � has dimensions of pressure and is the Lagrange 
multiplier for the space-filling constraint, �f + �s = 1. 
Hence, the contributions from this term physically repre-
sent the interphase forces required to guarantee that entropy 
production (of the whole mixture) is nonnegative (Gurtin 
et al. 2010) for any deformation of the virtual cartilage due 
to work done by the pressure, � , induced by ensuring the 
space-filling constraint holds. A possible interpretation can 
be seen in the Cahn–Hilliard-like free energy, where this 
term is a form of interface penalisation. Lemon et al. (2006) 
offer a different argument: the gradient of volume fraction 
is interpreted as a measure of the force difference across the 
element’s surface in the direction of increasing interfacial 
contact.

The Coleman–Noll procedure also reveals that the sim-
plest thermodynamically compatible phase stresses con-
sistent with Eq. (6) and zero total momentum exchange are 
of the form (Klika et al. 2016)

where the additional—effective—stresses �̂� , � ∈ {f , s} , 
have been introduced. Note that � has been defined as a 
Lagrange multiplier and hence need not represent the iso-
tropic contribution to fluid stress. However, the �-dominated 
interstitial dynamics of cartilage often leads to the approxi-
mation that �̂f

≈ � , with a neglect of the fluid deviatoric 
stress, which we assume below. Such assumptions can be 
further motivated by considering the physical scales within 
cartilage. In the supplementary material of Klika et  al. 
(2016), the scale of pressure, and thus normal stress, within 
cartilage is estimated to be 105 Pa , while the fluid velocity 
scale is estimated to be of the order of 10−10 m/s . We can also 
take the viscosity of water to give a viscosity scale estimate 
of 10−3 Pa s. Then, the scale of the normal stress such as 
pressure and the scale of the deviatoric fluid stress, which 
is induced by viscosity, are similar only if there is signifi-
cant spatial variation in the fluid velocity field on the scale 
of (10−3 × 10−10∕105)m∼10−18 m . This is multiple orders 
below the continuum length scale and thus parity of these 
two physical effects is not feasible; instead, deviatoric fluid 
stress is negligible on the scales of the dominant physics.

There is much more choice and variation in the consti-
tutive choice of the solid-phase deviatoric stress though 

Δ� = �∇�f = −�∇�s,

(7)�s
�
s = �s

(
−�I + �̂

s)
, �f

�
f = �f

(
−�I + �̂

f
)
,

the simplest is linear Hookean elasticity, which in the 1D 
simulations below collapses to the Cauchy stress tensor

noting that the first Piola–Kirchhoff stress tensor and the 
Cauchy stress tensor are equal in one dimension.

More generally, there is no uniqueness in the choice of 
constitutive relation, nor in the choice of the weighted sum 
of mixture quantities (Klika 2014); hence, careful compari-
son with experiments is required to fully justify and param-
eterise such freedom. However, as we shall see below, the 
qualitative results preceding the numerical section are of a 
general character and are not restricted in validity to the con-
stitutive choices. For example, compaction occurs whenever 
swelling pressure has a singularity for vanishing pore size; 
the essential implications of heterogeneity on the choice of 
initial conditions and model are general and can be antici-
pated to apply even in higher dimensions.

With the constitutive relations specified as above, while 
working with the total momentum balance rather than the 
solid-phase momentum balance without loss of generality, 
we have that the final linear momentum balance equations 
are

where � is the fluid viscosity and � = ��f∕(��s) is the car-
tilage permeability.

Note the similarities between the fluid momentum bal-
ance, Eq. (10), and the classical D’Arcy’s law. In the former, 
gradients of the Lagrange multiplier for the no voids con-
straint, � , are balanced by velocity differences in contrast to 
the balance of pressure gradients and velocities in D’Arcy’s 
law.

We assume below one of two constitutive choices for the 
permeability �, or equivalently for the drag coefficient � . The 
first is that permeability is a positive constant, � = �0 and the 
second choice is the more realistic Kozeny–Carman relation 
(Kozeny 1927; Barabadi et al. 2009),

where permeability decreases to zero in the limit that the 
solid occupies all space.

(8)�̂s = �s(J − 1),

(9)0 = −
��

�xi
+

�

�xj

(
�s�̂s

ij

)
=

��tot
ij

�xj
,

(10)
0 = − �f ��

�xi
− �s�f �(v

f

i
− vs

i
)

= − ��s

[
�

�

��

�xi
+ �f (v

f

i
− vs

i
)

]
,

(11)� = �0

(
�s
0

�s(t)

)2
(
�f (t)

�
f

0

)3

,
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2.3 � The inclusion of swelling pressure

Osmotic swelling pressure is a consequence of fixed charge 
on the aggrecans of the solid phase inducing electrical dou-
ble layers (Buschmann and Grodzinsky 1995; Batchelor 
2011) and has long been recognised to be important in car-
tilage tissue and is typically represented using the Donnan 
model (Lai et al. 1991; Huyghe and Janssen 1997; Gu et al. 
1998; Wilson et al. 2005a). With the notation that a tilde 
denotes a volume-based concentration, the volumetric fixed 
charge density c̃F satisfies

as it is advected with the solid phase. Noting 
�f = 1 − �s = 1 − �s

0
∕J , we therefore can express the fixed 

charge density, c̃F , in terms of initial conditions and the 
solid-phase deformation:

With the approximation that the interstitial fluid away from 
Debye layers is a 1:1 electrolyte bath of dissolved NaCl, with 
total ion concentration of c̃b which is assumed fixed below, 
the Donnan swelling pressure is given by (Buschmann and 
Grodzinsky 1995)

where RT is the product of the gas constant and absolute 
temperature. This swelling pressure induces an external 
force per unit volume of −∇pswell in the total momentum 
balance. Furthermore, consistent with the definition of total 
mixture stress (6), the contribution from this swelling exter-
nal force is partitioned between the phases according to vol-
ume fraction and hence the momentum balances, Eqs. (9), 
(10), become, for �s ≠ 0,

The presence of ∇�f  in the momentum balance is not une-
quivocal in the literature, including our recent work (Klika 
et al. 2016), and hence, we briefly discuss it here. First, it 
is a direct consequence of considering swelling pressure as 
an external force, which follows the treatment of conserva-
tive electrical forces in the context of the electrochemical 
potential for mixture theories (de Groot and Mazur 1984). 

� s(t)

𝜑f c̃Fdv = �Vs

𝜑
f

0
c̃F
0
dV , and so𝜑f c̃FJ = 𝜑

f

0
c̃F
0
,

(12)c̃F = c̃F
0

𝜑
f

0

J𝜑f
= c̃F

0

1 − 𝜑s
0

J − 𝜑s
0

.

(13)pswell = RT

(√
(c̃F)2 + c̃2

b
− c̃b

)
,

(14)
0 = −

��

�xi
−

�

�xi

(
pswell

)
+

�

�xj

(
�s�̂s

ij

)
=

��tot
ij

�xj
,

0 =
�

�

(
��

�xi
+

1

�f

�

�xi

(
�f pswell

))
+ �f (v

f

i
− vs

i
).

Note that inclusion of an external force is also thermody-
namically consistent and does not affect the Coleman–Noll 
procedure implemented in deducing the biphasic model 
without swelling (e.g. Gurtin et al. 2010). Secondly, upscal-
ing mixture theories to multiphasic and multiconstituent 
frameworks, while explicitly including the effect of quasi-
electrostatics, have been shown to give rise to the ∇�f  term 
within the momentum balance (Bennethum and Cushman 
2002). Finally, triphasic theory (Lai et al. 1991), treating 
the cartilage tissue via mixture theory in higher detail with 
the explicit consideration of ion dynamics, leads to the con-
clusion that the swelling pressure is present in its full form 
within the expression for total stress and scaled by �f  within 
the fluid stress. This is exactly in line with our reasoning 
above, where swelling pressure without any scaling appears 
in the total stress balance while scaled with volume fraction 
within the fluid stress balance.

2.4 � Compaction of pores

The swelling pressure contribution pswell generally becomes 
very large if the tissue is extensively compressed, which may 
be associated with the closing of pores, the closer proximity 
of fixed charges and �f  tending to zero, which is also known 
as compaction. In particular, noting the form of (14), we 
observe that

will blow up as �f  tends to zero, except for special choices 
of spatial variation. Hence, the inclusion of swelling pres-
sure typically introduces large forces for small fluid volume 
fraction. Thus, the mechanics associated with compaction 
is anticipated to be generally exhibited by this framework 
without the need for complex solid constitutive laws and 
many further degrees of freedom (Pierce et al. 2013). The 
above compaction mechanics is present in the simple set-
ting of one-dimensional confined compression, which thus 
provides a useful setting for our study.

3 � One‑dimensional models

Throughout the rest of this paper, we focus on modelling a 
confined compression experiment, whereby a piece of carti-
lage tissue with initial height h0 on a stiff, impermeable surface 
is compressed via a porous plunger with the cross-sectional 
area of the cartilage prevented from expanding by a confining 
and impermeable solid structure. Hence, the movement is one-
dimensional, though to allow plunger movement and tissue 

(15)
pswell

�f

�

�xi
�f
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compression the plunger must be porous so that interstitial 
fluid can leak out as the tissue is compressed.

Writing the momentum and mass balance equations in one 
spatial dimension, with the elimination �f = 1 − �s , we have 

 Noting the simplicity of Lagrangian coordinates for bound-
ary conditions and numerical simulation, we rewrite the 
above in terms of the solid phase material coordinate X, 
using �x∕�X = J in conjunction with eliminating �s via 
�s = �s

0
∕J , to yield

These are supplemented by Eqs. (12), (13) for the fixed 
charge and swelling pressure and thus constitute three 
equations for vf , x, p given appropriate initial and bound-
ary conditions, noting that vs = �x∕�t , where t is time and 
J = �x∕�X.

While we systematically address initial and boundary con-
ditions below, the fact the cartilage is on a solid and imper-
meable base, without loss of generality at X = 0 , entails 
that vf = vs = 0 for X = 0. Hence, the final equality above 
can be integrated to show that vs + (1 − �s

0
∕J)(vf − vs) = 0, 

allowing the elimination of vf  in Eq. (17), while the second 
inequality allows gradients of � + pswell to be eliminated in 
terms of gradients of 𝜑s

0
𝜎̂s∕J . Working with the displace-

ment of the solid phase, u(X, t) = x(X, t) − X rather than the 
Eulerian coordinate x(X, t), one thus has a second-order, 
nonlinear parabolic equation for u(X, t),

where J = 1 + �u∕�X.

3.1 � Boundary conditions and the simplest initial 
conditions

Given the above parabolic equation possesses a time 
derivative of u(X, t), an initial condition is required for the 

(16a)
0 =

�

�

[
�

�x

(
� + pswell

)
+ pswell

�

�x
(ln(1 − �s))

]

+ (1 − �s)(vf − vs),

(16b)0 =
�

�x

(
�s�̂s − (� + pswell)

)
,

(16c)0 =
�

�x

(
vs + (1 − �s)(vf − vs)

)
.

(17)

0 =
�

�

1

J

[
�

�X

(
� + pswell

)
+ pswell

�

�X
ln(1 − �s

0
∕J)

]

+ (1 − �s
0
∕J)(vf − vs),

�

�X

(
�s
0

J
�̂s − (� + pswell)

)
= 0 =

�

�X

(
vs + (1 − �s

0
∕J)(vf − vs)

)
.

(18)

�u

�t
=

�

�

1

J

[
�

�X

(
�s
0
J−1�̂s(J)

)
+ pswell

�

�X
ln(1 − �s

0
∕J)

]
,

displacement of the solid phase, u(X, t) = x(X, t) − X . The 
simplest is zero strain, which is zero displacement,

though this initial condition will be subject to further scru-
tiny below, especially when heterogeneity is present. Also 
required is a specification of the initial volume fractions con-
sistent with the space-filling constraint and the initial fixed 
charge distribution:

though c̃F
0
(X) is taken to be a constant below in practice, 

using the value of Table 1.
Two boundary conditions are required for u(X, t). The 

first is zero displacement at the bottom of the impermeable 
chamber, located at X = 0 , and we have already imposed 
zero fluid phase velocity at this substrate. These conditions 
are summarised by:

At the top of the cartilage tissue, X = h0 , the solid phase 
displacement velocity vs or the total stress may be imposed. 
The former is a kinematic boundary condition, also referred 
to as stress relaxation, and one typically prescribes a fixed 
velocity of a porous plunger in the compression experiment 
followed by a fixed displacement, so that

However, recovering the stresses associated with the 
response of the virtual cartilage to these kinematic condi-
tions requires the calculation of the Lagrange multiplier, 
� , which in turn requires a specification of � at one of the 
boundaries, which we address below in the consideration of 
the alternative, stress, boundary condition. The latter con-
dition corresponds to a creep experiment where a known 
normal stress �∗ is applied at the plunger. Assuming that 
the gauge freedom for � is chosen such that � represents 
the isotropic stress of the fluid phase, a force balance at the 
interface yields

Here, A is the cross-sectional area of the tissue and FR is 
the total reaction force of the tissue, with the final equality 
given by the stress at the top of the cartilage, on neglecting 
the stresses associated with viscous drag within the plunger, 
as justified in “Appendices”.

However, the right-hand side of Eq. (23) is, by the equa-
tions of motion via Eq. (17), an unknown constant. Hence, a 
further condition is required and this is usually that the fluid 

(19)u(X, t = 0) = 0,

(20)
𝜑s
0
(X) =𝜑s(X, t = 0) = 1 − 𝜑f (X, t = 0),

c̃F
0
(X) =c̃F(X, t = 0),

(21)u(X = 0, t) = 0, vf (X = 0, t) = 0.

(22)u(X = h0, t) =

{
−VPt t ∈ [0, t0]

−VPt0 t ≥ t0
.

(23)�∗ = FR∕A =
[
−(� + pswell) + �s

0
J−1�̂s

]|||X=h0
.
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is free draining. In the absence of swelling pressure, this 
requires that the pore pressure, which is the isotropic stress 
in the fluid on the microscale, is balanced by the external 
pressure on the fluid, pext , which is atmospheric pressure 
upon neglecting the typically small contribution of viscous 
drag in the plunger pores. This gives simply

In addition, this fixes the gauge freedom in the Lagrange 
multiplier, � , so that it corresponds to the isotropic stress, 
in turn ensuring that Eq. (23) uses the appropriate gauge 
choice to generate the normal stress. The generalisation to 
the presence of swelling pressure is straightforward. With a 
swelling pressure, the pore pressure is modelled as possess-
ing a discontinuity of pswell at the interface with the plunger 
fluid. Thus, we still have � = pext , which in turn gives the 
required jump in isotropic stress at the interface. Hence, 
Eq. (24) still holds both as a free draining condition and for 
fixing the gauge in the evaluation of the normal stress more 
generally. Furthermore, when the external pressure is simply 
constant atmospheric pressure, it is commonplace to use the 
gauge freedom in the Lagrange multiplier � to set the pres-
sure origin to be atmospheric pressure, so that pext = 0 , and 
all physical isotropic stress and pressure predictions are then 
relative to this origin. This gauge choice is always imple-
mented below, so that atmospheric pressure is zero by the 
choice of pressure origin. Finally, note that without tissue 
heterogeneity and when interested only in final stationary 
state, it is also common to introduce swelling pressure solely 
via a jump condition at the boundary of the tissue (Lang 
et al. 2014), though we do not pursue this equivalent for-
malism for determining the homogeneous stationary state.

3.2 � Model specification summary

Given the total ion concentration in the interstitial fluid, c̃b , 
together with a constitutive relation for the permeability, � , 
and for the solid-phase deviatoric stress 𝜎̂s , the cartilage solid 
deformation, u(X, t) = x(X, t) − X is given by Eq. (18), a non-
linear second-order parabolic partial differential equation. 
One also requires initial conditions, which are given by (20) 
for the volume fractions, with the initial fixed charge density, 
c̃F
0
 , taking the constant value in Table 1. An initial condition 

is also required for the initial displacement such as, but not 
necessarily, Eq. (19). In addition, one of the two boundary 
conditions is given by Eq. (21). The second boundary condi-
tion may either be kinematic, as given by (22) with condition 
(24) required to fully specify � , or a stress condition given 
by Eqs. (23), (24). This allows a specification of both the 
solid displacement, u, and the Lagrange multiplier, � , with 
the solid phase velocity vs given by vs = �u∕�t , the volume 
fractions given by J = 1 + �u∕�X, �s = �s

0
∕J = 1 − �f , the 

(24)�|X=h0 = pext.

fixed charge given by Eq. (12), the swelling pressure given 
by Eq. (13) and the interstitial fluid velocity, vf  , given by 
Eq. (17).

4 � The effect of heterogeneity in 1D

We first of all note that there is no equilibrium configura-
tion of the cartilage with both zero stress and strain given (i) 
residual stress is absent, so that there is no solid stress when 
J = 1 , i.e. a constitutive relation is used such that 𝜎̂s = 0 
when J = 1 , (ii) the presence of fixed charge, c̃F ≠ 0 , so 
that pswell ≠ 0 by Eq. (13) and (iii) a heterogeneous volume 
fraction, so that �s

0
 is not constant. Then, the absence of a 

zero stress–zero strain equilibrium follows from by Eq. (18), 
which reveals that �u∕�t ≠ 0 under these conditions. This is 
the first indication that fixed charge and tissue heterogeneity 
combine to generate non-trivial mechanics and hence we 
first consider the model with homogeneous volume fractions 
for comparison.

4.1 � Homogeneous case

If the fixed charge and volume fractions are initially homo-
geneous, then pswell can be written as a function of J alone, 
using Eqs. (12), (13). Hence, there is a function g(J) with 
g(J = 1) = 0 , which we motivate below, and such that

In turn, one has the identity

with �̂s
sw

= �̂s + g(J), so that the swelling pressure may be 
incorporated into an effective solid-phase constitutive rela-
tion, with the constraint g(J = 1) = 0 entailing that the unde-
formed state possesses no stress.

The inclusion of swelling pressure into the solid-phase 
constitutive law via �̂s

→ �̂s
sw

 , while disregarding the explicit 
form of swelling pressure effect elsewhere in the model, also 
necessitates a shift of pressure

as can be seen from the fluid momentum balance in Eulerian 
coordinates, Eq. (16):

pswell
�

�X
ln(1 − �s

0
J−1) = −pswell

�s
0

J(J − �s
0
)

�J

�X

=
�

�X

(
�s
0
J−1g(J)

)
.

(25)

�

�X

(
�s
0
J−1�̂s(J)

)
+ pswell(�s

0
, J)

�

�X
ln(1 − �s

0
J−1)

=
�

�X

(
�s
0
J−1�̂s

sw

)
,

� → psw = � + pswell + �s
0
J−1g(J),
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With this redefinition of the Lagrange multiplier, which is 
also consistent with the Coleman–Noll procedure (Klika 
et al. 2016), the total stress is the same in both formalisms. 
In particular, when the swelling pressure is explicit, the 
Cauchy stress is given by

and this expression is the same as

that is the total Cauchy stress expression when the swelling 
is accommodated via the solid stress and a redefinition of 
the Lagrange multiplier.

Thus either would yield the same deformation given 
kinematic conditions. However, the free draining condi-
tion, Eq. (24), is not equivalent. Hence, in general, the 
formalisms are not equivalent in their predictions for the 
stresses supported by each phase within the model or 
when modelling with given stress boundary conditions.

Thus, the above reasoning highlights that the neglect 
of explicit swelling pressure in the momentum balances, 
with the assumption that such effects are represented via 
a measured effective constitutive response of the tissue, 
is of limited validity, even given the assumption of homo-
geneity. In particular, such neglect of an explicit swelling 
pressure should be restricted to scenarios associated with 
kinematic boundary conditions and only for predictions of 
displacement, thus preventing a comparison with experi-
mentally accessible reaction forces and stresses (DiSil-
vestro and Suh 2001). Nonetheless, such restrictions do 
not preclude informative studies as evidenced by the Mow 
and Mansour linear biphasic model, Eq. (32) in Mow and 
Mansour (1977), though the model derivation provided 
here is, however, very different.

Furthermore, once there is tissue heterogeneity, as is 
the case for articular cartilage (Athanasiou et al. 2013), 
there are even more extensive difficulties in the neglect 
of explicit swelling pressure in the momentum balances. 
In particular, the alternative of nominally incorporating 
swelling pressure within a constitutive relation for the 
solid stress introduces nonlinear and non-local contribu-
tions in the relation between stress and deformation, as 
highlighted in Appendix 2. As such, incorporating the 
swelling pressure into the constitutive relations imposes 
needless complexity in the constitutive relations, not only 
in terms of the practicalities of selecting and parameteris-
ing a constitutive relation from experimental observation, 

�f (vf − vs) = −
�

�

[
�

�x

(
� + pswell

)

+ pswell
� ln(1 − �s)

�x

]
= −

�

�

�psw

�x
.

(26)−(� + pswell) + �s
0
J−1�̂s

−psw + �s
0
J−1�̂s

sw
,

but also in the context of Occam’s razor. Hence, below 
we proceed to consider simple constitutive relations in 
the heterogeneous case, while explicitly considering the 
swelling pressure, in the modelling of compression tests.

4.2 � Compression testing modelling

We proceed to consider the constructed modelling frame-
work in the context of an experimental confined compres-
sion test of bovine patellae cartilage by DiSilvestro and Suh 
(2001). In particular, this test consists of placing cartilage 
under two straining phases, the initial phase constituting a 
10% pre-straining, followed by no plunger movement with 
concomitant stress relaxation, prior to a final 5% straining. 
When the final 5% strain is reached, the plunger is held fixed 
for sufficient time to allow the tissue to relax once more. 
Furthermore, the normalised reaction force F̄R , defined as 
the ratio of the peak force during the 5% straining period 
divided by the final equilibrium force, is of particular interest 
below as it is reported in these experiments and roughly in 
the range of 8–10 (DiSilvestro and Suh 2001).

With this experimental setting as motivation and noting 
the nonlinearity and consequent intractability of the bulk 
equations, we therefore consider simulations of the model, 
summarised in Section (3.2). The permeability is either con-
stant or given by the Kozeny–Carman relation (11), while 
the solid constitutive relation is given by Eq. (8) with the 
initial fixed charge of Table 1. The swelling pressure is 
specified via Eqs. (12), (13) and the parameters are given 
by Table 1, with zero boundary velocity when the plunger 
is stationary and a velocity associated with a strain rate of 
0.001 s−1 during plunger motion (see Table 1), unless explic-
itly stated otherwise. In addition, given the focus on tissue 
heterogeneity, we consider an initial heterogeneous solid 
volume fraction given by

where h0 is the initial height of the cartilage sample.

4.2.1 � Initial deformation and the equilibrium state

Finally, modelling this confined compression experiment 
requires careful consideration of the initial solid deformation 
due to heterogeneity and swelling. In particular, zero initial 
displacement is typically unphysical in the context of experi-
mental protocols unless the tissue is homogeneous or there is 
an absence of swelling pressure. Noting an assumption that 
there is no applied force prior to the start of an experiment, 
we instead determine the initial displacement given by the 
steady solution of the cartilage bulk equations, with zero 
stress relative to atmospheric pressure at the top surface.

By considering the steady version of the model, Eq. (18), 
subject to the same parameters and constitutive relations of 

(27)�s
0
(X) = 0.30 − 0.15X∕h0,
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the time dependent problem, together with the solid volume 
fraction of Eq. (27), we thus solve

for u0(X) with J0(X) = 1 + �u0∕�X. This is a second-order 
equation and thus requires two boundary conditions. How-
ever, it can be solved in a stepwise manner, initially as a first-
order equation for J0 with a stress-free boundary condition 
at the top of cartilage,

which follows from Eqs. (23), (24), with the pressure origin 
at atmospheric pressure, as detailed previously. The sec-
ond step is then to integrate J0 to obtain u0 via the standard 
boundary condition, u0(X = 0) = 0 , corresponding to no 
displacement at the base of the sample.

(28)
0 =

�

�X

(
�s
0
(X)J−1

0
�̂s(J0)

)

+ pswell(�s
0
(X), J0)

�

�X
ln(1 − �s

0
(X)J−1

0
)

pswell(J) − �s
0
J−1�̂s(J)

|||X=h0
= 0,

The resulting profiles for associated u0(X) and J0(X) are 
plotted in Fig. 1. In particular, note that u0(X) is far from 
zero due to the presence of heterogeneity, and one might 
therefore expect very different predictions of tissue response 
using the steady state as an initial condition compared to the 
unphysical criteria of no bulk displacement. The steady state 
is used as the initial condition for displacement below unless 
stated otherwise, though prospective differences between 
the results using the two initial conditions constitute a core 
aspect of the subsequent computational investigations.

4.2.2 � Computational results for compression testing

Sensitivity to stiffness, �0 , permeability, �0 and plunger 
velocity, VP.

We proceed to consider the time dependent problem of 
compression testing summarised in Sect. 3.2, with an initial 
reference set of parameters chosen according to the estimates 
and measurements presented in DiSilvestro and Suh (2001) 
and given in Table 1. As indicated by the illustrative results 
of Fig. 2, the simulations suggest that a constant perme-
ability does not induce predictions of the normalised reac-
tion force, F̄R , consistent with observation even when the 
elastic stiffness and permeability constant are varied over 
a range of two orders of magnitude around the reference 
parameters. This is further supported by simulations with 
additional parameter variations (not presented). In addi-
tion, Fig. 2 also demonstrates that the observed values of 
F̄R ∼ 8 − 10 may be achieved once the permeability is given 
by the more realistic Kozeny–Carman constitutive relation, 
albeit for moderately different estimates of the tissue param-
eters. In particular, given the Kozeny–Carman permeability 
represents the effect of pore size reduction on permeability, 
this emphasises that capturing properties of the observed 
stress profile in compression testing requires the considera-
tion in pore changes and material behaviour as compaction 
starts to occur.

This modelling observation is reinforced on considering 
when compaction is predicted to occur. To proceed, we 
denote the ratio of the parameter values with respect to 
their reference values listed in Table 1 with bars, i.e. 𝜇̄s, 𝜅̄0 
and this nomenclature is adopted throughout the results. 

Fig. 1   The displacement, u0 and swelling J0 for the steady state asso-
ciated with zero imposed stress. The steady state equations, (28), are 
solved with the parameters of Table  1, the solid volume fraction of 
Eq. (27) and zero stress conditions on the upper surface, which corre-
sponds to h0 . The displacement, u0(X) , due to the heterogeneity in the 
tissue is given by the solid line, and the dashed line plots J0(X) − 1 , 
where J0(X) is the steady Jacobian. Note that the initial displacement 
u0(X) is far from zero, as assumed in the zero strain initial conditions

Table 1   Model parameter values

These are taken from DiSilvestro and Suh (2001), with a typical strain rate of 0.001s−1 . The product of the gas constant and temperature, RT, is 
required for the swelling pressure, Eq. (13) as are the bulk ion concentration, c̃b and the scale of the fixed charge c̃F

0
 . Note that the above plunger 

velocity VP corresponds to a strain rate of 0.001 s−1 when imposed for kinematic boundary conditions

�0 = 6.9 × 10−9 mm2, h0 = 1.28mm, � = 10−6MPa s, �s = 0.269 MPa,
c̃F
0
= 2 × 10−4mmolmm−3, c̃b = 3 × 10−4mmolmm−3,

RT = 2478MPamm3 mmol
−1
, VP = −h0 × 10−3mm s−1.
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Particularly, the predicted normalised reaction force, F̄R , 
of approximately 8 with 𝜇̄s = 1, 𝜅̄0 = 0.2 and Kozeny–Car-
man permeability corresponds to a parameterisation that 
would yield compaction, i.e. the fluid volume fraction �f  
approaching zero, at a total, global, strain of 12.8% for 
the reference plunger velocity. In contrast, changing the 
stiffness and permeability parameters to 𝜇̄s = 0.2, 𝜅̄0 = 0.2 

results in F̄R ∼ 20 , though the plunger velocity in the pre-
straining phase is halved to prevent this simulation stop-
ping within the compression test due to a singularity of 
�f = 0 being reached. Furthermore, with these parameters 
for stiffness and permeability, together with the reference 
plunger velocity of Table 1, compaction occurs at a total 
strain of 9.6% . With this same adjustment in the plunger 

Fig. 2   The impact of changing the solid stiffness, �s and the tissue 
permeability, � . The model is summarised in Sect.  (3.2), with the 
solid constitutive relation of Eq.  (8), the initial volume fraction of 
Eq.  (27) and the parameters of Table  1, unless otherwise specified. 
Solid lines correspond to permeabilities given by the Kozeny–Car-
man relation, while dashed lines correspond to constant perme-
abilities. The initial conditions are associated with the heterogene-
ous solid volume fraction of Eq. (27), constant fixed charge, and the 
equilibrated state associated with zero stress on the upper surface. 
The modelled experimental conditions correspond to a pre-straining 
of 10% , followed a sufficient duration of no plunger motion to allow 

essentially complete tissue relaxation, followed by a subsequent 5% 
straining. Top, left. A reference simulation with the parameters of 
Table 1. Middle row, left. The reference simulation settings, as in the 
top left plot, except that �0 has been increased five times. Bottom, 
left. The reference simulation settings, except that the solid stiffness 
modulus, �s , has been increased five times. Top, right. The same sim-
ulation except that both the permeability, �0 , and the solid stiffness 
parameter �s have been decreased five times. Middle row, right. The 
reference simulation settings, except that �0 has been decreased five 
times. Bottom, right. The reference simulation settings, except that 
the solid stiffness parameter, �s , has been decreased five times
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velocity in simulating the compression test, further chang-
ing the parameters to 𝜇̄s = 1, 𝜅̄0 = 0.1 yields F̄R ∼ 40 with 
compaction at reference plunger velocities occurring at 
a total strain of 6.3% . Hence, higher normalised reac-
tion forces can be induced, and higher effective stiffness 

occurs, in models of cartilage tissue that reach compaction 
under less strain.

The fact the force behaviour and loading capabilities of 
the medium has been altered by differing extents of compac-
tion suggests the fluid drainage dynamics plays an important 
role in mechanical response, as further emphasised in Fig. 3, 
where differing normalised reaction forces are predicted for 
different forcing plunger velocities. Hence, the redistribution 
of fluid, as measured by volume fractions, is likely to be 
important and informative in the tissue response and is con-
sidered next, especially in the context of its heterogeneity.

Fluid redistribution, volume fraction heterogeneity and 
compaction

We further compare the draining behaviour in the two 
chosen constitutive relations for permeability. Hence, we 
compare simulations for the Kozeny–Carman relation for 
𝜇̄s = 1, 𝜅̄0 = 0.1 to simulations possessing constant perme-
ability for 𝜇̄s = 0.2, 𝜅̄0 = 0.2 . Each of these choices corre-
sponds to the highest values of the normalised reaction force 
for each constitutive relation in Fig. 2 and reveals a very 
distinct behaviour of fluid redistribution, as highlighted in 
Fig. 4.

In the case of constant permeability, a wave front in 
the solid volume fraction, �s , develops and subsequently 
moves through the tissue reaching significant depths, while 
the height of the wave front slowly increases. This allows 
overall compression strains of larger than 50%. However, 
with Kozeny–Carman permeability, the modelling results 
predict that an extensive draining of the top layers of carti-
lage takes place at sufficient pace to prevent replenishment 
via fluid from the deeper layers of cartilage. Eventually, 

Fig. 3   Sensitivity to plunger velocity An illustration of the sensitiv-
ity of the peak normalised reaction force F̄R to the plunger velocity 
VP , with Kozeny–Carman permeability and 𝜇̄s = 1, 𝜅̄0 = 0.1 , with 
all other parameters and initial conditions as in Fig. 2 except for the 
plunger velocity, VP . The plunger velocity in the pre-straining phase 
is half that of VP listed in Table 1 to prevent the prospect of complete 
compaction, with �f

→ 0 , in the pre-straining period, noting the high 
normalised reaction forces. The prediction for the normalised reaction 
force with these choices is presented by the solid line, while the result 
associated with a decrease in plunger velocities by 20% is given by 
the dashed line, with an approximate halving of the predicted peak 
reaction force

0%
1%

3%

5%

6.3%

0%

10%

20%
30%

40%
50%

Fig. 4   The evolution of solid fractions with time in compression 
testing. All parameters are those of Table 1, except as specified. An 
illustration of how the solid volume fraction evolves in time for the 
Kozeny–Carman relation (left, 𝜇̄s = 1, 𝜅̄0 = 0.1 ) and for constant per-
meability �0 (right, 𝜇̄s = 1, 𝜅̄0 = 0.1 ). All other parameters and ini-
tial conditions are those of Fig. 2, except the plunger velocity in the 
initial pre-straining is halved on the left for Kozeny–Carman perme-
ability, as in Fig. 3, to prevent the prospect of approaching complete 
compaction, where �f = 0 . These plots highlight the fluid redistribu-
tion within the biphasic material. Curves demarcate different times in 

the evolution of the solid volume fraction, with each curve labelled 
by the total strain of the material in the simulation. Kozeny–Carman 
permeability (left) is predicted to approach complete draining, with 
�f

→ 0 , at the top layer of the cartilage. Constant permeability (right) 
in contrast is predicted to induce the formation of a solid volume 
fraction wave front that travels deep inside the tissue forcing global 
compression with more than 50% total strain. This distinction appears 
to be responsible for the difference of the peak normalised reaction 
force, where constant permeability yields F̄R ≈ 5 while Kozeny–Car-
man relation gives F̄R ≈ 40.
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this leads to a compaction for as small strains as 6.3% 
for the parameters of Table 1, which differ from those of 
Fig. 4 as the latter has a slower initial plunger velocity. 
More generally, we have predictions of tissue response 
mechanics that are not only sensitive to the timescale asso-
ciated with the strain rate of the plunger, but also possess 
a greater effective stiffness with heterogeneous drainage, 
localised to the top of cartilage, given Kozeny–Carman 
permeability. In turn, these modelling predictions high-
light that gradients of volume fraction can facilitate the 
support of relatively large loads.

The impact of initial conditions
We compare model behaviour for two initial conditions, 

with first given by zero initial displacement and the second 
corresponding to the steady solution for displacement, as 
detailed in Sect. 4.2.1.

One may immediately observe that the internal mechan-
ics is predicted to be different for these initial conditions 
as explored in Fig. 5. In particular, the temporal peak of 
normalised reaction force is 3.08 with the equilibrated initial 
conditions and 7.37 for the zero initial displacement in the 
modelled confined compression experiment. Analogously, 
major differences are observed for the volumes fractions 
within the tissue and the Jacobian. In turn, this emphasises 

that model selection and parameter estimation, based on 
comparing the model with experiment, will be sensitive to 
simulation initial conditions, simplifications such as assum-
ing constant permeability and the details of the experimental 
protocol.

5 � Discussion and conclusions

We have explored the impact of heterogeneity for modelling 
soft tissue via a biphasic swelling framework that incor-
porates both solid and interstitial fluid mechanics, together 
with the impact of fixed charges and the associated swell-
ing pressures. Noting that there is no general consistency in 
model specification in the literature, especially with regard 
to gradients of the solid and interstitial fluid phases, a care-
ful derivation of the resulting equations is given, including 
initial and boundary conditions. Given the emphasis on fun-
damental model behaviour and sensitivities, we have focused 
on simple constitutive relations and one-dimensional spatial 
dynamics, in particular confined compression tests.

The relative simplicity of homogeneous models
On relaxing heterogeneity, one finds a simple model that 

maps onto previous frameworks given kinematic boundary 

Time (min) Time (min)

Fig. 5   The impact of initial conditions on the predicted applied stress 
and spatial heterogeneity. Simulations for the model summarised in 
Sect. 3.2, the parameters of Table 1, the solid constitutive relation of 
Eq.  (8), Kozeny–Carman permeability and the initial volume frac-
tion of Eq.  (27). The modelled experimental conditions correspond 
to a pre-straining of 10% , followed by 30 minutes of relaxation and 
subsequently 5% straining. Top left The time evolution of the normal-
ised reaction force F̄R for an initial condition given by the equilib-

rium solution, u0(X) , and thus implicitly assuming the model tissue 
has relaxed by the start of the experiment (shown as solid lines). The 
analogous predicted normalised reaction force when imposing an ini-
tial condition of zero displacement, u(t = 0,X) = 0 , is depicted using 
dashed lines. Similarly, note the significant differences in the evo-
lution of volume fraction at the top surface of the cartilage X = h0 , 
as well as the final profiles of the Jacobian and volume fractions for 
these two initial conditions
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conditions, as implicitly considered in classical observations 
of Lu and Mow for instance (Lu and Mow 2008). In addi-
tion, for homogeneous tissue, zero stress and zero displace-
ment are consistent with the equilibrium state, entailing one 
can include the impact of swelling stresses implicitly into 
constitutive relation for solid in a relatively straightforward 
manner. However, one should note that even this case of 
a homogeneous biphasic swelling model is perhaps decep-
tively simple, and breaks down with the use of fixed stress 
conditions for instance.

Furthermore, the swelling pressure cannot be incorpo-
rated into a constitutive relation between stress and strain 
readily, or locally, when there is heterogeneity in a biphasic 
swelling model. While our main focus is heterogeneity in the 
volume fraction of the solid and interstitial fluid phases, such 
comments equally apply for heterogeneity in other aspects 
of the model, for example the fixed charge density. Thus, 
firstly, we observe that one should explicitly consider swell-
ing pressure in modelling compression tests for soft tissue 
and engineering soft tissue mimics that possess heteroge-
neity and such qualitative observations are independent of 
the details of the constitutive relation. Furthermore, even 
the briefest inspection of Eq. (18) emphasises that it is the 
interplay of non-trivial swelling pressure and heterogeneity 
that leads to much more complicated model mechanics, due 
to the contribution pswell�[ln(1 − �s

0
∕J)]∕�X.

Pore compaction
A further aspect of the model is that even with simple 

constitutive relations, mechanical consequences of squeez-
ing fluid out of the tissue and thus effective pore closing are 
evident in the simulations. In particular, there is a substantial 
and sensitive increase in the magnitude of the normalised 
reaction force associated with the cartilage response, though 
reduced permeability with fluid volume fraction, as with the 
Kozeny–Carman relation, is required for extensive effects 
that match observations. In contrast, constant permeability 
did not approach compaction and did not yield sufficiently 
high peak normalised reaction forces to match observation.

Furthermore, for Kozeny–Carman permeability, volume 
fraction gradients, drainage and the approach to compac-
tion are localised to close to the plunger, as well as being 
accompanied by a very high effective stiffness. In turn, this 
highlights that large gradients in volume fraction can emerge 
during compression and can serve to enhance load bearing. 
More generally, our modelling results highlight that pore 
compaction mechanics may be captured by simple consti-
tutive relations coupled with heterogeneity and swelling 
pressure. Furthermore, unless the constitutive relation is 
carefully formulated, such effects are not observed in sim-
ple models of homogeneous tissue, which in turn provides 
another example of how the model behaviour increases in 
complexity on considering both heterogeneity and swelling 
pressure.

Sensitivity to initial conditions and experimental protocol
We have also demonstrated a sensitivity in modelling pre-

dictions in regard to the choice of initial conditions when 
heterogeneity and swelling pressure are present, due to the 
fact the zero stress and strain state is not an equilibrium solu-
tion; under such circumstances, the initial conditions need 
to be chosen carefully so as to match experimental condi-
tions. Despite such difficulties and the need to apply forces 
to maintain zero displacement in the presence of both tissue 
heterogeneity and fixed charge, we note that zero displace-
ment is a common choice of initial condition for compres-
sion test modelling (DiSilvestro and Suh 2001). However, 
this is not equivalent to imposing zero stress before the 
plunger starts compressing the cartilage tissue. Hence, one 
has quantitatively different predictions for force-displace-
ment curves with the choice of initial conditions, which in 
turn would generate substantially different predictions for 
the estimation of material parameters for instance.

Assumptions of the model and their discussion
We have formulated a general model,2 which we later 

simplified to a one-dimensional version to acquire insight 
into model properties and to identify appropriate initial and 
boundary conditions. The assumptions that led to the full 
model are (i) a biphasic mixture consisting of incompress-
ible phases with no voids; (ii) negligible thermal, inertial 
and gravity effects; (iii) a framework of Coleman–Noll con-
straints for constitutive relations; (iv) the neglect of the fluid 
deviatoric stress, which is pressure-dominated dynamics and 
(v) the treatment of swelling pressure as an external force, in 
line with the concept of the electrochemical potential in mix-
ture theory. We also justified the neglect of stress associated 
with the viscous drag within the plunger in typical situations. 
Further, we applied this model to a rotationally symmetric 
problem of confined compression, which has allowed the 
simplification to one dimension. The qualitative properties 
of the full model have been discussed in a general setting. 
Furthermore, in the simplified one-dimensional case where 
we further explored the indications from qualitative analysis, 
we considered Donnan’s theory for osmotic pressure and 
two forms of constitutive relations for permeability, constant 
permeability on one hand and the Kozeny–Carman formula 
on the other. In addition, a linear constitutive relation for the 
solid phase was chosen. Finally, the fixed charge density was 
assumed to be depth dependent, while the initial condition 
for the solid deformation in the modelling of experimental 
confined compression procedures was typically determined 
from the long-time asymptotic steady state of free swelling 
relaxation.

2  Specified in Eqs. (3), (4) and (5) or (1), (7), (14), (13)
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Summary
We have from the above discussions the main finding of 

this study, namely that the fixed charge swelling stresses 
combined with heterogeneity can have a substantial impact 
on the formulation, behaviour and complexity of multiphase 
models of soft tissue, such as cartilage, and its engineered 
analogues. Our findings also further demonstrate the sen-
sitivity of simulation predictions to how experimental 
conditions are represented, especially with regard to ini-
tial conditions. In addition, heterogeneous pore squeezing 
mechanics enhancing the load bearing capabilities of the 
modelled tissue is observed to emerge with Kozeny–Carman 
permeability. Such findings in turn emphasise the impor-
tance of heterogeneity and the need for both careful model 
specification and the faithful in-silico mimicry of laboratory 
studies for quantitative objectives, such as the estimation of 
material parameters including permeability constitutive rela-
tions and initial, possibly heterogeneous, volume fractions 
and displacements. Finally, we note that these observations 
have emerged from parsimonious models for simple labo-
ratory tests. Hence, such mechanical behaviours and sen-
sitivities are anticipated to be inherited by simulations of 
more sophisticated laboratory settings, in vivo scenarios and 
modelling more realistic, nonlinear and anisotropic, mate-
rial responses, as well as more sophisticated constitutive 
relations, all of which characterise many current research 
directions.
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Appendix 1: The reaction force, FR

The reaction force experienced by the plunger is given by 
FR = FC + FP where FC is the force at the cartilage/plunger 
interface and FP is the drag force due to the fluid movement 
through plunger pores. Here, our objective to determine FC 
and to show that FP is negligible compared to FC , so that 
FR ≈ FC.

We consider FC first: if the plunger, excluding its pores, 
has cross-sectional area A, which assumed to be the same 
as the tissue cross-sectional area, then the force at the top of 
cartilage tissue is given by

as follows from the expression for total stress in Eq. (17).
To consider FP , we further assume the pore cross sec-

tions are identical and uniformly distributed within the 
plunger, with a circular radius apore and a length equal to 

(29)FC =
[
−(p + pswell) + �s

0
J−1�̂s||X=h0

]
A,

the plunger height, hP , with hP ≫ apore. Given flow entry 
length scales in a pore are of the order of apore in inertialess 
flows (Durst et al. 2005) and the timescale of transients, 
t ∼ (apore)2�∕� ∼ 10−7 s (Grodzinsky 2000, Ch4.3), is ultra-
fast, we have fully developed Poiseuille flow in the pores. 
Hence, the flux through a single pore is (Grodzinsky 2000)

where � is the fluid viscosity and ΔpP is the unknown pres-
sure drop across the plunger. Relating the plunger porosity, 
�P , to the number of pores, npores , via �P = npores�(a

pore)2∕A, 
the total flux through the plunger is

This is balanced by the flux of the fluid due to the plunger 
movement, QP = AVP . Eliminating QP gives the pressure 
drop across the plunger in terms of VP,

and for typical values, taken from Soltz and Ateshian (1998) 
and our estimate of �P = 0.13, one finds

Unless the plunger porosity is unrealistically extreme, such 
pressures are negligible compared to typical stresses, which 
can reach as high as 100kPa; hence FP = AΔpP is negligible 
and the reaction force is given by

Appendix 2: Constitutive equation 
heterogeneity

Our objective in this appendix is to highlight the complexity 
of the prospective constitutive relation in the presence of 
heterogeneity if the swelling pressure is not to be explic-
itly considered, but instead incorporated into an effective 

(30)QP
pore

=
�(apore)4ΔpP

8�hP
,

(31)QP = QP
pore

npores = �P (a
pore)2AΔpP

8�hP
.

ΔpP =
8�hP

(apore)2�P
VP,

ΔpP

[Pa]
= 50

hP

[mm]
.

(32)FR ≈ FC =
[
−(p + pswell) + �s

0
J−1�̂s||X=h0

]
A.

3  We can estimate the plunger porosity by considering the proportion 
of plunger radius corresponding to pores across the plunger diam-
eter, ∼ (a∕aP) × (4npores∕�)

1∕2 , which reduce to (4�P∕�)1∕2 . Hence, 
�P = 1∕2 would require 80% of the plunger radius to correspond to 
pores (e.g. 40�m pores separated by only 10�m ). On the other hand 
for �P = 0.1 we have a reasonable result that about one third of the 
plunger radius corresponds to pores, i.e. pores are separated by about 
double their diameter.
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relation between stress and deformation. In particular, the 
solid effective stress, �̂s

sw
 , would be defined via

Hence, noting both J and �s
0
 are functions of X, we have

where X̄ is a dummy integration variable. Given the pres-
ence of heterogeneity in deformation, fixed charge, or ini-
tial volume fractions, so that swelling pressure gradients are 
present and the swelling pressure does not behave trivially 
in the above integral, this constitutive relation is then very 
complex. In particular, the relation depends not only locally 
on the deformation, but also non-locally on the osmotic 
swelling pressure, tissue deformation and volume fraction 
distributions. Working with such complexity, rather than an 
explicit consideration of the swelling pressure, would be 
much more difficult in terms of the selection and param-
eterisation of a constitutive relation from experimental 
observations, as measurements throughout the tissue are 
required to determine the constitutive relation at any point. 
While non-local constitutive relations are not excluded on 
any fundamental physical grounds (at least if consistent with 
the Second Law), the alternative of considering the swell-
ing pressure explicitly in the momentum balances governing 
cartilage mechanics is much simpler and thus preferable on 
the grounds of Occam’s razor as well as practicality.
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