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Abstract
Sarcomeres are building blocks of skeletal muscles. Given force–length relations of sarcomeres serially connected in a
myofibril, the myofibril force–length relation can be uniquely determined. Necessary and sufficient conditions are derived for
capability of fully lengthening or completely shortening a myofibril under isometric, eccentric or concentric contraction, and
for the myofibril force–length relation to be a continuous single-valued function. Intriguing phenomena such as sarcomere
force–length hysteresis and myofibril regularity are investigated and their important roles in determining myofibril force–
length relations are explored. The theoretical analysis leads to experimentally verifiable predictions on myofibril force–length
relations. For illustration, simulated force–length relations of a myofibril portion consisting of a sarcomere pair are presented.

Keywords Force–length relation · Sarcomere inhomogeneity · Myofibril regularity · Hysteretic property

1 Introduction

The hierarchy of skeletal muscles runs from the top to
bottom as muscles, fibre bundles, fibres, myofibrils and
sarcomeres. The well studied structures of these elements
indicate sarcomeres’ role as building blocks of skeletal
muscles responsible for force generation causing move-
ments of body segments of animals and humans. Over
more than a half-century, advances in experimental tech-
nology had brought tremendous opportunities in exploring
microstructures of skeletal muscles and their self-regulatory
mechanisms. It is now possible to experimentally study func-
tionality of a myofibril even down to the level of a half
sarcomere (Rassier 2012; Minozzo et al. 2013). Technolog-
ical advances call upon sophistication of theoretical studies
into bio-mechanical properties such as muscle force–length
relations at different microscopical levels in order to gain
full understanding of mechanisms of the sarcomere-based
self-regulatory contractile system.

Underlining the mechanism of muscle force generation,
the sliding filament theory and the Gordon–Huxley–Julian
(GHJ) sarcomere force–length (F–L) relation (Gordon et al.
1966) have been overwhelmingly accepted in muscle phys-
iology due to vast evidence gained from microscopical
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structure studies. Despite reasonably good fitting of the
scaled sarcomere F–L relation with experimental data of
fibres and muscles (see, e.g. Gollapudi and Lin 2009; Win-
ters et al. 2011), given complexity of sarcomeremechanics in
striated muscles (Pollack 1983; Rassier 2017), precise asso-
ciation of the sarcomere F–L relation with that of muscles
requires rigourous theoretical studies.

Apart fromvariations of experimental conditions and sam-
ple preparations, experimentally observed eccentric force
enhancement (Edman 2012; Rassier 2012; Koppes et al.
2013; Minozzo and Lira 2013) and concentric force depres-
sion (Joumaa and Herzog 2010; Trecarten et al. 2015) in
comparison with the isometric force have added difficul-
ties to comprehension of muscle F–L relations. A line of
research in sarcomere physiology focuses on causes of force
enhancement and depression, which started over more than a
half-century ago and has produced a long-lasting debate con-
tinued in the recent discussions (Herzog and Leonard 2013;
Edman 2013).

An essential step towards the ultimate goal of discovering
mechanisms of muscle force generation is to associate the
myofibril F–L relation with those of the sarcomeres. In con-
sideration of stretching an activated myofibril at a constant
speed, a hypothesis put forward by Morgan (1990) suggests
the occurrence of the ‘popping’ phenomenon, namely sar-
comeres passing plateaus and descending regions of their
F–L curves, one at a time and from the weakest to the
strongest sarcomere. Figure 1 illustrates this hypothesis along
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Fig. 1 Illustration of ‘popping’, ‘resisting’ and ‘yielding’ phenomena

with a few extra details of the phenomenon to be examined
in this current paper. The temptation of applying the ‘pop-
ping’ hypothesis to interpret force enhancement in eccentric
contraction is huge, whilst its importance in its own right has
been largely overlooked. As will be proved in this current
study, caused by the existence of force descending region
and inhomogeneity of sarcomeres, the ‘popping’ and also
its reverse can occur in a myofibril under any of the three
contractile conditions. Moreover, their occurrences are con-
siderably helped by sarcomere eccentric force enhancement
and concentric force depression.

Some evidence of the ‘popping’ hypothesis appears to be
the ‘resisting’ and ‘yielding’ phenomenaobserved in sarcom-
eres’ F–L responses to rapid myofibril stretch (Shimamoto
et al. 2009). In Fig. 1, with respect to every individual sar-
comere, status of stopping and shortening correspond to
the ‘resisting’, and the thereafter lengthening to ‘yielding’
phenomena. Under consecutive discrete stretches, which is
the condition to be assumed in the current study, increased
sarcomere length inhomogeneity has been observed in a
myofibril portion (Rassier 2012), which evidence the gen-
eral ‘popping’ phenomenon.More recently, this phenomenon
was also observed under isometric and eccentric contrac-
tions in a systematic experimental study (Johnston et al.
2016).

Understanding sarcomeres’ behaviours in the force descend-
ing regions of their F–L curves under different contractions
is the key for comprehension of myofibril F–L relations. By
assuming non-overlap between active and passive sarcomere
F–L curves, in a primary theoretical study of myofibril F–L
relations (Allinger et al. 1996), the standard GHJ model was
considered inappropriate for sarcomeres to generate experi-
mentally comparable myofibril F–L relations. However, the

non-overlap assumption is unrealistic and rarely adopted in
studies of muscle physiology.

To achieve the ultimate goal of deducing the muscle F–L
relation from those of sarcomeres, this investigation focuses
on establishment of a quantitative relationship between sar-
comere andmyofibril F–L relations. Sarcomere inhomogene-
ity, force enhancement and depression will be considered in
determination of myofibril F–L relations. With a rigourous
treatment involving elementary function analysis only, the
analysis is general and applies to both stretching and short-
ening of myofibrils under different contractile conditions.
The result is also illustrated by a numerical simulation.

2 Methods

The F–L relation of a sarcomere or a myofibril is an exter-
nal mechanical property of the object, and only static F–L
relations are considered in this study. As evidenced by vast
experiments reported in the literature, a change in the con-
tractile force due to a length change endures a transit period
but can settle eventually. This ensures relevance and impor-
tance of this theoretical study.

2.1 Sarcomere F–L relation

An ideal sarcomere has the shape of a right circular cylin-
der with a length of a few microns and diameter of a portion
of its length. Among several empirical F–L models which
have shown in various degrees of agreement with experi-
mental data, the GHJ model stands out and is adopted in
this study due to its wide recognition as a consequence of
well fitting with the sliding filament theory. Development
of a theoretical sarcomere F–L model from first principles
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Fig. 2 Active/passive/full sarcomere F–L diagrams

would be extremely difficult because of profound complexity
in microstructures and bio-chemical reactions in sarcomeres.
However, some important advances have been made in the-
oretical modelling of muscle contractile mechanisms (see,
e.g. Stålhand et al. 2008, 2016; Vita et al. 2017).

2.1.1 Gordon–Huxley–Julian model

Proposed for the active F–L relation for sarcomeres under
isometric contraction, the GHJmodel is a diagram illustrated
in Fig. 2 (dashed line). Active force ya is a piecewise linear
function of sarcomere length x , denoted by ya = fa(x, qa)
with

fa(x, qa) = akx + bk, x ∈ [xk−1, xk) (1)

for k = 1, . . . , 4, where coefficients ak and bk are specified
by the parameters qa = {x0, . . . , x4, y1, y2} as

a1 = y1
x1 − x0

, a2 = y2 − y1
x2 − x1

, a3 = 0, a4 = − y2
x4 − x3

,

b1 = −a1x0, b2 = y1 − a2x1, b3 = y2, b4 = y2 − a4x3.

Outside range [x0, x4), fa(x, qa) is undefined and not con-
sidered because being shorter than x0 would not be resulted
from sarcomere’s contraction, and longer than x4 could cause
irreversible damage of normal functionality to the sarcomere.

2.1.2 Passive F–L relation

As illustrated in Fig. 2 (dashed-point line), a widely adopted
passive sarcomere F–L relation is an exponential function
(Zajac 1989), denoted by yp = f p(x, qp) with

f p(x, qp) = p1
(
ep2(x−xp) − 1

)
, x ∈ [xp, x4], (2)

and qp = {xp, x4, p1, p2}, where xp = x3. It is assumed
that the maximal passive force is not less than the maximal
active force, namely y4 = f p(x4, qp) ≥ y2. Function (2) is
not defined outside [xp, x4]. Taking assumption xp = x3 is
just for clarity of the analysis to follow, whilst the use of the

axillary symbol xp leaves room for consideration of the case
xp �= x3.

2.1.3 Full F–L relation

Induced in a sarcomere is the total force (active and passive)
as illustrated (solid line) in Fig. 2. Based on (1) and (2), the
(full) F–L relation y = f (x, q) is expressed compactly as

f (x, q) = akx + bk + H(x̃ p)p1
(
ep2 x̃ p − 1

)
,

x ∈ [xk−1, xk) (3)

for k = 1, . . . , 4,whereq = {x0, . . . , x4, xp, y1, y2, p1, p2},
x̃ p = x − xp, and H(z) is the Heaviside function, namely
H(z) = 1 for z ≥ 0 and H(z) = 0 for z < 0.

Setting gradient dy
dx = 0 for x > x3 yields the solution of

x as xv = x3+ p3
p2

with p3 = ln
(

y2
p1 p2(x4−x3)

)
. Clearly if and

only if xv ∈ (x3, x4), a force valley exists with minimal force
yv = f (xv, q). Typically, a F–L curve has one plateau over
[x2, x3), two ascending regions, one over [x0, x2) and the
other over [xv, x4], and one descending region over [x3, xv).
The F–L curve (solid line) in Fig. 2 is illustrative with yv <

y1. It is possible yv > y1 for a different F–L curve.
Function y = f (x, q) is continuous and single-valued,

whilst its inverse is continuous but normally not single-
valued. The notion of the inverse, denoted by x = f −1(y, q),
is useful although it does not usually have an explicit expres-
sion.

2.1.4 Hysteretic behaviours

Under different types of contraction, the forces induced in a
sarcomere at a given length are normally different, observed
as eccentric force enhancement (Edman 2012; Rassier 2012)
and concentric force depression (Joumaa and Herzog 2010;
Trecarten et al. 2015) in comparison with the isometric
force. This suggests the existence of three sarcomere F–L
curves corresponding to the three contractile types, and hence
implies a hysteretic nature of sarcomere F–L behaviours
(Wilson et al. 1970; Paterson et al. 2010). As illustrated in
Fig. 3, the eccentric and concentric F–L relations are repre-
sented by one-directional curves, whilst the isometric F–L
curve is bidirectional (not indicated to have a clear over-
all appearance). A change between eccentric and concentric
contractionsmakes the sarcomere transit from one F–L curve
towards the other. The change can happen at any particular
point (xc, yc) on these curves and the F–L relation during
the transition is assumed to be represented by a bidirectional
straight line with a fixed gradient kc > 0. Figure 3 is merely
illustrative and exact shapes of the curves are less impor-
tant.
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Fig. 3 Sarcomere F–L hysteresis

In consideration of F–L hysteresis and transition between
F–L curves, the full sarcomere F–L relation is described by
ys = fs(x, ps) with

fs(x, ps) =
{

f (x, q̄), (eccentric/concentric/isometric)
kc(x − xc) + yc, (transiting)

(4)

where f (x, q̄) is defined in (3) with q̄ = {x0, . . . , x4, xp,
ȳ1, ȳ2, p1, p2}, ps = {q̄, kc}; xc ∈ [x0, x4] and yc =
f (xc, q̄). Here, with (ȳ1, ȳ2) being replaced by (ŷ1, ŷ2),
(y̌1, y̌2) or (y1, y2) in q̄ , q̄ = q̂ , q̌ or q, corresponding to
eccentric, concentric or isometric contraction. For l = 1, 2,
y̌l < yl < ŷl .

Formula (4) postulates that eccentric and concentric F–
L relations resemble the isometric one. It also implies that
although sarcomere lengthening and shortening follow dif-
ferent active F–L curves, they have the same passive F–L
relation. These assumptions impose no major restriction on
generality of the study and taking them is only for simplicity
and clarity of the analysis to follow.

2.2 Sarcomeres in myofibril

A myofibril or part of it contains a string of sarcomeres con-
nected in series by Z-discs whose thickness and longitudinal
flexibility are ignored in this study. Lateral forces and the
associated lateral movements in a myofibril are also not con-
sidered. Making these assumptions simplifies considerably
the theoretical analysis, whilst still allows exploration of the
essential mechanisms of interactions among sarcomeres.

2.2.1 F–L relation of series sarcomeres

Referring to (3) and (4), the F–L relations of n individual
sarcomeres can be expressed as ys,i = fs(xs,i , ps,i ) with,
∀i ∈ n,

fs (xs,i , ps,i ) =
{

f (xs,i , q̄s,i ), (eccentric/concentric/isometric)
kc,i (xs,i − xc,i ) + yc,i , (transiting)

(5)

and

f
(
xs,i , q̄s,i

) = ak,i xs,i + bk,i

+H
(
x̃ p,i

)
p1,i

(
ep2,i x̃ p,i − 1

)
, (6)

where sarcomere length xs,i ∈ [xk−1,i , xk,i ) for k =
1, . . . , 4, x̃ p,i = xs,i − xp,i , xc,i ∈ [x0,i , x4,i ], yc,i =
f (xc,i , q̄s,i ), q̄s,i = {x0,i , . . . , x4,i , xp,i , ȳ1,i , ȳ2,i , p1,i , p2,i }
and ps,i = {q̄s,i , kc,i }. In general, here it is assumed that
variations in parameters ps,i s represent effects of sarcomere
inhomogeneity on sarcomere F–L relations.

The series connectivity implies that myofibril length xo
and force yo are associated with those of sarcomeres as xo =∑n

i=1 xs,i and yo = ys,i , ∀i ∈ n.

2.2.2 Force and length ranges

From sarcomere F–L relations, length and force ranges of a
myofibril can be readily determined. To be specific, denote
the ranges by [xmin, xmax] and [0, ymax], respectively. First,
recall the assumption that the maximal passive force of
any sarcomere is not less than the maximal active force
of every sarcomere, namely y4,i ≥ y2,i , ∀i ∈ n. The
maximal myofibril’s force is therefore the minimum of max-
imal sarcomere passive forces, namely ymax = y4,min =
min{y4,i : i ∈ n}. Since sarcomere xs,i is not defined out-
side [x0,i , x4,i ], ∀i ∈ n, myofibril boundaries are xmin =∑n

i=1 x0,i and xmax = ∑n
i=1 f −1(ymax, q̄s,i ). Clearly,

xmax = ∑n
i=1 x4,i when y4,min = y4,i , ∀i ∈ n. Fully length-

ening and completely shortening a myofibril are referred to
as myofibril xo reaching xmax and xmin, respectively.

2.2.3 Regular myofibril

As will be seen, the sarcomeres having no valleys in their F–
L curves behave ordinarily during myofibril lengthening or
shortening because their F–L functions are monotonically
non-decreasing. As a consequence of sarcomere inhomo-
geneity, parameter variations in sarcomere F–L curves with
valleys must nevertheless be restricted in order to have
reasonable myofibril F–L behaviours, namely myofibril’s
F–L relation is a continuous single-valued function. Such
a myofibril can be fully stretched or completely shortened,
and length and force increments can be arbitrarily small in
magnitude. This leads to the concept of myofibril regularity.

To have a simple exposition of the concept, two assump-
tions are made. First, it is practically impossible that two
force plateaus and valleys have exactly the same height and
depth, respectively. Therefore, y2,i �= y2, j and yv,i �= yv, j

for i �= j are assumed. Second, it is assumed that variations
in force plateaus and valleys in sarcomere F–L relations due
to sarcomere inhomogeneity are not beyond those caused by
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sarcomere hysteresis, namely ŷ2,min ≥ y̌2,max is assumed,
where ŷ2,min = min{ŷ2,i : i ∈ n} and y̌2,max = max{y̌2,i :
i ∈ n}. This assumption is consistent with experimentally
evidenced considerable force enhancement (Edman 2012;
Rassier 2012) anddepression (Joumaa andHerzog2010;Tre-
carten et al. 2015) in comparison with the isometric force.
Situations where these two assumptions are not taken are
discussed in Sect. 4.

Definition 1 A myofibril is said to be

– weakly regular if (a) is true;
– eccentrically/concentrically regular if (a) and (b) are
true;

– isometrically regular if (a), (b) and (c) are true;

where the three scenarios are specified as:

(a) no sarcomere’s force plateau exceeds the minimum of
maximal passive forces of all sarcomeres;

(b) if the gradient of sarcomere’s F–L relation is negative at
a particular length, so is that of myofibril’s F–L relation
at an associated length;

(c) heights of sarcomere force plateaus and depths of sar-
comere force valleys are in the same order.

The specifications of (a) and (b) are clear. Scenario (c) implies
that if a sarcomere’s force plateau is higher than another
sarcomere’s force plateau, the depths of their force valleys
must be in that order as well.

2.3 Methodology

Given the sarcomere F–L relations defined in (5), themyofib-
ril F–L relation can be determined by solving the n equations

xo =
n∑

i=1

xs,i , fs(xs,i , ps,i ) = fs(xs,i+1, ps,i+1), i = 1, . . . , n − 1

(7)

for all sarcomere lengths xs,i with a given myofibril length
xo ∈ [xmin, xmax]. Once (7) is solved, myofibril force yo
is readily obtained from yo = fs(xs,i , ps,i ) for any i . It is
desirable but normally impossible to have an explicit solu-
tion for all xs,i and hence in general an explicit expression
for the myofibril F–L relation yo = fo(xo, qo) does not exist.
Use of the second equation in (7) implies consideration of
the static myofibril F–L relation and hence sarcomeric iner-
tia effects are ignored. Clearly, only if myofibril dynamics
are stable, which is assumed in the analysis undertaken, this
consideration is adequate.

Since a sarcomere force may correspond to more than one
sarcomere length, the myofibril F–L relation based on those

of sarcomeres becomes particularly traceable if the given xo
in (7) takes in turn values from a sequence. For example,
xmin + (i −1)δxo and xmax − (i −1) δxo for i = 1, 2, . . . ,m
with increment δxo = (xmax − xmin)/(m − 1) correspond
practically to lengthening a myofibril consecutively from
its minimum to its maximum, and shortening it conversely,
under any specific contraction. When a myofibril is con-
tinuously activated at a given level, these two sequences
correspond, respectively, to myofibril eccentric and con-
centric contractions. In the case of isometric contraction, a
particular length of the relaxed myofibril is set first, and then
the myofibril is activated to a pre-specified level.

The lengthening and shortening processes can be con-
sidered two thought experiments on a myofibril held by
microneedles with a micromanipulator to have incremental
elongation or reduction of myofibril’s length. The processes
must be discrete since static F–L relations are considered.
That is, between every two consecutive myofibril length
increments, sufficient time should be given to allow the tran-
sit force to settle. This implies a practical assumption that
a steady-state myofibril force can always be reached at any
given myofibril length within its range. As will be proved,
these sarcomere length increments can be arbitrarily small in
magnitude if and only if the myofibril is regular.

The concept of length increments also facilitates numeri-
cally solving (7) since the sarcomere lengths at the previous
step can be used as initial values for the current sarcomere
lengths in computations. When solving (7) under myofibril
eccentric or concentric contraction, it is necessary to know
which of the two expressions for fs(xs,i , ps,i ) in (5) should
be used. This requires to determine a transiting condition and
specify starting point (xc,i , yc,i ) of the transiting line. Under
the assumptions stated in Sect. 2.2.3, the proof of the main
results in Appendix indicates that in myofibril eccentric con-
traction, when sarcomere i is lengthening in its force valley
region, namely xs,i ∈ (x3,i , f −1(ŷ2,i , q̂s,i )), the F–L rela-
tion of sarcomere j for j �= i is governed by the transiting
line starting at yc, j = ŷ2,i , and xc, j = f −1(ŷ2,i , q̂s, j ). Simi-
larly, in myofibril concentric contraction, when sarcomere
i is shortening in the region including its force descend-
ing region, force plateau and part of its first force ascending
region, namely xs,i ∈ ( f −1(y̌v,i , q̌s,i ), xv,i ), sarcomere j for
j �= i follows the transiting line starting at yc, j = y̌v,i , and
xc, j = f −1(y̌2,i , q̌s, j ). In the both cases, xc, j can be uniquely
determined because sarcomere j is at a known length when
sarcomere i enters its force descending region.

3 Results

To appreciate generality and limitation of the results pre-
sented in this section, the assumptions made so far on
sarcomere F–L relations are summarised below.
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A1 TheGHJmodel represents the isometric active F–L rela-
tion.

A2 An exponential function describes the passive F–L rela-
tion.

A3 Themaximal active force is not greater than themaximal
passive force across all sarcomeres in a myofibril.

A4 The eccentric and concentric F–L relations are obtained
by scaling up and down the isometric F–L relation,
respectively.

A5 Transiting between the eccentric and concentric F–L
curves follows a bidirectional straight line.

A6 Force plateaus/valleys of different F–L relations do not
have exactly the same height/depth.

A7 The highest concentric force plateau is not greater than
the lowest eccentric force plateau among all sarcomeres.

A8 Z-line thickness and the lateralmovement of sarcomeres
are ignored.

Cases where assumptions A1–A7 are not taken are discussed
in Sect. 4.

3.1 Passive F–L relation

The passive F–L relation of amyofibril can be deduced exclu-
sively from passive F–L relations of sarcomeres. From the
fact that myofibril’s passive force equals individual sarcom-
ere’s passive force, namely y po = y ps,i , and (2), sarcomere

length xs,i = xp,i + 1
p2,i

ln
(

y po
p1,i

+ 1
)
is obtained. This leads

to the myofibril’s length as a function of myofibril passive
force as

xo = x̄ p +
n∑

i=1

1

p2,i
ln(y po /p1,i + 1), y po ∈ [0, y4,min] (8)

where x̄ p = ∑n
i=1 xp,i .

If the passive myofibril F–L relation is denoted by y po =
f p(xo, qo) with parameterisation qo = {p1,1, p2,1, . . . ,
p1,n, p2,n, x̄ p}, (8) represents its inverse, but not the func-
tion itself whose explicit expression is desirable but normally
unobtainable. In some special cases, for instance, if the two
exponential coefficients are the same (p2,1 = p2,2 = p2 for
n = 2) and the maximal passive force of sarcomere one is
less than that of sarcomere two (y4,1 < y4,2), the explicit
inverse of (8) is

y po = −1

2
(p1,1 + p1,2)

+ 1

2

√
(p1,1 − p1,2)2+4p1,1 p1,2ep2(xo−xp,1−xp,2)

(9)

for xo ∈ [xp,1 + xp,2, x4,1 + xp,2 + 1
p2

ln(
y p4,1
p1,2

+1)]; or if the
two coefficients of the exponential function are the same for
all sarcomeres (p1,i = p1 and p2,i = p2,∀i), the inverse of
(8) has an explicit expression

y po = p1
(
ep2(xo−x̄ p)/n − 1

)
, xo ∈ [x̄ p, xmax]. (10)

3.2 Full F–L relation

The active myofibril F–L relation cannot be determined
solely from active sarcomere F–L relations, but by subtract-
ing the passive myofibril F–L relation from the full myofibril
F–L relation. This implies the assumption of parallel arrange-
ment of the equivalent passive and active elements in a
myofibril, a type of the Hill’s muscle model (Zajac 1989).

The following proposition and its corollary with their
proofs found in Appendix state necessary and sufficient
conditions for the capability of a myofibril being fully
lengthened/shortened and the myofibril F–L relation being
a continuous single-valued function.

Proposition 1 Under eccentric/concentric/isometric contrac-
tion, a myofibril can be fully stretched and/or completely
shortened and the induced contractile force is a single-valued
continuous function of the myofibril length if and only if the
myofibril is eccentrically/concentrically/isometrically regu-
lar.

Corollary 1 A myofibril can be fully stretched or completely
shortened if and only if it is weakly regular.

To predict shapes of myofibril F–L curves based on those
of sarcomeres, two conventions are adopted separately in
myofibril lengthening and shortening.On the order of heights
of sarcomere force plateaus and the order of depths of sar-
comere force valleys, the conventions are, for i < j, ∀i, j ∈n,

C1 (ordered force plateaus): y2,i < y2, j ;
C2 (ordered force valleys): yv,i < yv, j .

In C2, if sarcomere i has no force valley, set yv,i = y2,i , ∀i .
There is no loss of generality in adopting either of C1 and
C2 since neither of them suggests that sarcomeres i and j
physically appear in that order within a myofibril.

Following the proofs of Proposition 1 and its corollary,
the next two propositions with the associated corollaries on
F–L relations of regular and weakly regular myofibrils are
easily verifiable and hence their proofs are omitted.

Proposition 2 The F–L curve of an eccentrically/concen-
trically/isometrically regular myofibril has n plateaus occur-
ring from left to right in the increasing order of i . These
myofibril plateaus have exactly the same heights and widths
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Table 1 Sarcomere parameters
for isometric F–L curves xi s and
1/p2 are in unit µm, and yi s and
p1 in kg/cm2

x0 x1 x2 x3 x4 xp y1 y2 p1 p2

s-sarcomere 1.270 1.670 2.000 2.250 3.650 2.250 0.272 0.068 0.200 0.800

w-sarcomere 1.274 1.671 1.999 2.251 3.660 2.251 0.262 0.067 0.200 0.795

as those of the sarcomeres. Plateaus i and i+1 of the myofib-
ril are connected by a myofibril valley if the i th sarcomere
F–L curve has a valley and the myofibril valley has the same
depth as that of sarcomere i , or otherwise by a curve with
monotonically increasing gradients.

Running of index i in Proposition 2 leads to an extra
plateaun+1which is virtual at themaximal passivemyofibril
force.

Corollary 2 The eccentric F–L curve of a weakly regular
myofibril has the same shape as that of an eccentrically reg-
ular myofibril, except that there is a force jump discontinuity
in the region of at least one of the plateau-separating val-
leys and such a myofibril valley may be shallower than the
corresponding sarcomere’s valley.

Corollary 3 The concentric F–L curve of a weakly regular
myofibril has the same shape as that of a concentrically reg-
ular myofibril, except that there is a force jump discontinuity
in the region between the bottoms of at least two consecu-
tive valleys and with possible disappearance of the plateau
between the two valleys.

Corollary 4 Under isometric contraction, a weakly regular
myofibril has two F–L curves, respectively, for myofibril
lengthening and shortening. The two curves have the same
shape as that of an isometrically regular myofibril, except
that at least one length and/or force jump occurs in a region
where only a force jump occurs for aweakly regularmyofibril
under eccentric or concentric contraction.

3.3 Illustrations

Consider a tiny portion of a regular myofibril consisting of
just two sarcomeres, a weak one (w-sarcomere) and a strong
one (s-sarcomere). Referring to the notation in (3), parame-
ters of the sarcomere F–L relations are given in Table 1. The
parameters of the active F–L relation for the strong sarcom-
ere under isometric contraction are taken from Gordon et al.
(1966), whilst for the passive F–L relation, xp = x3, and p1
and p2 are manually chosen so that the full F–L curve has
a reasonable shape. The parameters of the weak sarcomere
are generated randomly from the normal distribution with
the corresponding value of the strong sarcomere as the mean
and one of hundredth of the mean as the standard deviation.
The associated parameters for sarcomere F–L relations under

eccentric and concentric contractions are obtained by scal-
ing, respectively, up and down by 20% of the isometric y1
and y2 values.

Software tool Matlab® 2015b has been used in the cod-
ing for solving the equations in (7). Particularly, for a given
sequence of myofibril length which is the sum of the two
sarcomere lengths, the sarcomere lengths are obtained by
determining one sarcomere length at each step through min-
imising the squared difference between the two F–L relations
in (7) over a small range around its length.

Figure 4 shows sarcomere and myofibril forces produced
by different contractions at different sarcomere andmyofibril
lengths, and also sarcomere length changeswith respect to the
myofibril length change. The horizontal axis quantifies sar-
comere and myofibril lengths, whilst the vertical axis on the
left quantifies forces and that on the right indicates sarcom-
ere length. Based on the GHJ model, sarcomere/myofibril
force (N) is converted from tension (kg/cm2) by multiply-
ing with the gravitational acceleration (9.81 m/s2) and the
myofibril cross-sectional area (8.659×10−7 cm2) calculated
from the frog myofibril mean diameter (1.05µm) (Mobley
and Eisenberg 1975). The myofibril length changes in the
range [2.544, 7.310] with increment 0.01. For easy compar-
ison, the main curves in Fig. 4a–c are reproduced in 4d.

All these plots indicate that the heights and widths of
sarcomere force plateaus and the depths of sarcomere force
valleys are faithfully reflected on the myofibril F–L curves.
These curves along with the plots of individual sarcomere
length changes against myofibril length changes demon-
strate that the two sarcomeres traverse their force plateaus
and valleys one by one. Also, under isometric contraction,
if one sarcomere is lengthening or shortening in its force
descending region, the other is shortening or lengthening in
its own first or second force ascending region. However, if
themyofibril portion is under eccentric or concentric contrac-
tion, the other sarcomerewill be shortening or lengthening on
the transiting line. In the force descending region, the active
myofibril F–L curves do not resemble the original sarcomere
active F–L curves. In Fig. 4c, they look alike in that region
because sarcomere valleys are very shallow.

As expected in Fig. 4a, during myofibril lengthening and
shortening under isometric contraction, myofibril forces fol-
low exactly the samemyofibril F–L curve, and the associated
sarcomere length changes follow exactly the same traces,
respectively. In Fig. 4b, two cases for α = 2, 10 are shown,
where α = kc/kb with kc being the gradient of the transiting
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Fig. 4 Illustrative F–L curves and sarcomere length changes under different contractions (Sarcomere/myofibril forces are quantified by the vertical
axis on the left, and sarcomere lengths by the vertical axis on the right). a Isometric curves, b Eccentric curves, c concentric curves, d Combined
curves

line, and kb the maximal absolution value of the gradient of
strong sarcomere’s F–L curve in its force descending region.
These two cases indicate that a stiff transiting line leads to
less sarcomere length reduction during myofibril lengthen-
ing, as expected.Logically, a similar phenomenon (not shown
in Fig. 4c) happens in the case of concentric contraction.

For clarity, only a tiny portion of a myofibril with just
two sarcomeres has been considered in the numerical sim-
ulation. Due to the nature of sarcomeres passing their force
plateaus and valleys one by one duringmyofibril lengthening
or shortening, it is clear that a longer myofibril will not show
any diverse F–L behaviours other than having an increased
number of myofibril plateaus and valleys due to inclusion of
additional sarcomeres in the myofibril.

4 Discussion

A quantitative relationship between myofibril and sarcomere
F–L relations has been established in this study. The follow-
ing interpretations and discussions highlight significance of
the findings and implications of the assumptions made.

4.1 One-by-one passing

The theoretical analysis in this paper suggests that length
changes in sarcomeres during myofibril elongation or short-
ening under any of the three contractions have some regular
patterns. For illustration, the sarcomere with the lowest force
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plateau is referred to as the ‘weakest’ sarcomere, and the one
with the highest force plateau the ‘strongest’ sarcomere.

Bymyofibril lengthening, the weakest sarcomere will first
reach and pass its force plateau, then traverse its force val-
ley to reach its second ascending region. Meanwhile, all
other sarcomeres remain in their first force ascending regions.
Afterwards, the second weakest sarcomere repeats what the
first weakest sarcomere did, whilst the first weakest sarcom-
ere remains in its second force ascending region and all the
remaining sarcomeres are still in their first force ascending
regions. This process continues until the strongest sarcomere
reaches its second force ascending region. Afterwards, the
myofibril elongation proceeds to reach the maximal myofib-
ril length with all sarcomeres lengthening in their second
force ascending regions.

The reverse happens in myofibril shortening, where the
strongest sarcomere goes down in its second ascending
region, passes its force valley and plateau and finally reaches
its first ascending region, followed by the second strongest
and finally by the weakest sarcomere. Afterwards, the
myofibril shortening proceeds to reach the minimal myofib-
ril length with all sarcomeres shortening in their first force
ascending regions.

Duringmyofibril lengthening,when a sarcomere is length-
ening through its force valley with force dropping first and
then increasing, all other sarcomeres undergo shortening first
and then lengthening. Conversely, during myofibril shorten-
ing, when a sarcomere is shortening over its force descending
region, plateau and part of its first ascending region, all
other sarcomeres undergo lengthening first, then stopping
and finally shortening. Depending on the type of the con-
traction that the myofibril endures, these other sarcomeres
are either on their isometric F–L curves or on the straight
lines transiting between their concentric and eccentric F–L
curves.

As a consequence of the theoretical analysis, the pre-
diction on sarcomere lengthening and shortening patterns
indirectly verifies the ‘popping’ hypothesis (Morgan 1990)
and is indirectly evidenced by the ‘resisting’ and ‘yielding’
phenomena (Shimamoto et al. 2009) as myofibril stretch-
ing with a constant speed was considered in these previous
studies. It provides a theoretical affirmation of the increased
sarcomere length inhomogeneity observed through myofib-
ril stretches (Rassier 2012). If such inhomogeneity during
myofibril stretches cannot be observed (Johnston et al. 2016),
certainly none of these sarcomeres contains a force descend-
ing region or their force plateaus are of a same height
and width, and their valleys are of a same depth. The
seemingly inter-sarcomere coordination (Shimamoto et al.
2009) ought to be a simple consequence of series connectiv-
ity of inhomogeneous sarcomeres having force descending
regions.

4.2 Myofibril regularity and length/force jump

Continuity and surjection of individual sarcomere F–L func-
tions do not guarantee the same for myofibril F–L relations
under any of contractions. This paper has proved thatmyofib-
ril regularity is necessary and sufficient for myofibril F–L
relation being a continuous single-valued function. Roughly
speaking, amyofibril is regular if it elongateswith force drop-
ping or shortens with force increasing whenever a sarcomere
within it does so, and the changes in length and force can be
arbitrarily small in magnitude.

For an irregular myofibril, force and/or length jump will
occur during myofibril lengthening or shortening, namely a
signed small myofibril length increment can lead to a large
force increment, and vice versa. If a myofibril is not even
weakly regular, it cannot be fully stretched or completely
shortened. In that case, further lengthening may cause unre-
coverable damage to the myofibril, whilst further shortening
could be achieved only by other means rather than con-
traction. Also, remarkably an irregular myofibril may have
two isometric F–L relations for lengthening and shortening,
respectively. Although being largely overlapping, they have
discontinuities at different locations. It appears therefore nat-
ural or at least ideal for a myofibril to be regular.

It is anticipated that, in experiments on an irregular
myofibril, a force jump is to be reflected by a small length
increment leading to a big force increment reading, and a
length jump implies that the myofibril cannot settle to have
a steady-state force reading at some particular myofibril
lengths when the myofibril undergoes lengthening with a
force drop or shortening with a force increase. However, it
can be difficult in experiments to observe force and length
jumps because theoretically these jumps are defined as non-
infinitesimal which can practically be extremely small unless
a grossly irregular myofibril is under examination.

The analysis of static F–L relations of sarcomeres and
myofibril, as it is in this paper, is nevertheless unable to
explain how a force or length jump can happen in an irreg-
ular myofibril. A myofibril force or length jump is caused
by a large length increment in a sarcomere which is in its
force descending region since a small length increment in
this sarcomere would lead to an opposite increment in the
myofibril length, contradictory to myofibril lengthening or
shortening. However, in reality this sarcomere length incre-
ment has to grow from small to big and hence so does its
force, which implies that an irregular myofibril may have to
be shorten before lengthen or vice versa. This superficially
contradicts the undergoing myofibril consecutively length-
ening or shortening. Therefore, analysis of dynamics of F–L
relations is required to answer the question of how force jump
could happen in a static F–L relation for an irregular myofib-
ril during lengthening or shortening, which is not pursued in
this paper.
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4.3 Sarcomere inhomogeneity: Good or bad?

As a natural consequence of muscle cell growth under com-
plex conditions, sarcomere inhomogeneity is reflected in
unavoidable variations of the parameters specifying sarcom-
ere F–L relations. Complete homogeneity of sarcomeres in
a myofibril would imply nonexistence of parameter varia-
tions in their F–L functions f (xs,i , q̄s,i ), namely q̄s,i = q̄s
for all i . Consequently, all sarcomeres have the same length
as one nth of the myofibril’s length, namely xs,i = xo/n
for all i during myofibril lengthening or shortening. This
suggests that the F–L relation for a myofibril with sarcom-
ere homogeneity is simply the sarcomere F–L relation with a
length scaling, namely yo = fo(xo, qo) = f (xo/n, q̄s). Con-
versely, if myofibril F–L relation yo = fo(xo, qo) is known,
then ys = fo(nxs, qo) could be considered the F–L relation
of an ‘average’ sarcomere with n identical copies of it in
the myofibril. Nevertheless, from the analysis in this paper,
it is certain that this scaled myofibril F–L relation cannot
have the usual shape of a Gordon–Huxley–Julian sarcomere
model, namely fo(nxs,i , qo) �= fs(xs,i , ps,i ) for any sar-
comere unless complete sarcomere homogeneity is assumed.
Therefore, such an ‘average’ sarcomere is not a true sarcom-
ere in any real sense.

As far as myofibril F–L relations are concerned, it is
favourable to possess sarcomere inhomogeneity as par-
tial sarcomere homogeneity could lead to uncertainties in
myofibril F–L relations. Consider three cases excluded in
Assumption A6: The force plateaus of two sarcomeres have:
(a) the same height and width; (b) the same height but dif-
ferent widths; (c) as (a) but the force valleys have different
depths. In cases (a) and (b), when the two sarcomeres have
reached their force plateaus from the left or right ends due to
myofibril lengthening or shortening, given a myofibril length
increment, there are infinite many possible length increments
for these two sarcomeres to have. It may not be insensible
to assume that their length increments are equally half of
the myofibril length increment since other sarcomeres stop
lengthening or shortening, but in case (b), when the other end
of the plateau with the narrow width is reached by one sar-
comere, a further myofibril length increment under eccentric
or concentric contraction would imply more than one pos-
sible length increments for these two sarcomeres. That is,
one with zero length increment and the other with the length
increment equal to that of the myofibril, or both sarcomeres
with nonzero length increments and a force drop. In case (c)
and under isometric contraction, assuming that the two sar-
comeres are already in their force descending regions, the
sarcomere with the shallower valley is able to reach its sec-
ond force ascending region through myofibril lengthening,
but certainly the other sarcomere is unable to do so. The
uncertainties on sarcomere F–L behaviours in these cases
of irregular myofibrils add further complexity to the muscle

self-regulatory mechanism and no theory seems available to
explain the additional complexity.

4.4 Different types of sarcomere F–L relations

Clearly other than theGordon–Huxley–Julianmodel adopted
in this paper, many different types of functions such as poly-
nomial, cubic splines, Bézier curve and asymmetricGaussian
(Mohammed and Hou 2016 and references therein) may also
be used. All these models have representative features of a
sarcomere F–L relation such as the maximal active and pas-
sive forces, two force ascending regions, and one descending
region, which can produce similar myofibril behaviours as
discussed in this paper. A simple exponential function has
been adopted in this paper to represent passive sarcomereF–L
relations. To focus on the key features of myofibril F–L rela-
tions, this study has not considered the possible passive force
enhancement or depression (Herzog and Leonard 2002).
Referring to Assumptions A1–A5, alternative active and pas-
sive F–L models, and other possible F–L relations counting
for sarcomere hysteresis and transiting between eccentric,
concentric or isometric F–L curves are not investigated in
this paper. Nevertheless, this paper has laid a foundation for
dealing with these different models.

Under the assumption of perpendicularly transversal stri-
ations of a muscle fibre, sarcomeres within such a striation
can be considered in parallel connection and give rise to one
stacked sarcomere. By adding up individual sarcomere F–
L relations, a stacked sarcomere would have a F–L relation
similar to that of a normal sarcomere, but with none or a very
narrow force plateau and multiple gradient changes in other
parts of the curve. Such a curve could closely resemble the
asymmetric Gaussian and hence it is anticipated that the F–L
relation of a fibre would show a more rounded shape than a
myofibril F–L curve even if individual sarcomere F–L rela-
tions are represented by the Gordon–Huxley–Julian model
which is formed by piecewise straight lines. Nevertheless,
all peaks and valleys of individual groups of stacked sarcom-
eres should show up in a fibre F–L curve in a similar manner
as the appearance of sarcomere force plateaus and valleys in
a myofibril F–L curve.

4.5 Sarcomere andmyofibril hysteresis

Myofibril hysteresis is a consequence of the same of sarcom-
eres. Sarcomere hysteresis enhances the chance of amyofibril
becoming regular. As shown in this paper, the key require-
ment formyofibril regularity is that the sumof the reciprocals
of all sarcomere F–L gradients is negative whenever the F–
L gradient of one of the sarcomeres is negative. Under the
assumption that none of the sarcomeres’ heights is exactly
the same as another, when a sarcomere is lengthening with
a force drop or shortening with a force increase, other sar-
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comeres must shorten or lengthen correspondingly. In such
cases, in order to produce an required negative gradient for
the myofibril, the positive gradients of the other sarcomeres
must be as substantial as possible.

In sarcomere isometric F–L curves, positive gradients in
the first force ascending regions are not particularly greater
than the absolute values of the negative gradients in the
force descending regions, whilst the gradient of the transiting
lines between sarcomere eccentric and concentric F–L curves
can be considerably substantial. Because of this, a myofibril
with several hundred sarcomeres is almost certainly irreg-
ular under isometric contraction, whilst it is regular under
eccentric or concentric contraction only if the gradient of
the transiting lines is substantially greater than the absolute
value of the negative gradient of any individual sarcomere
F–L relation. For instance, if a myofibril has n sarcomeres
and all the transiting lines between eccentric and concen-
tric sarcomere F–L curves have the same gradient kc, then
the key regularity condition is reduced to ki < kc

n−1 , ∀i ,
where ki = |a4,i + p1,i p2,i | is the maximal absolute value
of the negative gradient of sarcomere i . To have a general
assessment on myofibril regularity, it would be of paramount
importance carrying out experimental studies on sarcomere
F–L relations during transiting between eccentric and con-
centric contractions.

The analysis in this paper has assumed, referring to
Assumption A7, that sarcomere force variations caused by
sarcomere inhomogeneity are within those caused by sar-
comere hysteresis. This assumption is consistent with the
evidence reported in the literature about substantial force
enhancement (Edman 2012; Rassier 2012) or depression
and depression (Joumaa and Herzog 2010; Trecarten et al.
2015) under eccentric or concentric contraction in compar-
ison with the forces induced in isometric contraction. An
important implication of this assumption is that a sarcom-
ere transits towards but never reaches the next F–L curve.
If this assumption is not taken, the regularity conditions for
myofibrils under eccentric or concentric contraction need to
be combined with more restrictive conditions for myofibril
isometric regularity to cover the case of a sarcomere com-
pleting its transition between eccentric and concentric F–L
curves.

5 Conclusion

In general, by lengthening or shortening a myofibril, individ-
ual sarcomeres within it will traverse, one by one and from
the weakest to strongest sarcomeres or reversely, their force–
length curves. This applies to a group of semi-homogeneous
sarcomeres whose force plateaus have the same height and
width and force valleys have the same depth. Consequently,
the heights and widths of sarcomere force plateaus and the

depths of sarcomere force valleys will be preserved in the
myofibril force–length curves. Amyofibril fore–length curve
resembles a general sarcomere force–length curve onlywhen
none of sarcomeres has a force valley or they are homoge-
neous.

The regularity is an ideal feature to possess for a myofib-
ril to ensure the myofibril force–length being a continuous
single-valued function. The concept of myofibril regularity
can be easily extended to amuscle fibre if the fibre is assumed
to be formed by stacked sarcomeres connected in series. A
stacked sarcomeres consists of parallelly connected sarcom-
eres and its force–length relation is readily obtained from
those of the sarcomeres.

It is anticipated that the myofibril irregularity will reflect
itself in experiments on myofibril fore–length relations by
having readings of substantial force increments with respect
to small length increments and/or impossibility of hav-
ing steady-state force readings at some particular myofibril
lengths where the regularity conditions fail. Detailed mecha-
nisms of force and length jumps in the force–length relations
of irregular myofibrils require analysis of sarcomere force–
length dynamics, which is not pursued in this paper but
worthwhile to explore in the future.

Sarcomere inhomogeneity and hysteresis enhance the
chance of amyofibril becoming regular. Complete sarcomere
homogeneity or semi-homogeneity such as sarcomere force
plateaus having the same height and width and force val-
leys having the same depth does not cause any problems in
determination of myofibril F–L relations. Nevertheless, any
additional minor sarcomere inhomogeneity will complicate
myofibril lengthening or shortening behaviours. As implied
by the analysis in this paper, at least for myofibril eccentric
and concentric contractions, these complexities caused by
minor sarcomere inhomogeneity will disappear if sarcomere
force plateaus do not exist.
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Appendix

The mathematical specifications of myofibril regularity con-
ditions (a)–(c) outlined in Definition 1 are as follows.
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(r1) ȳ2,max ≤ y4,min;

(r2) Eccentric/concentric:
1

a4,i + p1,i p2,i
+

n∑
j=1, j �=i

1

kc, j
<

0, ∀i ∈ Sv;

Isometric:
1

f ′(xs,i , qs,i )
+

n∑
j=1, j �=i

1

f ′(xs, j , qs, j )
< 0,

xs,i ∈ (x3,i , xv,i ), ∀i ∈ Sv;
(r3) yv,i < yv, j if y2,i < y2, j , j �= i , ∀i, j ∈ Sv .

In (r1), ȳ2,max is ŷ2,max (eccentric), y̌2,max (concentric),
or y2,max (isometric), and y4,min = min{y4,i : i ∈ n}. In
(r2) and (r3), Sv is the set of the sarcomeres having valleys
in their F–L curves. In (r2), the expression on the left of the
inequality is the reciprocal of the gradient of the myofibril F–
L curve, namely dxo

dyo
= ∑n

i=1
1

f ′
s (xs,i ,ps,i )

which is piecewise

continuous.With reference to the ak-definitions in (1), a4,i =
− ȳ2,i

x4,i−x3,i
with ȳ2,i = ŷ2,i (eccentric) or y̌2,i (concentric);

p1,i and p2,i are two coefficients of the passive F–L relation
of sarcomere i ; f ′ is the gradient of f ; xs, j = f −1(ys,i , qs, j )
with ys,i = f (xs,i , qs,i ) is in its first ascending region for
j > i , and in its second ascending region for j < i under
conventions C1 or C2 stated in Sect. 3.2; The general form
for condition (r2) is 1

f ′
s (xs,i ,ps,i )

+ ∑n
j=1, j �=i

1
f ′
s (xs, j ,ps, j )

< 0

which is the expression for the isometric case because of
fs(xs,i , ps,i ) = f (xs,i , qs,i ), and reduced to the specific
form under the two other contractile conditions with kc, j
being the gradient of the transiting line for sarcomere j (refer-
ring to (5)).

Proof of Proposition 1

Sufficiency of (r1) to (r3) and necessity of (r1) are to be
proved here, leaving necessity of (r2) and (r3) to be verified
in the proof of Corollary 1.

For simplicity, let lengths xo and xs,i also stand for the
myofibril and sarcomere i themselves, and δxo and δxs,i
for their increments, respectively. δxo > 0 corresponds
to xo-lengthening under eccentric or isometric contraction,
whilst δxo < 0 corresponds to xo-shortening under con-
centric or isometric contraction. From the discussions in
Sect. 2.2.2, the starting pair (xo, yo) is known. Given such
a pair (xo, yo), the proposition will be verified by proving
that, if and only if the regularity conditions (r1) to (r3) hold,
a signed δxo = ∑n

i=1 δxs,i leads to a unique force increment
δyo over the whole range of xo, where mutually dependent
increments δxo, δxs,i and δyo can be arbitrarily small in mag-
nitude, namely infinitesimal.

The above explains the main idea of the proof. To strike a
balance between rigour/completion and simplicity, the proof
considers a myofibril portion consisting of three sarcomeres

Fig. 5 Isometric F–L curve of sarcomere i with stages of lengthening
or shortening

only, at the cost of omitting the formal induction step which
is straightforward anyway for a general myofibril with n
sarcomeres. Referring to the illustration of the ‘popping’
phenomenon in Fig. 1 and the full sarcomere F–L rela-
tion in Fig. 2, four stages of lengthening or shortening are
indicated on a typical isometric sarcomere F–L relation in
Fig. 5.

Lengthening xo At the minimal length, xo = xmin =∑3
i=1 x0,i and yo = 0.Referring to the notations in (6), define

xo,1 = x2,1 + f −1(ȳ2,1, q̄s,2) + f −1(ȳ2,1, q̄s,3). For any
infinitesimal δxo ∈ (0, xo,1 − xmin], an infinitesimal δyo ∈
(0, ŷ2,1] can be easily determined so that δxo = ∑3

i=1 δxs,i
with δxs,i = f −1(δyo, q̄s,i ) for i = 1, 2, 3. This means that
xs,1, xs,2 and xs,3 can be uniquely solved from (7) for any
given xo ∈ [xmin, xo,1]. Hence, the proposition is verified for
the case of xo-lengthening up to xo,1 without invoking (r1)
to (r3). This corresponds to lengthening xs,1, xs,2 and xs,3 in
stage 1.

Further infinitesimally xo-lengtheningmust bewith δyo =
0 through xs,1-lengthening in stage 2, whilst xs,2 and xs,3
stopping in stage 1. This means that, with any infinitesimal
δxo ∈ (0,< x3,1 − x2,1], (7) is trivially solved by xs,1 =
x2,1+δxo and xs,i = f −1(ȳ2,1, q̄s,i ) for i = 2, 3. Hence, the
proposition is now verified for xo-lengthening up to x0,2 =
xo,1 + x3,1 − x2,1, still without invoking (r1) to (r3).

If xs,1 does not have a force valley, further xo-lengthening
implies that xs,1 is immediately in stage 4 after leaving stage
2 without invoking (r1) to (r3). In general, if xs,1 has a
force valley, further infinitesimally xo-lengthening must be
with δyo < 0 through xs,1-lengthening in stage 3, whilst
xs,2 and xs,3 shortening on their respective transiting lines
towards their concentric F–L curves when the myofibril is
under eccentric contraction, or shorteningon their (isometric)
F–L curves when the myofibril is under isometric contrac-
tion. Because δxo = dxo

dyo
δyo with δyo < 0, δxo > 0 if and

only if dxo
dyo

= ∑3
i=1

1
f ′
s (xs,i ,ps,i )

< 0. This verifies (r2) and

in particular, for eccentric contraction, f ′
s (xs,i , ps,i ) = kc,i

for i = 2, 3, and f ′
s (xs,1, ps,1) = a4,1 + p1,1 p2,1ep2,1 x̃ p,1

achieves the minimum a4,1 + p1,1 p2,1 at xs,1 = xp,1. At
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the end of this stage of xo-lengthening, xo has reached
xo,3 = xo,2 + δxs,1 + δxs,2 + δxs,3 with δxs,1 = xv,1 − x3,1
and, for i = 2, 3, δxs,i = (ŷv,1 − ŷ2,1)/kc,i (transit-
ing from eccentric towards concentric curve) or δxs,i =
f −1(yv,1 − y2,1, qs,i ) (on the isometric curves). (r2) is veri-
fied for xs,1-lengthening in stage 3,whilst (r1) and (r3) are not
invoked.

From xo,3, further infinitesimally xo-lengthening must be
through xs,1 lengthening in stage 4, whilst xs,2 and xs,3
lengthening on their transiting lines back towards their eccen-
tric F–L curves in stage 1 when the myofibril is under
eccentric contraction, or on their isometric F–L curves oth-
erwise. This is always possible because, for i = 1, 2, 3,
f ′
s (xs,i , ps,i ) > 0 and is continuous within stages 1 and 4 .

Hence, for any infinitesimal δyo > 0, δxo = ∑3
i=1 δxs,i with

δxs,i = f −1
s (δyo, ps,i ) for i = 1, 2, 3 being infinitesimals.

With arbitrarily many infinitesimal steps, xs,i , for i = 2, 3,
is back to f −1(ȳ2,1, q̄s,i ), and xs,2 further to x2,2, and mean-
while xs,1 reaches f −1(ȳ2,2, q̄s,1) in stage 4, and xs,3 reaches
f −1(ȳ2,2, q̄s,3) in stage 1. This is possible if and only if
ȳ2,2 ≤ ȳ4,1 which is (r1) in the case of considering xs,1 and
xs,2 only.

In a similar way of proving xs,1’s traverse from stage 2
to stage 4, further infinitesimally xo-lengthening will bring
xs,2 through stage 2 to stage 3 and then stage 4. Meanwhile,
xs,1 in stage 4 and xs,3 in stage 1 will undergo stopping on
their F–L curves, shortening and then lengthening on their
transiting lines or their F–L curves (depending on the nature
of the myofibril’s contraction), and then lengthening on their
F–L curves, until xs,3 reaches stage 2. As in the case of xs,1-
lengthening, (r1) and (r2) are required. In addition, if the
myofibril is under isometric contraction, (r3) is also needed
because, without the depth of xs,1’s valley being lower than
that of xs,2, byxo-lengthening, an increment in xs,2 is not
guaranteed infinitesimal, and so is the increment in xo.

Any further xo-lengthening will have to be lengthening
xs,3 throughout stages 2–4, and meanwhile xs,1 and xs,2
undergo stopping , shortening and lengthening in stage 4,
which requires (r2) under eccentric or isometric contraction
and (r3) under isometric contraction. Final infinitesimally
xo-lengthening to achieve itmaximalmust be through length-
ening all the three sarcomeres in stage 4without invoking (r1)
to (r3).

Shortening xo The details of the proof for shortening xo
under concentric or isometric contraction are very similar to
those of lengthening xo under eccentric or isometric contrac-
tion. Hence, for brevity, only the main steps of the proof for
xo-shortening are highlighted.

From the maximal length of xo with xs,i for i = 1, 2, 3,
being fully stretched, infinitesimally xo-shortening has to be
through shortening xs,i for i = 1, 2, 3 in stage 4. Recalling
convention C2, once xs,3 reaches xv,3, further infinitesimally
xo-shortening has to be through xs,3-shortening in stage 3

and xs,1 and xs,2 lengthening on their transiting lines towards
their eccentric F–L curves if themyofibril is under concentric
contraction, or otherwise lengthening on their isometric F–L
curves. These infinitesimal increments in xo are possible if
(r2) is satisfied, and xs,3 can reach stage 2 from the right if
and only if (r1) is true. If xs,3 does not have a force valley, xo-
shortening would lead xs,3 directly reaching stage 2 without
invoking (r2), but (r1).

Further infinitesimally xo-shortening has to be through
xs,3-shortening in stage 2 and then stage 1, whilst xs,1 and
xs,2 undergo stopping and then shortening on their transit-
ing lines back to their concentric F–L curves if the myofibril
is under concentric contraction, or otherwise shortening on
their isometric F–L curves. This stage of xo-shortening does
not invoke (r1) to (r3) until xs,2 reaches xv,2 or directly
reaches stage 2 if xs,2 does not have a force valley.

In the general case of xs,2 having a force valley, as in the
passage of xs,3 from stage 4 to stage 1, further infinitesimally
xo-shortening has to be through xs,2-shortening in stage 3
and xs,3 and xs,1 lengthening on their transiting lines towards
their eccentric F–L curves if themyofibril is under concentric
contraction, or otherwise lengthening on their isometric F–L
curves. This stage of xo-shortening until xs,2 reaching stage
2 requires (r2), and in addition (r3) if the myofibril is under
isometric contraction.

Without invoking (r1) to (r3), further infinitesimally xo-
shortening has to be through xs,2-shortening in stage 2 and
then stage 1, whilst xs,3 and xs,1 shortening on their transit-
ing lines back to their concentric F–L curves if the myofibril
is under concentric contraction, or otherwise shortening on
their isometric F–L curves, until xs,1 reaching xv,1. There-
after, further infinitesimally xo-shortening will cause xs,1
shortening through stage 3 to stage 1, andmeanwhile xs,3 and
xs,2 undergo lengthening, stopping and shortening, which
require (r2) and (r3). Final infinitesimally xo-shortening is
through all three sarcomeres shortening in stage 1 to reach
their minimal lengths.

Proof of Corollary 1

Necessity of (r1) for this corollary is obvious from the proof
of Proposition 1. Proof of sufficiency of (r1) focuses on exam-
inations of effects of (r2) and/or (r3) failing since the proof
is otherwise exactly the same as that of Proposition 1. In the
cases of (r2) and/or (r3) failing, two types of discontinuity in
the myofibril F–L relation, namely force and length jumps,
can happen. In the former, for an infinitesimal δxo there is a
δxs,i which cannot be infinitesimal and hence the associated
δyo cannot be infinitesimal. In the latter, for an infinitesimal
δyo there is at least one δxs,i which cannot be infinitesimal
and so is the associated increment δxo.

Lengthening xo Recall that up to xo,2, xo-lengthening
has not invoked (r1) to (r3). Let therefore (xo, yo) =
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(xo,2, ȳ2,1). Further xo-lengthening requires xs,1-lengthening
in stage 3. If (r2) fails, for an increment δyo ∈ (ȳv,1− ȳ2,1, 0),
dyo
dxo

> 0 cannot produce an infinitesimal δxo > 0 unless
δyo < 0 is not infinitesimal, a force jump in yo.

Now, under (r1) and (r2), let xs,1 be in stage 4, xs,2 at the
end of stage 2, and xs,3 in stage 1. If (r3) fails, xs,2 cannot
reach xv,2. This implies that to reach stage 4 for xs,2, incre-
ment δxs,2 cannot always be infinitesimal, which leads to a
jump in xo.

Similarly for xs,3’s passage from stage 1 to stage 4, under
(r1) but without (r2) and/or (r3), at least a force jump and/or
a length jump will occur in xo-lengthening.

Shortening xo Similar arguments as in the case of
xo-lengthening apply to xo-shortening, and hence the ver-
ification in this case is omitted.
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