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Abstract This work is devoted to the development of a
mathematical model of the early stages of atherosclerosis
incorporating processes of all time scales of the disease and
to show their interactions. The cardiovascular mechanics is
modeled by a fluid–structure interaction approach coupling
a non-Newtonian fluid to a hyperelastic solid undergoing
anisotropic growth and a change of its constitutive equation.
Additionally, the transport of low-density lipoproteins and its
penetration through the endothelium is considered by a cou-
pled set of advection–diffusion-reaction equations. Thereby,
the permeability of the endothelium is wall-shear stress mod-
ulated resulting in a locally varying accumulation of foam
cells triggering a novel growth and remodeling formulation.
The model is calibrated and applied to an murine-specific
case study, and a qualitative validation of the computa-
tional results is performed. The model is utilized to further
investigate the influence of the pulsatile blood flow and the
compliance of the artery wall to the atherosclerotic process.
The computational results imply that the pulsatile blood flow
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is crucial, whereas the compliance of the aorta has only a
minor influence on atherosclerosis. Further, it is shown that
the novel model is capable to produce a narrowing of the
vessel lumen inducing an adaption of the endothelial perme-
ability pattern.
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1 Introduction

Atherosclerosis is an inflammatory disease resulting in the
pathological alteration of the intima and media of arteries
such as the aorta. Inducing sequelae like stroke, heart attack
or angina, atherosclerosis is the leading cause of death in
western societies. It is characterized by an accumulation of
inflammatory cells and lipids in the intima and media lead-
ing to their thickening and hence to a narrowing of the vessel
lumen. It is now well accepted that a significant first step
for the initiation of the early atherosclerotic process is a
dysfunction of the endothelium allowing the penetration of
low-density lipoproteins (LDL) through the monolayer of
endothelial cells into the vessel wall. Thereby, the role of the
endothelium is crucial since it acts as a transportation barrier
between the lumen and the intima. LDL in the vessel wall
is prone to oxidative modifications initiating the inflamma-
tory processes. The inflammation further triggers a complex
biochemical immune response leading to the migration of
monocytes into the artery wall inducing their differentia-
tion into macrophages. Macrophages ingest the modified
LDL and can transform to so-called foam cells. These lipid-
laden foam cells accumulate resulting in the development of
atherosclerotic plaques and hence a thickening of the artery
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wall. A significant narrowing of the vessel lumen can occur,
and a potential rupture of the plaque can lead to subsequent
diseases like stroke or myocardial infarction (Ross 1999;
Stocker and Keaney 2004; Faxon et al. 2004; Brown et al.
2016).

Over the recent decades more and more evidence was
found that low wall-shear stresses (WSS), resulting from
flow recirculations and oscillatory flows, locally trigger
atherosclerosis by an increased permeability of the endothe-
lium with respect to LDL. However, the concrete inter-
play of hemodynamic forces, endothelial permeability and
atherosclerosis progression is not yet fully understood (Peif-
fer et al. 2013; Resnick et al. 2003).

To study the influenceof themechanobiology to atheroscle-
rosis, a broad spectrum of mathematical and computational
models was established. For a general overview of existing
models and their specific applications, see, e.g., Parton et al.
(2015), Holzapfel et al. (2014) and Wang et al. (2013) and
therein. A great challenge for computational models are dif-
ferent time scales involved in the atherosclerotic process.
On the one hand, the LDL penetration, the inflammatory
processes as well as the foam cell accumulation are on the
time scale of weeks, months or years. On the other hand, the
hemodynamics and therefore the long-time endothelial per-
meability are governed by the time scale of cardiac cycles
being in the range of seconds.

Long-time scale models can roughly be divided into the
ones focusing on LDL penetration and the ones emphasiz-
ing the biochemical reactions of the inflammatory processes.
Many of the LDLpenetrationmodels consider the transmural
flow driven by the pressure gradient across the endothe-
lium as well as the pressure driven transportation within
the vessel wall to be of importance, see, e.g., Prosi et al.
(2005), Tomaso et al. (2011) and Yang and Vafai (2006).
In contrast, others model the penetration and transportation
as a purely diffusive process (Hossain et al. 2012; Calvez
et al. 2010). A broad spectrum of models for the inflamma-
tory processes exists (Chalmers et al. 2015; Friedman and
Hao 2015; Filipovic et al. 2011; Ougrinovskaia et al. 2010;
Cilla et al. 2014; Calvez et al. 2010). Some consider only a
few key species (Chalmers et al. 2015; Calvez et al. 2010),
where others identify up to 16 important players (Friedman
and Hao 2015). Some identified chemotaxis to be crucial
(Chalmers et al. 2015; Friedman and Hao 2015), where oth-
ers restrict themselves to pure ordinary differential equation
models (Ougrinovskaia et al. 2010). Since from a medical
point of view, the complex biochemical processes involved
are not yet fully understood, and since a quantitative valida-
tion of the mathematical models by experiments is not yet
achieved, it is difficult to distinguish the validity of these
models. Additionally, some of the models also consider the
plaque development process (Calvez et al. 2010; Friedman
and Hao 2015; Tomaso et al. 2011) in terms of heuristic

growth laws.Only very fewmodels consider all of the before-
hand mentioned processes at the large time scale. One can
highlight the work in Calvez et al. (2010) considering the
transmural flow within the artery wall, a simple but conve-
nient biochemical reaction model and an induced heuristic
growth.

Small time scale models in contrast focus on a physi-
ological description of the cardiovascular mechanics. This
includes mainly two aspect missing in most of the large
time scale models: pulsatile blood flow and compliance of
the vessel wall. It is frequently stated that pulsatile flow
should not be neglected (Koshiba et al. 2007; Liu et al.
2011; Sun et al. 2007) lying in contradiction tomanymodels,
which commonly assume stationary blood flows. The influ-
ence of the compliance of the artery is usually investigated
using fluid–structure interaction (FSI) models allowing for
a physiologically more realistic deformation of the artery
wall (Crosetto et al. 2011; Koshiba et al. 2007; Moireau
et al. 2012; Yang et al. 2016; Figueroa et al. 2009). However,
the influence of the compliance on the atherosclerotic pro-
cess has not been considered much (De Wilde et al. 2015a).
For the small time scales, one can highlight the work in
Koshiba et al. (2007), where a non-stationary FSI simula-
tion, a model of the species transportation and penetration as
well as a linked model of the transmural flow is considered.
The back-coupling from the large time scale, i.e., the plaque
development process and subsequent geometry changes cru-
cial to atherogenesis are not included therein.

A suitable multiscale in time strategy is necessary to
bring together the aforementioned small and large time
scale phenomena. General multiscale frameworks exist, see,
e.g., Figueroa et al. (2009), but a suitable framework for
atherosclerosis is not yet established. As a first step (Koshiba
et al. 2007; Sun et al. 2007) considered the influence of
the flow pattern to LDL penetration, but not vice versa.
In contrast, (Tomaso et al. 2011; Calvez et al. 2010) mod-
eled the large time scale growth process and studied the
induced changes to hemodynamics, both assuming stationary
flows and phenomenological growth laws. Still, Tomaso et al.
(2011) shows the back-coupling from the large time scale due
to growth being of major importance. It may explain that the
so-called fatty streak formation observable in early stages of
the disease is a result of the adjusted LDL penetration due to
the thickened artery wall altering the blood flow.

In this contribution, the objective is to develop a math-
ematical model of early atherosclerosis incorporating all
beforehand mentioned phenomena and include and discuss
their interactions. Therefore, a multiphysics model of the
cardiovascular mechanics as well as for the transportation
and penetration of LDL is developed focusing on the fol-
lowing aspects: pulsatile blood flow, compliant artery wall,
WSS dependent migration of LDL and growth and remodel-
ing. To achieve meaningful results, the model is calibrated to
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and solved for a murine-specific geometry segmented from
an in vivo magnetic resonance angiography. The proposed
model is designed for the small time scale and is capable to
physiologically adapt to the long time processes of plaque
development and the induced narrowing of the blood vessel.
Therefore, a state of the art FSI model of the cardiovascular
mechanics as well as a sequentially coupled scalar trans-
port model including a novel way for calibrating the law for
LDL penetration is established. A simple phenomenological
model of the inflammatory processes is utilized to repre-
sent the large time scale processes of foam cell accumulation
triggering a novel growth and remodeling formulation. The
model is able to reproduce important cardiovascular quan-
tities gained by measurements and simulations of previous
studies. We further utilize the model to study the interaction
between the two time scales. In particular, the question of the
influence of pulsatile blood flow and vessel compliance on
atherosclerosis are addressed.

The paper is organized as follows. In the next Section, we
give an overview of the simplified model of the atheroscle-
rotic process and itsmathematical formulation describing the
cardiovascular mechanics, species migration as well as the
growth and remodeling processes. Section 3 briefly presents
the numerical procedure. In Sect. 4, the model is calibrated
to a murine-specific case and computational results are pre-
sented. Finally, results are discussed in Sect. 5 and critically
reflected in Sects. 6 and 7.

2 Modeling

2.1 Overview of the simplified model

To reproduce the atherosclerotic process in a mathematical
model, reasonable simplifications and assumptions have to
be made. Here the main interest is to study the mechanobio-
logical influence of the cardiovascular mechanics driven by
the hemodynamics on the atherosclerotic process and vice
versa. Therefore, we consider the following assumptions:

– The hemodynamics is governed by the pulsatile blood
flow interacting with the elastic artery wall.

– LDL molecules are transport by advection and diffusion
in the lumen and solely by diffusion in the artery wall.

– The initiator of the atherosclerotic inflammation is the
migration of LDL through the endothelium into the artery
wall.

– The endothelium has an increased permeability with
respect to LDL at regions of low wall-shear stresses.

– In the artery wall LDL triggers a series of bio-chemical
processes which lead to the production of foam cells.

artery wall blood flow
narrowing transportation LDL in the

artery walllumen
LDL in the

wall-shear stresses

endothelium

LDL penetration

inflammationthickening foam cell
accumulation

Fig. 1 Schematic overview of the simplified model and the considered
main aspects in the atherosclerotic process

– The accumulation of foam cells in the artery wall leads
to a thickening of the artery wall with an induced change
of its mechanical properties.

– The thickening of the arterywall is considered to be stress
free in the reference configuration.

For a schematic overview of the simplified model and the
considered main aspects in the atherosclerotic process, see
Fig. 1.

The simplified model of atherosclerosis is represented by
a mathematical formulation as follows. The governing equa-
tions are a coupled fluid–structure–advection–diffusion–
reaction model that we subsequently denote as fluid–
structure–scalar–scalar interaction (FS3I). It can be subdi-
vided into a model of the interaction of the blood flow
with the artery wall and a model of the transport and
reactions of the key species involved. The former is real-
ized by a FSI approach coupling an incompressible non-
Newtonian fluid including embedded three-element Wind-
kessels with a hyperelastic structure, which undergoes
species concentration-dependent anisotropic growth and a
species concentration-dependent remodeling of its consti-
tutive equation. The transportation of LDL with the blood
flow is governed by the advection–diffusion equation and its
migration through the endothelium into the artery wall by a
WSS dependent, modified version of the Kedem–Katchalsky
equations.LDL in the arterywall ismodeledby thediffusion–
reaction equation leading to the production of the growth
inducing species of foam cells.

2.2 Notations and domain overview

In the following domains are denoted by Ω ⊂ R
3 and

boundaries are denoted by Γ ⊂ ∂Ω . They undergo finite
deformations in time t , which is explicitly expressed byΩ(t)
and Γ (t), respectively, when of particular interest. The vari-
ables for space are X and x, which denote the material and
spatial coordinates, respectively, where the bolding denotes
a vector or tensor valued quantity. The displacements and
velocities of a material point X at time t are denoted by
d(t,X) and u(t,X) = d

dt d(t,X), respectively.
To account for the deformable domain of the fluid within

the FSI problem an Arbitrary–Lagrangian–Eulerian (ALE)
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observer is utilized. The ALE domain is thereby denoted
by ΩG

0 since it is convenient to think of it as the domain
of the grid G of the ALE fluid. When reformulating an
Eulerian problem describing the motion of a quantity (�)

to an ALE observer, the so-called ALE time derivative
∂
∂t (�)

∣
∣
χ

has to be exploited (Donea et al. 1982; Donea
and Huerta 2003). We usually omit the time and space
dependencies to ease notation, except in cases where it is
crucial.

In the context of atherosclerosis, a special focus lies on
bifurcations of large arteries where atherosclerotic plaques
are frequently located. Hence, in this context the aortic arch
with the branching subclavian and common carotid arteries
is utilized as the computational region of interest Ω . The
overall computational domain Ω can be subdivided into the
domain of the lumen and the domain of the arterywall.Within
the lumen the computational domains of the fluid ΩF of the
ALE observer ΩG and of the scalar-valued concentration
in the fluid (fluid–scalar) ΩFS are located. Within the artery
wall, the domains of the structureΩS andof the scalar-valued
concentrations in the structure (structure–scalars) ΩSS are
situated, see Figure 2.

To easily distinguish the affiliation of a quantity (�)

to the five computational domains, its name is placed as
a superscript, i.e., the quantity is denoted by (�)F , (�)S ,
(�)G , (�)FS or (�)SS . Names of quantities are indicated as
subscript. Each computational domains contains a bound-
ary ΓIn and nOut ≥ 1 boundaries ΓOut,i , i = 1, . . . , nOut.
The fluid–structure interface as well as the (fluid–scalar)–
(structure–scalar) interface, short the fluid–structure–scalar–
scalar interface corresponding to the endothelium is denoted
by ΓFS3I. The boundary connecting the outer artery wall
with the surrounding tissue is called ΓWall. For a schematic
overview of the different domains and boundaries, see Fig. 2.

2.3 Cardiovascular mechanics

The cardiovascular mechanics is modeled by a FSI method
(Crosetto et al. 2011; Mayr et al. 2015; Küttler et al.
2010; Yang et al. 2016; Klöppel et al. 2011) coupling an
incompressible non-Newtonian fluid including embedded
three-element Windkessels with a hyperelastic solid under-
going finite deformations, anisotropic growth and a change
of its constitutive equation.

2.3.1 Fluid model of the blood

We model blood as an incompressible non-Newtonian fluid.
The blood flowon the deformable domainΩF (t) is governed
by the incompressible Navier–Stokes equations in an ALE
frame

Fig. 2 Schematic overview of the domains and boundaries of an aortic
arch: fluid domain ΩF , structure domain ΩS , ALE observer domain
ΩG , fluid–scalar domain ΩFS , structure–scalars domain ΩSS , inlet
boundary ΓIn, outlet boundaries ΓOut,i (i = 1, . . . , 5), fluid–structure–
scalar–scalar interaction interface ΓFS3I and outer wall boundary ΓWall

�F
∂

∂t
uF

∣
∣
χ

+ �F
(

(uF − uG) · ∇
)

uF

− 2ηF (uF )∇ · ε
(

uF
)

+ ∇ pF = 0 (1)

∇ · uF = 0, (2)

where ∂
∂t u

F ∣
∣
χ
denotes the ALE time derivative of the fluid

velocities uF , see Donea et al. (1982) and Donea and Huerta
(2003). The motion of the ALE observer is described in
Sect. 2.3.4 and its velocity field is denoted by uG . The con-
stant �F and ε

(

uF
) = 1

2 (∇uF + (∇uF )T )) are the mass
density and strain rate tensor, respectively. Blood exhibits a
shear-thinning property, i.e., a decrease in its viscosity when
its strain rate increases (Cho and Kensey 1991; Liu et al.
2011; Chen andLu 2006).We use theCarreau–Yasudamodel
to account for the shear-thinning property of blood (Cho and
Kensey 1991;Bird et al. 1987;Arora 2005;Gijsen et al. 1999)

ηF (uF ) = η∞ + η0 − η∞
(

1 + (

κ γ̇ (uF )
)b

)a , (3)

where η∞, η0, κ, a and b are constants and γ̇ (uF ) =
√

2 tr
(

ε(uF )2
)

is the shear rate of the fluid. The Carreau–
Yasuda model is recommended for low- and mid-range
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velocities (Johnston et al. 2004) and is especially well-suited
for our application.

On Γ F
In the following Dirichlet condition is applied

uF (t, x) = −QF
In(t)g(t, x) n

F
In , (4)

where in general n(�1)
(�2)

denotes the outside pointing unit sur-

face normal on the deformed surfaceΓ
(�1)
(�2)

. The scalar-valued
function g(t, x) corresponds to the applied velocity profile
and QF

In(t) to the total volume influx. Thereby QF
In(t) is a

TCycl-periodical function, to regard the pulsatile nature of
blood flow with a cardiac cycle duration of TCycl. We want
to account for the Windkessel effect of succeeding arter-
ies to achieve a physiological pressure range for the fluid.
Therefore, time varying pressures pFWK,i from the underlying
Windkessel models (see Sect. 2.3.2) are applied as tractions
on each of the outflow boundaries Γ F

Out,i :

σFnFOut,i = −pFWK,i n
F
Out,i , (5)

where σF = −pF1+2ηF
(

uF
)

ε
(

uF
)

is the Cauchy stress
tensor of the fluid.

2.3.2 Windkessel model of the blood pressure

To achieve a physiological pressure range of the fluid and
to physiologically split the total flux to the different bifurca-
tions, a separate three-elementWindkesselmodel (Westerhof
et al. 2009; Olufsen et al. 2000; Xiao et al. 2014; Ismail et al.
2013) is used on each of the outflow boundaries Γ F

Out,i :

Ci
d

dt
pFWK,i (t) + 1

RP,i
pFWK,i (t)

= Ci RC,i
d

dt
QF

Out,i (t) +
(

1 + RC,i

RP,i

)

QF
Out,i (t),

(6)

where QF
Out,i (t) = ∫

Γ F
Out,i

uF (t) · nFΓOut,i
ds is the current

outflux through Γ F
Out,i . The constants RC,i , RP,i and Ci

correspond to the characteristic resistance, peripheral resis-
tance and artery compliance of the successive artery network,
respectively. They have to be fitted to the specific case to pro-
duce physiologically meaningful results, see Sect. 4.1.

2.3.3 Structure model of the artery wall

The artery wall is a multi-component structure that also
contains a fluid phase (Yang and Vafai 2006). Here, its
mechanical response ismodeled through a anisotropic hyper-
elastic material law (Humphrey 2002), while we allow for
movement of species inside the artery tissue, see Sect. 2.4.2.
Hence, we follow the frequently used approach of modeling

the artery wall as a solid (Crosetto et al. 2011; Moireau et al.
2012; Koshiba et al. 2007; De Wilde et al. 2015a; Figueroa
et al. 2009) governed by the balance of linear momentum on
ΩS

0

�S0
d2

dt2
dS − ∇ ·

(

FSSS(CS)
)

= 0, (7)

with FS = 1 + ∇dS being the deformation gradient, CS =
(

FS
)T

FS the right Cauchy–Green deformation tensor and
SS the second Piola–Kirchhoff stress tensor. The constant
�S0 is the reference mass density of the artery wall.

To incorporate the effect of the tissue surrounding the
aorta, a spring and dashpot combination on Γ S

Wall (Moireau
et al. 2012; Liu et al. 2007) is applied:

(

FS SS
)

NS
Wall = −kSWalld

S − cSWallu
S , (8)

where in general N(�1)
(�2)

denotes the outside pointing unit sur-

face normal on the undeformed surface Γ
(�1)
(�2)

. The constants

kSWall and c
S
Wall are the spring stiffness and dashpot viscosity

of the surrounding tissue, respectively. To respect the influ-
ence of the succeeding aortic tissue on all boundaries Γ S

Out,i
sliding springs and dashpots acting only in the direction of the
surface normal and allowing a free movement in the bound-
ary plane are applied:

(

FS SS
)

NS
Out,i = NS

Out,i ·
(

−kSOutdS − cSOutuS
)

NS
Out,i ,

(9)

where kSOut and cSOut are the spring stiffness and dashpot vis-
cosity of the succeeding aortic tissue, respectively. On the
boundary Γ S

In , a zero displacement Dirichlet condition is
applied.

Growth

In addition to the elastodynamics,we consider the non-elastic
process of growth due to the deposition of foam cells in the
atherogenesis (Wang et al. 2013). We assume the growth of
the artery wall to be stress free in the reference configuration
(Skalak et al. 1996) and hence utilize a multiplicative split
of the deformation gradient FS of the structure into an elas-
tic part FSElast and a growth part FSGrowth (Kuhl et al. 2007;
Ambrosi and Mollica 2002):

FS = FSElast FSGrowth. (10)

The so introduced growth configuration is denoted by
ΩS

Growth(t), and the respective coordinates are denoted by χ̂ .
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To respect the stress-free nature of the growth, the sec-
ond Piola–Kirchhoff stress tensor SS in equation (7) is
computed as a pull-back of the elastic stresses SSElast, i.e.,
SS = (FSGrowth)−1SSElast(FSGrowth)−T . We further assume the
arterywall to be hyperelasticwith strain-energy density func-
tion Ψ S , i.e., the elastic stresses can be calculated by

SSElast = 2
∂

∂CS
Elast

Ψ S (

CS
Elast

)

,

CS
Elast =

(

FSElast
)T

FSElast.
(11)

The natural direction of growth is the luminal direction, as
it is induced by the accumulation of foam cells in the intima
and the adjacent media. Furthermore, growth of the aorta in
the axial or circumferential direction would stretch collagen
and elastin fibers inside the artery wall and hence introduce
additional wall stresses. For a better understanding of the
theory of anisotropic growth, we first assume the unit radial
direction ra, the unit axial direction ax and the unit circum-
ferential direction ci to be constants (an assumption that we
drop in the subsequent discussion). Hence, we postulate the
following form of the growth deformation gradient (Klisch
et al. 2001):

FSGrowth = ϑ
(

cSSFC

)

ra ⊗ ra + ax ⊗ ax + ci ⊗ ci, (12)

where the scalar-valued functionϑ
(

cSSFC

)

is the growth factor
and does depend on the local (mass) concentration of the
growth inducing species cSSFC . Since the set {ra, ax, ci} is an
orthonormal basis of R3, we can simplify equation (12) to

FSGrowth = 1 +
(

ϑ
(

cSSFC

)

− 1
)

ra ⊗ ra, (13)

which now only depends on the unit radial direction ra. The
model of the foam cells is described in Sect. 2.4.2. For the
computation of the growth factorϑ(cSSFC ), we exploit the idea
that the increase in volume ΔVGrowth(t) due to growth at all
times t is proportional to the mass of foam cells MFC(t) at
this time. Hence, we demand

ΔVGrowth(t) = α MFC(t), (14)

where α is the proportionality constant and corresponds to
the amount of volume occupied by a unit mass of foam cells,
i.e., it is the inverse of the statistical mass density of foam
cells. We can deduce

VGrowth(t) − V (0) = α MFC(t) (15)

and express this in terms of integrals over the corresponding
domains

∫

ΩS
Growth(t)

1 dV̂ −
∫

ΩS
0

1 dV = α

∫

ΩS (t)

cSSFC (t) dv, (16)

where dV̂ , dV and dv denote an integration over the corre-
sponding growth,material and spatial configurations, respec-
tively.We pull-back all integrals to thematerial configuration
to achieve
∫

ΩS
0

JSGrowth(t) dV −
∫

ΩS
0

1 dV = α

∫

ΩS
0

JS(t)cSSFC (t) dV,

(17)

where JS(t) = det (FS(t)) and JSGrowth(t)
= det

(

FSGrowth(t)
) (13)= ϑ(cSSFC (t)) are the Jacobian deter-

minants of the deformation gradient FS and the growth
part FSGrowth(t) of the deformation gradient at time t , respec-
tively. Since (17) also holds locally, we can conclude with a
result similar to (Klisch et al. 2001):

ϑ
(

cSSFC (t)
)

= 1 + α JS(t)cSSFC (t). (18)

In an atherosclerosis specific setup, the unit radial direc-
tion ra at time t is equal to theunit outer normalnSFS3I(t)of the
deformed surface Γ S

FS3I(t). Hence, the radial direction does
change due to the hemodynamics and preceded growth. Thus,
Eq. (13) is not valid in an atherosclerotic context andwe have
to use an incremental definition of the growth part FSGrowth
of the deformation gradient (Goriely and Amar 2007; Klisch
et al. 2001). Let therefore be t, τ be instances in time with
τ < t , where in the interval [τ ; t] the growth direction can be
assumed to be constant. Consequently, we can compute the
growth part FSGrowth(t) of the deformation gradient at time t
by

FSGrowth(t) = ΔFSGrowth(τ, t) FSGrowth(τ ), (19)

where FSGrowth(τ ) is the growth history part of the deforma-
tion gradient at time τ and ΔFSGrowth(τ, t) is the incremental
growth deformation gradient from τ to t . The incremental
growth deformation gradient is computed by

ΔFSGrowth(τ, t) = 1

+ ϑ(cSSFC (t)) − ϑ(cSSFC (τ ))

ϑ(cSSFC (τ ))
nSFS3I(t) ⊗ nSFS3I(t).

(20)

This incremental growth deformation gradient corresponds
to a growth of the structure in the current radial direction
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nSFS3I(t) by the factor (ϑ(t) − ϑ(τ))/ϑ(τ) compared to the
state at time τ .

Remark Iff the direction of growth is constant for all times t ,
then the incremental growth deformation gradient-based for-
mulation, i.e., Eqs. (19) and (20) are equivalent to the
representation in Eq. (13).

Remodeling and constitutive laws

In the previous section, we have derived a growth model of
the structure representing the increase in volume due to the
deposition of foam cells. Along with growth also the change
of mechanical properties of the structure is considered since
foam cells feature a very different mechanical behavior com-
pared to healthy aortic tissue. We follow the idea that with
increased accumulation of foam cells the constitutive law of
the structure locally and gradually changes to the one of foam
cells. Hence, we compute the strain-energy density function
Ψ S of the hyperelastic structure as a convex combination of
the strain-energy density function Ψ S

Ao of healthy aortic tis-
sue and the strain-energy density function Ψ S

FC of pure foam
cells

Ψ S = λ
(

cSSFC

)

Ψ S
Ao +

(

1 − λ
(

cSSFC

))

Ψ S
FC, (21)

where λ(cSSFC ) ∈ ]0; 1] is the remodeling factor. It is a non-
linear function depending on the local concentration cSSFC
and describes the ratio between the two extrema. To be more
precise, the remodeling factor λ describes the fraction of vol-
ume of healthy aortic tissue compared to the overall (grown)
volume. Since the change of overall volume relative to the
initial volume is given by the growth factor ϑ(cSSFC ), we can
calculate the remodeling factor by

λ(cSSFC ) = 1

ϑ
(

cSSFC

)
(18)= 1

1 + α JScSSFC

. (22)

Consequently, at a position without foam cells, i.e., cSSFC = 0
we get λ = 1 resulting in healthy aortic material. In contrast,
a large amount of foam cells, i.e., cSSFC → ∞ results in λ = 0
and hence in the mechanical properties that we assume for
pure foam cells.

Since artery tissue is nearly incompressible (Carew et al.
1968; Dobrin and Rovick 1969), we use an additive split for
both strain-energy functions into a volumetric and isochoric
part (Holzapfel et al. 2000; Ogden 1978). For the specific
choices of the volumetric parts Ψ S

Vol, see Ogden (1972) and
Doll and Schweizerhof (2000). The arterywall can be seen as
a ground material which is reinforced by fibers representing
the collagen and elastin fibers. Hence, for the isochoric part
of the healthy aortic tissueΨ S

Ao, we exploit a four-fiber family

model, see Humphrey (2002), Haskett et al. (2010), Ferruzzi
et al. (2013) and Roccabianca et al. (2014)

Ψ S
Ao =c0,Ao

2

(

ICS − 3
)

+
4

∑

k=1

c1,k
4c2,k

(

e
(

c2,k ((λk )2−1)2
)

− 1
)

,

(23)

where the constants c0,Ao, c1,k and c2,k are aortic tissue spe-
cific material parameters. ICS = (JS)−2/3tr(CS) is the first
modified invariant of the right Cauchy–Green deformation
tensor CS and λk is the stretch of the k-th fiber family,
respectively. Thereby, the stretch λk is calculated by the total
Cauchy–Green tensor CS , see Sansour (2008), and hence

by λk =
√

MT
k CS Mk where Mk = [0, sin(δk), cos(δk)]T

is the direction of the k-th fiber in the radial, axial and cir-
cumferential coordinate system. The directions of the fibers
are parameterized by the angles δ1, δ2, δ3 and δ4, which are
material-specific constants.

The mechanical behavior of atherosclerotic plaques is
more comparable to a fluid than to a solid (Loree et al. 1994).
Therefore, a visco-hyperelastic Maxwell-like material, i.e.,
a spring and dashpot in series like approach is utilized as
constitutive equation of foam cells (Nadkarni et al. 2005;
Heiland et al. 2013; Karimi et al. 2008; Zareh et al. 2015).
The relaxation time of the viscous dashpot is τFC (Nadkarni
et al. 2005) and for the isochoric part of the strain-energy den-
sity function Ψ S

FC we follow the idea of Balzani and Schmidt
(2015) using a modified neo-Hookean law

Ψ S
FC = c0,FC

2

(

ICS − 3
)

, (24)

where the constant c0,FC is a material-specific parameter.

Remark If more species are assumed to induce the growth
and remodeling of the artery wall, the presented laws can
be generalized in a straightforward manner. The growth fac-
tor ϑ defined in Eq. (18) can be generalized to ϑ

(

cSS
) =

1 + JS
∑

i αi cSSi , where cSS is the vector of all con-
centrations cSSi of all growth inducing species i and αi

are the corresponding growth parameters. The generaliza-
tion for the remodeling process governed by Eq. (22) reads

Ψ S = 1
ϑ(cSS)

Ψ S
Ao + JS

ϑ(cSS)

∑

i αi cSSi Ψ S
i , where the sum

is again over all remodeling inducing species i .

2.3.4 ALE mesh movement

We model the ALE field as quasi-elastostatic structure on
the domain ΩG

0 (Yoshihara et al. 2014). Its interface defor-
mation is governed by the structure’s interface displacement
field reading dG = dS on Γ G

FS3I. Analogue to the structure
field a zero Dirichlet condition and zero traction boundary
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624 M. P. Thon et al.

conditions are prescribed at in- and outflowcross sectionsΓ G
In

and Γ G
Out,i , respectively.

2.3.5 Fluid–structure interaction

At the FS3I interface ΓFS3I, we require kinematic continuity
of fluid and structure velocity fields, i.e.,

uF = uS , (25)

as well as the equilibrium of interface traction fields (Küttler
et al. 2010)

σSnSFS3I = hSFS3I = −hFFS3I = −σFnSFS3I, (26)

where σF and σS are the Cauchy stress tensors of the
fluid and structure, respectively. The kinematic constraint
is enforced weakly via a Lagrange multiplier field �, which
allows for an interpretation of the Lagrange multiplier field
as the interface traction. Here, we make the arbitrary choice
� = hSFS3I, i.e., the Lagrange multiplier field is seen as the
interface traction acting onto the structure side of the inter-
face Γ S

FS3I.

2.4 Scalar concentrations of species

All species are modeled by a continuum approach, i.e., we
describe them as mass concentrations. The general frame-
work of our simplified atherosclerosis model as described in
Sect. 2.1 is given by the advection–diffusion–reaction equa-
tion (Koshiba et al. 2007; Liu et al. 2010; Wada et al. 2002).
The LDL transport in the lumen is dominated by advection,
whereas in the artery wall it is assumed to be solely driven by
diffusion. In addition, in the artery wall species are produced
and degraded by biochemical reactions. The complex hetero-
geneous structure of the artery wall is currently neglected,
and we utilize a so-called fluid-wall model (Zunino et al.
2002; Prosi et al. 2005), where the endothelium is consid-
ered to be the only transport barrier. The endothelium acts
as a semi-permeable membrane leading to a significant dis-
continuity between the concentrations in the blood and in the
artery wall. Therefore, the calculation of LDL is divided into
two separate, but coupled domains: the domain of the scalar-
valued concentration in the fluid ΩFS (fluid–scalar) and the
domain of scalar-valued concentrations in the structureΩSS
(structure–scalars). The domains ΩFS and ΩSS match the
domains of the fluid ΩF and the structure ΩS , respectively.
Still we denote the corresponding quantities withFS andSS
to easily distinguish between the fluid, structure, fluid–scalar
and structure–scalar quantities.

2.4.1 Concentrations in the blood

The transportation of themass concentration of LDLwith the
blood flow is modeled by the advection–diffusion equation.
Hence, the dynamic of the scalar-valued concentration cFS

LDL
of LDL inside the deformable fluid–scalar domain ΩFS(t)
is described by

∂

∂t
cFS
LDL

∣
∣
χ

+ (uF − uG) · ∇cFS
LDL

− ∇ ·
(

DFS
LDL∇cFS

LDL

)

= 0,
(27)

in an ALE observer frame. The motion of the ALE observer
is the same as for the fluid field, see Sect. 2.3.4. The con-
stant DFS

LDL is the diffusivity of LDL in blood. On the inflow
boundary Γ FS

In we apply a Dirichlet condition:

cFS
LDL = cFS

LDL,In. (28)

On the outflow boundaries Γ FS
Out,i , we use the symmetry con-

dition

∇cFS
LDL · nFS

Out,i = 0. (29)

The flux of LDL through the FS3I interface Γ FS
FS3I, i.e., the

endothelium is described by

(

−DFS
LDL∇cFS

LDL + (uF − uG)cFS
LDL

)

· nFS
FS3I = −JSol(cLDL),

(30)

where JSol(cFS
LDL) is the solute flux and is described in

Sect. 2.4.3. It is important to note that we have assumed
the artery wall is a solid. Hence, using Eq. (25) reduces the
flux condition to:

−DFS
LDL∇cFS

LDL · nFS
FS3I = −JSol(cLDL). (31)

2.4.2 Concentrations in the artery wall

The transport and interaction of species in the artery wall
is modeled by the diffusion–reaction equation. Hence, the
dynamic of the concentration cSSLDL of LDL in the deforming
structure–scalars domain ΩSS(t) is described by

∂

∂t
cSSLDL

∣
∣
χ

+ cSSLDL∇ · uS

− ∇ ·
(

DSS
LDL∇cSSLDL

)

− rSSLDL(cSS) = 0,
(32)

in an ALE observer frame. The motion of the arbitrary
observer is given by the structure field (see Sect. 2.3.3) and
its velocity field is uS . The constant DSS

LDL is the diffusivity
of LDL in the artery wall. The reaction term rSSLDL(cSS) is a
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function depending on the concentrations cSS of all species
considered in the artery wall.

We restrict ourself to a simplistic model of the atheroscle-
rotic process in the artery wall. It considers two species only:
LDL and foam cells. Thereby, LDL does not exclusively
model low-density lipoproteins but represents more gen-
eral all species involved in the inflammatory processes such
as LDL, radical oxygen species, high-density lipoproteins
or modified LDL. Foam cells represent the final prod-
ucts of the complex biochemical processes like monocytes,
macrophages, smooth muscle cells, foam cells and others.
Inside the domainΩSS , the concentration of foam cells cSSFC
is in analogy to Eq. (32).

We assume that there are healing processes resulting in the
degradation of the scalar-valued quantity cSSLDL. Furthermore,
foam cells are produced if the concentration of LDL cSSLDL
exceeds a given threshold cSSLDL,Thres.Hence, the reactive term
of LDL is

rSSLDL(cSS) = −dSSLDL cSSLDL − γ SS
LDL

(

cSSLDL − cSSLDL,Thres

)

+,

(33)

where the constants dSSLDL and γ SS
LDL are the degradation and

reaction rate of LDL, respectively. The index (�)+ denotes
the positive branch of (�), i.e., it is zero when its argument
is negative. Foam cells are a product of LDL and are not
degraded. The reactive term of foam cells reads

rSSFC (cSS) = γ SS
LDL

(

cSSLDL − cSSLDL,Thres

)

+. (34)

On the boundaries Γ SS
In and Γ SS

Out,i we use the symmetry
conditions

∇cSSLDL · nSSIn =0 = ∇cSSLDL · nSSOut,i (35)

∇cSSFC · nSSIn =0 = ∇cSSFC · nSSOut,i . (36)

Weassume the arterywall to be impervious at its outer bound-
ary Γ SS

Wall and hence no flux conditions

−DSS
LDL∇cSSLDL · nSSWall =0 (37)

−DSS
FC ∇cSSFC · nSSWall =0 (38)

are imposed. The diffusive influx of LDL through Γ SS
FS3I, i.e.,

the endothelium is given by

−DSS
LDL∇cSSLDL · nSSFS3I = JSol(cLDL), (39)

whereas foam cells cannot migrate through the endothelium:

−DSS
FC ∇cSSFC · nSSFS3I = 0. (40)

Remark It is highlighted again that the present model
neglects the advective transport of LDL through the endothe-
lium and inside the artery wall driven by transmural pressure
gradients. To consider these effects, either a full fluid–
porous–structure interaction approach must be chosen for
the cardiovascular mechanics or the presented model has to
be enriched by a flow model on the structure domain as in
Koshiba et al. (2007).

2.4.3 Kedem–Katchalsky equations and wall-shear stress
modulated permeability

The endothelium is frequently modeled as semi-permeable
membrane described by the equations ofKedemandKatchal-
sky (1958), Thomas and Mikulecky (1978), Yang and Vafai
(2006), Calvez et al. (2010), Karner and Perktold (2000),
Hossain et al. (2012) and Prosi et al. (2005). We have
assumed the artery wall to be a pure solid and hence the sec-
ondKedem–Katchalsky equation describing the solute fluxes
reduces to (Calvez et al. 2010; Hossain et al. 2012)

JSol (cLDL) = PD
(

cFS
LDL − cSSLDL

)

, (41)

where PD is the diffusive permeability of the endothelium.
This neglection of the convective mass transport through the
endothelium lies in agreement with observations in literature
(Tompkins 1991; Hossain et al. 2012). It is well accepted
that the localization of atherosclerosis correlates with hemo-
dynamic factors such as lowwall-shear stresses (Peiffer et al.
2013;Resnick et al. 2003;Ku et al. 1985;Asakura andKarino
1990; Himburg et al. 2004). The wall-shear stresses1 τF of
the fluid acting on the FS3I interface ΓFS3I, i.e., the endothe-
lium, are calculated by removing the normal parts of the
tractions

τF = σF nFFS3I −
((

nFFS3I
)T

σFnFFS3I
)

nFFS3I. (42)

TheWSS dependency of the endothelium is on amuch larger
time scale than the cardiovascularmechanics. It is considered
by adapting the diffusive permeability PD by a function s
depending on the norm of the time-averaged WSS <τF>t

JSol
(

cLDL, τF)

= PD s(‖<τF>t‖)
(

cFS
LDL − cSSLDL

)

(43)

where time-average of the WSS τF at time t is defined as

<τF>t = 1

TCycl

t∫

t−TCycl

τF (s) ds. (44)

1 Wall-shear stresses is the established name even though wall-shear
tractions would be more accurate
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Remark One could also include other hemodynamic factors
like the oscillatory shear index (OSI) or the relative residence
time (Himburg et al. 2004; Peiffer et al. 2013; Soulis et al.
2011) into the calculation of s(�).

We call s(‖<τF>t‖) the permeability scaling factor
(PSF). For the shape of the PSF s, we follow the idea
in (Calvez et al. 2010):

s(‖<τF>t‖) = 1

ln(2)
ln

(

1 + m1

‖<τF>t‖ + m2

)

, (45)

where the constants m1 and m2 are free model parameters
which have to be fitted to the specific geometry, see Sect. 4.1.
The PSF is a monotonically decreasing function with respect
toWSS resulting in an increased permeability of the endothe-
lium with respect to LDL at regions of low WSS.

2.5 Initial conditions and prestressing

To achieve a well-defined initial value problem, the specific
initial conditions are stated. For the FSI part, we use zero
initial conditions and smoothly increase the prescribed fluid
influx QF

In(t) to its physiological level. We aim at utilizing
geometries stemming from in vivo medical imaging that do
not represent a stress-free configuration. We therefore apply
prestressing according to Gee et al. (2010) for the structure
field. Therein, theWindkessel pressure on the outflowbound-
aries does lead to a physiological diastolic pressure of the
fluid field and hence to physiological loading of the structure
comparable to the in vivo state.

For the concentrations in the arterywall, zero initial condi-
tions are prescribed. For initial condition of the concentration
in the blood, constant concentrations equal to values pre-
scribed on the inflow boundary Γ FS

In are utilized.

3 Numerical procedure

For computationally solving the model, the weak form
is established, its spatial and temporal discretization is
performed, and stability issues arising in the advection dom-
inated fields are dealt with. Additionally, an appropriate
strategy for solving the strongly coupled discrete problem is
introduced, resulting in large linear systems solved by suit-
able methods. The following gives a brief overview of the
utilized methods without going into detail. All implementa-
tions have been done in the multiphysics framework BACI
(Wall and Gee 2010).

3.1 Weak form

The establishment of the weak form of the model from the
strong equations requires the definition of appropriate solu-
tion spaces S and trial spaces T for all fields:

SuF =
{

uF ∈
(

H1(ΩF )
)3 ∣

∣
∣uF = −QF

In g nFIn on Γ F
In

}

(46)

SpF =
{

pF ∈ L2(ΩF )
}

(47)

SdS =
{

dS ∈
(

H1(ΩS)
)3 ∣

∣
∣ dS = 0 on Γ S

In

}

(48)

SdG =
{

dG ∈
(

H1(ΩG)
)3 ∣

∣
∣ dG = 0 on Γ G

In

}

(49)

S� =
{

� ∈
(

H− 1
2 (ΓFS3I)

)3
}

(50)

ScFS =
{

cFS ∈ H1(ΩFS)

∣
∣
∣ cFS = cFS

In on Γ FS
In

}

(51)

ScSS =
{

cSS ∈ H1(ΩSS)
}

, (52)

where H1(Ω(�)), L2(Ω(�)) and H− 1
2 (Γ(�)) are the usual

Sobolev spaces. The trial spaces T are equal to the corre-
sponding solution spaces S, but with homogeneous Dirichlet
conditions. The overall weak subproblem of the FSImodel of
the cardiovascular mechanics reads: Find uF ∈ SuF , pF ∈
SpF ,dS ∈ SdS ,dG ∈ SdG ,� ∈ S� such that (Mayr et al.
2015):

0 = rF =
(

δuF , �F
∂

∂t
uF

∣
∣
χ

)

ΩF

+
(

δuF , �F
((

uF − uG
)

· ∇
)

uF
)

ΩF

+
(

∇δuF , 2ηF (uF )ε(uF )
)

ΩF

−
(

∇ · δuF , pF
)

ΩF −
(

δpF ,∇ · uF
)

ΩF

+
(

δuF , pFWK,in
F
Out,i

)

Γ F
Out,i

+
(

δuF ,�
)

Γ F
FS3I

, (53)

0 = rS =
(

δdS , �S0
d2

dt2
dS

)

ΩS

+
(

∇δdS ,FS SS
(

CS , cSSFC

))

ΩS

+
(

δdS , kSWalld
S + cSWall

d

dt
dS

)

Γ S
Wall

+
(

δdS ,NS
Out,i ·

(

kSOutdS + cSOut
d

dt
dS

)

NS
Out,i

)

Γ S
Out,i

−
(

δdS ,�
)

Γ S
FS3I

, (54)

0 = r coupl =
(

δ�,dS − dG
)

Γ S
FS3I

, (55)

for all δuF ∈ TuF , δpF ∈ TpF , δdS ∈ TdS , δdG ∈ TdG
and δ� ∈ T�. Thereby, (�, �)Ω(�) and (�, �)Γ (�) denote the
usual L2 inner products on Ω(�) and Γ (�), respectively. The
overall weak subproblem of the SSI model for the scalar
concentrations of species reads: Find cFS

i ∈ ScFS and cSSi ∈
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ScSS such that (Yoshihara et al. 2014):

0 = rFS
i =

(

δcFS
i ,

∂

∂t
cFS
i

∣
∣
χ

)

ΩFS

+
(

δcFS
i ,

(

uF − uG
)

· ∇cFS
i

)

ΩFS

+
(

∇δcFS
i , DFS

i ∇cFS
i

)

ΩFS

−
(

δcFS
i , JSol(ci , τ

F )
)

Γ FS
FS3I

, (56)

0 = rSSi =
(

δcSSi ,
∂

∂t
cSSi

∣
∣
χ

)

ΩSS

−
(

δcSSi , cSSi ∇ · uS
)

ΩSS

+
(

∇δcSSi , DSS
i ∇cSSi

)

ΩSS

−
(

δcSSi , rSSi

(

cSS
))

ΩSS

+
(

δcSSi , JSol(ci , τ
F )

)

Γ SS
FS3I

, (57)

for all δcFS
i ∈ TcFS , δcSSi ∈ TcSS and i = LDL,FC.

3.2 Discretization

A Galerkin Finite Element approximation of the weak form
is performed. Therefore, the domains ΩF and ΩS are
discretized using nF and nS elements, respectively. The
remaining domains ΩG , ΩFS and ΩSS match either ΩF
or ΩS and utilize the same meshes. To obtain the semi-
discrete problem, the spatial discretization is performed by
means of the finite element method with Lagrange polyno-
mials as shape and ansatz functions.

The spatially discrete but temporal continuous, nonlinear
coupled problem for the vector
y(t) = [uFh , pFh ,dSh ,dGh ,�h, cFS

h , cSSh ]T of the nodal
ansatz coefficients can be written in the form

d

dt
y(t) − f(t, y(t)) = 0, (58)

where the nonlinear function f corresponds to the spatially
discrete version of the model. For the discretization in time,
the one-step-θ scheme is exploited to achieve an approximat-
ing sequence {yn}n=0,1,... of the time continuous problem by
finding the root of the discrete residual r:

r(tn+1, yn+1) =yn+1 − yn − Δt
(

θ f(tn+1, yn+1)

+ (1 − θ)f(tn, yn)
) = 0

(59)

for each n = 0, 1, . . . , nT , where tn = nΔt and yn = y(tn).
The time step size is denoted by Δt and nT time steps are
performed. The scheme coefficient θ is chosen to be θ = 0.5.

To overcome numerical stability issues arising from the
spatial, equal-order Finite Element discretization, stabiliza-

Fig. 3 Overview of the solver strategy for the presented fluid–
structure–scalar–scalar interaction (FS3I) model including the cou-
pling variables between the fields. Simple and double arrows mark
one-way and two-way couplings, respectively. Dotted arrows denote
weak couplings, whereas solid arrows represent strong couplings. The
subindex (�)Γ indicates a surface coupled quantity (�), whereaswithout
explicit subindex a volume coupled quantity is denoted

tion terms are added to the discrete fluid residual rF . Namely,
we utilize the streamline-upwind Petrov–Galerkin (SUPG),
pressure-stabilized Petrov–Galerkin (PSPG) and grad-div
stabilization, see Donea and Huerta (2003) and Olshanskii
et al. (2009) and therein. The stabilization parameter is cho-
sen according to Barrenechea and Valentin (2002). Further,
an additional backflow stabilization on each of the outflow
boundaries Γ F

Out,i is applied due to the pulsatile flow pattern
enabling spontaneous backflows at these Neumann bound-
aries (Gravemeier et al. 2012).

To stabilize the advection dominated fluid–scalar field, we
utilize the Galerkin least-squares method. Additionally, the
YZβ discontinuity-capturing is applied (Bazilevs et al. 2007;
Karner and Perktold 2000) to also resolve the steep concen-
tration gradients occurring near the FS3I interface (Kuzmin
2010). The stabilization parameter is chosen according to
Codina (2002).

3.3 FS3I solver strategy

A suitable solver strategy is exploited taking into account
the specific couplings between the individual fields. Due to
the strong coupling between the fluid, structure and ALE
field by the FSI coupling conditions the strongly coupled
FSI subproblem is addressed by a monolithic approach. The
(fluid–scalar)–(structure–scalar) interaction (SSI) subprob-
lem is solved monolithically too to account for the strong
SSI interface coupling. FSI and SSI subproblems are only
coupled in terms of growth and remodeling induced by foam
cell taking place on a much larger time scale compared to
the time scale of the FSI subproblem. Hence, the natural
choice for solving the overall FS3I problem is by a sequen-
tially staggered scheme coupling the monolithic FSI with the
monolithic SSI problem. A schematic overview of the solver
strategy including the corresponding coupling variables is
given in Fig. 3.
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3.4 Monolithic FSI

The monolithic FSI problem to solve for the incremen-
tal structure displacements ΔdSh , fluid velocities ΔuFh and
Lagrange multipliers Δ�h reads (Mayr et al. 2015)

⎛

⎜
⎜
⎜
⎝

∂

∂dSh
rSh 0 ∂

∂�h
rSh

0 ∂

∂uFh
rFh

∂
∂�h

rFh
∂

∂dSh
rcouplh

∂

∂uFh
rcouplh 0

⎞

⎟
⎟
⎟
⎠

n+1

i

⎛

⎜
⎝

ΔdSh
ΔuFh
Δ�h

⎞

⎟
⎠

n+1

i+1

= −
⎛

⎜
⎝

rSh
rFh

rcouplh

⎞

⎟
⎠

n+1

i

, (60)

where n = 0, 1, . . . , nT is the time step and i = 0, 1, . . . is
theNewton step. rSh , rFh and rcouplh denote the spatial and tem-
poral discrete nonlinear residuals of the structure, fluid and
FSI coupling, respectively. To ease the notation fluid pres-
sure and ALE displacement degrees of freedom are merged
together with the fluid velocities. The Newton iteration for
time step n is stopped if all 2-norms ‖r(�)‖2 of the indi-
vidual single field residuals r(�) scaled to their lengths are
below 10−5.

To resolve the coupling of the fluid with the multiple
three-element Windkessel models an analytic relationship
pFWK,i (Q

F
Out,i ) between the Windkessel pressures pFWK,i and

the outfluxes QF
Out,i through the different outflow bound-

aries Γ F
Out,i can be derived (Olufsen et al. 2000). Hence, the

interface traction on the fluid [see Eq. (5)] can be expressed
directly by an integrated quantity of the velocity unknowns.
No additional field for the Windkessel subproblems and no
additional unknowns for the Windkessel pressures are intro-
duced.

The linear system (60) is solved by a parallel precondi-
tioned GMRES (Saad and Schultz 1986) with FSI specific
block preconditioning based on algebraic multigrid (Gee
et al. 2011).

3.5 Monolithic SSI

The (fluid–scalar)–(structure–scalar) interaction problem is
solved by a monolithic approach too. The monolithic linear
problem to solve for the incremental concentrations in the
fluidΔcFS

h and in the structureΔcSSh reads (Yoshihara et al.
2014)
⎛

⎝

∂

∂cFS
h

rFS ∂

∂cSS
h

rFS

∂

∂cFS
h

rSS ∂

∂cSS
h

rSS

⎞

⎠

n+1

i

(

ΔcFS
h

ΔcSSh

)n+1

i+1

= −
(

rFS

rSS

)n+1

i

(61)

where n = 0, 1, . . . , nT is the time step and i = 0, 1, . . .
is the Newton step. rFS and rSS denote the fully discrete
fluid–scalar and structure–scalars residuals, respectively. The
Newton iteration for the time stepn is stopped if both 2-norms
‖rFS‖2 and ‖rSS‖2 scaled to their lengths are below 10−5.

Solving of the linear system (61) for the unknown step
increments ΔcFS

h and ΔcSSh is again performed by parallel
GMRES (Saad andSchultz 1986)with block preconditioning
(Gee et al. 2011).

3.6 Meshing

Our discretizations are generated using Trelis (Csimsoft) and
satisfy the following properties:

– It is conforming on the FS3I interface ΓFS3I.
– All elements are characterized by a characteristic element
length h.

– In the fluid domain ΩF a boundary refinement is
introduced to better resolve velocity gradients and con-
centrations cLDL near the FS3I interface Γ F

FS3I.
– The structure domain ΩS is meshed using hexahedral
elements with F-bar technology (de Souza Neto et al.
1996; Doll et al. 2000).

The lumen of patient-specific geometries of the aortic arch
are non-trivial to mesh with hexahedral elements. Hence,
a tetrahedral dominated mesh with a hexahedral boundary
layer is generated. The tetrahedral and hexahedral elements
of the fluidmesh are connected by pyramid-shaped elements.
The boundary layer consists of 4 layers of hexahedral ele-
ments with individual layer thicknesses of h

2 ,
h
4 ,

h
8 and h

16
toward the direction of the FS3I interfaceΓFS3I. The structure
domain is adjacent to the FS3I interface Γ F

FS3I with thick-
ness T . It is meshed in 6 element layers with an equidistant
thickness. The meshes of the ALE domainΩG and the fluid–
scalar domain ΩFS equal the fluid mesh. The mesh of the
structure–scalars domainΩSS is equal to the structuremesh.

4 Computational case study and results

In the following section, we calibrate the presented mathe-
matical and computational model to a murine-specific case,
give the computational results of the case study and com-
pare the results with various literature. The geometry of
the case study is a murine-specific reconstruction of the
lumen of a non-atherosclerotic mouse (type C57BL/6J), see
Fig. 4. It was segmented from an in vivo magnetic resonance
angiography by our medical partners. The segmentation was
performed in a semi-automatic fashion using Mimics (Mate-
rialise). The measurement was taken on a horizontal bore 7T
small animal scanner (Discovery MR901, GE Healthcare)
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Fig. 4 Conforming FS3I mesh generated using Trelis consisting of
tetrahedral, hexahedral and pyramid-shaped elements with a charac-
teristic element length h = 0.06 mm. Gray represents the mesh
used for the fluid domain ΩF , ALE domain ΩG and the fluid–

scalar domain ΩFS . Blue represents the mesh used for the structure
domain ΩS and the structure–scalars domain ΩSS . The numbers indi-
cate the numbering of the outlet boundaries and the lines AB and CD
are the profile lines used in the mesh convergence analysis

Table 1 Overviewof the number of elements, number of nodes, degrees
of freedom (DOF) per node and total DOF of the fluid domain ΩF ,
structure domain ΩS , ALE domain ΩG , fluid–scalar domain ΩFS ,

structure–scalars domain ΩSS and combinations of the mesh with a
characteristic element length h = 0.06 mm

Domains # Elements # Nodes # DOF per node # DOF

ΩF Tet4 315896, Pyr5 9523, Hex8 47615 108986 4 435944

ΩS Hex8 57138 67298 3 201894

ΩG Tet4 315896, Pyr5 9523, Hex8 47615 108986 3 326958

ΩFS Tet4 315896, Pyr5 9523, Hex8 47615 108986 1 108986

ΩSS Hex8 57138 67298 2 134596

ΩF ∪ ΩS ∪ ΩG 430172 176284 5.47 964796

ΩFS ∪ ΩSS 430172 176284 1.38 243582

All 430172 176284 6.85 1208378

applying aECG-triggered 3Dgradient echo sequence achiev-
ing an in-plane resolution of 59 µm with a slice thickness of
250 µm. The achieved resolution did not allow for an exact
segmentation of the artery wall. As only a small part of the
artery tree is considered, the variation of the wall thickness
is neglected and a constant wall thickness T is employed.

The discretization for the performed case study of our
murine-specific geometry is visualized in Fig. 4. A detailed
summary of the utilized mesh as described in Sect. 3.6 with a
characteristic element length h = 0.06 mm (for comparison:
the radius of the inflow boundaryΓ F

In is RIn = 0.57 mm) and
a constant artery wall thickness T = 0.08 mm (Wiesmann
et al. 2003) is given in Table 1. A mesh convergence analysis
is performed in Sect. 4.3.

4.1 Model parameters

Due to a lack of suitable in vivo data, we use an exem-
plary set of key physiological data of mice from literature
and derive from it a set of model parameters for the given
patient-specific geometry. The experimental results in Južnič
and Klensch (1964) are utilized providing a complete set of

physiological data—the mean volume influx Q
F
In , the length

of the cardiac cycle TCycl, the diastolic pressure pdiaF and
the systolic pressure psysF—from a single source. How-
ever, this data set is just one possible choice representing
the mice studied in Južnič and Klensch (1964) where the
systolic pressure psysF seems to be low compared to other
studies (Whitesall et al. 2004; Aslanidou et al. 2016). First,
we give an overview of the parameters which have to be
calibrated to the specific geometry and afterward list the
remaining parameters taken from the literature, see Tables 3
and 4.
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Fig. 5 Prescribed volume influx QF
In (t) through Γ F

In . The function is
periodic with a periodicity of TCycl = 0.1 s

For the prescribed inflow velocities on Γ F
In given by

Eq. (4) the velocity profile g(t, x) and the total volume
influx QF

In(t) need to be specified. For the inflow pro-
file g(t, x) a 9th order polynomial-shaped function is utilized
(Smith et al. 2002), which is superimposed by a womersley
profile respecting the influence of the oscillatory influx on the
velocity profile (Ismail et al. 2014). The temporal shape of the
volume influx QF

In(t) is taken from Olufsen et al. (2000) and
is scaled such that the length of the cardiac cycle TCycl and

themean influx Q
F
In fits to themurine physiology (Južnič and

Klensch 1964; Feintuch et al. 2007; Aslanidou et al. 2016):

TCycl = 0.1 s, Q
F
In = 16.2 ml/min. The resulting prescribed

influx QF
In(t) is plotted in Fig. 5.

The parameters of each of the five three-element Wind-
kessels must be fitted to the murine physiology and the
specific geometry. For the murine physiology, a diastolic
pressure pFdia = 77 mmHg = 10,265.8 Pa and a systolic

pressure pFsys = 100 mmHg = 13,332.2 Pa are assumed as
measured in Južnič and Klensch (1964).

The compliance of the geometry is approximated by a sim-
ulation of the structure subproblem, where only a hydrostatic
pressure is applied. Thereby, the geometry is first prestressed
to the diastolic pressure pdia and afterward the pressure is
further increased to the systolic pressure pFsys. Then the com-
pliance of the given geometry can be approximated by

Cgeo ≈ VF
sys − VF

dia

pFsys − pFdia
= 11.86 · 10−4 mm3

Pa
, (62)

where VF
sys and V

F
dia are the volume of the lumen measured at

the systolic and diastolic pressure level, respectively. Further-
more, the approximated portions of volume outflux %QF

Out,i

through each of the five outflow boundaries Γ F
Out,i is approx-

imated by the ratio of the surface area of Γ F
Out,i to the total

surface area of all five outflow boundaries. Following the
approach of Xiao et al. (2014) and Ismail et al. (2013), we
achieve Windkessel parameters as given in Table 2.

The growth parameter α in Eq. (18) corresponds to the
amount of unite volume occupied by a unit scalar of foam
cells. We follow the approach of Friedman and Hao (2015)
and ask for a constant mass density �S of the artery wall,
which in later states consists of both, the healthy aortic tissue
and the foam cell population. Hence, we utilize:

α = 1

�S0
= 1.0 × 103 mm3/g. (63)

The remaining parameters of the FSI subproblem are
independent of the specific geometry and are taken from
literature. However, no complete data set based on murine
experiments exists such that the used parameters for the
Carreau–Yasuda model, the surrounding tissue and the con-
stitutive laws are based on human experiments. An overview
of fitted as well as the remaining parameters of the FSI sub-
problem is found in Table 3.

For the calibration of the permeability scaling fac-
tor s(‖<τF>‖) in Eq. (45) we generalize the idea of Calvez
et al. (2010). We determine the two model parameters m1

and m2 of the monotonically decreasing function such that
the following two conditions are fulfilled:

1. The scaling factor vanishes, when the norm ‖τF‖ of the
wall-shear stresses is equal to the reference value ‖τF‖.
This reference value is approximated by considering a
stationary Poiseuille flow with an equivalent total vol-

ume influx Q
F
In through a straight pipe with the same

radius RIn as the inflow boundaryΓ F
In . Hence, we require

s(‖τF‖) = 1 with (64)

Table 2 Parameters for the
calibration of the three-element
Windkessel and calibrated
results

i %QF
Out,i RC,i (Pa s/mm3) RP,i (Pa s/mm3) Ci · 104 (mm3/Pa)

1 11.36 16.93 384.18 4.29

2 8.97 19.56 426.39 3.29

3 12.73 12.00 369.63 4.81

4 7.55 21.49 441.62 2.86

5 59.39 4.67 69.73 21.50

Approximated portion of volume outflux %QF
Out,i and resulting characteristic resistance RC,i , peripheral

resistance RP,i and artery compliance Ci of each of the five three-element Windkessels. All units are in mm,
g, s
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Fig. 6 Calibrated law for the permeability scaling factor s(‖<τF>‖)
plotted over the normof the time-averagedwall-shear stresses ‖<τF>‖
of the fluid. ‖τF‖ = 6.404 Pa is the approximated reference value of
the WSS

‖τF‖ = 4

π

η∞Q
F
In

R3
In

= 6.404 Pa. (65)

2. According to measurements in Herrmann et al. (1994),
the local permeability of the endothelium with respect to
LDL in regions with high permeability is up to a factor
of 25 higher than in regions with low permeability. We
assume the harmonic mean of those two extrema being
the case of s(‖τF‖) = 1. Since the permeability is high-
est for the case ‖τF‖ = 0, we require the PSF to fulfill

s(0) = 5. (66)

The two assumptions lead to

s(‖<τF>‖) = 1

ln(2)
ln

⎛

⎝1 +
(

1 + 1
2s(0)−2

)

‖τF‖
‖<τF>‖ + 1

2s(0)−2
‖τF‖

⎞

⎠

= 1

ln(2)
ln

(

1 + 6.618 Pa

‖<τF>‖ + 0.213 Pa

)

, (67)

which is plotted in Fig. 6.
Anoverviewof the calibrated and remainingphysiological

parameters for the SSI subproblem is found in Table 4.

4.2 Dimensionless parameters

From the parameters in Tables 3 and 4 dimensionless param-
eters are calculated. For the fluid problem, the Reynolds
number Re at the inflow boundary is given by

Re = 2�F‖uF‖RIn

η∞
, (68)

where uF is the characteristic velocity. Using the peak
velocity at the inflow boundary Γ F

In , i.e., maxuF∈Γ F
In

‖uF‖
results in an approximation for the peak Reynolds number
RePeak = 411.3. Using the temporal and spatial mean of the
velocities on the inflow boundary results in an approximation
for themeanReynolds number ReMean = 91.9. The peak and
mean Reynolds numbers are slightly bigger than found in the
literature (Feintuch et al. 2007; Aslanidou et al. 2016; Huo
et al. 2008; Suo et al. 2007). The Womersley number Wo of
the fluid is given by

Wo =
√

2π�F R2
In

TCycl η∞
= 2.49, (69)

fitting very well to the murine physiology (Feintuch et al.
2007; Aslanidou et al. 2016; Huo et al. 2008; Suo et al. 2007).
Since both Reynolds numbers RePeak and ReMean as well as
the Womersley number Wo are small, the behavior of the
fluid is viscous-dominated and in the laminar regime.

Table 4 Overview of all
parameters of the SSI
subproblem

Parameter Equation Description Value Source

DFS
LDL (27) Diffusivity of LDL in

the blood
3.07 × 10−5 mm2/s Liu et al. (2002) and

Truskey et al. (1992)

cFS
LDL,In (28) Concentration of LDL

at Γ FS
In

1.22 × 10−6 g/mm3 Friedewald et al. (1972)

DSS
LDL (32) Diffusivity of LDL in

the artery wall
5.4 × 10−8 mm2/s Truskey et al. (1992) and

Herrmann et al. (1994)

DSS
FC (32) Diffusivity of foam cells

in the artery wall
0.0 Friedman and Hao

(2015)

PD (43) Diffusive permeability
of the endothelium

1.7 × 10−8 mm/s Tompkins (1991) and
Yang and Vafai (2006)

m1 (45) Permeability scaling
factor parameter

6.618 Pa Eq. (67)

m2 (45) Permeability scaling
factor parameter

0.213 Pa Eq. (67)

Parameters are sorted by the first appearance in the model. All units are in mm, g, s, Pa
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Fig. 7 a Comparison of the velocity profiles over the line AB (see
Fig. 4) for differentmesheswith characteristic element lengths h of 0.04,
0.06, 0.09, 0.12 mm and constant time step size Δt = 2.5 × 10−4 s at
time t = 0.412 s. bComparison of the velocity profiles over the line CD

(see Fig. 4) for different meshes with characteristic element lengths h of
0.04, 0.06, 0.09, 0.12 mm and constant time step sizeΔt = 2.5×10−4 s
at time t = 0.412 s. Spatial convergence study

The dimensionless parameter for the transportation of
LDL with the blood flow governed by the advection–
diffusion equation is the Peclet number Pe given by

Pe = 2‖uF‖RIn

DFS
LDL

. (70)

Inserting again the peak and mean velocity the range for
the Peclet number is Pe ∈ [9.82 × 106; 4.40 × 107] being
in the physiological regime of LDL transport (Stangeby and
Ethier 2002). Hence, the transportation with the blood flow is
advection dominated, except for regions close to the no-slip
fluid–structure interface Γ F

FS3I.

4.3 Convergence analysis

To prove the validity of the computational results, a spatial
and temporal convergence analysis is performed. We exem-
plarily check the convergence of the fluid velocities uF and
the ALE displacements dG over two distinct lines AB and
CD as indicated in Fig. 4.

The spatial convergence is analyzed by utilizing the con-
stant time step size Δt = 2.5 × 10−4 s in combination
with meshes as described in Sect. 3.6 with characteris-
tic element lengths h of 0.04, 0.06, 0.09 and 0.12mm.
The velocity profiles of the four meshes over the lines AB
and CD at the peak of the systolic phase of the fifth car-
diac cycle (i.e., t = 0.412 s) are plotted in Fig. 7. The
meshes with h = 0.04 mm and h = 0.06 mm possess
qualitatively the same behavior. Quantitatively, the relative

L2-error of the velocities
‖uFh=0.04mm−uFh=0.06mm‖

‖uFh=0.06mm‖ and the dis-

placements
‖dGh=0.04mm−dGh=0.06mm‖

‖dGh=0.06mm‖ over the lines AB and CD

between the finest two meshes are below 1, 6%.
Additionally to the velocities and displacements, we

exemplarily check the spatial convergence of the WSS and
vonMises stresses at the four intersection points of the fluid–
structure interface Γ F

FS3I and the lines AB and CD. The
relative errors of the WSS between the finest two meshes
at these four points are below 2.75%. The relative errors of
the vonMises stresses between the finest twomeshes at these
four points are below 7.38% but are well within the asymp-
totic range.

To analyze the temporal convergence, the mesh with a
characteristic element length h = 0.06 mm is utilized with
three time step sizes Δt of 1.25 × 10−4 s, 2.5 × 10−4 s and
5.0 × 10−4 s. Again the velocity profiles over the lines AB
and CD are analyzed and plotted at time t = 0.412 s in
Fig. 8. Temporal convergence is sufficiently reached with a
time step size of Δt = 2.5 × 10−4 s. Quantitatively, the
relative L2-error of the velocities and the displacements over
the lines AB andCD between the smallest two time step sizes
are below 1, 3%.

The qualitatively same spatial and temporal convergence
behavior was observed for other points and profile lines too.
As the wall stress is no quantity of particular interest in the
present model, we further employ the mesh with a charac-
teristic element length h = 0.06 mm in combination with a
constant time step size Δt = 2.5 × 10−4 s.
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Fig. 8 a Comparison of the velocity profiles over the line AB (see
Fig. 4) for different time step sizes Δt of 1.25× 10−4 s, 2.5× 10−4 s,
5.0 × 10−4 s and a mesh with characteristic element length h =
0.06 mm at time t = 0.412 s.bComparison of the velocity profiles over

the line CD (see Fig. 4) for different time step sizesΔt of 1.25×10−4 s,
2.5 × 10−4 s, 5.0 × 10−4 s and a mesh with characteristic element
length h = 0.06 mm at time t = 0.412 s. Temporal convergence study

4.4 Model validation

Due to lack of detailed experimental data, the presented
mathematical model and its parameters are solely quali-
tatively validated by comparing the computational results
to cardiovascular measurements and computational results
from literature. The Windkessel subproblems determining
the pressure of the fluid starts with an unphysiological zero
pressure and requires approximately four cardiac cycles to
reach a periodic state. Hence, in the following the computed
results from the seventh simulated cardiac cycle are utilized.
Exemplarily, the Windkessel pressure at the outflow bound-
ary ΓOut,5 over time t is plotted in Fig. 9. In its periodic state
the Windkessel subproblem at ΓOut,5 is oscillating between
the diastolic pressure pdia ≈ 74.0 mmHg = 9867.0 Pa and
systolic pressure psys ≈ 102.5 mmHg = 13,660.6 Pa, being
close to the assumed pressure levels in Južnič and Klensch
(1964). Still, the systolic pressure is approximately 10−20 %
low compared to other literature, see, e.g., Whitesall et al.
(2004), and Aslanidou et al. (2016). However, the quantities
of interest here, namely WSS and PSF, have only negligible
sensitivity to the absolute hydrostatic pressure level due to
the applied prestressing procedure. Therefore, the impact of
higher pressure levels to the presented results was compu-
tationally investigated (results not shown) showing that they
are only minor affected. The qualitative shape of the pressure
over time is in good agreement with the results achieved in
Olufsen et al. (2000).

As a result of the fluid pressure and the prestressing of the
structure, the structure undergoes a maximal radial enlarge-
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Fig. 9 Pressure from three-elementWindkessel on outflowΓOut,5 over
time t . After approximately four cardiac cycles the periodic state with
the diastolic pressure pdia = 74.0 mmHg and the systolic pres-
sure psys = 102.5 mmHg is reached

ment of the inner artery wall of around 14–17% in the aortic
arch and around 8–12 % in its branches, which is in good
agreement to the measurements in Liu et al. (2007). Thus,
the distensibilities (i.e., the radial enlargements per pres-
sure increase) of the aortic arch and its branches are around
5−6 × 10−3 mmHg−1 and 3−4 × 10−3 mmHg−1, respec-
tively, lying in the same order of magnitude as reported in
Aslanidou et al. (2016).

Due to the pulsatile fluid flow the instantaneous WSS τF
changes rapidly over time. But since the WSS dependent
migration of LDL into the artery wall is on a much larger
time scale than the cardiac cycle, it is convenient to look
at the time-averaged WSS <τ>F , where we have dropped
the time index to ease notation. If not explicitly stated other-
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(a) (b)

(c) (d)

Fig. 10 a Anterior view of the spatial distribution of time-averaged
permeability scaling factor s(‖<τF>‖). b Posterior view of the spatial
distribution of time-averaged permeability scaling factor s(‖<τF>‖).
c Anterior view of the spatial distribution of oscillatory shear

index o(τF ). d Posterior view of the spatial distribution of oscillatory
shear index o(τF ). Spatial distribution of the time-averaged permeabil-
ity scaling factor and oscillatory shear index

wise the time-average is over the seventh simulated cardiac
cycle. The estimated reference WSS ‖τF‖ = 6.404 Pa (see
Eq. (65)) lies in perfect agreement with measurements from
literature (Cheng et al. 2007). The norm of the peak of the
computed time-averaged WSS ‖<τF>‖ is 49.28 Pa which
corresponds to the 7.7 times of the norm of the reference
WSS ‖τF‖, both lying in good agreement with computa-
tional results from the literature (Feintuch et al. 2007; Suo
et al. 2007). When the instantaneous WSS τF is used in

Eq. (67), the instantaneous PSF s(‖τF‖) is computed. How-
ever, in experiments the long time behavior is measured,
which is determined by the mean of the PSF . Therefore, one
can computationally investigate three different scenarios: the
time-average of the instantaneous PSF<s(‖τF‖)>, the PSF
of the time-averaged norm of the WSS s(<‖τF‖>) and the
PSF of the norm of the time-averaged WSS s(‖<τF>‖).
The computational study of these three cases showed that
only the latter case is able to match observations from the
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Fig. 11 Dissection of an aortic arch of a LDL receptor deficient mouse
(type B6.129S7-Ldlrtm1Her/J) with atherosclerotic plaques (white)

literature (Lutgens et al. 2010; Feintuch et al. 2007). The
second case did produce a qualitatively but not quantitatively
correct PSF pattern and the first did result in a more or less
homogeneous PSF. In the following, we call s(‖<τF>‖) the
time-averaged PSF to ease the language. It is visualized from
the anterior and posterior view in Figs. 10a, b, respectively.
The time-averaged PSF varies in the range between 0.18 and
4.74. Hence, the computed scalings differ by a factor of 26.3
showing very good agreement to the measurements in Her-
rmann et al. (1994).

As visible in Fig. 10a the simulated regions with high
endothelial permeability and hence high risk for atheroscle-
rotic driven plaque development are located at the ascending
aorta, near bifurcations and at the bottom and side of the
aortic arch. This qualitative phenomena was also observed
in experiments (Lutgens et al. 2010; Asakura and Karino
1990) and computational results by others (Crosetto et al.
2011; Feintuch et al. 2007; Bazilevs et al. 2009; Suo et al.
2007). Further, is the location of atherosclerotic plaques at
theses sites qualitatively supported by our own experimental
observations with atherosclerotic mice models, see Fig. 11.

Remark Even if not explicitly considered in the computa-
tion of the PSF, the spatial distribution of the OSI o(τF ) =
1
2

(

1 − ‖<τF>‖
<‖τF‖>

)

(Himburg et al. 2004; Peiffer et al. 2013;

Soulis et al. 2011) is plotted from two perspectives in
Fig. 10c, d. An OSI of zero corresponds to regions of non-
oscillatory and an OSI of 0.5 to regions of highly oscillatory
flow. As visible the pattern is comparable to the computed
PSF visualized in Fig. 10a, b. This supports the theory that the
OSI may also be a valid indicator for atherosclerosis plaque
localization as is critically discussed in literature, see Peiffer
et al. (2013) and therein. But since the actual influence of
the OSI to the endothelial permeability is unknown, it is not

explicitly considered in the presented model and is subject
to future research.

4.5 Influence of the compliance of the structure and the
pulsatile flow

We study the influence of model reductions frequently found
in literature. Therefore, the PSF derived from the present
model with the PSF of reduced models is compared. As
model reductions, we assume two simplified versions of the
presented model.

The first reduced model is the case of a non-compliant
artery wall, resulting in a rigid wall model. This simplifi-
cation is enforced by the addition of the condition dS = 0
compared to the full model. Such types of models are fre-
quently proposed, especially in the context of porous media
models of the artery wall, see, e.g., Prosi et al. (2005),
Yang and Vafai (2006), Calvez et al. (2010), Liu et al.
(2011) and Sun et al. (2007). The computed time-averaged
PSF s(‖<τF>‖) of the rigid wall model is visualized in
Fig. 12a. The computed OSI o(τF ) for the rigid wall model
is visualized in Fig. 12c.

The second reduced model scenario frequently found in
the literature is the case of time-averaged, stationary flows
(Wada et al. 2002; Johnston et al. 2004; Tomaso et al. 2011;
Calvez et al. 2010; Moireau et al. 2012). This simplification
is achieved by assuming the influx to be constant in time, i.e.,

by QF
In(t) = Q

F
In . As consequence, the pressure of the fluid

determined by the Windkessel subproblems is constant and
no displacements can be expected from the loaded in vivo
state. Hence, the time-averaging of flows implies dS = 0.
The computed PSF s(‖<τF>‖) of the time-averaged flow
model is visualized in Fig. 12b. The computed OSI o(τF )

for the time-averaged flow model is visualized in Fig. 12d.

4.6 Growth and remodeling

To show the capability of the cardiovascular model to adapt
to the narrowing of the lumen due to the foam cell accu-
mulation, we compare the spatial distribution of the PSF
at different times. Since bio-chemical reactions and growth
and remodeling processes take place on a much larger time
scale as the hemodynamics (compare, e.g., the orders of
the length of the cardiac cycle TCycl and the diffuse per-
meability PD) and as the model is not embedded into a
multiscale strategy, some model parameters are increased
to accelerate atherosclerosis progression to the duration
of a few cardiac cycles. Hence, after the cardiovascular
model obtained its periodic state the following adapted
model parameters were used: DSS

LDL = 6.0 × 10−2 mm2/s,
dSSLDL = 1.0 s−1, γ SS

LDL = 0.4 s−1, cSSLDL,Thres = 2.0 ×
10−3 cFS

LDL,In, PD = 5.0 × 10−4 mm/s, kSWall = 1.0 ×
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Fig. 12 a Anterior view of the spatial distribution of time-averaged
permeability scaling factor s(‖<τF>‖) of the rigid wall model. b
Anterior view of the spatial distribution of time-averaged permeability
scaling factor s(‖<τF>‖) of the time-averaged flowmodel. cAnterior
view of the spatial distribution of the oscillatory shear index o(τF ) of

the rigid wall model. d Anterior view of the spatial distribution of the
oscillatory shear index o(τF ) of the time-averaged flow model. Spatial
distribution of time-averaged permeability scaling factor and oscillatory
shear index for the rigid and mean-flow model

106 Pa/mm and α = 4.1 × 1010 mm3/g. In Fig. 13a, b
the time-averaged PSF of the grown artery wall at differ-
ent times are visualized. Figures 13c and 14b, c show the
growth and remodeling factors of the grown artery wall at
time t = 1.2 s.

5 Discussion

We have presented a methodology to calibrate our model
to a specific geometry and a given set of key physiological
data. The validation of the model in Sect. 4.4 showed that
computed key physiological quantities such as blood pres-
sure, artery wall displacements and WSS derived from the
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0. 481 .74
time-averaged PSF s( <τF>0.5 s ) [1]

0. 481 .74
time-averaged PSF s( <τF>1.2 s ) [1]

(a) (b)

(c)

Fig. 13 a Spatial distribution of time-averaged permeability scaling
factor s(‖<τF>0.5 s‖) at time t = 0.5 s. b Spatial distribution of time-
averaged permeability scaling factor s(‖<τF>1.2 s‖) at time t = 1.2 s.
cGrown artery wall, spatial distribution of growth factor ϑ(cSS

FC (1.2 s))
at time t = 1.2 s and comparison of grown cross sections with aortic
cross sections from LDL receptor deficient mice (type B6.129S7-

Ldlrtm1Her/J) with early (left top) and advanced (right) atherosclerotic
plaques. The murine cross sections were stained with haematoxylin.
Cross sections of spatial distributionof time-averagedpermeability scal-
ing factor and growth factor at different times and comparison of grown
cross sections with mouse experiments

considered exemplary set of murine physiological data are
qualitatively in good agreement with measurements and sim-
ulations performed by others. However, there are large inter-
and intramouse variations of these quantities depending on
the condition, type, age or size of the specific mouse and
its geometry, see, e.g., Cheng et al. (2007), Whitesall et al.
(2004) and Lee et al. (2008) and therein. Still, a quantitative
validation of the developed model remains to be done, once
a complete in vivo data set is available to us.

The newly developed calibration of the time-averaged
WSS dependent law for the scaling of the endothelial per-
meability s(‖<τF>‖) to the specific geometry can be used
to estimate potential plaque locations. The predicted plaque
locations are geometry-driven and thus only a qualitative
agreement with other studies could be found. A quantitative
validation of the developed PSF for the specific geometry
remains to be done. We plan to image the in vivo plaque
locations and compare them to the predicted locations by
the PSF in terms of a suitable metric, see, e.g., the work
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in De Wilde et al. (2015a). A picture of a dissection of a
murine aortic arch with atherosclerotic plaques is given in
Fig. 11. The alternative formulations for the time-averaged
endothelial PSF<s(‖τF‖)> and s(<‖τF‖>) did not result
in physiologically meaningful results.

In the literature, models of atherosclerosis with time-
averaged flows are commonly utilized. This is often argued
by the idea that the growth and remodeling process in
atherosclerosis is on a much larger time scale than the hemo-
dynamics and hence also the mean blood flow is a right
indicator for the mechanobiology behind. In contrast to this
argument, the comparison of our proposed model with the
reduced time-averaged flow model introduced in Sect. 4.5
shows a significant difference in the WSS pattern and hence
their time-averaged PSF pattern, see Figs. 10a and 12b. This
observation is evenmore validwhen comparing theOSI com-
puted by the twomodels, see Figs. 10c and 12d. This effect is
due to the unphysiological averaging of the pulsatile nature
of blood flow preventing flow recirculations and oscillatory
flows frequently occurring in the diastolic phase of the car-
diac cycle, where the cardiac output is close to zero. In the
case of time-averaged flows, we do not observe such oscil-
latory flows at all, see Fig. 12d. This observation strongly
supports the theory that the above described model reduc-
tion of neglecting the pulsatile nature of blood flow and hence
using a time-averaged flow is misleading, as is stated by oth-
ers too (Liu et al. 2011; Sun et al. 2007; Feintuch et al. 2007;
Koshiba et al. 2007).

In contrast, the comparison of results of the full model
with its rigidwall simplification shows that the displacements
of the artery wall only have a minor influence on the WSS
and PSF patterns, see Figs. 10a and 12a. Similar observa-
tions are also made for the computed OSI of the two models,
see Figs. 10c and 12c. In our case study, we find that the
time-averaged WSS and OSI and hence the endothelial per-
meability are only slightly affected by radial enlargements.
Hence, the rigid wall model is also capable to properly com-
pute the spatial distribution of the time-averaged PSF and
the OSI patterns and hence is also suited to predict the
potential plaque development locations. The difference in
the PSF mainly is that the non-compliant artery wall model
yields sharper transitions between low and high permeabil-
ity regions, where in contrast the compliant artery wall does
produce broader andmore blurred high permeability regions.
Similar observations for the WSS patterns in carotid arteries
were observed in De Wilde et al. (2016). However, in De
Wilde et al. (2016) a significant influence of the compliant
artery wall to the OSI was observed which lies in contrast to
our observations.

Still we also support the idea that a FSI-like approach to
model atherosclerosis is indispensable. This is also stated by
others (Koshiba et al. 2007; De Wilde et al. 2016; De Wilde
et al. 2015a), but the reason for our conclusion is different.

Our observations indicate that not the radial enlargement of
the lumen arises the need for a FSI approach, but much more
the ability of the model to capture the permanent displace-
ments of the endothelium due to the artery wall thickening.
Consequently, a classical FSI approach is not mandatory,
but mainly a rigid wall and pulsatile flow model where the
vessel lumen adapts to growth and remodeling. Still, a pure
CFD simulation is not sufficient since growth and remodel-
ing processes can only be captured in a physiological manner
when the specific layout of the artery wall, i.e., a suitable
constitutive law is considered. Hence, a FSI-like approach
is indispensable to physiologically capture the influences of
the large time scale phenomena in atherosclerosis to the car-
diovascular mechanics.

To accelerate the development of atherosclerotic plaques
to a few cardiac cycles, some parameters of the model had to
be adapted. This was done in a way such that the developed
plaques qualitativelymatch plaques found in our experiments
with atherosclerotic mice models, see Fig. 13c.

As indicated in Fig. 13a, b, growth successively narrows
the lumen and induces a drastic change of the PSF pattern
representing the endothelial permeability. To give a quan-
titative example, the luminal area of cross section EF (see
Fig. 13c) is reduced by 36, 8% compared to the initial state,
see Fig. 14.

Even if the results were achieved with our simplistic
inflammatory model, this illustrates the presented model of
the cardiovascular mechanics is capable to adjust dynami-
cally to the large time scale atherosclerotic process of growth
and remodeling. For the primary high permeability regions
with already developed plaques, there are two main trends.
On the one hand the endothelial permeability could decrease
such that the healing processes outweigh the continuing LDL
penetration resulting in a local stagnation of the atheroscle-
rotic process and hence in a stable plaque. In the contrary
case, the endothelial permeability would be too high for the
plaque to become stable and the plaque continues to grow.
To be able to predict the stability outcome of a plaque, a pre-
dictive reaction model for the species must be established to
replace our simplified model. However, such a mathematical
model is yet not developed. Further, it is inevitable to embed
the presented model into a suitable multiscale strategy as,
e.g., presented in Figueroa et al. (2009).

6 Limitations

The presented model is affected by five main limitations.
First, the conclusions drawn from the developed mathemat-
ical and computational model are based only on a single
murine-specific computational case study which is based on
a single set of physiological data from literature. Hence,
the murine-specific setup in our model only differs in the
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Fig. 14 a Initial cross section EF and spatial distribution of growth
factor ϑ(cSS

FC (0.0 s)) at time t = 0.0 s. b Grown cross section EF and
spatial distribution of growth factor ϑ(cSS

FC (1.2 s)) at time t = 1.2 s.
c Grown cross section EF and spatial distribution of remodeling fac-

tor λ(cSS
FC (1.2 s)) at time t = 1.2 s. Initial and grown cross section EF

(compare Fig. 13c) and spatial distribution of growth factor and remod-
eling factor at different times

geometry and geometry-derived model parameters. Still,
the computational case study of our model showed that
our proposed model is well applicable in the context of
atherosclerosis. We expect that the qualitatively same results
are achieved also for other murine-specific geometries and
derived parameter sets. In further work more murine-specific
cases will be solved to further confirm the presented conclu-
sions.

Second, the reaction model is a drastic simplification
of the complex bio-chemical processes in atherosclerosis.
Many important processes and key species involved in the
development of atherosclerotic plaques were neglected and
a simple heuristic reaction model with solely two species
(LDL and foam cells) was utilized. However, a quantita-
tively validated and predictive model for the development of
early atherosclerotic plaques is yet not available and hence
more sophisticated reactionmodels from literature would not
increase the validity of our computational results. The devel-
opment of such a predictive model and its implementation
into the present model is ongoing work.

The third limitation of the proposed model is its compu-
tational cost preventing it from a straightforward application
to predict the long time process of atherosclerosis. In future
work, the model has to be embedded into a suitable multi-
scale in time strategy, e.g., similar to Figueroa et al. (2009).
Thereby, the presented models of cardiovascular mechanics
and concentrations in the blood can be utilized on the small
time scale. In contrast, the model of concentrations in the
artery wall (with a more sophisticated reaction model) can
be used on the large time scale. As has been shown here, the
modeling of the small time scale is indispensable and hence
the usage of a multiscale in time strategy is unavoidable.

Another limitation of the model is that it suffers from a
variety of uncertainties which were yet not assessed. The
utilized magnetic resonance angiography has a rather coarse
spatial resolution (especially through-plane) compared to
other imaging techniques like micro computer tomography.
Thus, due to the common sequence of imaging, segmenta-
tion and simulation, immanent inaccuracies in the segmented
geometry of the lumen may result in geometry-driven alter-
ations of computed results, especially of the WSS and PSF
patterns (Lee et al. 2008). Additionally, the coarse resolu-
tion did not allow for a segmentation of the artery wall
thickness and thus the simplification of a constant wall thick-
ness was employed. Further, some model parameters are
only roughly known as they are very difficult to measure
(such as the spatial variation of the diffusive permeability) or
were not yet measured based on murine experiments (such
as the parameters for the surrounding tissue). A detailed
quantification of theses uncertainties in our model is very
challenging and must be individually addressed in future
work.

Finally, the neglection of the transmural pressure gradient
driven porous media flow inside the artery wall and the sub-
sequent neglection of the convective solute flux through the
endothelium is another limitation. But since the mechanical
properties are dominated by the adventitia and media layers
of the artery wall and these layers mainly consist of a solid
phase (Yang and Vafai 2006) the influence of the fluid phase
to the cardiovascular mechanics here is assumed to be minor.
Additionally, the importance of the porous media flow on the
transportation of LDL through the endothelium is controver-
sial, see, e.g., Tompkins (1991) and Olgac et al. (2009), and
requires further investigations.
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7 Conclusion

Anovelmathematicalmultiphysicsmodel of early atheroscle-
rosis has been proposed. It consists of a fluid–structure
interaction model of cardiovascular mechanics including a
novel scalar dependent anisotropic growth and remodeling
formulation. Further, an advection–diffusion-reaction model
including a law for the endothelial permeability was intro-
duced to account for the species transport in the blood and
their migration into and reaction in the artery wall.

It was shown how the model can be calibrated to given
physiological data sets and murine-specific geometries such
that it reproduces important cardiovascular quantities such as
the blood pressure, radial displacements, wall-shear stresses
and others. The novel law for the up- and downscaling of the
endothelial permeability with respect to LDL proved to be a
good indicator for potential atherosclerotic plaque develop-
ment. The analysis of our computational case study further
supports the theory that neglecting the small time scale of
cardiovascular mechanics in terms of averaging flows and
neglecting the deformation of the artery wall is misleading
in the context of atherosclerosis. It was shown that successive
growth influences the wall-shear stress pattern and hence a
dynamical adjustment of the LDL penetration is induced. In
futurework, the presentmultiphysicsmodelmust be enriched
by amore sophisticatedmodel of the inflammatory processes.
Additionally, it must be embedded into a suitable multiscale
in time strategy.
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