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Abstract Static and modal responses of representative
biomechanical structures are investigated in this paper by
employing higher-order theories of structures and finite ele-
ment approximations.Refinedmodels are implemented in the
domain of the Carrera unified formulation (CUF), according
to which low- to high-order kinematics can be postulated as
arbitrary and, eventually, hierarchical expansions of the gen-
eralized displacement unknowns. By using CUF along with
the principle of virtual work, the governing equations are
expressed in terms of fundamental nuclei of finite element
arrays. The fundamental nuclei are invariant of the theory
approximation order and can be opportunely employed to
implement variable kinematics theories of bio-structures. In
this work, static and free-vibration analyses of an atheroscle-
rotic plaque of a human artery and a dental prosthesis are
discussed. The results from the proposed methodologies
highlight a number of advantages ofCUFmodelswith respect
to already established theories and commercial software
tools. Namely, (i) CUF models can represent correctly the
higher-order phenomena related to complex stress/strain field
distributions and coupledmode shapes; (ii) bio-structures can
be modeled in a component-wise sense by only employing
the physical boundaries of the problem domain and without
making any geometrical simplification. This latter aspect,
in particular, can be currently accomplished only by using
three-dimensional analysis, which may be computationally
unbearable as complex bio-systems are considered.
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1 Introduction

Biomechanics plays a fundamental role in modern science
and research. The application of engineering tools in sup-
port of traditional medicine has been a success over the last
decades. As an example, the advent of noninvasive, high-
resolution imaging like ultrasounds or magnetic resonance,
together with the growth and the improvement of numerical
modeling, filled the gaps of in vivo tests difficulties.

The human body is a complex grouping of different
sub-systems, each of which with its own peculiarities and
challenges from the modeling standpoint. Many works in the
literature proposed mathematical models for compliant bio-
structures. Some difficulties related to mechanical properties
of soft tissues were analyzed in the pionering text by Fung
(1993). The same author developedmodels to study the blood
circulation and the growth of the bio-structures, see Fung
(1997, 1990). More recently, Evans (1961) analyzed the
whole muscle-skeletal apparatus and, subsequently, Hatze
(1977) proposed a set of control equations for the same sys-
tem. In this context, it is possible to find outstanding studies
about the dynamic modeling of bones (Frost 1963) and spine
(Schultz 1986). Other works on the skeletal muscles focused
on the neural nature of the stimulus and the fibrous constitu-
tion. Famous examples are those who led to Hill’s equation
(Hill 1938) and the introduction of the cross-bridge Hux-
ley’s theory (Huxley and Hanson 1954). Also, mathematical
models of the heart were developed along the past decades
to understand the complex behavior of this organ. The prop-
erties of cardiac fibers, for example, were studied in detail
by Brady (1979). Many other authors, on the other hand,
wrote about the mechanical behavior of the myocardium,
see, for example, Edman and Nilsson (1968) and Frank and
Langer (1974). The same Fung, who is considered one of the
precursors of biomechanics, dedicated some research and
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papers to this topic, presenting a mathematical formulation
of the mechanical properties of the heart muscle based on the
sliding-element theory, see Fung (1970).

This paper focuses on two problems that are sufficiently
documented in the literature, i.e., the atherosclerotic plaque
of a human artery and a dental implant. The atherosclerotic
plaque is a vascular disease linked to lipid accumulation
with progressive lumen reduction; the eventual plaque rup-
ture may cause a thrombosis, which obstructs the blood flow
leading to ischemia or heart infarctions (Sakakura et al.
2013). Some remedies to this problem exist eventually;
see, for example, the balloon angioplasty (Holzapfel et al.
2002). Most of the knowledge about the argument and the
recent advances are available also due to the numerous struc-
tural analyses conducted by researchers as mechanical tests
(Lawlor et al. 2011; Maher et al. 1996) as well as the materi-
als characterization, see Holzapfel et al. (2004) and Balzani
et al. (2012). Because of the complexity of the problem
and the advent of reliable numerical tools, structural models
of the atherosclerotic plaque and many other bio-structures
make use of the finite element method (FEM). For instance,
FEM was recently used for the axial characterization of the
artery by Chai et al. (2013) and for the evaluation of the cir-
cumferential stress within the artery biomaterials by Loree
et al. (1992). Moreover, FEM was recently utilized to study
patient-specific models of plaques, see Tang et al. (2008).

Structural analysis of dental prostheses also acquired
interest during the last decades. Those implants were intro-
duced in the late 1960s and since then have been the object
of many studies and publications. Most of the mechanical
studies outlined how the interface between implant and bone
is important (Geng et al. 2001), together with the exact eval-
uation of the loads. As discussed by Pilliar et al. (1991), in
fact, an overload can lead to fatigue failure of the prosthesis.
On the other hand, Vaillancourt et al. (1996) demonstrated
that under-loading can cause atrophy. The geometry of the
implant was investigated in detail byDilek et al. (2008), Cha-
iapasco et al. (2001). Recently, fatigue behavior was studied
by Kayabasi et al. (2006). As for the atherosclerotic plaque,
FEM is the most used method since Wider et al. (1976) uti-
lized it for dental implants in 1976. FEM was also employed
to analyze the influence of materials features by Van Ooster-
wyck et al. (1998) and to study the stress distribution in the
tooth and within the bone.

Due to the complex geometry of bio-structures,most of the
FEM models utilized in the literature and in common prac-
ticemakeuse of three-dimensional (3D)brick elements based
on elasticity. Although accurate they are, 3D finite elements
are generally cumbersome from the point of view of com-
putational costs. This issue is more emphasized as complex
systems are considered, as, for example, in fluid-structure
interaction analysis of biomedical applications. In this case,
it is a common practise to couple 3D compliant models of

a region of interest (e.g., an atherosclerotic plaque initiation
within the cardiovascular system)with one-dimensional (1D)
models describing the remaining zones, see Formaggia et al.
(2001). In this context, the present paper aims at extending
the use of higher-order 1D beam models with variable kine-
matics and enhanced accuracy to the analysis of biomedical
structures for reducing the computational costs and avoid-
ing complex coupling between physically inconsistent finite
elements.

The mathematical models of the bio-structures discussed
in this work are based on the Carrera Unified Formulation
(CUF), which was first introduced in the field of mechan-
ics of composite structures for plates and shells (Carrera
2003) and then extended to beams (Carrera andGiunta 2010).
According to CUF, 1D and 2D theories of structures can be
formulated with ease by expressing the displacement field as
an arbitrary expansion of the generalized displacements. In
this manner, the governing equations, eventually in the form
of finite element arrays, can be written in terms of funda-
mental nuclei, see Carrera et al. (2014a). These nuclei are
invariant of the theory approximation order and can be uti-
lized to formulate generally refined models. In the domain
of 1D CUF models, many progresses have been made in the
last few years. For example, 1D CUF models have been suc-
cessfully extended for the analysis of composite beams from
macro-/mesoscale (Carrera et al. 2012) to microscale (Car-
rera et al. 2013); the component-wise analysis of aerospace
(Carrera et al. 2013a) and civil engineering structures (Car-
rera and Pagani 2014); rotordynamics (Carrera and Filippi
2014); and multi-field analysis (Zappino et al. 2016), among
others. Interested readers can find more details about higher-
order CUF beams and related applications in Carrera et al.
(2015) along with a comprehensive review of classical as
well as modern 1D models.

Preliminary results about the use of CUF for the analysis
of compliant artery were discussed by Varello and Carrera
(2014), who utilized Taylor-like expansions of the three-
dimensional displacement field for static response analyses.
In the proposed work, on the other hand, refined beam mod-
els with component-wise capabilities are implemented by
exploiting Lagrange expansions of the displacements on
the cross-sectional domain. Thus, static and free-vibration
analyses of an atherosclerotic plaque and a dental implant
are carried out. These Lagrange-based models highlight the
possibility to describe local and complex stress/strain field
distributions as well as the modal characteristics of the struc-
tures under consideration accurately. The paper is organized
as follows: (1) first, CUF models are introduced as Taylor-
and Lagrange-type expansions of the generic kinematics
field; (2) then, the component-wise approach is briefly out-
lined; (3) subsequently, the numerical results are detailed and
discussed; and (4) finally, the main conclusions are drawn.
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Fig. 1 Generic beam structures and related reference system

2 Unified beam theory with higher-order
kinematics

Consider a generic cross-sectional beam structure as in Fig. 1.
Referring to the given Cartesian coordinate system, the beam
section � lays on xz-plane, whereas the length measures L
along the y axis. The three-dimensional displacement vector
is given in the following:

u(x, y, z; t) = {
ux uy uz

}T
(1)

For the sake of completeness, the stress σ and strain ε vectors
are also introduced,

σ = {
σxx σyy σzz σxz σyz σxy

}T
,

ε = {
εxx εyy εzz εxz εyz εxy

}T

Under the assumptions of small displacements and rotations,
the strain components can be expressed in terms of displace-
ments as:

ε = Du (2)

where D is a linear differential matrix. On the other hand, in
the case of linear elastic materials, stress and strain compo-
nents are related each other by the Hooke’s law,

σ = Cε (3)

The components of matrices D and C, which contain the
material coefficients, are not given in this paper for brevity
sake. However, interested readers can found them in Carrera
et al. (2014a). It is intended that, in the case of isotropic
materials, as in the case of this paper, the material coeffi-
cients are functions of the elastic modulus E and the Poisson
ratio ν.

2.1 Carrera unified formulation (CUF)

According toCUF, the kinematics of classical to higher-order
beam theories can opportunely degenerate into a hierarchical
expansion of the generalized unknownsuτ , which are defined
along the 1D domain, i.e.,

u(x, y, z; t) = Fτ (x, z)uτ (y; t), τ = 1, 2, . . . , M (4)

In Eq. (4), Fτ is a set of generic expansion functions over the
cross-sectional domain andM stands for the number of terms
employed in the displacement field. In the notation proposed,
a repeated index denotes summation.

The choice of the functions Fτ and the parameter M
determines the class and order (i.e., the accuracy and the com-
putational costs) of the beam theory to be considered. Over
the last few years, several expansions have been employed
for the formulation of CUF-based 1D models, such as
Taylor expansions (TE), Lagrange expansions (LE), hierar-
chical Legendre expansions (HLE), and any combinations of
thereof in a variable kinematics sense. The detailed descrip-
tion of these beam models is out of the scope of this paper.
Interested readers can found further details in the literature,
see, for example, Carrera and Giunta (2010), Petrolo et al.
(2011), Pagani et al. (2013) for TE, Carrera and Petrolo
(2012), Carrera et al. (2013b) for LE, Carrera et al. (2017),
Pagani et al. (2016) forHLE, andCarrera andZappino (2017)
for variable kinematics theories. However, a brief discussion
about TE and LE, which are the models employed in this
paper for the analysis of bio-structures, is given hereinafter
for completeness reasons.

One-dimensional TEmodelsmake use ofMcLaurin series
polynomials xi z j as Fτ cross-sectional functions, with i and
j positive integers. As an example, the second-order (N = 2)
TE beam model reads:

ux (x, y, z) = ux1(y) + x ux2(y) + z ux3(y) + x2 ux4(y)

+ xz ux5(y) + z2 ux6(y)

uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y) + x2 uy4(y)

+ xz uy5(y) + z2 uy6(y)

uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y) + x2 uz4(y)

+ xz uz5(y) + z2 uz6(y) (5)

In Eq. (5) the time parameter (t) is not shown for sim-
plicity; this model has 18 generalized displacement vari-
ables/unknowns (displacements and derivatives). It is inter-
ested to note that classical beam models, such as Euler–
Bernoulli Beam Theory (EBBT) and Timoshenko Beam
Theory (TBT), are particular cases of the linear (N = 1)
TE expansion, according to which Fτ = 1, x, z.

In the case of heterogeneous structures, thin-walled or
complex cross-sectional domains, the use of TE should be
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unsuggested. LE models make use of Lagrange polynomials
sets as Fτ functions to unlocalize the displacement variables
over a discrete cross-sectional domain, in a isoparametric
sense. In the context of LE, beam theories with different
orders can be implemented depending on the choice of the
Lagrange polynomials set employed to describe the cross-
sectional displacements. In fact, linear L3, bilinear L4, or
quadratic L9 beam theories can be implemented with ease
by using CUF. As an example, the LE quadratic beam model
holds the following kinematics:

ux (x, y, z) = F1 ux1(y) + F2 ux2(y) + F3 ux3(y)

+ · · · + F9 ux9(y)

uy(x, y, z) = F1 uy1(y) + F2 uy2(y) + F3 uy3(y)

+ · · · + F9 uy9(y)

uz(x, y, z) = F1 uz1(y) + F2 uz2(y) + F3 uz3(y)

+ · · · + F9 uz9(y) (6)

where ux1 , ux2 . . . , uz9 are the primary mechanical variables
of the problem and they are pure translational displacements.
In this case, F1, . . . , F9 are the following quadratic Lagrange
polynomials:

Fτ = 1

4
(r2 + r rτ )(s

2 + s sτ ), τ = 1, 3, 5, 7

Fτ = 1

2
s2τ (s2 + s sτ )(1 − r2)

+ 1

2
r2τ (r2 + r rτ )(1 − s2), τ = 2, 4, 6, 8

Fτ = (1 − r2)(1 − s2), τ = 9 (7)

where r and s vary above the cross-sectional natural plane
between −1 and +1, and rτ and sτ represent the loca-
tions of the roots of the nine-node Lagrange polynomial
set. According to LE modeling, higher-order beam theories
can be opportunely formulated by increasing the polynomial
order (e.g., cubic L16) or by using a combination of poly-
nomial sets on the beam cross section to have a piece-wise
refined displacement field (see Carrera and Petrolo 2012).

2.2 Finite element formulation for free-vibration and
static analyses

Independently of the choice of the cross-sectional expand-
ing functions Fτ , the finite element method (FEM) can be
employed to interpolate the generalized displacement vari-
ables along the beam axis. One has:

uτ (y; t) = Ni (y)uτ i (t), i = 1, 2, . . . , n (8)

where Ni (y) are the 1D shape functions (cubic four-noded
Lagrange elements in this paper), n is the number of nodes of

the finite element employed, and i denotes summation. uτ i

is the vector of the nodal generalized displacements.
The equations of motion in the case of undamped free

vibrations are obtained in terms of finite element arrays by
using the principle of virtual displacements,which states that:

δL int = −δL ine (9)

where L int stands for the strain energy, L ine is the work of the
inertial loadings, and δ stands for the virtual variation. The
virtual variation of the strain energy is rewritten by using
Eqs. (2), (3), (4) and (8) to have:

δL int =
∫

V
δεTσ dV = δuTs jK

τ si juτ i (10)

where V = � × L is the volume of the beam and Kτ si j is
the stiffness matrix of the unified beam element in the form
of 3 × 3 fundamental nucleus (FN). The derivation of the
FN of the stiffness matrix is not repeated here for the sake of
brevity, but it is given in Carrera et al. (2014a). However, the
following terms of the stiffness nucleus are given for clarity
purpose:

K τ si j
xx = (λ + 2G)

∫

L
Ni N jdy

∫

�

Fτ,x Fs,xd�

+ G
∫

L
Ni N jdy

∫

�

Fτ,z Fs,zd�

+ G
∫

L
Ni,y N j,ydy

∫

�

Fτ Fsd�

K τ si j
xy = λ

∫

L
Ni,y N j,ydy

∫

�

Fτ Fs,xd�

+ G
∫

L
Ni N jdy

∫

�

Fτ,x Fsd� (11)

whereG andλ are theLamé’s parameters and commadenotes
partial derivatives. If Poisson ν and Young E moduli are
used, one has G = E

2(1+ν)
and λ = νE

(1+ν)(1−2ν)
. It can be

demonstrated that all the components ofKτ si j can be derived
from Eq. (11) by permutations.

The fundamental nucleus of the mass matrix can be easily
found by substituting CUF and FEM approximation into the
expression of the virtual variation of the work of the inertial
loadings, i.e.,

δL ine =
∫

V
ρ δuTü dV

= δuTs j

∫

L
Ni N jdy

∫

�

ρ Fτ Fsd� üτ i =δuTs jM
τ si j üτ i

(12)
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where ρ stands for the density of the material and ü is the
acceleration vector. Given the Fτ CUF expansions and the
shape functions Ni , the 3 × 3 mass and stiffness nuclei,
Mτ si j and Kτ si j , can be expanded versus the indexes τ, s =
1, . . . , M and i, j = 1, . . . , n to obtain the elemental finite
element arrays of the given refined beam element. Those
matrices are thus assembled in the classical way of FEM
for the description of the global problem. Also, by assum-
ing harmonic displacements and according to Eq. (9), the
free-vibration analysis is reduced into a classical eigenvalue
problem of the form:

(−ω2
kM + K)uk = 0 (13)

where uk is the k-th eigenvector associated with the natural
frequency ωk .

In the case of linear static response analysis, the principle
of virtual displacements holds

δL int = δLext (14)

where Lext is the work of the external loadings. Upon substi-
tution of CUF and FEM, the following algebraic system in
the form of FN is obtained:

Kτ si juτ i = Ps j (15)

In Eq. (15), Ps j represents the variationally coherent load
vector, see Carrera et al. (2014a). Expanding Eq. (15) at ele-
ment level by using aforementioned CUF index notation and
assembling, the final algebraic system of equations can be
inherently formulated and solved.

2.3 The component-wise approach

The analysis of multi-component structures is complex in
common practice. These structures are made of different
components, which are generally characterized by different
scales and geometries in order to accomplish the technical
and nature requisites. In the biomedical scenario, for exam-
ple, skin, veins, arteries and capillaries as well as muscles
are perfect examples of multi-component systems. Gener-
ally, themodeling ofmulti-component structures requires the
adoption and the coupling of various mathematical models,
even in the framework of finite element method. As a conse-
quence, artificial techniques are usually involved to connect,
for example, 1D, 2D and 3D finite elements that are kinemat-
ically inconsistent each other. This may result in numerical
and physical uncertainties, especially if higher-order mod-
els are employed and in order to build sufficiently accurate
models with reasonable computational resolution times.

In this domain, the enhanced capabilities of LE models,
when coupled with FEM, are of particular interest for the
analysis of multi-component structures. In recent works, in
fact, it was demonstrated that LE-CUFmodels can be imple-
mented in a component-wise (CW) sense to simulate complex
structural assemblies in an efficient and geometrical/physical
consistent manner, see Carrera et al. (2012), Carrera et al.
(2013a), Carrera et al. (2014b), Carrera and Pagani (2014).
As an example, Fig. 2 shows the CW approach as applied to
a dental prosthesis. According to CW, each component of the
structure (i.e., implant, abutment, porcelain) is modeled by
higher-order LE beam finite elements. These finite elements,
by exploiting an LE approximation of the beam kinematics,
make use of the physical surfaces for describing the prob-
lem domain. In this manner, the geometrical characterization

Beam Element

ImplantAbutment

Porcelain

Cross-sectional 
Lagrangian polynomial
L9

Fig. 2 Component-wise approach applied to biomedical structures
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of the structure is exact, and fictitious integration domains
(e.g., beam axis in the case of classical 1D finite elements)
are no more utilized. Moreover, because each component of
the structure is modeled with the same kinematics, coupling
is straightforward and no artificial mathematical links (e.g.,
multi-point constraints) are utilized.

The aforementioned properties of the CW modeling
approach canbe achieved,with the available technology, only
if 3D finite elements are used. By using higher-order CUF,
instead, enhanced geometrically consistent models with low
computational costs can be formulated inherently.

3 Numerical results

This section investigates the efficiency of the proposed for-
mulation applied to the static and modal analyses of a dental
implant and an atherosclerotic plaque. As different they are,
these two analysis cases present some analogies, because
they both are 1D problems in which one dimension is bigger
than the cross-sectional dimensions. This aspect makes the
dental implant and the atherosclerotic plaque significant to
be studied by 1D higher-order models.

3.1 Dental implant

Dental prostheses have been largely investigated in several
works over the last decades. These works primarily provided
guidelines and design rules for resistant and long-duration
prostheses, based on investigations about loading condi-
tions and materials. This section, instead, will provide and
assess, from the mechanical standpoint, innovative models
for the static and free-vibration analyses of this important
bio-structure.

A cut-view of the addressed implant is shown in Fig. 3,
where important dimensions are also given. The prosthesis is
made of the materials whose properties are given in Table 1.
Namely, Ti-6Al-4V alloy is employed for implant fixture and
abutment, cobalt–chromium alloy for metal framework and
feldsphatic porcelain for occlusal material. Table 1 also gives
the mechanical properties of the gingiva and bone, which are
modeled in a second analysis case.

Figure 4 represents in detail the problem under considera-
tion (whenever the implant, gingiva and bone are considered
together) and the boundary conditions employed.

In contrast, for static analyses, we consider, according to
the literature, the bio-system undergoing a masticatory force
of 118.2 N in the angle of approximately 75◦ to the occlusal
plane, see Fig. 5.

In the following sections, classical, higher-order TE and
LE beam models are implemented for static and free-
vibration analyses. In detail, Euler-Bernoulli Beam Theory
(EBBT), Timoshenko Beam Theory (TBT) and up to the

x

y

A

B

C

Fig. 3 Dental implant. Dimensions in millimeters

Table 1 Mechanical properties of the materials used in the study of the
dental implant

Material Young modulus E , GPa Poisson ratio ν

Ti-6Al-4V 110.00 0.32

Cobalt–chromium alloy 220.00 0.30

Feldsphatic porcelain 61.20 0.19

Gingiva 19.60 × 10−3 0.30

Bone 14.70 0.30

16th-order refined TE models are considered. On the other
hand, LE models that make use of piece-wise quadratic
kinematics (L9 polynomials) on the beam cross section are
implemented in a CW sense. For all the CUF models, and if
not differently specified, 24 four-noded 1D beam elements
are used along the y-axis providing convergent solutions.
CUF models are, thus, compared to 3D finite elements mod-
els implemented by using the commercial toolMSC.Nastran.

3.1.1 Static analysis

In the first analysis case, the tooth undergoes cantilever
boundary condition (the base is fixed) and gingiva and
bone are not considered. Table 2 shows the axial, uy , and
transverse,uz , displacement components of the structure sub-
jected themasticatory force. The results are given at different
points over the problem domain, and they are denoted with
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Fig. 4 Model of gingiva and bone (a) and representation of the boundary conditions (b)

Masticatory axis

Occlusal Plane

Mandibular Plane

75°

Fig. 5 Direction of the masticatory force

superscripts A, B andC . Point A is placed at the loaded cross
section in correspondence of the loading point in the porce-
lain region; points B andC denote positions at y = 3.75 mm
and y = 22 mm; and they are placed in the metal frame-
work and in the implant fixture, respectively (see Fig. 3).
The table also gives the total number of degrees of freedom
(DOFs) for each model considered. In this analysis, partic-
ular attention is given to the capability of the LE, which
are obtained by using a CW piece-wise description of the

kinematics by 16 and 36 L9 polynomials, and refined TE
models to provide good results in terms of displacement com-
ponents.

This aspect is further underlined in Fig. 6, where the
deformed configurations of the CW and the 3D FE models
are compared.

The accuracy of the proposed solutions is also discussed
in terms of stress components. In detail, the compression
and shear stresses, respectively, σyy and σyz , at two different
points over the structure domain (points B andC as discussed
before) are measured and shown in Table 3.

From these preliminary analyses, it is clear that classical
beam models and lower-order TE are not able to describe
properly the displacement/stress states of the problem under
consideration.

In the second analysis case of the investigation of the den-
tal implant, the human jawbone, constituted by bone and
gingiva, is considered as shown in Fig. 4. The loading condi-
tion remains unchanged with respect to the previous analysis
case. However, in this case, only LE-CW models are con-
sidered in the domain of CUF models for two main reasons:
(i) LE provides accurate description of the mechanics and
geometry as complex problems are addressed; (ii) it is pos-
sible to impose unconventional boundary conditions as LE
models are used in the formulation of beam theories. Some
results in terms of displacements are proposed in Table 4.
Displacements are given at different locations over the prob-
lem domain. In particular, point D is placed in the titanium
abutment at y = 5.5mm; E refers to a position in the gingiva
at y = 11.5mm; and F is placed in the bone at y = 30.5mm.
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Table 2 Displacements
components (in mm) measured
at three different points of the
cantilever implant

Model uA
y × 102 uB

y × 103 uCy × 103 uA
z × 102 uB

z × 102 uCz × 103 DOFs

Classical beam models

EBBT −0.797 0.910 −0.590 −4.760 −3.892 −3.410 219

TBT −0.797 0.910 −0.590 −4.825 −3.953 −3.590 365

Refined TE beam models

N = 1 −0.797 0.910 −0.590 −4.825 −3.953 −3.590 657

N = 4 −0.978 1.010 −0.780 −5.827 −4.780 −4.190 3285

N = 8 −1.016 1.030 −0.780 −6.045 −4.955 −4.330 9855

N = 12 −1.027 1.030 −0.800 −6.134 −5.029 −4.390 19,929

N = 16 −1.035 1.040 −0.820 −6.172 −5.061 −4.410 33,507

Component-wise LE models

16LE −1.442 1.040 −0.440 −6.219 −5.099 −4.430 9903

36LE −1.028 1.030 −0.800 −6.127 −5.022 −4.370 26,595

MSC.Nastran model

Solid −1.064 1.040 −0.830 −6.330 −5.190 −4.470 118,368

Fig. 6 Deformed states of the
cantilever implant subjected to
the masticatory force. a CW
model. bMSC.Nastran solid
model

Table 3 Stress components (in MPa) measured at two different points
of the cantilever implant

Model σ B
yy σC

yy σ B
yz σC

yz

Classical beam models

EBBT −3.8742 −6.3379 −0.0010 −0.0016

TBT −3.8742 −6.3379 −0.9647 −1.6027

Refined TE beam models

N = 1 −3.8742 −6.3379 −0.9647 −1.6027

N = 4 −3.0357 −6.1978 −1.1452 −3.6212

N = 8 −3.0178 −6.8915 −1.1334 −2.1038

Component-wise LE models

36LE −2.9558 −5.9619 −1.1363 −2.0221

MSC.Nastran model

Solid −3.0031 −7.0980 −1.1514 −2.2007

Equivalently, at the same points, Table 5 shows repre-
sentative stress values according to the CUF-based beam
model and the 3D FEM model. For completeness reasons,

Table 5 Stress components (inMPa) measured at three different points
of the dental implant with gingiva and bone

Model σ D
yy σ E

yy × 103 σ F
yy σ D

yz σ E
yz × 103 σ F

yz × 103

52LE −2.02 −2.01 −0.42 −0.59 −2.26 5.81

Solid −1.97 −1.92 −0.42 −0.64 −2.19 5.46

the deformed configuration of the complete implant is shown
in Fig. 7. Furthermore, Fig. 8 gives the cross-sectional dis-
tribution of the axial stress in correspondence to the bone
region and at the structure mid-span, where the connection
between the implant and the bone is clearly visible.

This preliminary analyses suggest the following com-
ments:

• Higher-order TE and LE models are able to correctly
describe both the stress/strain fields and the displacement
behavior of the dental prosthesis and in accordance with
the 3D FE model.

Table 4 Displacements
components (in mm) measured
at three different points of the
dental implant with gingiva and
bone

Model uD
y × 104 uE

y × 104 uF
y × 104 uD

z × 103 uE
z × 104 uF

z × 106 DOFs

52LE −4.040 −6.440 −1.620 −4.372 −6.480 −9.028 51,879

Solid −4.050 −6.230 −1.630 −4.314 −6.070 −9.010 240,900
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Fig. 7 Deformed states of the dental implant with gingiva and bone. a CW model. bMSC.Nastran solid model

Fig. 8 Cross-sectional stress distribution (σyy , MPa) at the implant/bone (a) and bone (b) regions of the dental implant; CWmodel a y = 11.5mm,
b y = 30.5mm

• By using a non-local expansion of the problems
unknowns by LE, in a CW sense, it is possible to
model unconventional boundary conditions and complex
anisotropy by using refined CUF models.

• The CW models are, thus, able to model efficiently, and
with a minimum number of degrees of freedom, complex
dental systems including prostheses, gingiva, and bone.

• The simulation of the whole system is of fundamental
importance to take into account correctly the contribution
of the boundary conditions in the mechanical behavior of
the implant. The refined beam models represent a good
candidate to replace current technology (3D FEM) for
the enhanced analysis of this complex bio-structures.

3.1.2 Free-vibration analysis

To further validate the proposed beam models and to fully
characterize the dental implant under consideration, free-
vibration analysis is carried out and discussed in this section.
Table 6 quotes the first 15 natural frequencies from classical
to higher-order and CWmodels. The results, once again, are
compared to those from a 3D finite element analysis.

For the purpose of clarity, the same natural frequencies
are shown in an histogram form in Fig. 9.

Furthermore, some important mode shapes are depicted
in Fig. 10. In detail, two flexural modes (Modes 1 and 10)
and two axial modes (Modes 3 and 9) are depicted in this
figure.

Finally, in order to give a quantitative comparison in terms
of mode shapes from the present CW beam models and
3D FEM analysis, the modal assurance criterion (MAC) is
employed and shown in Fig. 11 in the form of matrix and for
the case under analysis.

The MAC is defined as a scalar representing the degree of
consistency (linearity) between one modal and another refer-
ence modal vector (see Allemang and Brown 1982; Carrera
et al. 2013b) as follows:

MACi j = |φT
Ai

φBj |2
φT
Ai

φAi φBj φ
T
B j

(16)

where φAi is the i th eigenvector of model A, whereas φBj

is the j th eigenvector of model B. The modal assurance cri-
terion takes on values from zero (representing no consistent
correspondence) to one (representing a consistent correspon-
dence).

The following comments arise from the modal analysis of
the dental prosthesis:
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Table 6 Natural frequencies (Hz) of the cantilever dental implant (see Fig. 6)

Mode Classical models Refined TE Component-wise LE MSC.Nastran

EBBT TBT N = 4 N = 8 N = 12 16LE 36LE Solid

1 3965.15 3923.86 3568.11 3504.73 3478.72 3475.14 3481.85 3425.49

2 3965.15 3923.86 3568.11 3504.73 3478.74 3475.14 3481.85 3425.49

3 32,433.55 29,938.09 16,410.06 16,121.71 16,047.48 16,036.42 16,029.23 16,110.40

4 32,433.55 29,938.09 27,761.70 27,345.98 27,205.19 27,188.46 27,213.56 27,057.82

5 42,529.07 42,529.07 27,761.71 27,345.99 27,205.19 27,188.46 27,213.57 27,057.84

6 103,394.59 85,576.67 40,171.04 39,745.53 39,588.58 39,614.69 39,609.81 39,358.11

7 103,394.59 85,576.67 80,168.17 79,180.83 78,856.99 78,768.19 78,795.07 78,669.59

8 171,762.92 148,591.54 80,168.20 79,180.86 78,857.01 78,768.19 78,795.38 78,669.62

9 188,578.58 148,591.55 91,871.75 90,542.57 90,221.70 90,141.91 90,100.98 90,526.15

10 188,578.59 171,762.92 138,344.74 136,721.92 136,164.44 135,990.48 135,974.07 135,398.00

11 286,659.60 216,227.25 138,344.78 136,721.97 136,164.49 135,990.48 135,976.33 135,398.00

12 288,447.87 216,227.26 161,735.77 160,105.42 159,683.80 159,503.76 159,446.00 159,640.60

13 288,447.88 283,319.15 164,241.16 162,841.80 162,352.75 162,369.15 162,322.57 162,038.70

14 373,792.71 283,319.15 199,983.86 197,202.74 196,317.07 196,338.53 196,177.06 195,249.20

15 488,979.41 286,659.60 207,556.83 204,387.10 203,717.14 196,338.53 196,185.05 195,249.20
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Fig. 9 Natural frequencies of the dental implant versus numerical model adopted

• Classical beam models, EBBM and TBT, are able to
describe correctly the first bending mode. Nevertheless,
as shown in Fig. 9, they provide increasing inaccurate
results as higher frequencies are considered.

• Conversely, refinedTEandCWCUF-based beammodels
can describe very accurately the modal characteristics of
the dental implant and in accordance with more complex
3D solid models made of brick elements.

• In detail, as confirmed by the MAC analysis (Fig. 11),
CW models present a enhanced accuracy with respect to
other beam models and in accordance with 3D analysis
even in terms of consistency of the mode shapes. In fact,
it is clear that the mode shapes from the CW model are
perfectly equivalent to those from the solid model.

3.2 Atherosclerotic plaque

Another compelling case that demonstrates the capabilities
of 1D-CUFmodels is the one concerning the human external
iliac artery with a pronounced atherosclerotic plaque. In par-
ticular, a portion of an atherosclerotic arterywith a significant
lumen reduction is taken into account in this section. Pub-
lished literature shows that, starting from images captured
during hrMRI (high-resolutionmagnetic resonance imaging)
and from histological analysis, it is possible to identify the
section with its components (Holzapfel et al. 2004; Balzani
et al. 2012). In this way, one can distinguish six different
materials for the artery (see Fig. 12): the adventititia (A), the
calcification (C), the lipid pool (LP), the fibrous cap (FC), the
non-diseased media (M) and the fibrotic media (FM), which
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Fig. 10 Representative mode
shapes of the dental implant;
CW model: a Mode 1, b Mode
3, c Mode 9, d Mode 10
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Fig. 11 MAC matrix of the eigenvectors from traditional 3D FEM
solution and 36LE CW model

is in fact the sum of fibrotic intima and diseased fibrotic
media.

For representative purpose, the cross-sectional width of
the problem considered hereinafter is approximately 15 mm,
as well as the height. As in the previous example, we present
two different cases of boundary conditions and loads. The
first one considers a portion of an artery with a length of 40
mm, clamped at the beam ends (y = 0 and y = L) and
subjected to an internal pressure of 180 mmHg. In the sec-

Fig. 12 Cross section of the atherosclerotic plaque

ond analysis case, an axial asymmetric load is applied and
clamped-free boundary conditions are imposed to investigate
the bending behavior of the structure. Three-dimensional
solid models are implemented in MSC.Nastran to conduct
comparisons. These models are discretized with 382,700
brick elements (398,041 nodes) to give 1,194,123 DOFs.
In this section, high-order CUF models, TE and LE, are
employed aswell. In this case, the structure ismodeledwith a
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Cross-sectional
Lagrangian
polynomial L9

Fig. 13 LE model of the atherosclerotic plaque

Table 7 Materials properties of the atherosclerotic plaque

Tissue E (MPa) ν

Calcification 12 0.33

Lipid pool 0.1 0.33

Fibrous cap 2.4 0.33

Media 1 0.33

Fibrotic media 5 0.33

Adventitia 2.5 0.33

one-dimensional mesh made of 10 B4 (cubic) finite elements
and an increasing value of beam theory orders are considered.
The LE model’s cross section is, instead, discretized with 59
L9 and two L6 polynomials, for a total of 270 nodes. For
the sake of completeness, the LE model discretization on the
cross section is shown in Fig. 13.

Tissue materials are modeled as linear isotropic; the
isotropic properties of each materials are the same as used in

Holzapfel et al. (2004), Varello and Carrera (2014) and are
given in Table 7.

3.2.1 Static analysis

The complexity of the problem is confirmed, in the case
of the first loading scenario, by Fig. 14, which shows the
cross-sectional displacements distribution for various CUF
beam models and 3D analysis. The thought heterogene-
ity of the atherosclerotic plaque is well described by the
refined models proposed, which highlight the deformabil-
ity of the lipid pool and the fibrous cap. In contrast, it is
clear that the deformation in the calcification region is almost
null. It is obvious that, to detect high cross-sectional defor-
mation with beam theories, refined kinematics are needed

Table 8 Maximum horizontal displacement component, ux (mm), of
the atherosclerotic plaque subjected to internal pressure

Model uM
max uA

max uFC
max DOFs

EBBT 0.0041 0.0041 0.0041 93

TBT 0.0093 0.0093 0.0093 155

N = 1 0.5666 0.6210 0.3496 279

N = 4 0.0538 0.0539 0.0262 1395

N = 8 0.2019 0.1933 0.1232 4185

N = 10 0.3088 0.2877 0.1710 6138

N = 14 0.7065 0.6662 0.3862 11160

N = 18 0.9213 0.8929 0.5552 17670

N = 20 1.0294 1.0035 0.6211 21483

LE 1.0153 0.9581 0.7209 26730

Solid 1.0587 1.0488 0.7209 1194123

Solid

Fig. 14 Distribution of the in-plane horizontal displacement component, ux , on the mid-span cross section. Comparison between TE (N = 4–20),
LE and MSC.Nastran solid model. Values in mm
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Table 9 In-plane normal, σxx , and shear, σxz , stress components (102 MPa) in correspondence of each different material of the atherosclerotic
plaque subjected to internal pressure

Model σxx σxz σxx σxz σxx σxz σxx σxz σxx σxz σxx σxz
FM M LP A FC C

N = 4 2.683 0.101 1.379 0.000 0.011 0.000 −0.010 −0.225 3.984 0.045 1.077 1.522

N = 8 0.279 −0.011 2.772 −0.185 −0.280 0.017 2.012 0.032 1.658 0.259 −2.607 1.252

N = 10 −6.965 −0.203 −1.788 −0.181 0.164 0.059 1.720 −0.683 −1.120 0.088 2.866 0.379

N = 14 −2.345 −0.057 −9.435 −0.098 −2.066 0.070 2.534 −1.726 −9.756 −0.408 1.936 0.709

N = 18 −1.382 −0.232 −9.188 −0.160 −0.857 0.120 5.820 −1.441 −5.981 −0.482 3.985 −0.708

N = 20 1.132 0.140 −4.668 −0.187 −1.150 0.118 4.870 −1.919 −4.424 −0.276 6.786 −1.332

LE −0.052 −0.025 −3.670 −0.546 −1.310 0.105 4.550 −1.750 −5.290 0.072 3.370 0.920

Solid −0.186 −0.014 −1.907 −0.246 −1.458 0.137 4.649 −1.635 −1.926 0.119 3.206 0.860

0.8

0.6

0.4

0

-0.2

0.2

(a) (b) (c)

Fig. 15 Axial stress σyy (MPa) distribution on the mid-span cross section of the atherosclerotic plaque subjected to clamped-free boundary
conditions and forces along y. a N = 20. b LE. c Solid

but, still, 3D solution may be obtained. To confirm this
aspect, Table 8 quotes the maximum displacements within
the media (M), the adventitia (A) and the fibrous cap (FC)
for the different models addressed. Furthermore, the total
numbers of DOFs for each model employed are shown in
the same table. Table 9, on the other hand, lists static anal-
ysis results in terms of stress components according to all
models considered. Namely, the in-plane normal stress com-
ponent, σxx , and the shear, σxz , are given in Table 9 and
measured at different points in the atherosclerotic plaque
domain.

Some comments arise from the results outlined above:

• Classical and low-orderTEmodels are not able to identify
correct values of stress and displacements.

• Increasing the order of TE CUF models, it is possible to
meet the accuracy of 3D analyses.

• LE model is able to reproduce the 3D solution with very
low computational cost.

In a second load case, the structure is subjected to
clamped-free boundary conditions. An asymmetric and axial
pressure distribution is applied all along the lipid pool and
the non-diseased media to simulate bending due to viscous
forces along the y-axis. Accordingly, Fig. 15 shows the dis-

Table 10 Values of σyy (MPa) and ux (mm) for different points and
materials of the section

Model σyy at (0,0) σyy at (15,0) uM
max uFC

max

EBBT 0.345 −0.090 12.574 12.574

TBT 0.345 −0.090 12.574 12.574

N = 1 0.345 −0.090 12.574 12.574

N = 4 0.322 −0.098 12.117 12.113

N = 8 0.345 −0.089 11.983 12.149

N = 10 0.331 −0.094 11.795 11.992

N = 14 0.333 −0.084 11.447 11.848

N = 18 0.327 −0.086 11.339 11.865

N = 20 0.353 −0.088 11.304 11.862

LE 0.324 −0.080 11.245 11.704

Solid 0.340 −0.087 10.955 11.707

tribution of the σyy axial stress components over the cross
section of the atherosclerotic plaque.

Moreover, the same stress component is listed in Table 10
for various points and along with maximum horizontal dis-
placements.

The following considerations can be made:
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Table 11 Natural frequencies
(Hz) of the clamped-clamped
atherosclerotic plaque

Mode Solid LE EBBT TBT N = 1 N = 4 N = 8 N = 10

1 133.63 134.12 246.26 170.22 164.04 155.92 141.34 139.44

2 138.06 138.85 259.15 174.24 170.15 147.86 146.53 144.32

3 235.41 236.73 – – 251.93 249.43 244.67 243.45

4 247.65 258.78 – – – – – 331.14

5 256.51 258.83 598.93 349.94 339.49 316.54 285.33 278.51

6 270.22 272.26 633.59 361.64 351.67 301.34 295.71 290.05

7 309.85 310.97 – – 373.61 368.84 356.66 349.72

8 311.76 325.77 – – – – – –

9 319.54 329.08 – – – 611.04 478.45 462.58

10 340.83 348.22 – – – – – –

11 342.64 354.95 – – – 617.55 501.94 478.91

12 385.71 390.33 – – – 644.86 434.66 414.72

13 387.44 396.67 - – – – – –

14 393.04 397.51 – – – – –

15 400.98 409.27 – – – – 585.31 547.56

16 425.57 440.64 – – – – – –

17 432.91 438.87 – – – 493.22 478.35 478.92

18 434.25 443.75 – – – 711.92 566.41 510.85

19 441.07 451.96 – – – – – –

20 442.76 448.23 – – – – – 535.37

Fig. 16 Representative mode
shapes of the atherosclerotic
plaque; CW model: a Mode 1, b
Mode 4, c Mode 6, d Mode 18
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Fig. 17 Modal assurance criterion (MAC) between 3D FEM solution
and LE model

• Classical and lower-order beam models, due to their
intrinsic hypotheses, cannot detect different values of dis-
placement for different materials over the cross section.

• In the case of bending loading, refined CUF models are
very reliable and in accordance with 3D analysis. More-
over, the efficiency of these models is demonstrated as
well.

3.2.2 Free-vibration analysis

The free-vibration analysis of the artery under clamped-
clamped boundary conditions is presented as a final analysis
case. The first 20 natural frequencies are shown in Table 11,
where the solutions from the proposed 1D models are com-
pared to those from 3D FE analyses.

For representative reasons, selected mode shapes by 1D
LE-CW model are also depicted in Fig. 16.

Finally, the MAC matrix between the present CW model
and the 3D brick model is shown in Fig. 17, to further high-
light the congruence of the analysis.

According to those results, the following remarks can be
outlined:

• Classical and lower-order TE models can detect bend-
ing modes. Obviously, these 1D models cannot deal with
mode shapes that involve cross-sectional deformations.

• In contrast, the LE-CW model can perfectly reproduce
3D accuracy in terms of both natural frequencies and
vibration modes. Some small discrepancies of mode
shapes are noticed in high-frequency range, but this is jus-
tified by the enormous computational efficiency of CUF
versus 3D solution.

4 Conclusions

Static and free-vibration analyses of a dental prosthesis and
an atherosclerotic human artery have been investigated in
this paper by using refined beam models. The adopted theo-
ries have been derived from the Carrera unified formulation
(CUF), which allows to obtain a generic order beam theory in
a compact and automatic way. Particular attention has been
focused on the capability of LE (Lagrange expansion) mod-
els based on CUF to represent in an accurate manner both
the physical geometry and the kinematics of the problems
under consideration in an accurate manner. All the results
discussed have been compared to those from the literature
and those obtained by using commercial finite element soft-
ware tools. Some conclusions can be summarized:

• Refinedmodels are necessaries to deal with complex bio-
structures and arbitrary geometries.

• Component-wise approach based on LE helps us to over-
come the necessity to combine different kinematics (1D,
2D, and 3D) to analyze multi-component and heteroge-
neous structures.

• The use of classical and lower-order beammodels should
be unsuggested for this class of problems. Using low-
order kinematics, even in a global-local sense, and in
regions where accurate analysis is not needed, may in
fact result into wrong description of boundary conditions
and error growing in local zones that are described by
enriched kinematics.

• 1D CUF models have be demonstrated to eventually
present high level of accuracy with low computational
effort, when compared to 3D FEM models.

The results discussed encourage future use of the proposed
models tomore complex applications including, for instance,
nonlinear material laws and fluid-structure couplings.
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