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Abstract Personalised computational models of the heart
are of increasing interest for clinical applications due to their
discriminative and predictive abilities. However, the simula-
tion of a single heartbeatwith a 3D cardiac electromechanical
model can be long and computationally expensive, which
makes some practical applications, such as the estimation
of model parameters from clinical data (the personalisa-
tion), very slow. Here we introduce an original multifidelity
approach between a 3D cardiac model and a simplified “0D”
version of this model, which enables to get reliable (and
extremely fast) approximations of the global behaviour of
the 3D model using 0D simulations. We then use this mul-
tifidelity approximation to speed-up an efficient parameter
estimation algorithm, leading to a fast and computationally
efficient personalisation method of the 3D model. In par-
ticular, we show results on a cohort of 121 different heart
geometries and measurements. Finally, an exploitable code
of the 0Dmodel with scripts to perform parameter estimation
will be released to the community.
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1 Introduction

Electromechanical models of the heart simulate the physical
behaviour of a patient’s heart, in order to perform advanced
analysis of the cardiac function. They are of increasing inter-
est to help clinicians in their daily practice (Kayvanpour
et al. 2015; Baillargeon et al. 2014; Smith et al. 2011). In
particular, recent works have been successful in predicting
haemodynamic changes in cardiac resynchronisation therapy
(Sermesant et al. 2012), ventricular tachycardia inducibility
and dynamics (Chen et al. 2016), as well as in detecting and
localising infarcts (Duchateau et al. 2016) using 3D person-
alised models.

After building the patient’s heart mesh geometry, the sim-
ulated heartbeat has to match clinical data, such as ejected
blood volume and pressure measurements, or more detailed
information about regional motion and abnormalities avail-
able from imaging modalities such as 3D echocardiography
or cineMRI.This is donebyfinding adequate simulations set-
tings (boundary conditions, loading constraints) and values
of model parameters such as myocardial stiffness and con-
tractility (Xi et al. 2011; Chabiniok et al. 2012). This phase of
parameter estimation is usually referred to as the personali-
sation of the cardiac model (Marchesseau et al. 2013b) and
results in a personalised cardiac model (Wang et al. 2012)
made of a patient-specific heart geometry (Schaerer et al.
2006) and patient-specific biomechanical parameters.

A wide variety of 3D computer heart models exists in
the literature, which describe the anatomy and physiology
of the heart at various scales. For example, the 3D mesh
describing the heart geometry can be made of very different
numbers of nodes, and the cellular electromechanical phe-
nomena underlying the build-up of myocardial forces can
either be described with a large number of equations, or sim-
plified equations.We refer to the two comprehensive reviews
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of Chabiniok et al. (2016) and Clayton et al. (2011) for a
large discussion of various models of different scales, types
and implementations. The scale and precision (also known
as fidelity) of the model is chosen according to the study and
the available data. In general, the time required to compute a
simulation increases with its level of detail. The simulation
of a 3D heartbeat using some of the most complex 3D mod-
els can take up to several hours of computation on computers
with hundreds of cores (Panthee et al. 2016). This means that
for applications where many simulations need to be repeat-
edly performed (e.g. parameter estimation), computational
time becomes a real issue.

The joint use of low-fidelitymodels to approximate a high-
fidelity model and lower the computational burden has been
investigated by the multifidelity modelling community since
(Kennedy and O’Hagan 2000). As described in Peherstorfer
et al. (2016), a model management method usually handles
and feeds the outputs of a low-fidelity model (e.g. a simplified
model, a regressionmodel or a projection-basedmodel) to an
underlying application-specific method (e.g. an optimisation
algorithm) as surrogates to the high-fidelity model outputs.
The method also optionally decides when to recompute sim-
ulations of the high-fidelity model to guarantee the accuracy
of the low-fidelity approximation.

Here we present an original 0D/3Dmultifidelity approach
for the personalisation of 3D cardiac models (Fig. 1). First,
from our 3D cardiac model, we derived and implemented a
simplified “0D” model which is faster by 4 orders of magni-
tude. This was performed as proposed in Caruel et al. (2014),
by approximating the geometry of the ventricle as a sphere
and assuming spherical symmetry and homogeneity of the
electromechanical behaviour.

Then, we introduce a multifidelity coupling in order to
approximate 3D model simulations from 0D model simu-
lations. To this end, we build a parameter mapping which
converts parameters of the 3D model into parameters of the
0D model, based on a few representative 3D simulations in
the parameter space (called the sigma-simulations). Outputs
of the 3Dmodel are then approximated from 0Dmodel simu-
lations, thus enabling a reduction in the computational burden
when a large number of 3D simulations outputs are required.

Finally, we present amultifidelity personalisation method,
built by adapting an efficient optimisation algorithm called
CMA-ES (Hansen 2006) to use approximations of the
3D simulations obtained through the multifidelity coupling
instead of the real 3D simulations. This leads to a fast and
computationally efficient personalisation method for the 3D
model parameters.

A preliminary version of this work was described in
Mollero et al. (2016). In thismanuscript, we propose a signif-
icantly extended methodology for the multifidelity coupling.
First, the sigma-simulations selection is performed so that
additional computational gains are possible when some esti-

mated parameters have the same equations and values in both
models. Then, a more robust, nonlinear, parameter mapping
is used. An additional step is finally introduced to correct
the possible errors arising during the estimation of 0Dmodel
parameters. We also present an improved methodology for
the multifidelity personalisation method which enables the
use of a single coupling for many iterations of CMA-ES.
This is done while simultaneously ensuring that the approx-
imation is accurate enough for the optimisation algorithm,
resulting in an overall estimation which is 5 times faster than
in Mollero et al. (2016) on average.

In terms of results, we present extended results and
discussions for both themultifidelity coupling and themultifi-
delity personalisation method. The approximation accuracy
of the coupling is compared to an hypersurface interpola-
tion method, and the personalisation method is compared to
BOBYQA (Powell 2009), a commonly used derivative-free
optimisation algorithm. This leads to an extended discus-
sion on the computational aspects of our method in a parallel
environment. This work is illustrated on a personalisation
problem involving 5 parameters and 3 outputs, and we
demonstrate results on a database of 121 different geome-
tries and clinical values, which we believe to be one of the
largest cohort of personalised cardiac cases to date. This per-
sonalisation took around 2.5 days on our cluster.

Lastly, our 0Dmodel equations are encoded in theCellML
format (Cuellar et al. 2003) and made available for down-
load from the Physiome Model Repository1 (Yu et al. 2011).
Python scripts to perform parameter estimation in the 0D
model will be released within 1 month of publication, from
the same location.

2 Multifidelity cardiac modelling and
personalisation framework

In this work, we use both a 3D electromechanical model
which can simulate the behaviour of complex patient-specific
heart geometries and a reduced “0D” version of this model
which can be summarised in a few equations. Both models
rely on the same mechanical laws, but simplifying assump-
tions are made on the geometry of the 0D model to derive its
equations. We also introduce the personalisation framework
for the parameters of both models.

2.1 The 3D cardiac model

Our 3D cardiac eletromechanical model is an implementa-
tion of the Bestel–Clement–Sorine (BCS) model (Chapelle
et al. 2012) by Marchesseau et al. (2010, 2013a) in SOFA2,

1 https://models.physiomeproject.org/e/470.
2 https://www.sofa-framework.org.

123

https://models.physiomeproject.org/e/470
https://www.sofa-framework.org


Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac… 287

Section 2 : 3D and 0D Cardiac Electromechanical Models

ba c
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Fig. 1 3D and 0D cardiac models (a–c). Ourmultifidelity personalisation method performs parameter estimation in the 3D model using CMA-ES
(d), based on 0D simulations obtained through the multifidelity coupling between the models

an open-source simulation software. The model uses the fol-
lowing items as an input:

– A 3D tetrahedral biventricular mesh, either synthetically
created or derived from segmented MRI images.

– A set ofmyocardial fibres directions, defined at each node
of the mesh. Here we use synthetic fibres from the rule
based on Streeter (1979).

– A set of depolarisation and repolarisation times at each
node of the set computed from an electrophysiology
model. Here we use the Eikonal model as described in
Sermesant et al. (2012).

Myocardial forces are then computed at each node and at
each time step from the equations of the BCS model. Then,
the myocardial motion (mesh nodes velocities) as well as
ventricular volumes and pressures is computed at each time
step of the cardiac cycle from these forces. See “Appendix
A” for a description of the mechanical model equations and
parameters. With myocardial meshes made of around 15 000

nodes and a time step of 5 ms, a single beat of 0.9s takes
15 minutes to compute on average on a single-core (Intel(R)
Core(TM) i7-4600U [2.10GHz]).

2.2 The 0D cardiac model

As described in Caruel et al. (2014), it is possible to derive
the equations of a fast 0D model of the heart, which relies on
the same BCS equations. This is done by making the follow-
ing simplifying assumptions on the geometry, the electrical
activation and the properties of the material:

1. The ventricle has a spherical shape.
2. The material is incompressible.
3. The electrical activity is synchronous and homogeneous

over the sphere.

With these assumptions of spherical symmetry, myocar-
dial forces and motion are also spherically symmetric and
can be entirely described by the inner radius r of the ventri-
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cle. Deformation and stress tensors can also be reduced to a
simple form (see Caruel et al. (2014), which leads to a system
of a dozen equations (see “Appendix B”).

We implemented the equations into C code and solve the
system of equations using an explicit Forward Euler method
with a temporal discretisation of 0.01 ms. This leads to the
simulation of around 15 beats per second. We also encoded
the 0D model in the CellML format (Cuellar et al. 2003),
which is an open standard based on the XML markup lan-
guage to store and exchange computer-based mathematical
models. This model can be downloaded from the Physiome
Model Repository3 and easily exploited through the software
OpenCOR (Garny and Hunter 2015).

2.3 Parameter estimation framework for cardiac models

After building the model, parameter estimation is usually the
first step to analyse clinical data with a model. It consists
in finding parameter values for which the simulation with
the model reproduces available values and quantities in the
data, such as pressure or volumemeasurements. In particular,
when the geometry is patient-specific, this phase is called
cardiac model personalisation (Marchesseau et al. 2013b;
Kayvanpour et al. 2015).

Formally, we consider a cardiac model M , a set of sim-
ulated quantities called the outputs O and a subset PM of
varying parameters of the model (while the other parame-
ters are supposed fixed). Given a vector of these parameters
x ∈ ΩM, we note OM(x) the values of the outputs O in the
simulation of M with parameter values x . The goal of per-
sonalisation is to find parameter values x∗ ∈ ΩM for which
the outputs valuesOM(x∗) best match some target values ̂O .

This is an inverse problem, which can be tackled by
different methods (see the review of Chabiniok et al.
(2016)). We propose here a parameter estimation framework
(Fig. 1d) through derivative-free optimisation, using an effi-
cient genetic algorithm called CMA-ES (Hansen 2006).

2.3.1 Robust optimisation with the genetic algorithm
CMA-ES

We define the score S(x, ̂O) of some parameter values x
as the L2 distance between OM(x) and ̂O , normalised by
the Hadamard (coordinate-by-coordinate) division � with a
vector N , in order to compare outputs with different units:

S(x, ̂O) = ‖(OM(x) − ̂O) � N .

We then perform a derivative-free optimisation with the
genetic algorithm CMA-ES, which aims at minimising this
score S. The algorithm (which stands for covariance matrix

3 https://models.physiomeproject.org/e/470.

adaptation evolution strategy) asks at each iteration n for the
scores of m points xi ∈ ΩM (a generation), drawn from a
multivariate distribution with covariance I cn and mean Imn .
Then, it combines Bayesian principles of maximum likeli-
hood with natural gradient descent on the ranks of the points
scores in the generation to update both I cn and Imn .

The CMA-ES algorithm has many advantages in this con-
text. First, it can explore a large and unbounded parameter
space while still performing a local search at each iteration
and has shown very good results on problems involving hun-
dreds of parameters to optimise (Geijtenbeek et al. 2013).
Second, because the updates of the I cn and Imn only depend on
the score ranks, it is very robust to outliers in the generation,
in particular to parameter values for which the simulation
diverges (in which case we give an arbitrary high score to
these parameters).

Also, since each score comes from an independent simu-
lation, this algorithm is well suited to parallel environments.
We can either decide to set a very high population sizem and
do many parallel simulations (in this case the algorithm can
converge in a few iterations), or a lower population size and
rely instead on many iterations of the algorithm for conver-
gence.

2.3.2 Application to the 0D model

Because the 0D model is extremely fast (15 beats per sec-
onds), parameter estimation is also very fast with the 0D
model. For example, with a population size of 50 points per
generation it takes less than 50 generations and 3 minutes on
a 4-core computer (with parallel computation of the simula-
tions within each generation) to make most of the problems
with sets of up to 10 outputs and parameters converge.

In our current implementation, 29 outputs can be extracted
from the pressure, volume and flow curves and 25 parameters
of the 0D model can be estimated. Python scripts to auto-
matically perform the parameter estimation will be released
within 1 month after the publication, available for download
from the Physiome Model Repository.4

2.3.3 Application to the 3D model

It is possible to apply directly this framework to the 3D
model, but the computational burden can become an issue
because of the time required to compute the 3D simulations.
Indeed, either we set a small population size, but we need
many iterations of CMA-ES (of around 15 minutes each). Or
we set a high population size but is the number of parallel
CPUs used at the same time which may become prohibitive.
In Sect. 4, our multifidelity personalisation method lowers
this computational burden by replacing the outputs values

4 https://models.physiomeproject.org/e/470.

123

https://models.physiomeproject.org/e/470
https://models.physiomeproject.org/e/470


Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac… 289

Table 1 Sets of3Dmodel parameters andglobal outputs in the example

Global outputs O

Stroke volume SV

Mean aortic pressure MP

Diastolic aortic pressure DP

Parameters of the 3D model P

Contractility σ

Stiffness c1
Peripheral resistance Rp

Aortic compliance C

Central venous pressure Pve

of 3D simulations with approximations computed from 0D
simulations through amultifidelity coupling between the two
models, as explained in Sect. 3.

3 Multifidelity coupling: approximating global
outputs values of the 3D model

We present here a multifidelity coupling between the 3D and
the 0D model. We will call global outputs of the models
quantities which can be computed from the simulations of
both models, such as the total ejected blood volume (stroke
volume) or the minimal (diastolic) aortic pressure.

We consider a set of N1 parameters of the 3DmodelP3D,
a set of global outputs O , and a set of parameter values
xi ∈ Ω3D of the parametersP3D. The goal is to get approxi-
mations of the valuesO3D(xi ) by performing 0D simulations
and only a few 3D simulations.

We will illustrate the method on the following problem: a
set of 5 parametersP3D of the 3D model, and a set of 3 out-
puts O listed in Table 1. We want to approximate the output
values for m = 30 simulations with parameters xi , drawn
from a multivariate distribution (as in a CMA-ES iteration).

3.1 Global strategy: building a mapping between 3D
and 0D mechanical parameters

Because they rely on the same equations, both models dis-
play many similar trends in their global outputs values when
some parameters vary. For example, if a 3D simulation and
a 0D simulation have the same stroke volume, the stroke
volumevariationswith changes in the haemodynamic param-
eters (such as the peripheral resistance) are very similar in
both models.

However, some parameters do not behave exactly the
same, and are not always even in the same range of values.
This is especially the case of mechanical parameters such

as the 3D and 0D dampings which rely on different equa-
tions. But even for parameters from the same equations in
both models (such as σ and c1), the values might be very
different in 0D and 3D simulations with similar outputs, due
to the different assumptions.

Formally, there is no trivial function which can convert
the xi ∈ Ω3D into values y ∈ Ω0D of 0D model parameters
P0D, forwhich the global outputs valuesO0D(y) andO3D(x)
are the same (or at least close). The idea of the multifidelity
coupling is to find 0Dmodel simulations which are similar to
a few selected 3D simulations and then build a parameter
mapping φ between the parameters of both models. We
use the following strategy:

1. First we perform a few representative 3D simulations
within thedomainof interest (called the sigma-simulations
with parameters Xi ∈ Ω3D).

2. Then, for each 3D sigma-simulation with parameter val-
ues Xi ∈ Ω3D , we estimate parameter values Yi ∈ Ω0D

of a coupled 0D simulation which approximates the out-
puts O of the 3D sigma-simulation.

3. From those 3D model parameters Xi and 0D model
parameters Yi , we derive a parameter mapping φ which
converts 3D parameters into 0D parameters.

4. Finally, we approximate the global outputs valuesO3D(x)
of all the 3D simulations xi ∈ Ω3D , from the 0D sim-
ulations with parameters φ(xi ) ∈ Ω0D . This is done by
adding a correction termψ which is learnt to avoid numer-
ical errors in the previous steps.

The overall process is illustrated in Fig. 2. In the sequel,we
first discuss the selection of representative sigma-simulations
(Sect. 3.2), then the computation of coupled 0D simulations
(Sect. 3.3), then the parameter mapping φ (Sect. 3.4) and
the correction term ψ (Sect. 3.5). Finally, we give numerical
results of the multifidelity approximation in Sect. 3.6.

3.2 Sigma-simulations: performing representative 3D
simulations within the domain of interest

We consider a subsetP ′
3D ⊂ P3D of N2 < N1 parameters

which cannot be converted directly into 0D model parame-
ters. In order to assess the global outputs variations to these
parameters in the set of xi ∈ Ω3D , we perform a few selected
simulations in the domain Ω3D .

To this end, we perform PCA on the set of xi ∈ Ω3D ,
which gives N1 eigenvectors of the set. Then, we extract the
N2 eigenvectors dk which display the maximal variations of
the parametersP ′

3D. This is done by sorting the eigenvectors
by the norm of their projection of the subspace made by
the coordinates corresponding to the parameters P ′

3D, and
selecting the N2 largest.
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Fig. 2 Multifidelity coupling: After performing a few 3D sigma-
simulations, we find coupled 0D simulations for each of those simula-
tions. Then, we build a parameter mapping which converts parameters

of the 3D model into parameters of the 0D model, in order to approxi-
mate 3D simulations outputs with the outputs of 0D simulations

One sigma-simulation is then performed at the centre
(X0) of the domain of interest Ω3D and pairs are performed
equidistant of X0 in each of the N2 extracted directions
(X+

k = X0 + dk and X−
k = X0 − dk for k = 1..N2). This

gives a total of 2N2 + 1 representative simulations in the
domain.

In our example, the three haemodynamic parameters Rp,
C and Pve have the same values and the same equations in
both models, so we can use the same values directly in the
two models. On the other hand, the contractility σ and the
stiffness c1 do not have the same values in both models so
we need to assess how their variation is going to impact the
global outputs. We then extract the N2 = 2 directions for
which the variations of σ and c1 are maximal and perform a
total of 2N2 +1 = 5 sigma-simulations with parameters X0,
X+
1 , X

+
2 , X

−
1 and X−

2 .

3.3 Coupled 0D simulations: reproducing global outputs
of the 3D sigma-simulations with 0D simulations

Then, for each sigma-simulation with parameters Xi , i =
1..2N2 + 1 and output values O3D(Xi ), we want to find a
corresponding 0D simulation which has similar global out-
puts values. To this end, we consider another setO ′ of global
outputs called the coupling outputs, and a set of 0D parame-
tersP ′

0D called the coupled 0D parameters.
We then find values Yi of the parametersP ′

0D for which
the coupling outputs values O ′

0D(Yi ) of the 0D model sim-
ulations are the closest from the coupling outputs values
O ′

3D(Xi ) of the 3D model sigma-simulations, with all other

parameters being the same in both models. This is what we
call a coupled 0D simulation.

This is done by performing, for each 3D sigma-simulation
k = 1..N2, an independent parameter estimation of the
0D model parameters P0D using the method presented in
Sect. 2.3. The target values ̂O ′ for the coupling outputs O ′
are their values in the corresponding 3D sigma-simulation.

In our example, since we want to approximate outputs
from the volume and pressure curves (see Table 1), we need
to approximate these curves with the 0D model. We then
chose a set of 4 coupling outputs O ′ from these curves, and
a set of 3 coupled 0D parameters P0D of the 0D model to
estimate, both listed in Table 2.

After performing the 5 parameter estimations for the 5
sigma-simulations, we found 5 coupled 0D simulations with
parameters Yi , i = 1..5 which have similar coupling out-
puts values, which we report in Table 3. We also display the
pressure and volume curves of the 3D sigma-simulations and
coupled 0D simulations in Fig. 3.

It is worth noting there is no guarantee that we can find a
set of parameters for which the 0D simulation has exactly the
same global outputs values as the 3D simulation. In fact, we
can observe in Table 3 that some coupling outputs do not have
the same values in a 3D sigma-simulation and the 0D corre-
sponding coupled simulations. We will see in a subsequent
section how this obstacle can be overcome.

We point out that there aremany possibilities to choose the
sets of coupling outputs O ′ and coupled 0D parameters. For
example, another possibility would have been to use directly
the set of outputs to approximate O . This would have lead
to 0D and 3D simulations with the same stroke volume, but

123



Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac… 291

Table 2 Coupling outputs, Coupled 3D parameters, Coupled OD
parameters which are estimated and Directly Mapped Parameters in
the example of

Coupling outputs O

Maximal volume Vmax

Minimal volume Vmin

Mean aortic pressure MP

Diastolic aortic pressure DP

Coupled 3D parameters P ′
0D

Contractility σ

Stiffness c1

Coupled 0D parameters P0D

Contractility σ

Stiffness c1
Resting radius r0

Directly mapped parameters

Peripheral resistance Rp

Aortic compliance C

Central venous pressure Pve

Table 3 Coupling outputs values for the 3D sigma-simulations with
parameters Xi and the corresponding coupled 0D simulations with
parameters Yi

Vmax (ml) Vmin (ml) MP(Pa) DP (Pa)

X0 129 51.8 10278 7290

X+
1 129 35.5 10034 7590

X+
2 129 64.4 9556 7614

X−
1 129 69.8 10743 7906

X−
2 129 40.4 10761 6664

Y0 128 53.9 10318 7310

Y+
1 125 41.0 10107 7679

Y+
2 128 66.3 9591 7634

Y−
1 129 70.4 10759 7910

Y−
2 128 42.5 10806 6683

not necessarily the same minimal and maximal volumes. In
general, the sets of O ′ and O have to be related so that it
is possible to calculate the values of the outputs O from the
values of the coupling outputs O ′.

Similarly, there are many possibilities to choose the sets
of coupling 0D parameters. Here we could also have set
the resting radius in the 0D model to a value for which the
“resting volume” is the same than in the 3D model and then
estimate only the stiffness and contractility of the 0D model.
Empirically, it seems to be a good thing to use more parame-

ters to avoid ending in a local minimum during the parameter
estimation of the 0D simulations.

3.4 Parameter mapping: a function to convert 3D model
parameters into 0D model parameters

We now have a corresponding coupled 0D simulation with
parametersYi ∈ Ω0D for each sigma-simulationwith param-
eters Xi ∈ Ω3D . The second idea of the coupling is to build a
mapping φ between the 3D and 0D model parameters using
the Xi and Yi . This mapping will then be used to approx-
imate global outputs values O3D(xi ) of the 3D simulations
with parameters xi , from the values O0D(φ(xi )) of the 0D
simulations with parameters φ(xi ).

The parameters Xi ∈ Ω3D were chosen in a specific way
in Sect. 3.2: one (X0) is at the centre of the xi , and there
are two equidistant of X0 (X+

k and X−
k for k = 1..N2)

for each of the N2 axis, which are orthogonals from each
other. However, theYi were independently estimated for each
sigma-simulation so there is no such relationship.

For the mapping φ, we use here a degree 2 hypersurface
which interpolates the Yi in the points Xi . In dimension 1,
this is equivalent to finding a degree 2 polynomial which
interpolates three specific points. In higher dimension (N2 in
our case), there is a straightforward formula because of the
specific organisation of Xi along orthogonal axis:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ck = (x − X0) · dk
||dk||2 , k = 1..N2

F+
k = (Y+

k −Y0)+(Y−
k −Y0)

2 , k = 1..N2

F−
k = (Y+

k −Y0)−(Y−
k −Y0)

2 , k = 1..N2

φ(x) = Y0 +
N2
∑

k=1
ck · (ck · F+

k + F−
k ).

(1)

This formula leads toφ(Xi ) = Yi for all the i = 1..2N2+1
sigma-simulations, so the parameters of the 3D sigma-
simulations are mapped to the parameters of the coupled 0D
simulations of the previous section. We will then use this
mapping to approximate global outputs of 3D simulations
with parameters xi from 0D simulations with parameters
φ(xi ).

3.5 Approximating global outputs: correcting bias

Ideally in the computation of coupled 0D simulations in
Sect. 3.3,wefind0Dsimulationswith the samecoupled outputs
values than the 3D sigma-simulations, i.e. O ′

3D(Xi ) =
O ′

3D(Yi ). As illustrated in Table 3, this is not always the case
and the coupled outputs values can be different between the
coupled 0D simulations and the sigma-simulations. This also
means that the direct approximation of the sigma-simulations
output values O3D(Xi ) by the values O0D(Yi ) through the
mapping has a bias due to this difference.
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Fig. 3 Comparison between the volume (top) and pressure (bottom) curves of the sigma-simulations simulated with the 3D model (red), and the
corresponding coupled 0D simulations (black). The 5 columns correspond, respectively, to the sigma-simulations with parameters X0, X

+
1 , X

+
2 ,

X−
1 and X−

2

In order to correct this approximation bias, both for the
output values of the sigma-simulations and all the subse-
quent 3D simulations with parameters xi , we build a new
degree 2 hypersurface ψ between the parameters of the
sigma-simulations Xi and the bias. The formula is exactly
the same as in Eq. 1 where the Yi are replaced by the bias
values (O3D(Xi ) − O0D(Yi )).

The final approximating function Cφ,ψ used to approx-
imate the O3D(xi ) is then given by the following formula:

Cφ,ψ(xi ) = O0D(φ(xi )) + ψ(xi ) ≈ O3D(xi ), (2)

and interpolates in particular the global outputs values
O3D(Xi ) of the sigma-simulations.

3.6 Approximation results

Results are given here for the approximation of the global
outputs values O3D(xi ) of the 30 simulations with param-
eters xi . We compute the mean absolute error made on the
approximation of the 3 global outputsO , first with the biased
approximation with O0D(φ(xi )) (MAEBiased) and then with
the corrected approximation with Cφ,ψ (MAECorrected).
Results are reported in Table 4.

We observe a good approximation of the output values
compared to the range of values to be approximated and that
the corrected approximation makes a better approximation
of the outputs values than the biased approximation. This
means the hypersurface ψ indeed corrects errors due to the
differences between the coupled 0D simulations and the 3D
sigma-simulations.

Finally, we compare our method to an interpolation with
a degree 2 hypersurface (MAEHypersurface). To this end, we
use the same formula than Eq. 1, where the Yi are replaced

Table 4 Error in the approximationof the global outputs valuesO3D(xi )
with the various methods

Global output SV(ml) DP (Pa) MP(Pa)

Range 38.23 3010 2254

MAECorrected 1.59 56.4 137

MAEBiased 4.58 62.8 140

MAEHypersurface 2.09 511 408

MAEHypersurface-11 0.25 174 93

by the output values O3D(Xi ). We see in particular that our
method performs better on all the outputs (MAECorrected <

MAEHypersurface), in particular on the pressure values. This
is because the sigma-simulations are computed only in the
directions of maximal variations of the parameters σ0 and c1
(see Sect. 3.2). There is then a few directions of the parameter
space in which the variations of global output values could
not be evaluated by the interpolation.

In order to comparemore fairly to an interpolationmethod,
we computed the sigma-simulations in all the directions of
the domain by selecting all the eigenvectors in Sect. 3.2, lead-
ing to 2 · N1 + 1 = 11 sigma-simulations. We performed the
degree 2 interpolation from these 11 sigma-simulations and
report the results (MAEHypersurface-11). The degree 2 hyper-
surface performs better than ourmethod on the stroke volume
and the mean pressure but not on the diastolic pressure.

We conclude that the approximation using the coupling
of the 0D and 3D models gives competitive approximation
results compared to the classical regression methods, and
with the lowest computational cost. This is because the vari-
ations of some outputs (which rely on the same equations in
both models) can be directly approximated in some direc-
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tions of the parameter space, without having to compute
3D simulations in these directions. Here in particular, the
pressure outputs variations due to changes in the haemody-
namic parametersC , Rp and Pve are correctly predicted with
the coupling (especially the diastolic aortic pressure (DP)
variations), even though no sigma-simulation was computed
in the directions of maximal variation of these parameters
(Sect. 3.2). As a consequence, only 5 sigma-simulations are
required to approximate all the outputs values within the
parameter space with the coupling, while the hypersurface
interpolation needs 11 sigma-simulations to achieve simi-
larly accurate results.

4 Multifidelity optimisation for efficient 3D cardiac
model personalisation

Here we present our multifidelity personalisation method
for the 3D model. We suppose that a parameter estimation
with CMA-ES was set up over N1 parameters P of the 3D
model as described in Sect. 2.3, some global outputsO , some
target values ̂O and a population size m. The idea of the
method is to replace the scores of 3D simulations in CMA-
ES with approximate scores calculated through multifidelity
coupling.

We illustrate the method with the same set of 5 parameters
P and 3 outputsO as in Sect. 3 and the same numberm = 30
for the population size. Target values ̂O for the optimisation
are, respectively, 60 ml for the stroke volume (SV), 7315 Pa
for the diastolic aortic pressure (DP) and 10,152 Pa for the
mean aortic pressure (MP). The normalisation coefficients
for this problem (in the vectorN defined in Sect. 2.3.1) are
10 ml for the stroke volume (SV), 200 Pa for the diastolic
aortic pressure (DP) and the mean aortic pressure (MP).

4.1 Multifidelity-CMA: CMA-ES optimisation with the
multifidelity coupling

At each iteration, the algorithm CMA-ES asks for the scores
of m simulations of the 3D model, whose parameters x j are
drawn from a multivariate distribution.

A first approach to replace the computation of the 3D
simulations by 0D simulations is to perform the coupling
described in Sect. 3 for each generation of CMA-ES. This
means recomputing sigma-simulations, coupled 0D simula-
tions and a parametermapping for each set of x j . Thiswas our
approach (calledCoupled-CMA) inMollero et al. (2016).We
showed that the optimisation could converge with approxi-
mate scores, even as fast as with the real scores in some
cases. We also personalised 34 hearts with this method, thus
exhibiting a practical personalisation method with a lower
computational burden than the original CMA-ES algorithm

(because only the sigma-simulationswere computed for each
generation instead of the m 3D simulations).

Herewepresent an improved approach calledmultifidelity-
CMA. Instead of recomputing the coupling for each genera-
tion, we approximate scores of 3D simulations of successive
generations of CMA-ES. Indeed, because the sets of param-
eters xnj and xn+1

j asked by CMA-ES in two consecutive
generations n and n + 1 are usually close, the function Cφ,ψ

computed at the iteration n to approximate 3D simulations
with parameters xnj can give a good approximation for 3D

simulations with parameters xn+1
j as well.

On the other hand, after a few iterations n + 1..n + p, the
points asked by CMA-ES can be increasingly far from the
sigma-simulations of the multifidelity coupling performed at
n. This can lead to approximations of the scores which are
increasingly inaccurate, making the optimisation impossible.

We then developed a criterion to evaluate the accuracy of
the approximation for a few successive iteration of CMA-ES
and then decide at which step a newmultifidelity coupling has
to be computed. This is done by iterating on the following
steps:

1. Coupling step At a generation n0 of CMA-ES, we first
perform amultifidelity coupling, as explained in 3.4. This
leads to the computation of the function Cφ,ψ .

2. Exploration stepThen,we perform N iterations n = n0+
1..n0+N of theCMA-ESalgorithm,where all the outputs
O3D(xnj ) of the 3D simulations with parameters xni are
approximated by Cφ,ψ(xnj ).

3. Control step For each of these N iterations, we compute a
control-simulation: the 3D simulation whose parameters
on are the mean of the population parameters xnj .

4. Selection step We compute our criterion M(on) as the
Mahalanobis distance between the vector of outputs val-
ues O3D(on) of the control-simulation and the set of
vectors of approximated outputs values Cφ,ψ(xnj ).
Finally, we select the iteration n∗ at which the next cou-
pling step is performed with the following criteria:

n∗ = argmin
M(on)<γ

√
|O|

O3D(on)

The process is illustrated in Fig. 4. The Mahalanobis dis-
tanceM(on) is a ratio between the approximation error on the
control-simulation output values, and the range of approxi-
mate outputs values for this generation.Roughly, this gives an
indication on “how accurate the coupling is” on the control-
simulation, compared to “how accurate it needs to be” so that
CMA-ES can rank the scores accurately.

For example in Fig. 5, we report for N = 10 iterations the
scores of the control-simulations on which were predicted
through the function Cφ,ψ (in black), and the real scores
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Fig. 4 Criteria for selecting the generation for the next coupling step
in the selection step: as the 3D parameters of the simulations asked by
CMA-ES (in black) are increasingly far from the sigma-simulations (in
green) of the coupling, the predicted outputs values with 0D simulations

(in orange) are increasingly far from the real outputs values of the 3D
simulations. We then recompute the coupling when this distance is too
high (M(on) > γ

√|O|)

of these simulations (in blue). Simultaneously, we show the
criterion M(on) for these N iterations and the upper value
(red line) γ

√|O| for the criterion (γ = 1.5 here).
We can see that the score prediction (thus the approxima-

tion of the outputsO3D(xnj ) values byCφ,ψ ) is quite accurate
for at least the 5 first iterations and is less accurate for n ≥ 6.
Then, even though the score prediction seems as accurate
at the iteration 5 than at the generation 1, M(on) is higher.
This is because the prediction error is more important rela-
tively to the set of Cφ,ψ(xnj ) of the generation, in particular
in directions where the set has a lower variance.

In this example, the iteration 5 was selected to recompute
the coupling (black vertical line), which is also the iteration
where the control-simulation has the minimal score over the
10 iterations. In some cases, later iterations can have a lower
score but are not selected because the criterion M(on) is too
high for this iteration (such as the iteration 7).

The upper bound γ
√|O| for the criterion has an important

impact on the optimisation behaviour. If a high accuracy is
imposed (small γ value), then one of the earlier iterations of
the exploration step is usually selected for the subsequent
coupling step, even if a later control-simulation has a lower
score. This can lead to a slow optimisation. On the other with
a small accuracy (high γ value), the CMA-ES algorithm can
end up in local minima because it performed the optimisation
on inaccurate values.

Therefore, the value of γ characterises a trade-off between
maximising the optimisation gain with a single coupling and
ensuring the approximation errors do not impact the opti-

misation process. Because of the probabilistic nature of the
algorithm and the various nonlinearities of the score func-
tion, the optimal value of γ seems very dependent on the
optimisation problem. We found γ = 1.5 to give good con-
vergence results in our experiments, and the number n∗ of
the iteration selected in the selection step is 5.5 in average
in our experiments.

4.2 Computational considerations: a parallelisable
method

The main computational cost in personalisation methods
comes from the computation of the 3D simulations. In our
implementation, each simulation of one heartbeat with the
3D model uses one CPU, during a time T3D which depends
mostly on the size of the mesh, and the heartbeat duration.

Most of the modern research is performed on computer
clusters which can perform many tasks at the same time. In
particular, in our method, many steps can be parallelised. To
compare different optimisation methods in a parallel setting,
we introduce here two metrics: the classic CPU time which
measures the total amount of CPU resources used and the
optimisation time which measures the duration of the opti-
misation in (real) time.

During one complete iteration of multifidelity-CMA, the
following steps are parallelised:

1. Computation of the 2N2 + 1 3D sigma-simulations: the
simulations are performed in parallel and each one takes
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Fig. 5 Top: real scores (blue) and approximated scores (black) of the
N = 10 control-simulations. Bottom: Value of the criterion M(on) of
the control-simulations

a CPU time T3D . The whole step has then a CPU time of
(2N2 + 1) · T3D and an optimisation time of T3D

2. Computation of the coupled 0D simulations: all the
parameter estimations are performed in parallel. Each
one uses 4 CPUs during fixed time of around 3 minutes.
Thewhole step has a CPU time of (2N2+1)·4· 3minutes
and an optimisation time of 3 minutes.

3. Computation of the N 3D control-simulations: the sim-
ulations are performed in parallel and each one takes a
CPU time T3D . The whole step has aCPU time of N ·T3D
and an optimisation time of T3D

In our example, we have 5 sigma-simulation and 10
control-simulation, and the 3D simulation takes 15 minutes.
Each iteration of multifidelity-CMA then takes a total CPU
time of 5 ∗ 15 + 4 ∗ 5 ∗ 3 + 10 ∗ 15 = 285 minutes and an
optimisation time of 33 minutes.

4.3 Results: comparison of optimisation time, CPU time
for 4 personalisation methods

Herewe compare the evolution of theCPU time and the score
S during optimisation on a typical case, with the 4 following
optimisation methods:

1. The multifidelity-CMA method with 0D/3D coupling.
2. The multifidelity-CMAmethod where the approximation

of outputs is done with a degree 2 hypersurface interpo-
lation relying on 11 sigma-simulations (as explained in
Sect. 3.6).

3. The classic CMA-ES method with a population size of
m = 30.

4. BOBYQA, which is another commonly used gradient-
free optimiser, for example, to solve personalisation
problems (Seegerer et al. 2015) or as a baseline to
evaluate other personalisation methods (Neumann et al.
2016). It uses trust region method and forms successive
quadraticmodels of the score functionwhich interpolates
the points computed during optimisation.

Results are shown in Fig. 6. We can see that BOBYQA
(red) is slow to converge, but has also a low computational
cost, both due to the fact that BOBYQA performs only one
iteration at a time. The normal CMA-ES (blue) converges
faster than BOBYQA, but with a very high computational
cost because 30 simulations of the 3D model are computed
at each generation.

Finally, both our multifidelity approaches are very fast
to converge; however, the multifidelity-CMA which uses the
0D/3D multifidelity coupling is the one with the lowest CPU
time (because only 5 sigma-simulations per complete itera-
tion is computed instead of 11, as explained in Sect. 3.6).

We conclude that the multifidelity approach of the CMA-
ES algorithm leads to considerable improvements in opti-
misation speed, both from the original CMA-ES algorithm
and BOBYQA. Finally, the approximation of outputs with a
0D/3D multifidelity coupling instead of a generic hypersur-
face interpolation leads to additional computational gains.

4.4 Results: personalisation of a database of 121 cases

Wefinally present results on a large database of 121 cases. For
each patient, a biventricular heart mesh geometry (between
10,000 and 15,000 nodes) was built from the available MRI
image and the boundaries of the myocardium were tracked
in the cineMRI images as described in Jolly et al. (2011) and
Wang et al. (2013). This led to the computation of the vol-
ume curve and then the value of the stroke volume. Pressure
measurements were also available for each heartbeat.

We applied ourmultifidelity-CMAmethod to personalise
the whole cohort. The optimisation started from a vector
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Fig. 6 Comparison of the evolution of the score S (top) and CPU time
(bottom) during optimisation for the four methods. BOBYQA is in red,
the classicCMA-ES is in blue,multifidelity-CMAwith the hypersurface
approximation is in black, andmultifidelity-CMAwith 0D/3D coupling
is in green

xstart of parameter values which has the same values for
every patient, except for Pve, which is set at the value DP-
2000 Pa (see Table 6). The algorithms ran for around 2.5
days, and the BOBYQA optimisation was ran on the same
problems during this period as well.

We consider a personalisation to be successful when a
set of parameter values was found with a score lower than
l1 = 0.1, and acceptable if the score is lower than l2 = 1.
This means the personalised simulation matches the target
stroke volume within 1 ml and the pressure measurements
within 20 Pa for the successful case, and within, respectively,
10 ml and 200 Pa in the acceptable case. In other cases,
the personalisation is said failed. We report the number of
successful, acceptable and failed cases on this database, for
both methods in Table 5.

A high number of cases were successfully personalised
(113 among 121 cases) with our method. For the accept-
able cases, and one of the failed case, the optimisation had
converged in a local minima. For the other failed case, the
CMA-ES algorithm diverged to extreme parameter values

Table 5 Results of the personalisation on the database

Result Successful Acceptable Failed

Multifidelity-CMA 113 6 2

BOBYQA 5 69 47

during optimisation. For BOBYQA, the convergencewas not
yet reached in most of the non-successful cases (the score is
the lowest in the last iteration).

We finally report the mean and standard deviation of all
the estimated parameter values, in Table 6, as well as the
norm of their relative variation |Δ| compared to the starting
value during the optimisation. This shows in particular that
the stiffness c1 did not change a lot during the personalisation
process. The arterial compliance C and the contractility σ0
are the parameters which changed the most.

5 Discussion and conclusion

We presented a novel multifidelity approach involving a 3D
cardiac electromechanical cardiacmodel and a simplified 0D
model, which relies on the same equations but with simpli-
fying assumptions. We developed an original multifidelity
coupling between the parameters of bothmodels,which gives
a good multifidelity approximation of global output values
in 3D simulations from 0D simulations. We then used this
approximation in an efficient parameter estimation process
using the genetic algorithmCMA-ES, in order to have an effi-
cient multifidelity personalisation method for the 3D model.

Our multifidelity coupling procedure computes a map-
ping between the parameters of a few representative 3D
sigma-simulations within the domain, and the parameters of
corresponding coupled 0D simulations with the same out-
put values. This is done through parameter estimation on the
0D model parameters to compute coupled 0D simulations
that have the same global outputs values than 3D sigma-
simulations. The parameter mapping is then derived through
an interpolation method.

This enables to get fast and accurate approximations of
3D simulations with the 0D model. These approximations
are then used in the parameter estimation of 3D model
parameters with CMA-ES, to replace 3D simulations while
simultaneously controlling the accuracy of the approxima-
tion and recomputing a coupling when the accuracy is too
low. Ultimately, this results into both an increase in the speed
of the 3D parameter estimation process and a decrease in the
computational cost.

Our multifidelity approach slightly differs from more
classic multifidelity methods (Kennedy and O’Hagan 2000;
Peherstorfer et al. 2016) where the same parameter values
are used as input of both models, and the outputs of the low-
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Table 6 Statistics of the
estimated parameter values and
their variations during the
personalisation

c1 (kPa) σ (MPa) Pve (Pa) R (MPa m3 s) C (MPa-1 m-3)

xstart 50.1e1 68.8 DP-2000 54.1 18.0e-3

Mean 50.5e1 91.6 4760 68.2 8.17e-3

Std. 0.36e1 36.5 1340 16.3 2.41e-3

Mean |Δ| 4.74% 53.9% 26.2% 35.8% 54.7%

fidelity model are corrected a posteriori to fit the outputs of
the high-fidelity model. Since the parameters of both models
are not exactly the same, we had to find a mapping between
the parameters instead of the outputs. This was tractable
thanks to the fast parameter estimation in the 0D model.

A first extension of the multifidelity coupling would be
to use additional shared parameters and equations in both
models, to approximate a larger variety of outputs of the 3D
model (e.g. flow velocities, timings of valve opening and
closing). Since CMA-ES has already been proven successful
on complex optimisation problems with a larger parameter
space, we expect the personalisation method to scale well. A
second extension would be to use themultifidelity personali-
sation to personalise “geometrical” or “local” measurements
which are outputs of the 3D model but not of the 0D model
(e.g. the septal shortening or the circumferential torsion).
Indeed, even though they cannot be approximated through the
0D/3D multifidelity coupling, their values can still be locally
approximated during personalisation using the hypersurface
interpolation.

Finally, the lower-fidelity approximation could be usednot
only for personalisation but also for other applications that
require many simulations, such as parameter sensitivity or
uncertainty quantification (with Monte–Carlo methods, for
example) and also for applications simulations that require
the computation of many cardiac cycles. In particular, a case
where the multifidelity approach could be useful is when the
3D model is coupled with a full-body circulation model as
boundary conditions. Indeed, studies associated with such
models (for example on the influence of physical exercise,
increased heart rate and/or pressure loads) usually require
many heartbeats to be computed. This can be computation-
ally intensive with the 3D model, but it could be done faster
using 0D simulations, through a similar coupling method
than in this manuscript. In this case where the number of cou-
pled parameters would be high, additional constraints could
be added in the parameter mapping to impose correlations
between parameters with different equations or values but a
similar behaviour.
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6 Appendix A: Mechanical equations and
haemodynamics

As described in Marchesseau et al. (2013a) our 3D elec-
tromechanical model is based on the Bestel–Clement–Sorine
model (BCS) of sarcomere contraction as extended by
Chapelle et al. (2012), in conjunction with a Mooney–Rivlin
energy for the passive hyperelasticity. Haemodynamics are
represented through global values of pressures and flows in
the cardiac chambers and coupled to the mechanical equa-
tions with the Windkessel model of blood pressure for the
afterload (aortic pressure).

6.1 The BCS model: active contraction and passive
material

The BCSmodel describes the sarcomere forces as the sum of
an active contraction force in the direction of the fibre, in par-
allel with a passive isotropic visco-hyperelastic component
(see Fig. 1b). It is compatible with the laws of thermody-
namics and allows to model physiological phenomena at
the sarcomere scale which translate at the macroscopic scale
(such as the Starling effect).

The active force in the sarcomere is modelled by the
filament model of Huxley (1957), which describes the
binding/unbinding process of the actin and myosin in the
sarcomere at the nanoscopic scale. At the mesoscopic scale,
it results (Caruel et al. 2014) in a differential equation which
relates the active stress τc, the stiffness kc and the strain ec
of the filament within the sarcomere:
{

k̇c = −(|u|+ + |u|- + α|ėc|)kc + k0|u|+,
τ̇c = −(|u|+ + |u|- + α|ėc|)τc + ėckc + σ0|u|+, (3)

where α is a constant related to the cross-bridge destruction
during contraction, and k0 and σ0 are, respectively, the max-
imum stiffness and contraction. The values of |u|+ and |u|-
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are, respectively, the rate of build-up kATP and decrease kRS
of the force during contraction and relaxation,which depends
on the depolarisation and repolarisation times Td and Tr of
the sarcomere:

u =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

kATP when Td ≤ t ≤ Tr
−kRS otherwise
|u|+ = max(u, 0),
|u|- = −min(u, 0).

(4)

This active force is applied in the direction of the fibre
through the visco-elastic component, made of a spring Es

and a dissipative term μ (see Fig. 1b). As derived in Caruel
et al. (2014), the resulting stress σ1D in the fibre direction is
given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

σ1D = Es
e1D − ec

(1 + 2ec)2
,

(τc + μėc) = Es
(e1D − ec)(1 + 2e1D)

(1 + 2ec)3
,

(5)

where e1D = τ1 · e · τ1 is the strain in the fibre direction
τ1 (e is the Green–Lagrange strain tensor).

Finally, for the passive component the isotropic Mooney–
Rivlin model of hyperelastic material is used, driven by the
following strain energy:

We = c1(I1 − 3) + c2(I2 − 3) + K

2
(J − 1)2, (6)

where I1, I2 and J are the invariants of the Cauchy–Green
deformation tensor, c1, c2 and K are the parameters of the
material.

6.2 Haemodynamic model

To model the influence of blood dynamics during the cardiac
circle, the mechanical equations are coupled with a basic
circulation model implementing the 4 phases of the cardiac
cycle. For a given ventricle, if we note Pat the pressure in the
atrium, Par the pressure in the artery and PV the pressure in
the ventricle, the phases are the following:

– Diastolic filling when PV ≤ Pat, the atrial valve is open
and the ventricle fills up with blood.

– Isovolumetric contraction when contraction starts, PV
rises. Pat ≤ PV ≤ Par and all the valves are closed.

– Systolic ejectionwhen PV ≥ Par, the arterial valve opens
and the blood is ejected into the artery.

– Isovolumetric relaxation when the contractile forces dis-
appear, PV finally decreases. Pat ≤ PV ≤ Par again, and
all the valves are closed.

We use the haemodynamic model introduced by Chapelle
et al. (2012) which links the blood flow q to the ventricular,
atrial and arterial pressures with the following equations:

q =
⎧

⎨

⎩

Kat(PV − Pat) for PV ≤ Pat
Kiso(PV − Pat) for Pat≤ PV ≤ Par
Kar(PV − Pat) + Kiso(Par − Pat) for PV ≥ Par

(7)

Here the atrial pressure Pat(t) (cardiac preload) is imposed
at a constant value Pat_lower except for a pressure bump up
to Pat_upper at the beginning of cardiac cycle, to account for
the contraction of the atrium before the ventricular contrac-
tion. Finally, the pressure of the artery Par (cardiac afterload)
is modelled with the 3-parameter Windkessel model (West-
erhof et al. 1969) and coupled to the ventricular outflow q
through the equation:

RpC Ṗar + Par − Pve = (Rp + Zc)q + RpZcCq̇, (8)

where Rp is the Peripheral resistance, Zc is the characteris-
tic impedance, C is the arterial compliance, and PVe is the
central venous pressure.

6.2.1 Implementation

The passive Mooney–Rivlin energy is discretised on the 3D
meshwith theMJED (multiplicative Jacobian energy decom-
position) method described inMarchesseau et al. (2010), and
the BCS fibre stress and stiffness are computed at each node,
separately from the positions and velocities. This allows a
fast assembly and a good conditioning of the system of
mechanical equations. A Rayleigh damping is then added
to account for the viscous global dissipation, and finally,
the ventricular pressure is computed using a prediction–
correction approach, performed after solving the first system
of mechanical equations. This efficient algorithm and all the
details of the mechanical equations and their 3D discretisa-
tions are fully discussed in Marchesseau et al. (2013a).

7 Appendix B: Reduced equations of the 0D model

7.1 Mechanical equations

The list of simplified equations of our 0D model is reported
in Table 7. Equations (a), (b), (c) and (f) are the same sar-
comere and visco-elastic equations than Eqs. 3 and 5, which
are calculated once for the whole sphere. C in equations
(d), (e), (g) and (h) denotes a component of the simplified
Cauchy–Green deformation tensor which depends only on
y = R − R0. σpassive in equation (g) is the stress due to the
passive law, and σviscosity in equation (h) is the stress due to
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Table 7 Mechanical equations
of the 0D model
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k̇c = −(|u|+ + |u|- + α|ėc|)kc + k0|u|+ (a)
τ̇c = −(|u|+ + |u|- + α|ėc|)τc + ėckc + σ0|u|+ (b)

(τc + μėc) = Es
(e1D − ec)(1 + 2e1D)

(1 + 2ec)3
(c)

C = (1 + y

R0
)2 (d)

e1D = C − 1

2
(e)

σ1D = Es
e1D − ec

(1 + 2ec)2
(f)

σpassive = 4(1 − C -3)(c1 + c2C) (g)
σviscosity = 4η(1 + C -6)Ċ (h)
Σsph = σ1D + σpassive + σviscosity (i)

ρd0 ÿ = Pv(1 + y

R0
)2 − d0

R0
(1 + y

R0
)Σsph (j)

q = 4πR2
0(1 + y

R0
)2 ẏ =

⎧

⎨

⎩

Kat(PV − Pat) for PV ≤ Pat
Kiso(PV − Pat) for Pat ≤ PV ≤ Par
Kar(PV − Pat) + Kiso(Par − Pat) for PV ≥ Par

(k)

RpC Ṗar + Par − Pve = (Rp + Zc)q + RpZcCq̇ (l)

Table 8 Electrical activation in
the 0D model
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t − Td,global
QRSduration

when Td,global ≤ t ≤ Td,global + QRSduration

1 when Td,global + QRSduration ≤ t ≤ Tr,global

(1 − t − Tr,global
QRSduration

) when Tr,global ≤ t ≤ Tr,global + QRSduration

0 otherwise
|u|+ = kATP. fdepo
|u|− = kRS.(1 − fdepo)

(9)

an additional viscous damping η, both expressed as a simple
function ofC (seeCaruel et al. (2014) for the full derivations).
In equation (i), Σsph is the sum of all the stresses applied to
the sphere. Equation (j) is the resulting equation of motion
which, coupled with the haemodynamic model (k) and the
Windkessel equation (l), gives the full system of 3 equations
to be solved at each iteration.

7.2 Electrophysiology equations

Assuming synchronous and homogeneous electrical activa-
tion (and thus sarcomere force) means that all of the ventricle
is depolarised simultaneously. This leads to a rate of ven-
tricular pressure rise during the isovolumetric contraction
(respectively, isovolumetric relaxation) which is very close
to the rate of build-up kATP (respectively, decrease kRS) of the
active stress τc. However in 3D, this rate is also very depen-
dent on the time for the ventricle to be fully depolarised,
which is roughly the QRS duration.

In order to correct this discrepancy between the models,
we adapted the electrical parameter u to take into account the
QRS duration. We model the fraction fdepo of the ventricle
which is currently depolarised as a piecewise linear function
of time which depends on Td,global, Tr,global and QRSduration.

Then, the values of |u|+ and |u|− in Equation (a) are adapted
to depend on the value of fdepo as described in Table 8.
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