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Abstract Muscles exhibit highly complex, multi-scale ar-
chitecture with thousands of muscle fibers, each with differ-
ent properties, interacting with each other and surrounding
connective structures. Consequently, the results of single-
fiber experiments are scarcely linked to the macroscopic or
whole muscle behavior. This is especially true for human
muscles where it would be important to understand of how
skeletal muscles disorders affect patients’ life. In this work,
we developed a mathematical model to study how fast and
slow muscle fibers, well characterized in single-fiber experi-
ments, work and generate together force and displacement
in muscle bundles. We characterized the parameters of a
Hill-type model, using experimental data on fast and slow
single human muscle fibers, and comparing experimental
data with numerical simulations obtained from finite element
(FE) models of single fibers. Then, we developed a FEmodel
of a bundle of 19 fibers, based on an immunohistochemically
stained cross section of human diaphragm and including the
corresponding properties of each slow or fast fiber. Simula-
tions of isotonic contractions of the bundle model allowed
the generation of its apparent force–velocity relationship.
Although close to the average of the force–velocity curves
of fast and slow fibers, the bundle curve deviates substan-
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tially toward the fast fibers at low loads. We believe that
the present model and the characterization of the force–
velocity curve of a fiber bundle represents the starting point
to link the single-fiber properties to those of whole muscle
with FE application in phenomenological models of human
muscles.
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Fiber bundle · Force–velocity · Finite element method

1 Introduction

Skeletalmuscles are involved in almost every human activity,
includingmoving, speaking, andbreathing. The studyof their
function is important because it is associatedwith awide vari-
ety of conditions of physiological interest such as adaptation
to training, disuse, aging or of pathological relevance, pri-
mary diseases like muscle dystrophy, and secondary diseases
due to the involvement of muscles in respiratory, metabolic
or nervous system diseases.

A thorough study of human muscle function is a chal-
lenging task. In fact, studies over the last century have
recognized the existence of amulti-scale structure behind the
macroscopic muscle function. The several newton forces and
centimeter shortenings, which are required in our daily life,
are actually generated by pico-newton forces and nanome-
ter displacements at molecular level, where myosin motors
cyclically interact with actin filaments, forming the cross-
bridge cycle. Despite the multitude of papers aimed at the
experimental characterization of myosin motors (Spudich
1994; Kitamura et al. 1999; Capitanio et al. 2012) and single
muscle fibers in vitro (Marsh and Bennett 1986; Bottinelli
et al. 1996; He et al. 2000), the impact of their results at
macroscopic level, i.e., in whole muscles, is not yet fully
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understood. Actually, skeletal muscles exhibit a highly com-
plex tri-dimensional architecture where thousands of muscle
fibers, each with different properties, not only exert force
on the tendons but also interact with each other and with
surrounding connective sheaths, as endomysium, and per-
imysium, through transversal connections. With exception
of few recent studies where single muscle fibers were visu-
alized in vivo (Sanchez et al. 2015), most of the study on
human muscle contraction are based on measurements of
torque and angular rotation which are also dependent on the
anatomy of bones and the joints. A gateway toward micro-
scopic measurements in vivo has been opened by the recent
development of muscle echography which allows the detec-
tion of movement of fiber bundles inside the muscle belly
(Hauraix et al. 2015).

In this frame, mathematical modeling represents a use-
ful tool to relate single molecule and single-fiber properties
to whole muscle dynamics. Here, we focus in particular on
mechanics of the relation between individual muscle fibers
and fiber bundle. The fiber bundle relation has been the
object of few experimental studies (Josephson and Edman
1988) and of some recent mathematical models (Sharafi
and Blemker 2010), the latter being restricted to the anal-
ysis in resting conditions. In the present work, we adopted
a finite element model, to study how different fibers in
a bundle interact to generate the bundle force, shortening
and power. In particular, we investigated the behavior of
two main fiber types containing fast and, respectively, slow
myosins isoforms, with different biochemical and biome-
chanical properties (Bottinelli and Reggiani 2000). Their
selective recruitment in different tasks and their concomitant
action in physiological situations is difficult to be assessed,
since even the most refined and updated approach to human
whole muscle mechanics in vivo can only reach the level of
individual bundles inside a muscle (Hauraix et al. 2015).

Steady-state contractile properties of single muscle fibers
were simulated with a Hill-type three-element model. This
approach is among themost used inmusclemodeling, since it
combines good predictions of muscle behavior with a widely
accessible computational power (Kojic et al. 1998).However,
Hill-type models have limitations, in particular, because they
usually represent whole muscle properties by means of a sin-
gle contractile element where individual fiber properties are
averaged. It has already been demonstrated, comparingmod-
els with one or two single Hill’s elements, that the fitting of
muscle tensionmeasured in situ and in vivo in animalmuscles
can be improved if two separated fiber pools, corresponding
to slow- and fast-twitch fibers are considered (Hamouda et al.
2016; Wakeling et al. 2012; Levine et al. 2013; Holt et al.
2014). However, in those works all the fibers of the same
type have been pooled in the same three elements and, con-
sequently, the geometry and distribution of different muscle
fibers have not been taken into account.

In this work, we adopted a finite element method (FEM)
approach, to develop models for single fibers and, then, for a
bundle of fibers. We started from the characterization of the
parameters of Hill-type model to reproduce the experimental
behavior of human slow and fast single fibers in vitro. To this
end, we characterized both the contractile element and the
elastic element in series in the Hill-type model, using avail-
able experimental data on humanfibers (Bottinelli et al. 1996;
He et al. 2000), and simulated the results of the experimen-
tal protocols with the predictions of the FE model of single
fibers, comparing numerical simulations and experimental
data. Then, we incorporated the FE models of individual
fibers into theFEmodel of a bundle of fibers,whose geometry
was based on an immunohistochemically stained cross sec-
tions of a muscle fiber bundle from a human diaphragmmus-
cle biopsy, available in the literature (Hooijman et al. 2015).

Next, as a first application of our fiber bundle model, we
generated the predicted force–velocity curve of the bundle
and analyzed its relationship with the corresponding curves
for the fast and slow fibers. This allowed us to define the
parameters of the Hill’s three-element model that describe
the bundle as a whole. The results obtained with the bundle
model represent in turn the first step toward a physiologically
defined, macroscopic FE model of a whole muscle. The bun-
dlemodel could be also used in future to explore the effects of
fiber selective submaximal activation under different external
conditions or the relevance of transversal fiber–fiber inter-
actions in physiological and pathological conditions such as
Duchenne muscular dystrophy (DMD) (Sharafi and Blemker
2010; Virgilio et al. 2015).

2 Material and methods

2.1 Design of the Hill’s three-element model

The properties that characterize muscle steady-state contrac-
tion are: the steady velocity of contraction reached against a
constant load, the maximum isometric force generated at a
given initial length of sarcomeres during isometric contrac-
tion, and the different forces generated at different activation
levels. Hill-type three-element model is a useful approach to
characterize these aspects of muscle mechanics because of
its relative simplicity, whichmakes it suitable for implement-
ing it into a FE model of whole muscle. Hill’s three-element
model (Fig. 1a) is composed of a contractile element (CE),
an elastic element (SE) in series with CE and an elastic ele-
ment (PE) in parallel with CE and SE. The current lengths
of these elements must fulfill the equation lPE = lSE + lCE.
The Hill’s model is a simplification of the actual structure
of the sarcomeres, where both the SE and CE elements are
affected by the cross-bridges properties. In this simplifica-
tion, the relative length of SE and CE at a given sarcomere
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Fig. 1 Hill-type model and FE model for single fiber and for bundle.
a The three-element Hill-type model is formed by an elastic element
(SE) in series with the contractile element (CE). These two elements
are in parallel with a nonlinear elastic element (PE), which represents
the passive or resting tension. b Single-fiber FE model. Each finite ele-
ment is characterized by one Hill-type model with the same parameters,
deduced for both fast and slow fiber type to fit single-fiber experimen-

tal behavior. c Immunohistochemically stained cross section of human
diaphragm muscular tissue, with indication of the bundle and fibers
modeled [black slow fibers and blue fast fibers; modified from Hooi-
jman et al. (2015)]. d FE model of the bundle of fibers. Each finite
element is characterized by one Hill-type model with parameters that
are different for the fast and slow fiber type

length cannot be defined by mechanical length perturbations
and tension recordings, which give us a relationship only
between the deformation and the SE contractile properties
(Eq. 7 below). Therefore, a relationship between the initial
lengths LSE and LCE is hypothesized, using LSE = kLCE

with k = 0.3, as proposed by Kojic et al. (1998). The
stretch on elements PE, CE and SE will be indicated with
λ f = lPE/LPE, λm = lCE/LCE and λs = lSE/LSE, respec-
tively. Since CE and SE are in series, their stress must be
equal at any time. In what follows, nominal stress (force per
unit of undeformed area, P) is adopted. Therefore, the previ-
ous condition is expressed as PSE = PCE, at any time of the
analysis. The PE element is responsible for the passive elas-
ticity of the surrounding component, whereas theCE element
can be elongated freely in a non-activated state. Indicating
with P0 themaximum isometric tension of the fiber, the stress
response of the PE element is given by the equation:

PPE =
{
0 λ f ≤ 0

4P0
(
λ f − 1

)2
λ f > 0

(1)

The properties of the parallel element are assumed as pro-
posed by Tang et al. (2009).

The CE element represents the active force generation
of muscle and includes, in a phenomenological way, the

above-mentioned characteristic of muscle contraction. Thus,
its active tension PCE varies in time through the following
components:

PCE = P0 fa (t) fl (λm) fv
(
λ̇m

)
(2)

The function fa (t) represents the activation level of the fiber
at any time t . Its description depends on the experimental
protocol that one wants to simulate. In our case, it is charac-
terized by two exponential functions representing the rise of
activation and, respectively, its decay during relaxation. We
assume a simplified form the activation function (Ehret et al.
2011), taking:

fa (t) =

⎧⎪⎪⎨
⎪⎪⎩
a0 t ≤ t0
a0 + (a1 − a0) × ht (t, t0) t0 < t ≤ t1
a0 + (a1 − a0) × ht (t1, t0)

× [1 − ht (t, t1)] t1 < t

(3)

where t0 and t1 are initial and final time instants of activation
and the constants a0, a1 have been set as 0 and 1, respectively.
The function ht is defined as:

ht (t, ti ) = 1 − exp [−S (t − ti )] (4)
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Table 1 Model parameters

Parameter Value Description

Common parameters

αm1 0.821kPa Isocoric term parameter

αm2 1.79 Isocoric term parameter

kmv 1000kPa Bulk modulus

k 0.3 Ratio LSE/LCE

S 50s−1 Time constant for fa

Fast isoform

P0 145kPa Maximum isometric tension

λopt 0.9271 Optimal stretch for fl

λmin 0.402 Minimum stretch for fl

λ̇max −1.16 Maximum stretch rate for fv

kc 8.53 Inflection for the fv

α 2.498 Exponential factor in SE

β 116.4kPa Pre-exponential factor in SE

Slow Isoform

P0 130kPa Maximum isometric tension

λopt 0.9258 Optimal stretch for fl

λmin 0.402 Minimum stretch for fl

λ̇max −0.49 Maximum stretch rate for fv

kc 16.02 Inflection for the fv

α 2.543 Exponential factor in SE

β 99.6kPa Pre-exponential factor in SE

with S as time constant. The numerical values of all param-
eters used in this paper are reported in Table 1. The function
fl (λm) follows the force–length relationship as shown exper-
imentally (Lieber andWard 2011).We choose a length–force
function proposed in the literature (Johansson et al. 2000):

fl (λm) =

⎧⎪⎪⎨
⎪⎪⎩

λm−λmin
λopt−λmin

× exp

[
(2λmin−λm−λopt)(λm−λopt)

2(λmin−λopt)
2

]
λm > λmin

0 λm ≤ λmin

(5)

where the parameters λmin and λopt are also reported in
Table 1 (note that λopt is slightly smaller than 1 to account for
the extension of SE and the contraction of CE in isometric
activation, see later).

The function fv
(
λ̇m

)
, where λ̇m is the rate of stretch of the

CE element, generates the hyperbolic force–velocity relation
as experimentally described by Hill (1938). In our model we
define

fv
(
λ̇m

) =
{

1−λ̇m/λ̇max
1+kc λ̇m/λ̇max

λ̇max < λ̇m ≤ 0

0 λ̇m ≤ λ̇max

(6)

in concentric contraction, where the parameter kc is different
for the fast and the slow fibers, as observed experimentally
(see in the following and Table 1). The term λ̇max represents
the maximum stretch rate of the CE element and in a single
fiber is associated with the maximum velocity of contraction
through Vmax = λ̇max/(1 + k) (see next section). Finally,
the characterization of SE is important as much as that of
CE, since it is responsible of the fast response to abrupt
changes in external load, which is quite common situation
in several physiological conditions. Despite that, the rela-
tionship between its parameters and the experimental data
in human muscle fibers is not clearly defined. Here, we pro-
pose to adopt a nonlinear relationship between its nominal
stress and stretch, characterized through two variables α and
β (Table 1), as defined in (Kojic et al. 1998):

PSE = β
{
exp

[
α

(
λ f − 1

) − 1
]}

(7)

2.2 Experimental physiological data and identification
of the Hill’s model parameters

We now use experimental data to characterize the parameters
P0, λ̇max and kc for CE, as well as α and β for SE. The param-
eters kc, S, λmin and the parameters for the isotropic term (see
next section)will be obtained from previousmodels in the lit-
erature. Experimental data used for parameter identification
are obtained from previous works (Bottinelli et al. 1996; He
et al. 2000). In both studies, single muscle fibers used for this
study were dissected from a biopsy sample of human Vas-
tus lateralis muscle, permeabilized and maximally activated
(pCa = 4.6) at low temperature (12 ◦C) with initial sarcom-
ere length adjusted at 2.6µm.Myosin heavy chain isoforms,
fast and slow,were identified through gel electrophoresis. All
experimental details concerning the mechanical experiments
and the electrophoretic identification of myosin isoforms in
each single fiber are reported in the above quoted papers.

Two experimental protocols are used to characterize the
parameters for CE and SE, separately. The elastic component
in series SE (parameters α and β) can be characterized by the
smallest rapid shortening needed to drop the isometric ten-
sion exactly to zero. This value can be extrapolated from the
so-called slack test protocol (Edman 1979). Slack test proce-
dure is based on small and rapid shortenings imposed to an
isometrically contracting fiber. The rapid shortening drops
tension to zero and moreover leads to a slacking of the fiber.
The time required for the recovery of a linear geometry and
a nonzero tension is related to both the unloaded shortening
velocity V0 and the SE properties. The amount of shortening
plotted versus the time needed to recover a nonzero tension
(>1% of P0) falls on a straight line (see Fig. 2). The inter-
cept of the linear fitting is the amount of shortening which
drops the tension to zero without slacking the fiber, and this
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is associated with the deformation of SE during isometric
contraction.

Parameters P0, λ̇max and kc for theCEcanbe characterized
by the experimental force–velocity curve, generated point by
point by imposing a constant velocity of contraction andmea-
suring the constant tension generated by the fiber (isovelocity
shortening). From this pool of data, we determine the max-
imum isometric stress P0 and the maximum velocity Vmax

(related to λ̇max as described below) for the slow and fast
fibers, and evaluate the parameter kc through a least squarefit-
ting of experimental data with the curve described in Eq. (6).
Notably, the slope of the fitting line in the slack test pro-
cedure (Fig. 2) represents maximum velocity of shortening
in unloaded condition, usually indicated as V0. As shown in
previous studies V0 and Vmax are similar but not identical
(Bottinelli et al. 1996). In the data pool chosen for the slack
test analysis, V0 is equal to 1.63L0/s and 0.3L0/s,while P0 is
97 and 83 kPa for fast and slow fibers, respectively. As stated
above, we use the isovelocity data for defining P0, λ̇max and
kc. Values for P0 and V0 for this data pool is reported in
Table 1.

The choice to fit the Hill’s model parameters to data
obtained in muscle fibers in vitro has an impact on mechan-
ical characterization of the model. In particular, non-muscle
elasticity, which is present in vivo, for instance in rela-
tion to the tendon–fiber interaction, is lacking in vitro. The
single fibers in vitro, considered in this work, are just seg-
ments of fibers clamped between the force transducer and
the motor with displacement transducer, therefore the non-
muscle extra-sarcomeric elasticity is negligible, and all the
observed elasticity can be included into the SE. This, in turn,
affects also the definitions of force-length and force–velocity
relationship for the CE, since they are determined experi-
mentally on the whole fiber and not on the CE alone. For
instance, the maximum stretch rate λ̇max imposed in Eq. (6)
corresponds to the maximum contraction velocity referred to
the initial length of the sole CE, while the whole finite ele-
ment will contract at Vmax = λ̇max/(1 + k). In this work,
the value of λ̇max is adjusted correspondingly. Similarly,
for an isometric contraction at a given total initial length
LPE = LSE + LCE, the current value lCE decreases while lSE
increases. The component CE contracts till the forces gener-
atedby the twoelements equilibrate, being PCE = PSE = P0.
This effect is taken into account in this work, imposing λopt
equal to the equilibrium value of λm in isometric condition.

2.3 Single-fiber FE model

Based on the Hill’s three-element model, above described, a
single-fiber three-dimensional FE model (Fig. 1b) aimed to
simulate realistic experimental protocols is developed. The
single-fiber model is defined to reproduce the average shape
and dimension of experimentally tested segments of fibers

Fig. 2 Slack test: experimental data and simulations. Slack test has
been used to characterize the series elasticity in muscle fibers (SE).
a Typical experimental trace for the force versus time in a slack test.
Skinned muscle fiber is allowed to contract in an isometric condition,
then a rapid controlled shortening in length drops the tension to non-
positive values. After the isometric conditions are restored, the tension
rises toward original values. bNumerical simulation of the tension-time
trace generated by the single-fiber FEmodel for fast isoform. The short-
ening �L is reported relative to the initial length of the fiber L0. The
results of numerical simulation of fast fiber are reported for shorten-
ing �L/L0 of 7, 9, 11, 13 and 15%. c The timing required to recover
a positive tension is recorded and plotted in function of the imposed
shortening, for both experimental data (circles) and simulation of fast
and slow fiber type (triangles). The results from numerical simulation
refer to shortening �L/L0 of 7, 9, 11, 13 and 15%. The linear corre-
lations are calculated from data points of the numerical simulation and
extrapolated to time zero
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(initial length L0 = 500 µm, diameter 50÷100 µm). The
stretch of the fiber is given by:

λ f =
√
C̃ : (n0 ⊗ n0) (8)

The second rank tensor C̃ is the iso-volumetric part of the
right Cauchy–Green strain tensor and n0 is the unit vector
that defines the initial disposition of the sarcomeric unit. It is
defined C̃ = J−2/3FTFwhere F is deformation gradient and
J the Jacobian of deformation. To account for possible three-
dimensional stress states acting on the fibers (for example,
in the clamped end regions), the first Piola–Kirchhoff stress
tensor P is defined as

P = Piso + (PPE + PSE)Fn0 ⊗ n0 (9)

where the isotropic term Piso is deduced via a standard
derivate from the strain energy function:

wiso = αm1 exp
[
αm2

(
Ĩ1 − 3

)]
+ kmv

2

[
J 2 − 1 − 2ln (J )

]
(10)

In order to ensure the incompressibility, as generally assumed
for muscle, the volumetric part is assumed as penalty term,
setting its value in order to give an almost incompressibil-
ity but avoiding numerical instability (see Table 1). The
above expression is similar to that proposed in the literature
(Tang et al. 2009) for skeletal muscle fibers and the consti-
tutive parameters αm1 and αm2 are set in order to obtain the
same mechanical response of the isotropic matrix. In uniax-
ial tension the stress of the isotropic matrix is largely lower
than the stress response given by the element PE. With the
assumed parameters, for a stretch in the range of 0.95÷1.05
the isotropic term has a secant modulus of about 2.5 kPa.
For a stretch in the range of 1÷1.05 the element PE shows a
nonlinear response with a secant modulus of about 33 kPa.

The constitutivemodel for themusclefiber is implemented
via specific user subroutines in the general-purpose FE soft-
ware ABAQUS Standard (Dassault Systémes) that have been
adopted for all the analyses in this work. The model is devel-
oped with the software ABAQUS CAE (Dassault Systémes).
The single-fibermodel consists of 769 eight-node hexahedral
elements and 1025 nodes. Finite elements with hybrid for-
mulation are adopted in order to avoid numerical instabilities
due to almost-uncompressible behavior.

2.4 Multi-fiber bundle FE model

The bundle FE model (Fig. 1d) is developed starting from
an immunohistochemically stained cross section of human
diaphragm bundle (Fig. 1c), available in the literature (Hooi-
jman et al. 2015). In that work, fibers were identified by

means of staining with specific antibodies against myosin
isoform (M32). Adjacent fibers in the model are considered
mutually connected at their interface, and therefore no sliding
is allowed during any contraction. Both fast- and slow-
type fibers are described by the same constitutive model,
but assuming different numerical values of the parameters
according to the experimental data obtained on the two fiber
types (see above and Table 1). The bundle model is com-
posed of 19 fibers (10 slow and 9 fast, see Fig. 1c) with a
length of 500 µm and a constant section with irregular shape
and “average” diameter of about 180 µm. Also in this case,
hybrid elements are adopted. The model consists of 24,495
linear elements with eight or six nodes and 25,064 nodes.

3 Results and discussion

3.1 Single-fiber modeling

Two sets of experimental data were used to identify the
parameters of the single fiber model and to test its predic-
tive power in slow and fast fibers: the slack test protocol
and the steady-state shortening in load clamp or in isoveloc-
ity contractions. The nominal stress is calculated considering
the resultant force at the free end of fiber/bundle and dividing
this value for the area of the undeformed transversal section.
This is consistent with the experimental approach, where
force values are measured and nominal stresses are deduced
according to the undeformed transversal section of the fiber.

Slack test protocol was adopted for characterization of
the parameters of SE and for V0 determination. For both
slow and fast fiber types, we plotted recovery times �t cor-
responding to different shortenings �L . The data pairs were
fitted through a linear regression to estimate the intercept at
�t = 0. This value was used to constrain the parameter α in
Eq. (7) imposing β = 1.2P0 (Cleworth et al. 1972), where
P0 refers to the value obtained in the pool of data used for
the characterization of SE. As stated above, k = LSE/LCE is
assumed to be 0.3 as in (Kojic et al. 1998). To test the predic-
tive ability of the single- fiber model, we simulated the slack
test protocol, the fast shortening imposed during the isomet-
ric contraction and the subsequent recovery of tension after
the period of slack (Fig. 2a). The model was able to repro-
duce the experimental behavior, showing a slacking of the
whole fiber when the shortening of each element was higher
than the stretch in the SE at the steady state of the isometric
contraction (Fig. 2b and movie 1 in SI). Plotting the times
required to recover a positive tension versus the imposed
shortenings, we obtained a good fitting of the experimental
data for both slow and fast fibers (Fig. 2c). The numerical
model was able to overcome the experimental limits and to
simulate the shortening needed to drop the tension exactly
to zero and immediately start the tension recovery. The pre-
dicted values were in good agreement with the experimental
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intercept (SE extension) and slope (V0). In the simulation of
the force–velocity curve (see below), a value of maximum
shortening velocity Vmax will be obtained by extrapolation

� Fig. 3 Numerical simulation of the experimental protocol for isotonic
contraction (load clamp or isometric–isotonic protocol). a Simulated
displacement versus time traces for a fast fiber in the following protocol:
The fiber is activated with two fixed ends (isometric condition) till the
full development of maximal force (rising phase not shown), then at
time t = 0 one end is released and an external stress is applied at
different values (isotonic condition, stresses P/P0 = 0.2, 0.4, 0.6 are
shown in the figure). In full accordance with experimental records, the
length initially drops for the rapid shortening of the SE, and then starts
to shorten at a constant velocity. b Force versus velocity (F–v) curves
predicted for the fast (red) and slow (blue) single fiber and comparison
with the experimental data obtained from isokinetic experiments (iso-
velocity). The values in abscissa are the velocity expressed as initial
muscle fiber length L0 per second. c F–v curve for the fast (red) and
slow (blue) single fiber, compared to the F–v curve predicted from the
bundle FE model. Dotted line is the average force predicted by fast and
slow fibers contracting at the same velocity. The inset shows how the
bundle behavior deviates from the dotted lines at high velocity

at zero load starting from the pairs of force and shortening
values measured with isovelocity shortening.

The steady-state properties of the CE were characterized
according to the force–velocity curve using the experimental
data reported in (He et al. 2000), obtained during isovelocity
shortening from the average of a number of fast and slow
human fibers. The experimental procedure is described in
(He et al. 2000). From these data, we defined the maximum
isometric tension of the two types of fibers, P0, and the
parameters of the force–velocity curve including the inter-
cept on the velocity axis, i.e., the maximum velocity (Vmax)

and the curvature, kc (see Table 1). We then applied our
single-fiber model to simulate the isometric–isotonic pro-
tocol (load clamp) where a constant load is imposed and
velocity is recorded, and we compared the simulations with
the experimental data. Notably, the load clamp experimental
protocol was different from the isovelocity shortening where
a constant velocity was imposed and the tension evaluated.

In the simulations, the tension shows a rapid drop due to
the mechanical relaxation of the SE at the beginning of the
isotonic phase, followed by a period of shortening at constant
velocity (Fig. 3a), as in the experimental behavior. Then,
we were able to construct the force–velocity curve and to
compare it to the experimental data, for both the fast and the
slow fibers (Fig. 3b), showing that the isotonic simulations
also provide a good prediction of the isokinetic experimental
data. Parameters deduced from published experimental data
on human muscle fibers studied in vitro/ex vivo are reported
in Table 1.

3.2 Fiber bundle modeling

The experimental studies onmusclemechanics are very often
carried out on single fibers, which generally express a single
myosin isoform and behave therefore as slow or fast fibers.
How the combined action of fast and slow fibers affects the
overallmuscle behavior is hard to be assessed experimentally
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(Josephson and Edman 1988). A FE model of a fiber bundle,
able to reproduce isometric tension and isotonic shortening,
can be very helpful to address the problem of how fibers with
different myosin isoforms cooperate to generate force and
displacements in whole muscle. In fact, most human mus-
cles are composed by a blend of slow- and fast-twitch fibers
in various proportions (Bottinelli and Reggiani 2000; Levine
et al. 2013). The fibers are finely intermingled to form bun-
dles of hundreds of micrometers of diameter, kept together
by extracellular matrix or endomysium, each bundle being
separated from the adjacent bundles by sheaths of connective
tissue or perimysium. The transversal connections between
adjacent fibers inside each bundle are based on the multipro-
tein complex indicated as costamere, regularly spaced along
the fibers with a periodicity corresponding to that of sarcom-
eres (Ervasti 2003). To characterize the behavior of a mixed
fiber bundle we included our fiber models in a FE model
of a bundle made of parallel fast and slow fibers (Fig. 1d),
and we generated the force–velocity curve through a series
of isometric–isotonic maneuvers (load clamps). The bundle
mesh was developed starting from an immunohistochemi-
cally stained cross section of bundle taken from a biopsy of
healthy human muscle present in literature (Hooijman et al.
2015), reproducing carefully the locations of fast and slow
fibers and their relative cross-sectional areas with a total of
12,752.3 µm2 for the 9 fast fibers and 13,765.0 µm2 for
the 10 slow fibers. Slow and fast fibers of the bundle were
considered as perfectly bounded at their adjacent surfaces,
and therefore, there were no relative displacements between
fibers in the direction of the bundle long axis. The end sec-
tions of the bundle were also considered as rigid.

The FE model for the bundle was able to simulate the
isometric–isotonic protocol and from a series of these sim-
ulated experiments a force–velocity curve was obtained
(Fig. 3c). It was therefore interesting to compare the bun-
dle force–velocity curve with the single fiber force–velocity
curves, in the hypothesis that all the fibers were maximally
activated in the same way. As seen in Fig. 3c, the force–
velocity curve had intermediate values between the fast and
the slow isoforms at higher loads, and as long as the predicted
velocity of contraction is lower than the V s

max, the maximum
velocity of the slow isoform. At lower external loads, the pre-
dicted bundle velocity of contraction shifts to the one of the
fast fiber. The more the external tension decreases, the closer
the bundle velocity is to that specific of the fast fibers. The
dotted line in Fig. 3c shows the mean tension generated at a
given velocity from the slow and fast force–velocity curve.

The predicted behavior can be explained as follows: at
high and intermediate external forces, both the fast and slow
fibers contribute to contraction. Even though we imposed a
constant external force, as in the experimental setup for iso-
tonic contraction, the above-mentioned constraints of rigid
link between fibers lead to the same velocity of contraction

for every fiber. When different fibers contract at the same
velocity they generate different forces, as predicted by the
Hill’s force velocity curve imposed to CE (Fig. 3c, red and
blue curves at the same abscissa). Consequently, fast fibers
sustain a higher tension respect to slow fibers, while the total
tension generated by the bundle equilibrates the one imposed
as external condition. The different tension in the fibers of
the bundle during isotonic contraction is shown in Fig. 4.
Because of the almost-equal proportion of fast and slowfibers
(51.9% slow and 48.1% fast), the force–velocity behavior is
then similar to the average of the corresponding behaviors of
the two types of fibers at any velocity until the slow fibers
are still able to generate force. When the predicted velocity
is higher than V s

max, the tension generated by the slow fibers
becomes zero and therefore the external tension is completely
sustained by the fast fibers. This means that the effective
tension acting on those fibers becomes actually twice than
the nominal tension. The predicted velocity of contraction is
then determined by the force–velocity curve of the fast fibers,
computed on the effective tension acting on those fibers. In
this phase, the slow fibers shorten without exerting forces
on the surrounding fast fibers. The bundle force–velocity
relationship could be interpolated with Eq. (6). The fitting
curve (Fig. 3c dotted line) is characterized by a parameter
kc = 11.9.

A prediction of how fast and slow fibers contribute to
determine the bundle behavior has been previously done
by means of validation methods (Wakeling et al. 2012; Lee
et al. 2013; Holt et al. 2014; Biewener et al. 2014). In those
works, one or two Hill-type models are adopted, with dif-
ferent hypotheses on the relative influence of the fast and
slow fibers, and analyzed their fitting capabilities to deduce
which one was the most reliable. Our work extended their
analysis using a FEM approach and showed that a mixed
bundle can be characterized by a force–velocity curve with
Vmax close to the maximum shortening velocity of the fast
fibers. Also, the bundle force–velocity curvature (kc = 11.9)
is slightly different from the average (kc = 12.2) and closer
to the faster fibers (kc = 8.53). Such a difference has an
interesting impact on the peak power generated by the bun-
dle and on the velocity at which is reached, often indicated
as optimal velocity (Bottinelli et al. 1996). Peak power of
the bundle has a value (0.035 × V/L0 × P/P0) above the
mean between the fast fiber (0.053×V/L0 × P/P0) and the
slow fiber (0.013×V/L0 × P/P0) values. It is reached at an
optimal velocity (0.158× V/L0) closer to that of fast fibers
(0.221×V/L0) than that of slow fibers (0.066×V/L0), see
Fig. 5. Despite these differences are not very high, the model
shows that in a bundle equally composed of slow and fast
fibers, peak power, which is most relevant functional param-
eter in vivo, is determined more by fast fibers than by slow
fibers. For further evaluation onmuscle energetics, themodel
prediction should be validated against experimental data of
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Fig. 4 Numerical simulation of the bundle during contraction against
a constant external force. a Displacements (µm) in the direction of the
bundle U3 for an intermediate deformed configuration. Due to uneven
distributionof slowand fast fibers inside the bundle, displacement shows
a complex distribution. b Normal stress (MPa) along the direction of
the bundle in a cross-section S33.When a constant external force, lower
than the maximum force generated, is imposed to one end of the bundle,
it starts to shorten. Despite the fact that the imposed condition is of
constant force, the constraints between the fibers (corresponding to the
effect of costameres) lead to a constant velocity of contraction of each
fiber and, as a consequence, to different stress in different fiber types.
The sum of the stress in the fast and slow type fibers equilibrates the
external load imposed. Stress is higher in green than in blue fibers,
according to color scale

bundle of fibers in vitro, which, at the best of our knowl-
edge, are not present today. Our model makes a first step
to overcome this experimental limit, predicting the parame-
ters which characterize the force–velocity of a bundle. These
parameters could be instrumental to the development of a
FE model reproducing a whole muscle composed of thou-
sands of bundles, each composed of tens or even hundred
single muscle fibers. A FE model of a muscle accounting for
the behavior of each individual fiber will likely be compu-
tationally too expensive. The parameters obtained in bundle

Fig. 5 Power–velocity data of slow fibers, fast fibers and a bundle
equally composed of fast and slow fibers, as obtained by numerical
analyses. Numerical values are interpolated bymeans of power-velocity
curves obtained from the Hill’s Eq. (6). The arrows indicate the peak
power and therefore the optimal velocity for each curve. The optimal
velocity for slow fibers, fast fibers and bundle is 0.066, 0.221, 0.158
L0 s−1, respectively. Note that the bundle peak power is reached at an
optimal velocity closer to that of fast fibers (0.221 L0s−1) than to that
of slow fibers (0.066 L0 s−1)

model based on single-fiber model could then be used in
a FE model of a (macroscopic) whole muscle maintaining
the same physiological significance of models based on the
single-fiber characterization.

4 Conclusions

In this work, we characterized the parameters inHill’smodel,
based on experimental data of slow and fast fibers from
human skeletal muscles in vitro, and reproduced the exper-
imental behavior with single-fiber FE models. Then, we
used these parameters to predict the behavior of a bundle of
fibers contracting against a constant load, developing a force–
velocity curve characteristic for the bundle. This allowed
us to define the parameters for the Hill’s model of a bun-
dle of fibers. These parameters could be used to reproduce
the human whole muscle behavior, at least under our cur-
rent assumptions: maximally activated fibers, same amount
of fast and slow fibers, rigid connections between fibers.

The model could be improved to overcome these limits
and explore how more physiological or pathological condi-
tions affect the bundle behavior. In the first place, during their
physiological activity, human muscles have a more compli-
cated activation history. Fibers composing the same bundle
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often belong to different motor units and can thus expe-
rience different activation levels and, in some case, fibers
completely inactive can be adjacent, side-by-side, to fully
active fibers. Moreover, our experimental data for fast and
slow fibers derive from experiments carried out at 12 ◦C. An
extrapolation to physiological temperatures is required when
the bundle characterization has to be applied to whole mus-
cles in vivo. Finally, our constraints imposed on the interface
between muscle fibers and at the bundle extremity where the
myotendinous junction should be located, are the simplest
hypothesis in a physiological situation. The constraints on
the adhesion between adjacent fibers in the bundle FE model
could be modified to explore how the transversal links might
affect contraction force and velocity. This would acquire
particular interest for those diseases which are related to
mutations of sarcolemmal or sub-sarcolemmal proteins as
DMD (Sharafi and Blemker 2010; Virgilio et al. 2015).

Despite the above limitations, the proposedFEMapproach
makes it possible to explore the interactions between single-
fiber and multi-fiber contractile structures such as bundles,
during contraction. Usually macroscopic muscle FE mod-
els define the parameters of the Hill’s elements in order
to fit the known macroscopic behaviors. In other words,
they deduce the single fibers/molecules properties from the
macroscopic muscle behavior. As informative this top-down
approach could be, it is limited in describing how different
single-fiber alterations may affect the macroscopic muscle
performance. In this work, we have proposed a method to
deduce the macroscopic parameters from the single fibers,
using a bottom-up approach. This method will lead to a
more meaningful simulation of muscle mechanics in sev-
eral patho-physiological conditions. The progress in muscle
echographic recording will provide more and more data on
mechanical behavior of bundles in situ and this might open
a new chapter in the study of muscle modeling. The current
limits of such techniques do not allow for an experimental
validation of our results, but the definition of the parameters
for an Hill curve representing the whole bundle fills the gap,
though at the in silico level, between the experimental data
on single fiber and the FEMs whose elements contain several
fibers, of different types, at once.

Further works in this respect will lead to a more detailed
characterization under a variety of physiological and patho-
logical conditions. Muscle disorders and diseases are asso-
ciated with severe alterations of single-fiber properties, such
as contractile weakness, atrophy, or reduced cross-sectional
area, which can affect differentially slow and fast fibers. As
shown here, different muscle fiber types contribute in a dif-
ferent way to the bundle behavior and thus likely also to the
whole muscle behavior. Our approach, based on the effective
behavior of single fibers, will be particularly useful to predict
how pathological alterations at fiber level can influence the
whole muscle performance.
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