
Biomech Model Mechanobiol (2017) 16:1743–1763
DOI 10.1007/s10237-017-0917-3

ORIGINAL PAPER

A model for one-dimensional morphoelasticity and its application
to fibroblast-populated collagen lattices

Shakti N. Menon1,2,3 · Cameron L. Hall4,5 · Scott W. McCue2 ·
D. L. Sean McElwain2,3

Received: 28 December 2016 / Accepted: 3 May 2017 / Published online: 18 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract The mechanical behaviour of solid biological
tissues has long been described using models based on
classical continuum mechanics. However, the classical con-
tinuum theories of elasticity and viscoelasticity cannot easily
capture the continual remodelling and associated structural
changes in biological tissues. Furthermore, models drawn
from plasticity theory are difficult to apply and interpret
in this context, where there is no equivalent of a yield
stress or flow rule. In this work, we describe a novel one-
dimensionalmathematicalmodel of tissue remodelling based
on the multiplicative decomposition of the deformation gra-
dient. We express the mechanical effects of remodelling as
an evolution equation for the effective strain, a measure of
the difference between the current state and a hypothetical
mechanically relaxed state of the tissue. This morphoelas-
tic model combines the simplicity and interpretability of
classical viscoelastic models with the versatility of plastic-
ity theory. A novel feature of our model is that while most
models describe growth as a continuous quantity, here we
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begin with discrete cells and develop a continuum represen-
tation of lattice remodelling based on an appropriate limit of
the behaviour of discrete cells. To demonstrate the utility of
our approach, we use this framework to capture qualitative
aspects of the continual remodelling observed in fibroblast-
populated collagen lattices, in particular its contraction and
its subsequent sudden re-expansion when remodelling is
interrupted.
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1 Introduction

In this study, we present a one-dimensional mathemati-
cal model of biological tissue remodelling, based on the
multiplicative decomposition of the deformation gradient.
An important feature of our model is that the mechani-
cal effects of remodelling are expressed in terms of an
evolution equation for the ‘effective strain’—a measure of
the difference between the current state and a hypothetical
mechanically relaxed state of the tissue. This morphoelastic
model combines the simplicity and interpretability of clas-
sical viscoelastic models with the versatility of plasticity
theory. To demonstrate its utility, we show that thismodel can
quantitatively capture aspects of the mechanical behaviour
of fibroblast-populated collagen lattices reported in previous
experiments.

As biological tissues deform continuously when sub-
jected to mechanical forces, their physical behaviour is
often modelled using classical continuum mechanics (Mur-
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ray 2001). However, unlike classical solids, living tissues
may contain cells that can modify the fundamental mechan-
ical properties of their physical environment. There are
a number of processes, most notably tissue growth, in
which cells cooperatively alter the tissue structure, chang-
ing the relationship between stress and deformation (Chen
and Hoger 2000). Indeed, many tissues undergo a con-
tinual process of internal revision and mechanical restruc-
turing, often referred to as ‘remodelling’ (Taber 1995),
in which physical properties of the material, including
anisotropy and stiffness, evolve over time. This active
remodelling is thought to be significant in a wide range
of biological processes such as embryo development and
morphogenesis (see Patwari and Lee (2008) for a recent
discussion). In particular, it is well known that fibroblast
cells, which are found in the stroma of numerous tis-
sues, actively remodel the surrounding extracellular matrix
(ECM) by synthesising and reorganising collagen fibres,
and that this remodelling is essential for tissue homeosta-
sis and for wound repair (Grinnell 2003; Majno and Joris
2004). Remodelling also affects the mechanical stresses
experienced by cells in a tissue, which can subsequently
modify aspects of cell behaviour. For instance, fibrob-
lasts are known to change their morphology (Tamariz and
Grinnell 2002; Tomasek et al. 2002; Gabbiani 2003) and
phenotype (Tomasek et al. 2002; Amadeu et al. 2003;
Gabbiani 2003) in response to external mechanical cues.
Most significantly, the mechanical stresses experienced by
fibroblasts during the wound healing process stimulate
them to differentiate into more contractile forms: proto-
myofibroblasts and myofibroblasts (Gabbiani et al. 1972;
Tomasek et al. 2002; Desmoulière et al. 2005), which
play a major rôle in the subsequent contraction of the
wound. The interplay between mechanical stress and active
remodelling is hence critically important in wound healing,
as excessive contraction is known to lead to pathologies,
such as hypertrophic scars and contractures (Rosebor-
ough et al. 2004; Enoch and Leaper 2005; Murphy et al.
2011b).

Since the first descriptions of the kinematics of biological
growth the 1970s and early 1980s (Taber 1995; Humphrey
2003), several theoretical frameworks have been proposed
to capture the dynamics of remodelling. A very significant
advance in this direction was made in the mid 1990s, when
Rodriguez et al. (1994) and Cook (1995) independently
developed a mathematical framework for remodelling that
utilises the multiplicative decomposition of the deformation
gradient—an idea that dates back to the 1950s (Bilby et al.
1957; Kröner 1958, 1959), and which was formalised in the
1960s by Stojanović et al. (1964, 1970) and Lee (1969). In
this paper, we use the notation developed by Goriely and
coworkers (Goriely and Ben Amar 2007; Goriely et al. 2008;
Vandiver and Goriely 2009; Goriely and Moulton 2011),

Fig. 1 The relationship between the reference state, the current state
and the zero stress state. In our notation, F represents the overall defor-
mation gradient from the reference state to the current state, while the
plastic/growth component G represents the deformation from the refer-
ence state to the zero stress state and the elastic component A represents
the deformation from the zero stress state to the current state

where A and G represent the elastic and plastic/growth
parts of the deformation gradient, respectively. The decom-
position of the deformation gradient tensor thus yields the
expression

F = A G. (1)

The physical interpretation of this decomposition is depicted
in Fig. 1:G is the deformation gradient tensor associatedwith
a hypothetical deformation from the fixed reference state to
a state where all internal stresses are relieved, while A rep-
resents the deformation from this ‘zero stress state’ to the
current state. For a purely elastic material, the fixed refer-
ence state will also be the zero stress state, and we find that
G ≡ I . However, plastic flowor remodelling enables the zero
stress state, and hence G, to evolve. A detailed discussion
of the fundamental concepts that underlie the multiplicative
decomposition of the deformation gradient is presented in
‘Appendix 1’.

This approach not only provides a clear and coherent way
of understanding growth, but also leads to a natural way of
describing ‘residual stress’—stress that persists even when
all loads are removed.Although Fung (1993) had notedmuch
earlier that some tissues (such as arteries) are structured so
that it is impossible for the entire tissue to be free of resid-
ual stresses unless cuts are made, limited attempts had been
made to describe these stresses mathematically. An alter-
native paradigm was suggested by Goriely and Ben Amar
(2007), who coined the term morphoelasticity to describe
the combination of elastic and ‘plastic’ changes that are the
result of biological growth and remodelling. Despite some
similarities, morphoelasticity is quite distinct from classi-
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cal plasticity. For example, morphoelastic remodelling will
generally occur throughout a tissue, not just in those regions
where a yield stress is exceeded. Moreover, morphoelasticity
can involve changes to the total mass of a tissue (in tis-
sue growth, for example) and/or increases in internal energy,
while plastic flow is always mass conserving and dissipative.
This framework has been recently used to mathematically
describe aspects of wound healing, namely wound contrac-
tion and scar formation (Yang et al. 2013) and dermal wound
closure (Bowden et al. 2016), as well as growth in other bio-
logical tissues such as axons (García-Grajales et al. 2016).

While remodelling is important in a wide range of phe-
nomena in vivo, surprisingly few in vitro experiments have
been developed to explicitly study the macroscopic conse-
quences of remodelling. A notable counter-example is the
investigation of the contraction of fibroblast-populated colla-
gen lattices (FPCLs)—cultured fibroblasts embedded in (or
placed on top of) three-dimensional (3-D) collagen matri-
ces. It has long been known that FPCLs can contract to a
small fraction of their initial size within a few days (Bell
et al. 1979). This contraction was first observed to be ‘perma-
nent’ by Grinnell and coworkers (Grinnell and Lamke 1984;
Guidry and Grinnell 1985, 1986), who validated this finding
by performing several experiments with varying numbers of
fibroblast cells that were placed on top of collagen lattices
of different initial densities. Most fibroblasts did not invade
the lattice and were instead found to spread over its surface
while reorganising proximal collagen fibres in the direction
of spreading. It was thus proposed that the reorganisation
of the lattice away from the cells was chemically mediated
by the secretion of cell-binding factors such as fibronectin
and proteoglycans (Grinnell and Lamke 1984). It was also
observed that the addition of cytochalasin D, which sup-
presses gel reorganisation by inhibiting cell motility, resulted
in a partial re-expansion of the gel (Guidry and Grinnell
1985, 1986). The relative magnitude of the re-expansion was
found to be smaller in gels that were contracted by fibrob-
lasts for a greater period of time, which suggested that the
collagen gels were first physically reorganised by fibrob-
lasts and then stabilised by the continued presence of these
cells.

In this work, we develop a mathematical description of
the contraction of FPCLs that incorporates the mechanical
effects of remodelling. In Sect. 2, we provide a detailed sum-
mary of FPCLs and the different mechanisms by which they
can permanently contract. Then, in Sect. 3, we construct
an expression for the rate of morphoelastic contraction of
an FPCL, based on a plausible microscopic mechanism of
cells rearranging the fibres of the lattice. On varying the two
free parameters of this simplified model, we quantitatively
replicate features of previous experiments on contracting
FPCLs. Finally, in Sect. 4 we discuss how our framework
is significantly advantageous in comparison with many other

approaches to describing remodelling in biological tissues,
and detail possible extensions to our model.

2 Fibroblast-populated collagen lattices

2.1 History and classification

FPCLs were developed by Elsdale and Bard (1972), who
used them as a means of investigating fibroblast behaviour
in a setting that closely resembles their natural environ-
ment. A scanning electron microscope image of a fibroblast
embedded in a collagen lattice, taken from Rhee and Grin-
nell (2007), is shown in Fig. 2. Experiments on such lattices
can provide insight into the mechanical interactions between
fibroblasts and surrounding collagen fibrils. Since first being
developed, these lattices have been used to study the traction
forces exerted by fibroblasts in mechanically relaxed (Bell
et al. 1979; Bellows et al. 1981; Ehrlich and Rajaratnam
1990) and in mechanically loaded environments (Guidry and
Grinnell 1985; Mudera 2000; Hinz et al. 2001). FPCLs have
also been used to investigate the effects of various growth
factors on fibroblasts (Grinnell et al. 1999; Schreiber et al.
2001) as well as the behaviour of individual fibroblasts as
they contract their environment while moving through the
ECM (Roy et al. 1997, 1999). Further details on the range
of experiments involving FPCLs, and their clinical utility,
are provided in the reviews by Grinnell (2003), Dallon and
Ehrlich (2008), and Ehrlich and Moyer (2013).

FPCLs are typically classified according to themechanical
set-up that is used to create them. By this reckoning, there

Fig. 2 Scanning electron microscope image of a human fibroblast
interacting with 3D collagen matrices. Here, the fibroblast exhibits a
dendritic structure, indicating that the environment is unstressed. The
scale in the figure represents 10 µm (Reprinted from Advanced Drug
Delivery Reviews 59(13), Rhee S. and Grinnell F., Fibroblast mechan-
ics in 3D Collagen matrices, pp 1299–1305, Copyright (2007) with
permission from Elsevier)
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Fig. 3 Contraction of a solidified free-floating FPCL. The left image
shows the initial configuration of a collagen gel, while the right image
shows the configuration of the same gel after 48 h (with kind permission
from Springer Science+Business Media: Methods in Molecular Biol-
ogy: Kidney Research, Chapter 14. Cell-Populated Floating Collagen
Lattices: An In Vitro Model of Parenchymal Contraction, 466, 2009,
1–11, Kelynack, K.J., Fig. 14.1)

are three main types of FPCLs: free-floating, attached and
stress-relaxed.

Free-floating FPCLswere introduced by Bell et al. (1979)
and are prepared by polymerising a collagen gel with fibrob-
lasts. This could be done either in a bacteriological dish, to
which the gel adheres poorly, or in a tissue culture dish, in
which case the gel has to be detached after a certain time.
The image displayed in Fig. 3, taken from Kelynack (2009),
shows an example of a free-floating FPCL. In such lattices,
the fibroblasts project a dendritic network of extensions and
the tension is distributed isotropically (Grinnell et al. 2003;
Rhee and Grinnell 2007).

Fibroblasts in free-floating lattices can generate signifi-
cant traction forces (Grinnell 2000; Majno and Joris 2004),
which reorganise the matrix and lead to contraction. While
this reorganisation does not orient collagen fibrils in any par-
ticular direction, it can still cause these lattices to contract to
as little as a tenth of their initial lateral (or vertical) extent
(Bell et al. 1979; Steinberg et al. 1980; Grinnell and Lamke
1984; Guidry and Grinnell 1985), even in the absence of pro-
tomyofibroblast cells, which can exert greater forces. This
contraction gives rise to a mechanically relaxed tissue that
resembles dermis, and it has hence been proposed that such
lattices can be used to describe the earliest stages of wound
healing, before inflammation and tissue stress have activated
the differentiation of fibroblasts into myofibroblasts (Grin-
nell 1994). Such FPCLs are observed to remain disc shaped
throughout the contraction process, which involves a reduc-
tion in thickness as well as diameter, although the edges of
the disc are observed to eventually curl up (Bell et al. 1979).

Attached FPCLs are fibroblast-populated lattices that are
polymerised in a tissue culture dish, to which the gel attaches
firmly. A consequence of this experimental arrangement is
that the lattices decrease in thickness, but not in lateral area
(Grinnell and Lamke 1984; Guidry and Grinnell 1985). The

tension in such lattices is distributed anisotropically, while
fibroblasts develop an elongated bipolar appearance, orient-
ing themselves along the lines of tension (Bellows et al.
1982; Stopak and Harris 1982; Grinnell 1994; Tamariz and
Grinnell 2002). This reorganisation causes collagen fibrils to
become oriented in the same plane as the substrate, which
in turn gives rise to mechanical loading within the matrix.
The contraction of such lattices, which involves a reduction
in thickness alone, gives rise to a mechanically stressed tis-
sue resembling granulation tissue, and it has therefore been
proposed that such lattices can be used to model the early
stage of wound healing when the granulation tissue begins
to develop and exert stresses on its environment (Grinnell
1994). The rate and extent of contraction of the lattice are
similar to that in experiments where fibroblasts are embed-
ded within such lattices (Grinnell and Lamke 1984; Guidry
and Grinnell 1985, 1986). Fibroblasts in such lattices organ-
ise a fibronectin matrix and develop prominent actin stress
fibres (Farsi and Aubin 1984; Mochitate et al. 1991; Halli-
day and Tomasek 1995), which indicate that some fibroblasts
have differentiated into the protomyofibroblast phenotype. It
has also been observed that fibroblasts in restrained matrices
develop fibronexus junctions (Tomasek et al. 2002), which
allow TGF-β, if present, to further stimulate the differentia-
tion of protomyofibroblasts into themyofibroblast phenotype
(Arora et al. 1999; Vaughan et al. 2000).

A stress-relaxed FPCL is prepared by polymerising col-
lagen lattice, allowing it to attach to a tissue culture dish
for a set period of time and then detaching it (Tomasek
et al. 1992). In such lattices, tensile stress develops while
the matrix is anchored and these stresses are relieved via a
sudden smooth muscle-like contraction when the matrix is
released, as the cell extensions collapse and the stress fibres
disappear (Mochitate et al. 1991; Tomasek et al. 1992; Lin
et al. 1997). It has been proposed that stress-relaxed FPCLs
can be used to model scar tissue, or the transition from gran-
ulation tissue to replacement dermis in wound healing or in
tissue repair (Carlson and Longaker 2004).

As discussed earlier, the contraction of an FPCL results
from a fundamental reorganisation of the lattice structure and
is hence effectively ‘permanent’. We now discuss the mech-
anisms that have been proposed to explain the contraction of
FPCLs.

2.2 Mechanical properties

It is known that the degradation and replacement of col-
lagen fibres is not a significant mechanism of contraction
in attached lattices. This was demonstrated experimentally
using radiolabelled collagen, where it was found that the con-
centration of proteins in the gel remains constant during the
reorganisation process (Guidry and Grinnell 1985). Indeed,
it seems plausible to assume that contraction in all types of
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FPCLs is largely a result of the rearrangement of pre-existing
collagen fibres by fibroblasts. Even still, the precise mecha-
nism of lattice contraction is thought to vary, depending on
the density and mechanical state of the lattice.

The prime mechanism of stressed lattice contraction is
believed to be cell contraction, which is associated with the
protomyofibroblast and myofibroblast phenotypes that are
prevalent in such environments (Dallon and Ehrlich 2008).
When these cells contract, they pull on the surrounding lat-
tice, causing it to contract with them. It has been suggested
that contraction in free-floating lattices of moderate cell den-
sity occurs through a cell traction mechanism (Dallon and
Ehrlich 2008), in which cell locomotion results in the com-
pacting of collagen fibres by bundling thin fibrils (Harris
et al. 1980; Ehrlich 2003).As discussed inDallon andEhrlich
(2008), the contraction of free-floating lattices of high cell
density is believed to occur through a cell elongation and
spreadingmechanism, in which fibroblasts pull collagen fib-
rils towards them, thus compacting the gel.

A salient feature of FPCLs is that they provide a testbed for
investigating how the interplay between fibroblasts and the
collagen matrix can cause the latter to permanently contract.
Under the action of fibroblasts, the density of neighbour-
ing fibrils increases locally and consequently the volume of
the collagen lattice decreases (Grinnell 2003). An example
of such behaviour, taken from an experiment by Kelynack
(2009), is shown in Fig. 3.

The observation that the lattices only re-expand partially
crucially indicates that contraction is not simply the elas-
tic response of the collagen lattice to traction forces applied
by cells. Unlike other forms of remodelling, such as the
hardening of the human eye lens described by Augusteyn
(2010), which could be modelled using a time-dependent
stress–strain relationship, FPCL contraction involves some
form of cell-induced ‘plastic’ behaviour. That is, the active
lattice remodelling by cells causes the unloaded state of the
lattice to change over time in a manner analogous to classical
plasticity. Hence, a central aim of this paper is to develop a
mathematical framework for FPCLcontraction that takes into
account the evolving unloaded state. Our approach quantita-
tively captures key features of the contraction process, which
would be impossible to achieve with, for example, a Kelvin–
Voigt viscoelastic constitutive law. We now briefly outline
some of the previous mathematical approaches to modelling
the behaviour of FPCLs.

2.3 Modelling FPCL contraction

Most previous models of FPCL contraction have incorpo-
rated a viscoelastic framework. The earliest such model was
developed by Moon and Tranquillo (1993), who adapted
the Tranquillo and Murray (1992) model of dermal wound
healing to describe the contraction of a collagen micro-

sphere. This model could not, however, account for the
permanence of matrix contraction. An alternative frame-
work, which addresses this issue, but which is only valid
for small displacement gradients, was developed by Baro-
cas et al. (1995) who replaced the Kelvin–Voigt constitutive
law in the Moon–Tranquillo model with a Maxwell constitu-
tive law. In contrast, Ferrenq et al. (1997) retained the linear
Kelvin–Voigt constitutive law, but restricted their focus to
situations inwhich the displacement gradient is small and lin-
ear theory is valid. A different approach, that used the theory
of mixtures to describe the interaction between the fibrous
lattice and the permeating fluid medium, was the biphasic
model of collagen lattice contraction developed by Barocas
and coworkers (Barocas and Tranquillo 1994, 1997). This
model takes into account several important effects, includ-
ing the partial expansion of collagen lattices after cell traction
stresses are removed. Subsequently, Barocas and coworkers
have used similar approaches to describe several experiments
on collagen lattices (see, for example, Knapp et al. (1999);
Schreiber et al. (2003); Chandran and Barocas (2004)), using
models that include fibroblast traction as an additive contri-
bution to the total stress. Recent approaches to modelling
FPCL contraction include models by Marquez, Zahalak and
coworkers (for instance (Zahalak et al. 2000; Pryse et al.
2003; Marquez et al. 2005)), who considered individual cells
and used Eshelby’s solution to describe the local strain fields
andGreen et al. (2013), who considered spherical-symmetric
collagen lattices and treated the gel as a compressible Stokes
fluid.

While thesemodels have significantly advanced the under-
standing of this process, there have not yet been any models
that explicitly take into account the continual mechanical
restructuring of such lattices. In the next section, we intro-
duce a morphoelastic model, based on the concept of an
‘effective strain’ that can be used to capture the remodelling
of FPCLs.

3 A morphoelastic model for the contraction
of fibroblast-populated collagen lattices

In this section, we develop a mechanical model that can be
used todescribe the contractionof a collagen lattice byfibrob-
lasts. As described in standard continuum mechanics texts
(for example Gonzalez and Stuart (2008)), it is common
to work in either a ‘Lagrangian’ (or ‘material’) coordinate
system, in which each particle is labelled according to its
position in the initial configuration of the body, or in an
‘Eulerian’ (or ‘spatial’) coordinate system, in which each
particle is labelled according to its current position. Holding
the Lagrangian coordinate constant corresponds to observ-
ing a single particle, while holding the Eulerian coordinate
constant corresponds to observing a single point in space.
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As we discuss in Sect. 3.2, it is often appropriate to
treat contracting FPCLs as 1-D bodies. Indeed, Ferrenq
et al. (1997) constructed a model of FPCL contraction
in 1-D Cartesian coordinates and various authors have
assumed radial symmetry to develop 1-D descriptions of
FPCL contraction (Moon andTranquillo 1993; Ramtani et al.
2002; Ramtani 2004). We hence derive a one-dimensional
model, based on the following equation (derived explicitly in
‘Appendix 1’) that is appropriate for describing the mechan-
ical behaviour of morphoelastic solids with small effective
strain

∂eE

∂t
+ ∂

∂x

(
eE v

)
= ∂v

∂x
− g(x, t), (2)

where eE is the Eulerian strain, v is the velocity of a point in
the material, and g(x, t) describes the rate of growth. As dis-
cussed inmore detail in ‘Appendix 1’, Eulerian strain is taken
here to be the effective Eulerian strain, a local, dimensionless
measure of the difference between the current state and the
zero stress state, while the rate of growth is a measure of the
rate at which the zero stress state becomes larger over time.
In Sect. 3.1, we take advantage of the simplifications that can
be made to Eq. (2) when the deformation of the lattice might
be large, but the difference between the current state and the
stress-free state is always small. In particular, we introduce
a form for the growth function, g(x, t), based on a plausible
mechanism for the contraction of the lattice by fibroblasts.
This ultimately leads to a full model of FPCL contraction,
which we present in Sect. 3.2.

3.1 A cell-based contraction model

In the experiments performed byGuidry andGrinnell (1985),
lattices were contracted by fibroblasts and then allowed
to undergo a partial re-expansion after reorganisation is
inhibited. This re-expansion was faster than the contrac-
tion process, but far from instantaneous, indicating that the
timescale associated with the viscous relaxation of collagen
lattices should not be ignored. It is hence preferable for us
to use a Kelvin–Voigt viscoelastic constitutive law to relate
stress and effective strain instead of the purely elastic law,
namely σ = E eE , described in Appendix section ‘Strain
evolution’.

Additionally, the large deformations associated with lat-
tice contraction may cause significant changes to the elastic
properties of the collagen: we expect the collagen to become
stiffer as it becomes denser. Following Ramtani et al. (2002)
and Ramtani (2004), we therefore propose that the elastic
modulus of the collagen should be a function of collagen
density. Incorporating viscoelasticity and the changing elas-
tic modulus (but ignoring the activity of cells), this means

that an appropriate constitutive law for a collagen lattice will
take the form

σ = E(ρ) eE + μ
∂v

∂x
, (3)

where E(ρ) is the elastic modulus, ρ is the collagen density,
and μ is the collagen viscosity.

Next, we develop an expression for g(x, t) that captures
how cells actively rearrange the fibres of the collagen lattice
by applying traction—a microscopic mechanism that causes
a modification in size of the zero stress state. Our approach
is to imagine the collagen lattice as a 1-D body containing
evenly spaced fibroblasts, each of which effectively acts as a
force dipole by pulling on the collagen lying on either side of
it and compressing the collagen directly under it. We assume
that each fibroblast rearranges the collagen directly under
itself, thus evolving the lattice to a permanently compressed
state. Thus, g(x, t)will be negative and directly proportional
to the compressive strain in the lattice under the cells. Specif-
ically, we assume that g(x, t) is proportional to the amount
that the strain in the region covered by the cells ecells exceeds
(i.e. is more negative than) a critical level of contraction,
−êcrit.

It has been observed that even though fibroblasts lead to
substantial deformation of the environment, large strains are
confined to regions around each cell (Sander 2013), which
results in heterogeneity in collagen density. Hence, to realis-
tically describe the interplay of cells with their environment,
one would need to assume that gel compaction is not spa-
tially homogeneous, along the lines of the models by Evans
and Barocas (2009) or Stevenson et al. (2010). This approach
would introduce a range of complications that do not appear
to be physically relevant to FPCLs; as noted in Grinnell and
Lamke (1984), apparently homogeneous compaction of a gel
is observed even when cells are cultured purely on the gel
surface.

For simplicity and brevity, in the analysis that follows we
assume that the FPCL consists of a periodic array of iden-
tical units, each of which contains a single cell at its centre
(see Fig. 4) and hence that the fibroblast density is spatially
constant. We assume that the traction forces applied by cells
create regions of the lattice (under the cells) that are more

Fig. 4 A single cell within a periodic unit. The cell extends from−lc to
lc, and the unit extends from −lu to lu . The entire region has a uniform
zero stress state, and the length of the unit at zero stress is lz

123



A model for one-dimensional morphoelasticity and its application to fibroblast-populated… 1749

compressed than other regions of the lattice (outside the
cells). However, we also assume that the zero stress state
remains homogeneous in space even as it evolves over time.
This modelling choice is made in order to account for some
effects of cell mobility. We assume that cells make local
changes to the zero stress state and then move nearby and
repeat this process. The overall effect of this will be for the
changes to the zero stress state to be homogenised through
space.

Using our assumption of a periodic array of cells, we con-
struct a local coordinate system in which a given unit extends
from −lu to lu and the cell extends from −lc to lc. Thus, the
cell density, n, is proportional to lc/ lu . We also assume that
the zero stress state is uniform across the unit and that if the
unit was stress-free throughout, it would extend from −lz to
lz . Hence, the average effective strain throughout the unit is

eavg = lu − lz
lu

. (4)

Note that a further advantage of the assumption of uniform
cell density across the array is that this expression for strain
will be equivalent to thatmeasured in a representative volume
element containing many cells. We shall therefore use this
measure of strain in our macroscopic model.

As the cell in each unit pulls the lattice in towards itself,
the collagen under the cell will be under less tension (or
more compression) than that over the rest of the unit. More
formally, a cell in a given unit can be treated as a pair of
body forces, both of magnitude τc; at −lc the cell pulls the
collagen lattice to the right, while at lc the cell pulls the lattice
to the left. Neglecting inertial terms, the momentum balance
equation within a single unit is then

∂σu

∂x
= τc (δ(x − lc) − δ(x + lc)) ,

where σu is the local stress and δ is the Dirac delta function.
Integrating this equation with periodic boundary conditions,
we find that the stress within the unit is

σu =
{

σout, lc < |x | < lu,
σout − τc, |x | < lc.

where σout represents the stress in the regions outside the
cells, which we assume to be governed by the constitutive
law (3), so that

σout = E(ρ) eout + μ
∂v

∂x
. (5)

Since each cell must apply a balanced pair of body forces to
the lattice, it follows that either the boundary of the lattice
occurs in a region where σ = σout, or there is an additional
surface traction term that accounts for the effects of the end

of the cell. In either case, we find that it is most convenient to
express macroscopic boundary conditions in terms of σout:
a free-floating lattice will have σout = 0 on the boundary,
while a spring connected to the boundary (as in, for example,
Marenzana et al. (2006)) should be expressed as a relation-
ship between σout and the displacement at the boundary.

From the definition of strain above, we can express τc as

τc = σout − σcells, (6)

where σcells is the stress in the region covered by the cell.
Assuming that viscous stresses are uniform (or negligible)
between lc and −lc, and using a constitutive law for σcells,
we obtain the expression

ecells = σout − τc

E(ρ)
.

Asmentioned earlier, we assume that the growth rate g(x, t)
is dependent on the physical contraction experienced by the
lattice directly under the cells and is proportional to−(ecells−
êcrit). Moreover, the rate of contraction is proportional to the
cell density, n, as this is representative of the proportion of
the lattice that is accessible to the fibroblasts. Thus, we obtain
the following constitutive law for g(x, t):

g(x, t) = −θ n

(
−σout − τc

E(ρ)
− êcrit

)+
, (7)

where θ is a constant of proportionality with dimensions of
cell density−1 time−1 and the positive part operator (X)+ =
X for any positive X and is zero otherwise. As the condition

êcrit < −σout − τc

E(ρ)

is always satisfied in most practical situations, we neglect the
positive part operator in (7) for the rest of our analysis.

Next, we note that since the zero stress state is uniform
throughout the unit,

lu − lz = ecells lc + eout (lu − lc). (8)

Combining this with (4) yields the expression

eavg = eout + lc
lu

(
ecells − eout

)
.

Using (6), and defining σc as rescaling of τc so that n σc =
lc/ lu τc, we obtain

eout = eavg + n σc

E(ρ)
.
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Substituting into (5) gives us our constitutive relationship
between stress and strain:

σout = E(ρ) eavg + μ
∂v

∂x
+ n σc.

Note that the n σc term is analogous to the cell traction
stress term found in other models of lattice contraction and
dermal wound healing (Tranquillo and Murray 1992; Moon
and Tranquillo 1993; Tracqui et al. 1995; Ferrenq et al.
1997). Indeed, by making σc a function of the lattice density
and/or cell density (to incorporate the effects of crowding
on traction stress, for example), we can recover identical
expressions to those used in these earlier papers. However,
our approach differs in that traction stress emerges naturally
from the assumption that cells apply body forces to the col-
lagen lattice, rather than by requiring that this stress term be
incorporated into the constitutive law. Nevertheless, the con-
sistency between these two treatments of cell traction gives us
further confidence that both approaches are valid and useful.

Dropping the subscripts on eavg andσout, we obtain the fol-
lowing set of equations to describe the mechanical behaviour
of a contracting viscoelastic lattice:

∂e

∂t
+ ∂

∂x
(e v) = ∂v

∂x
+ θ n

(
−σ − nl σc

E(ρ)
− êcrit

)
, (9a)

σ = E(ρ) e + μ
∂v

∂x
+ n σc, (9b)

∂σ

∂x
= 0, (9c)

where nl = n lu/ lc is the constant of proportionality that
relates the cell density, n, to the cell length per unit length,
lc/ lu .

A full description of the mechanics of a contracting lattice
will also require an initial condition on e and two boundary
conditions, either on σ or v, that specify whether the ends
of the lattice are tethered or stress-free. We now combine (9)
with some assumptions about fibroblast motion and interac-
tions in FPCLs to construct a full morphoelastic model of
FPCL contraction.

3.2 The morphoelastic model of FPCL contraction

In the following, we assume that the contraction of the lattice
is due to the rearrangement of collagen fibrils by fibrob-
lasts alone, with the expectation that the results obtained
using this assumption will be quantitatively similar to those
obtained using a model that takes into account the rôle of
protomyofibroblasts. Additionally, we assume that TGF-β is
not present in the collagen lattice. As protomyofibroblasts
require the presence of TGF-β to differentiate into myofi-
broblasts (Tomasek et al. 2002), we hence do not consider
the activity of the latter. Furthermore, while it has been

observed that fibroblasts in free-floating lattices become qui-
escent (Rosenfeldt and Grinnell 2000) and a small fraction of
these cells undergo apoptosis (cell death) (Fluck et al. 1998;
Grinnell et al. 1999), we shall neglect these processes in our
model.

Experimental data for the contraction of FPCLs are typ-
ically obtained by measuring the changing diameter (in the
case of free-floating FPCLs) or thickness (in the case of
attached FPCLs) of the lattice. The behaviour of such lattices
can hence be modelled by considering one spatial dimension
that represents either the radius or thickness of the lattice
depending on the type of FPCL being considered. It should
be noted that themechanicalmodel presented in ‘Appendix 1’
assumes a single Cartesian spatial dimension and cannot be
easilymodified to obtain equations for themechanics of radi-
ally symmetric lattice contraction. As a result, our model is
best suited to attached, rather than free-floating, FPCLs.Nev-
ertheless, as seen later in this section, our model is equally
successful at fitting data obtained from both these lattice
types.

Following the conventions used in Appendix section ‘The
multiplicative decomposition of the deformation gradient’,
we use x(X, t) to represent the position at time t of a parti-
cle initially located at X and X (x, t) to represent the initial
position of a particle at position x at time t . Since the lat-
tice changes in size over time, the domain of interest can be
expressed as 0 ≤ x ≤ l(t) or, equivalently, 0 ≤ X ≤ l0,
where l0 = l(0). As illustrated in Fig. 5, the point x = 0 is
taken to represent either the centre of a floating lattice or the
fixed tethering point of an attached lattice. In either case, this
point is fixed and we hence find that x(0, t) = X (0, t) = 0.

We next define the Eulerian displacement, u(x, t) = x −
X (x, t), and the Eulerian displacement gradient, w(x, t) =
∂u/∂x . Following the definitions of x and X , it follows that
u(x, 0) = w(x, 0) = 0. Moreover, the fact that the centre
or tethering point is fixed implies that u(0, t) = 0. Another
important kinematic variable is the velocity, which is defined
as

v(x, t) = Du

Dt
= ∂u

∂t
+ v

∂u

∂x
, (10)

with v(0, t) = 0 at the fixed centre/tethering point.
Next, we introduce expressions for the densities of the

ECM, ρ(x, t), and the fibroblast cells, n(x, t). Since Guidry
and Grinnell (1985) observed that collagen synthesis and
degradation are insignificant in FPCLs, we propose that con-
traction proceeds only by rearrangement of the collagen
lattice. In other words, we assume that the net creation of
each species is zero during the timescale of the experiment.
Furthermore, for this study, we assume that there is nomigra-
tion of fibroblasts. As both species are subjected to passive
advection, this assumption allows us to use simple continu-
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(a) (b)

Fig. 5 Sketch of the different situations that can be described using
our morphoelastic model. Here the dashed lines represent the substrate,
and the arrows represent the directions of contraction of the collagen
lattice (pink). a In the case of a free-floating FPCL, we have symmetry

about x = 0. b In the case of an attached FPCL, x = 0 represents the
base of the lattice and x = l(t) is the contracting edge. This situation
can be thought of as the case of a lattice with a spring of infinite stiffness
attached at x = 0

ity equations for each of the species, which can be solved
explicitly (Clement 1978) to give

n(x, t) = n0 (1 − w(x, t)), (11)

ρ(x, t) = ρ0 (1 − w(x, t)), (12)

where n0 and ρ0 are the (spatially uniform) initial densities
of fibroblast cells and the ECM, respectively.

We assume that the lattice is initially relaxed (e(x, 0) = 0)
and that lattice stiffness increases with density, according to
the simple linear relationship

E(ρ) = E0 + k
ρ − ρ0

ρ0
,

where E0 is the elastic modulus when ρ = ρ0 and k is a pos-
itive constant. It should be noted that other forms have been
proposed to describe the dependence of the elastic modulus
on density. For example, Ramtani and coworkers describe
this relationship as a power law (Ramtani et al. 2002; Ram-
tani 2004). In the absence of further data, however, we use a
simple, linear law.

The case of a free-floating FPCL (Fig. 5a) or an attached
FPCL (Fig. 5b) can be described by using the stress-free
boundary condition

σ(l(t), t) = 0, (13)

and the displacement at x = l(t) can be obtained by noting
that

∫ l(t)

0
w(ξ, t)dξ = u(l(t), t) = l(t) − l0.

As we shall see, w(x, t) is spatially homogeneous in the
problem that we analyse. In this situation, it follows that

l(t) = l0
1 − w

. (14)

Taking the spatial derivative of (10) and rearranging, we
obtain the following evolution equation for w(x, t):

∂w

∂t
+ ∂

∂x
(w v) = ∂v

∂x
. (15)

In conjunction with the equations for the evolution of the
effective strain (9a), the constitutive law for the total stress
(9b) and the force balance Eqs. (9c), (11)–(15) comprise an
Eulerian model for the contraction of collagen by fibroblasts.
This system can be non-dimensionalised by introducing the
dimensionless variables

x∗ = x

l0
, l∗ = l

l0
, t∗ = t

h
, v∗ = v h

l0
, w∗ = w,

e∗ = e, n∗ = n

n0
, ρ∗ = ρ

ρ0
, σ∗ = σ

E0
, E∗ = E

E0
,

and the dimensionless constants

μ̄ = μ

E0 h , k̄ = k

E0 , τ̄ = σc n0
E0 ,

θ̄ = h θ nl , ēcrit = êcrit n0
nl

, (16)

where, for ease of comparison with experiment (see later),
we choose h = 1 h.

3.3 Lagrangian description of the model

As this Eulerian model has a moving boundary at x = l(t),
we now adopt a Lagrangian coordinate system to obtain a
model for a system inwhich the right-hand boundary is fixed.
Conveniently, we find that transforming our equations to
Lagrangian variables is equivalent to converting to character-
istic variables: we ultimately obtain a system where the only
differentiation is with respect to time. In the derivation that
follows, it is important to distinguish between partial time
derivatives with the Eulerian spatial coordinate held fixed
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and partial time derivatives with the Lagrangian spatial coor-
dinate X held fixed. Hence, we introduce the ‘Lagrangian
time variable’, T , and we transform the entire problem from
(x, t) coordinates to (X, T ) coordinates.

Firstly, we introduce Lagrangian displacement U and
Lagrangian velocity V , which are defined as

U (X, T ) = x(X, T ) − X, V (X, T ) = ∂U

∂T
.

These are both identical to u(x, t) and v(x, t) with just a
transformation of the independent variables (see Appendix
section ‘Strain evolution’ for details). Now, we define the
Lagrangian displacement gradient, W (X, T ) = ∂U/∂X ,
which is different from w since differentiation with respect
to x is different from that with respect to X . As described in
‘Appendix 2’, however, the definitions of W and V lead to
the identities

∂

∂x
≡ 1

1 + W

∂

∂X
, (17)

∂

∂t
≡ ∂

∂T
− V

1 + W

∂

∂X
, (18)

and hence w = W/(1 + W ). Based on these identities, it
follows that

∂φ

∂t
+ ∂

∂x
(φ v) = 1

1 + W

∂�

∂T
, (19)

where � = φ (1+W ) and where φ is a general scalar quan-
tity. This motivates the introduction of Lagrangian variables
N = n (1 + W ), R = ρ (1 + W ), S = σ (1 + W ) and
E = e (1 + W ), so that all of the advective time deriva-
tives simply become partial time derivatives. From (11) and
(12), we obtain the following exact expressions for the scaled
densities N and R in the ‘normal’ contracting situation

N (X, T ) ≡ 1, R(X, T ) ≡ 1,

Note that the situation inwhich lattice reorganisation is inhib-
ited by the addition of cytochalasin D at some time, Tinh, can
be described by taking

N (X, T ) =
{
1, T ≤ Tinh,
0, T > Tinh.

(20)

From (15), (9a), (9b) and (9c), we obtain the equations

∂W

∂T
= ∂V

∂X
,

∂E

∂T
= ∂V

∂X
+ N θ̄

(
−

n0
nl

S
1+W − τ̄

E (W )
− ēcrit

)
,

S(X, T ) = E (W ) E + μ̄
∂V

∂X
+ τ̄ N ,

∂S

∂X
= 0,

where E (W ) is

E (W ) = 1 − k̄ + k̄

1 + W
. (21)

Using the stress-free boundary condition (13), it follows that

S(X, T ) ≡ 0.

AsW is independent of X , it follows thatw is independent of
x and hence (14) is valid.Moreover, the fact thatW and E are
both independent of X means that we can rewrite our system
of PDEs as a pair of coupled ODEs for the displacement
gradient and strain:

dW

dT
= − 1

μ̄
(E (W ) E + τ̄ N ) , (22)

dE

dT
= dW

dT
+ N θ̄

(
τ̄

E (W )
− ēcrit

)
. (23)

Although this model has five dimensionless free parame-
ters: μ̄, k̄, τ̄ , ēcrit and θ̄ , as we show in the next section, we
can fix three of these parameters using heuristic arguments,
leaving uswith a two-componentmodelwith two free param-
eters. Finally, on non-dimensionalising (14) and converting
to Lagrangian variables, we find

l(t) = 1 + W (T ). (24)

Thus, our transformed ODE model gives easy access to the
evolving length of the lattice, which is the physical variable
most easily observed in experiments.

3.4 Comparison with Experimental Data

In the following, we numerically integrate the system (22)–
(23) and compare the resultswith previously obtained data. In
particular, we consider the experiments of Bell et al. (1979),
Talas et al. (1997) and Feng et al. (2003), which used free-
floating FPCLs, aswell ofGuidry andGrinnell (1985), which
was performed using an attached FPCL and in which lattice
reorganisation was halted at various times. We first estimate
values for the parameters E0, Fcell and σ0, which we then use
to fix the parameters μ̄, τ̄ and ēcrit for each case (values listed
in Table 1).

The initial stiffness of a collagen gel E0 was measured
by Knapp et al. (1997, 1999) to be 1.185 kPa. However,
the precise value of this quantity has been found to vary
widely, depending on the extent of cross-linking (Discher
et al. 2005).As the initial stiffness of the gelwas notmeasured
in any of the experiments under consideration, we assume
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Table 1 Summary of the experimental values for the number of fibroblast cells in the collagen gel and the initial gel diameter, as well as the
estimated values of the initial cell traction stress σ0 and the parameters μ̄, τ̄ and ēcrit , assuming E0 = 1000 Pa and Fcell = 500 nN/cell

Experiment C (cells) d (cm) σ0 (Pa) μ̄ τ̄ ēcrit(×10−3)

Bell et al. (1979) 7.5 × 106 5.3 1700 2.78 1.699 16.99

Talas et al. (1997) 2.5 × 105 2.18 334.9 2.78 0.3349 3.35

Feng et al. (2003) 2.5 × 106 10 159.2 2.78 0.1592 1.59

Guidry and Grinnell (1985) 1.0 × 105 1.2 442.1 2.78 0.4421 4.42

The remaining model parameters θ̄ and k̄ are optimised to fit the model to each set of experimental data (see Table2)

for the purposes of our simulations that the gel used in each
case was a lightly cross-linked collagen lattice, and use the
approximate value of the stiffness of such lattices (Discher
et al. 2005), namely E0 = 1 kPa.

Next we note that the total cell traction force will be a
product of the applied contraction force per cell Fcell and the
number of cells in the lattice, C . On dividing this quantity
by the cross-sectional area of the lattice, A, we obtain an
expression for initial cell traction stress:

σ0 = Fcell C

A
. (25)

The values ofC and the initial lattice diameter d (fromwhich
we can calculate A) for each of the four experiments are
listed in Table 1. Although the value of Fcell was not mea-
sured in any of the four experiments, there have been several
other experiments in which the contraction forces exerted by
the cells have been determined using cell-populated lattices
attached to force monitors, and a wide range of values of
Fcell has been reported, ranging from 0.1nN/cell (Eastwood
et al. 1996) to 1000 nN/cell (Wakatsuki et al. 2000). Here, we
will use the result from Kolodney and Wysolmerski (1992),
Fcell = 500 nN/cell, which was obtained using fibroblast-
populated matrices similar to those used in the experiments
by Bell et al. (1979), Guidry and Grinnell (1985), Talas et al.
(1997) and Feng et al. (2003).

Now, we note that Eq. (9b) implies that the initial cell
traction stress can also be expressed as

σ0 = σc n0.

Rearranging the equation for τ̄ in (16) and using (25) with
this alternative expression for σ0, we find that

τ̄ = Fcell C

E0 A . (26)

Thus, the value of τ̄ can be estimated for each experiment,
given the values of C and A.

We next note from (16) that the viscosity of the lattice is
given by

μ = μ̄ E0 h. (27)

For the purpose of our simulations, we assume that μ =
1.0×107 Pa s, a value in agreement with Knapp et al. (1997)
who measured the shear viscosity of a collagen gel to be
1.24× 107 Pa s. As we assume that the initial gel stiffness is
E0 = 1 kPa, we hence set μ̄ = 2.78 for all experiments.

Finally, we note that although ēcrit is difficult to deter-
mine experimentally, it can be observed from (16) that it
is related to the cell density. Hence, we make the heuris-
tic assumption ēcrit = C/(C f A), where C f represents the
characteristic number of fibroblasts in an FPCL. In the fol-
lowing, we choose C f = 2 × 106, which is a reasonable
estimate that lies within the range of values of C for the
experiments considered here. It is interesting to note that the
above assumptions yield a simple relationship ēcrit = 10−3 τ̄ .

The remaining parameters θ̄ and k̄ are difficult to estimate
from experiments. In particular, θ̄ arises from the constitu-
tive law for g(x, t) and there are no constraints on its value.
Hence, in the following we obtain and use ‘best-fit’ values
of θ̄ . Moreover, we note the power law exponent for the rela-
tionship between elastic modulus and density used Ramtani
and coworkers used (Ramtani et al. 2002; Ramtani 2004) is,
to a first order approximation, identical to k̄. As this exponent
was taken to be a free parameter in these previous approaches,
we obtain and use best-fit values of k̄.

We now qualitatively describe the behaviour of the FPCL
in each of the four experiments under consideration by using
the values displayed in Table 1 and varying the free parame-
ters θ̄ and k̄ using theMATLAB subroutine fminsearch, such
that we minimise the difference between the experimental
values for the fraction of the original length (diameter or
thickness) and the values of l(t), given by (24) at the corre-
spondingmeasurement times. Specifically,we find the values
of θ̄ and k̄ that yield the lowest values of the quantity χ2,
defined as:

χ2 =
∑
i

(Oi − Ei )
2

Ei
, (28)
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Table 2 Values of the model parameters θ̄ and k̄, obtained from the best fit of the results of the simulations to four different sets of experimental
data

Experiment θ̄ k̄ χ2(θ̄ , k̄) χ2(θ̄ , k̄−) χ2(θ̄ , k̄+) χ2(θ̄−, k̄) χ2( ¯θ+, k̄)

Bell et al. (1979) 0.89 106.62 0.0147 0.0313 0.0298 0.0244 0.0218

Talas et al. (1997) 5.10 1294.92 0.0037 0.0071 0.0063 0.0045 0.0044

Feng et al. (2003) 16.14 183.85 0.0337 0.0446 0.0434 0.0363 0.0356

Guidry and Grinnell (1985) 0.33 2.97 0.0590 0.0704 0.0685 0.0921 0.0890

Goodness of fit tests are performed by comparing simulations performed using these parameter values with the corresponding experimental data,
and the resulting χ2 values for each case are displayed. In addition, we display χ2 values for the cases where one of θ̄ and k̄ is scaled by factors of
±10% (indicated by a corresponding superscript ±), to characterise the robustness of the individual fits
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Fig. 6 Contour plots displaying the dependence of the goodness of fit
on the free parameters of the model, θ̄ and k̄. To capture the variation of
the goodness of fit over the parameter space, we display the logarithm
(base 10) of χ2 (θ̄ , k̄). The latter quantity is calculated by comparing
results obtained by simulating the model for a given value of θ̄ and k̄
with experimental data, using Eq. (28). Four experimental datasets are

considered, namely a data for lattice diameter from Bell et al. (1979),
b data for lattice diameter from Talas et al. (1997), c data for lattice
diameter from Feng et al. (2003) and d data for lattice thickness from
Guidry and Grinnell (1985). In each case, the ‘best-fit’ values of θ̄ and
k̄ that yield the lowest χ2 are indicated by a cross within a circle

where i correspond to all the experimental data points being
considered, Ei are the values of l(t) for these data points and
Oi are the corresponding values of 1+W (T ) obtained from
the simulations. As shown in Table 2, we find that the χ2

values, obtained by using the optimal values of θ̄ and k̄ for
each case, are in the range 0.004–0.059, indicating a good fit
between theory and experiments.

To test the robustness of these fits, we determine the val-
ues of χ2 obtained by simulating our model for a wide range
of choices of θ̄ and k̄. In Fig. 6, we display contour plots that
indicate how χ2 varies with θ̄ and k̄ for each of the four
experiments mentioned earlier. In addition, for each case
we display the location of the ‘optimal’ choice of θ̄ and
k̄, obtained through the minimisation procedure described
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Fig. 7 Data for the fraction of the original length (diameter or thick-
ness) of the FPCL, taken from different experiments (denoted by dark
circles), superimposed with numerical results for l(t) (from the expres-
sion (24), and denoted by red solid lines) obtained by simulating the
system (22)–(23). The parameters μ̄, τ̄ and ēcrit are estimated heuris-
tically from available information for each experiment, and the values
used for simulations in each case are listed in Table 1. The correspond-
ing best-fit values of θ̄ and k̄ are listed in Table 2. Fits are shown for a
data for lattice diameter from Bell et al. (1979), b data for lattice diam-

eter from Talas et al. (1997), c data for lattice diameter from Feng et al.
(2003) and d data for lattice thickness fromGuidry andGrinnell (1985).
Experimental data are available for six different cases in (Guidry and
Grinnell 1985), for which lattice reorganisation is inhibited through the
addition of cytochalasin D at different times Tinh. We simulate this inhi-
bition by setting N (X, T ) = 0 at T = Tinh, and the results are displayed
for each corresponding case. Note that the model captures the partial
re-expansion of the lattice (empty circles) observed in the experiment

above. It can be observed from this figure that small per-
turbations (around ±10%) in the value of either of the two
parameters from the global minima will not substantially
change the resulting values of χ2. Indeed, as seen in Table 2,
the corresponding χ2 values in these cases are of a similar
order of magnitude to those obtained when using the best-
fit values of θ̄ and k̄. This implies that the global minima
displayed in Fig. 6 can be used to obtain robust fits of the
simulations to each of the four datasets.

It is important to note that our choice of the global min-
ima of χ2 is in order to provide a unifying criterion for the
selection of θ̄ and k̄. Although the best-fit values listed in
Table 2 vary over a wide range, there is a large region of the
(θ̄ , k̄)-space over which we could obtain fits that are essen-
tially as good (see Fig. 6). Thus, one could have, in principle,
chosen very similar values of θ̄ and k̄ for each of the three
free-floating FPCL experiments and have still obtained good

fits in each case. While such a choice might potentially be
more realistic, as one would not expect much variance of
these parameters across different free-floating FPCLs, it is
difficult to justify the use of any pair of (θ̄ , k̄) over another.
To this end, we restrict our attention to the best-fit values in
Table 2.

We next examine in detail the best fits to the individual
datasets. The data for the change in the fraction of the origi-
nal lattice extent for four different experiments are shown
in Fig. 7. It is important to note from Table 1 that the
lattices for the four chosen experiments have very differ-
ent spatial extents, which explains the differing timescales
for contraction. In fact, it appears that the rate at which
the fraction of the original extent of a lattice shrinks is
inversely proportional to its original extent. This suggests
that the contraction rate of the lattices is related to their initial
sizes.
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We begin by considering the experiments performed by
Bell et al. (1979) that yielded the first reported observation of
FPCLcontraction. In these experiments, different numbers of
fibroblast cells were embedded in free-floating collagen lat-
tices of varying ECM density, which contained foetal bovine
serum. The fraction of the original length was then measured
at various times over the course of several days. In the follow-
ing, we consider their set of results that were obtained using
7.5×106 fibroblast cells embedded in a lattice of initial diam-
eter 53 mm. It was observed that this lattice subsequently
contracted to around 10% of its original diameter in around
9 days. We find that the best fit of our numerical results to
the experimental data can be obtained by using θ̄ = 0.89,
k̄ = 106.62 (see Fig. 7a).

We next consider the experiments of Talas et al. (1997),
in which the difference between the effects of normal and
recessive dystrophic epidermolysis bullosa fibroblasts were
investigated. For the case of normalfibroblasts, 2.5×105 cells
were embedded in a lattice with a diameter of approximately
2.18 cm. It was observed that the lattice contracted to around
37% of its original area in around 7 days. We find that the
best fit of our numerical results to the experimental data can
be obtained by using θ̄ = 5.10, k̄ = 1294.92 (see Fig. 7b).

Next, we consider the experiments of Feng et al. (2003),
in which the mechanical properties of contracted collagen
gels were investigated. Here, 2.5× 106 fibroblast cells were
embedded within a lattice of initial diameter 100 mm. It was
observed that the lattice contracted to around 13% of its orig-
inal diameter by the end of the experiment, with most of the
contraction occurring within the first few days. In this case,
we find that the best fit of our numerical results to the experi-
mental data can be obtained by using θ̄ = 16.14, k̄ = 183.85
(see Fig. 7c).

Finally, we consider the results of Guidry and Grinnell
(1985), obtained when 105 fibroblasts were placed on an
attached lattice of diameter 12 mm. It was observed that this
lattice contracted to about 24% of its original thickness in
around 1 day.As the presence of protomyofibroblastswas not
reported in these experiments, it is likely that the observed
contraction is primarily due to the activity of fibroblasts and
hence our model can be used to approximate this behaviour.
We simulate the effect of adding cytochalasin D by allowing
N (X, T ) to take the form (20). Results obtained using θ̄ =
0.33, k̄ = 2.97, which gave the best fit to the experimental
data, are shown in Fig. 7d. We find that in addition to the
contraction of this gel, our model can capture the observed
partial re-expansion.

4 Discussion

In this work, we develop a 1-D morphoelastic model to
describe the evolution of the diameter (width) of a free-

floating (attached) collagen lattice that is contracted by
fibroblasts. We fit numerical solutions of the model to pre-
viously obtained experimental data by optimising two free
parameters. In addition to being able to capture the contrac-
tion of the lattice, our model closely describes the partial
re-expansion of the lattice observed in the experiment by
Guidry and Grinnell (1985). Hence, this is to our knowledge
the firstmathematicalmodel that explains how the permanent
contraction of such lattices partially persists when reorgani-
sation is inhibited by killing the fibroblasts or by otherwise
preventing them from altering the lattice. We achieve this
by explicitly taking into account the continual changes to
the zero stress state of a material in response to a prescribed
rate of growth and explicitly describes the evolution of this
state. The partial re-expansion of the lattice is an example
of a class of phenomena related to changes in the underly-
ing tissue structure. As the theoretical framework developed
here is flexible and versatile, it could potentially be used
to model a range of other biological processes that involve
internal remodelling of a tissue’s mechanical structure, by
making certain assumptions about the dependence of growth
on other physical parameters.

Note that our framework for stress and strain is devel-
oped in Eulerian coordinates (in ‘Appendix 1’). Although
a Lagrangian framework can lead to equations with fixed
boundaries and a useful variational structure (see, for exam-
ple Roberts (1994) and Gonzalez and Stuart (2008)), it is
typically only appropriate in situations where the zero stress
state does not evolve.However, as described inYavari (2010),
the introduction of a changing zero stress state leads to new
terms that need to be carefully incorporated into the energy
balance equation. Moreover, in cases where the zero stress
state is close to the current state, but quite different from
the initial state, Eulerian coordinates enable aspects of small
deformation theory, such as the linear stress–strain relation-
ship, to be applied.

On deriving the relations for stress and strain in Eule-
rian coordinates, we then revert to Lagrangian coordinates
(in 3.2) in order to avoid the problems inherent in a system
with a moving boundary. To do this, we exploit the fact that a
conversion to Lagrangian coordinates corresponds to a con-
version to characteristic variables (as diffusion is absent in
our system), and we are thus able to simplify our model to a
system of ordinary differential equations.

It should be noted that we have assumed in our model that
the zero stress state is always uniform within each unit and
that the expression for g(x, t) also gives a uniform rate of
change to the zero stress state.Against this, itmight be argued
that the only region where the zero stress state is changing
(due to the direct effect of fibroblast action) is the region
where −lc < x < lc. However, experiments have been per-
formed where cells were cultured on top of lattices instead of
throughout lattices, and these still showed relatively uniform
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contraction (Grinnell and Lamke 1984; Guidry and Grinnell
1985, 1986). This indicates that while cell migration may be
slow (Grinnell and Lamke 1984; Ascione et al. 2016), there
is sufficient cell movement (or perhaps cells rearrange col-
lagen over sufficiently large volumes) for it to be reasonable
to assume that the change in the zero stress state is uniform
in space.

Despite the fact that cell movement is quite limited over
the time scale of FPCL contraction, a natural extension to
our model would be to consider the case where cell density
is non-uniform, and where there is active cell movement over
the timescale of contraction. Extensions like this would be
necessary for developing models of wound healing based on
the principles presented in this model. When cell motility is
taken into consideration, the transformation to Lagrangian
coordinates would no longer convert the partial differential
equations of the original model to ordinary differential equa-
tions, and it is likely that it would be more straightforward
to solve the original Eulerian equations.

The morphoelastic approach detailed in this paper, where
an evolution law is developed for the effective strain but
a conventional stress–strain relationship is used, could
potentially be applied to several other biological processes
including soft tissue growth, arterial remodelling, aneurysm
development, morphogenesis, initiation of stretch marks and
solid tumour growth. Furthermore, the permanent contrac-
tion observed in some pathological scars instead suggests
that morphoelastic changes to the underlying extracellular
matrix are particularly significant during the wound healing
process. Hence, an important potential application of this
theory is the development of a mechanochemical model of
dermalwound healing. Indeed, it would be fruitful to build on
recent theoretical models of the wound healing process that
have considered aspects of the interplay between fibroblasts,
keratinocytes and growth factors (Menon et al. 2012), the
complementary rôles of TGF-β and tissue tension (Murphy
et al. 2011a, 2012), the interplay between these components
and ECM deformation (Valero et al. 2014), and their rôle
in hypertrophic scar formation (Koppenol et al. 2017b) and
wound retraction (Koppenol et al. 2017a).

In addition, there are several possible ways in which
this model could be extended to describe other observed
aspects of the behaviour of FPCLs. For instance, there have
been experiments in which force measurement devices were
attached to the collagen lattice (Kolodney and Wysolmerski
1992; Brown et al. 1996; Marenzana et al. 2006) in order
to measure the total contractile force exerted by the cells.
In each case, the force measurement device provides a finite
spring-like resistance to the contraction of the lattice, and so
the contraction process could be described using our model
by replacing the stress-free boundary condition in (13) with
one that relates the stress at x = l(t) to the displacement at
the contracting edge. However, as the increased elastic ten-

sion in such a lattice could lead fibroblasts to modulate into
protomyofibroblasts (Tomasek et al. 2002) that increase the
stress, it may also be necessary to make the cell-associated
stress, σc, a function of elastic stress. Indeed, this modulation
can also occur in stress-relaxed FPCLs (Tomasek et al. 1992),
which causes the lattice to contract rapidly when released. In
the additional presence of TGF-β, protomyofibroblast cells
in such lattices will further modulate into myofibroblasts
(Desmoulière et al. 1993; Tomasek et al. 2002; Gabbiani
2003; Desmoulière et al. 2005). In order to capture the effect
of these highly contractile cells, our model could bemodified
via the addition of a new species for protomyofibroblasts (or
myofibroblasts), a new chemical species, TGF-β, and includ-
ing a conversion term in the equation for the fibroblasts.
Furthermore, as mentioned earlier, the effect of heterogene-
ity in gel compaction could also be investigated using the
theoretical framework that we describe.

However, it is important to note that although our mor-
phoelastic model closely captures the important features
of the permanent contraction of FPCLs, the approach used
here can only truly be justified in 1-D Cartesian coordinates
(see Appendix section ‘The multiplicative decomposition of
the deformation gradient’ for more details). Consequently,
although our model can provide a good description of
attached lattices, a complete description of cylindrical, free-
floating lattices would require significant modifications to
the constitutive laws used for the mechanics of the lattice
(albeit with only minor adjustments to the reaction-diffusion
equations). This could still be achieved using the same prin-
ciples described in Sect. 3.1 if appropriate modifications are
made; for example, we could consider a three-dimensional
array of units, each containing a single cell, and each cell
could be treated as a sphere of body stresses pulling inward.
By homogenising such a system, we could develop a three-
dimensional constitutive law for growth analogous to (7);
however, any such rule would be significantly more com-
plicated than the one-dimensional rule developed in this
manuscript.

An additional complication in this regard is that there
remains considerable ambiguity surrounding the precise
specification of 3-D laws for the evolution of the zero
stress state (for an overview on recent advances in this area,
see Kuhl (2014)). As noted in Ambrosi et al. (2011), there
has been little success in using thermodynamic arguments to
develop general frameworks for morphoelasticity. Further-
more, there are uniqueness issues surrounding the multi-
plicative decomposition of the deformation gradient and it
is difficult to ensure that any phenomenological evolution
law is appropriately observer independent. Although some
effort has gone into resolving these problems (especially in
the engineering literature—see, for example, Lubarda (2001)
andXiao et al. (2006)), the resultingmodels are often densely
expressed and difficult to apply to biological morphoelastic-
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ity. As noted in Chaps. 4 and 5 of Hall (2008), some progress
can be made by considering possible three-dimensional gen-
eralisations of (31), but there is a need for further work in
this area. We also note that there is still interest in developing
constitutive models that could provide better mathematical
descriptions of remodelling in soft biological tissues (see, for
example, Comellas et al. (2016)).

Despite these challenges, the morphoelastic framework
presented in this manuscript has significant advantages over
other approaches to describing biological remodelling. In
particular, phenomena like the permanent contraction of a
collagen lattice, which our model can describe, are inacces-
sible to classical Kelvin–Voigt models and are very different
from the stress-induced contraction observed in Maxwell
models.

The central achievement of our work lies in developing
a theoretical framework for the mechanics of tissue remod-
elling that explicitly accounts for the action of cells to change
the fundamental structure of a collagen lattice. By defining
strain in terms of the difference between the current state
and the zero stress state and considering how this strain
changes according to both physical deformation and the
action of cells, we find that morphoelasticity can be easily
incorporated into a model of FPCL contraction. Indeed, this
approach allows us to use conventional constitutive laws to
relate the stress to the strain. The 1-D morphoelastic frame-
work described in this paper provides us with a simple and
meaningful technique to describe some of the complexities of
biological remodelling, and it has the potential to be extended
and used in a wide range of other areas.
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Appendix 1: effective strain and contraction
in a 1-D morphoelastic body

The multiplicative decomposition of the deformation
gradient

The idea that an observed deformation gradient tensor F
could be expressed in terms of elastic and plastic tensor
fields through a multiplicative decomposition was first intro-
duced by Bilby et al. (1957) and Kröner (1958, 1959).
This was further developed by Stojanović et al. (1964,
1970) in the context of thermoelasticity and Lee (1969)
for the description of metal plasticity at large deforma-
tions, while Rodriguez et al. (1994) and Cook (1995)

were the first to utilise this in the context of biomechan-
ics. The pioneering work of Rodriguez et al. (1994) and
Cook (1995) was later extended and expanded by Hoger
and coworkers (see especially Chen and Hoger (2000)),
Goriely and coworkers (BenAmar andGoriely 2005;Goriely
and Ben Amar 2007; Goriely et al. 2008), Ambrosi and
coworkers (Ambrosi and Mollica 2004; Ambrosi and Guana
2007; Ambrosi and Guillou 2007) and by Vandiver (2009).
This biological work has developed alongside applica-
tions to thermoelasticity and plasticity, and achievements
in these areas have informed each other. This is exem-
plified by the cross-disciplinary work of Lubarda (2001,
2004) and Rajagopal and coworkers (see, for example,
Rajagopal and Srinivasa (2004)). For a comprehensive
review of the history and applications of the multiplica-
tive decomposition of deformation gradient, see Lubarda
(2004).

In a recent comprehensive review of current work on
modelling growth and remodelling, Ambrosi et al. (2011)
describe a number of applications of the multiplicative
decomposition of the deformation gradient, ranging from the
remodelling of heart muscle to morphogenesis. The multi-
plicative decomposition of the deformation gradient is now
being used in models of biomechanical phenomena rang-
ing from tissue growth (Ben Amar and Goriely 2005) to the
operation of the heart (Göktepe and Kuhl 2010; Rausch et al.
2011), although it is important to note that this approach
will only be valid when the tissue behaves elastically on the
timescale of remodelling (Jones andChapman 2012) and that
some authors have general reservations about the use of the
multiplicative decomposition on theoretical grounds (Xiao
et al. 2006). Indeed, Ambrosi et al. (2011) note that there are
problems and ambiguities to be resolved when developing
appropriate laws to describe the evolution of the growth part
of the deformation gradient in response to remodelling. In
the context of the present work, it is important to note that
many of these difficulties are avoided as we restrict our anal-
ysis to the one-dimensional (1-D) Cartesian case, although
it is still necessary to ensure that the constitutive relation is
appropriate for the type of remodelling under consideration.

An accessible introduction to the use of the multiplica-
tive decomposition in biological applications can be found in
Goriely and Moulton (2011), which begins with an analysis
of a 1-D growing material that is relevant to the research pre-
sented here. It is important to note that a 1-D body can never
be residually stressed: it is impossible to encounter the situa-
tion in which the zero stress state cannot be achieved without
introducing cuts. Moreover, ensuring observer independence
of time derivatives is much simpler along a single dimen-
sion, as it excludes the possibility of a rotating observer. We
nowdevelop a simplemathematical framework formodelling
the growth or contraction of a 1-D Cartesian morphoelastic
body.
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Strain evolution

The deformation gradient is given by the scalar function

F(X, t) = ∂x

∂X
,

Following the 1-D version of Eq. (1) in Goriely andMoulton
(2011), we express this as the product

F = α γ, (29)

where the elastic stretch α is the local size ratio between the
current state and the zero stress state, and the growth stretch
γ is the local size ratio between the zero stress state and the
initial state (the growth stretch).

In Goriely and Moulton (2011), the constitutive relation
for 1-D growth is assumed to depend on the rate of growth
g(x, t):

∂γ

∂t
= g(x, t), (30)

While (30) is useful at small deformations (i.e.when F ≈ 1),
it leads to inconsistencies if the current state is significantly
different from the initial state, as in the case of FPCL con-
traction. In order to obtain an equivalent of (30) for large
deformations, we first note that g(x, t) should satisfy

d

dt

∫ XB

XA

γ (X, t) dX =
∫ x(XB , t)

x(XA, t)
g(x, t) dx . (31)

That is, g(x, t) should be defined with reference to the cur-
rent configuration, but it should measure the rate of change
of the zero stress state of any collection of material particles.
It follows from (31) that g(x, t) is related to the material
derivative of γ (X, t):

Dγ

Dt
= F g(x, t), (32)

Note that this reduces to (30) when F ≡ 1.
Now, we expect that the stress at any point in the body

will be related to the difference between the zero stress state
and the current state. A plausible constitutive law that relates
the stress, σ , to the elastic stretch, α is

σ = E
(
1 − α−1

)
, (33)

where E is the Young’s modulus. This is analogous to
Hooke’s law for a linear elastic material, but uses an Eulerian
rather than a pseudo-Lagrangian measure of strain, since

eE ≡ 1 − α−1 = lim
�x→0

�x − �z

�x
, while

eL ≡ α − 1 = lim
�x→0

�x − �z

�z
,

where�x and�z relate to the changes in the current and zero
stress states, respectively. In cases where the current state is
close to the zero stress state, and hence, α ≈ 1, we see that
eE ≈ eL and (33) is equivalent to other plausible constitutive
laws, such as those in Goriely and Moulton (2011):

σ = E (α − 1), (34)

σ = E

3

(
α2 − α−1

)
, (35)

Experimental observations indicate thatmost of the change in
size of a contracting FPCL is due to the permanent rearrange-
ment of fibres by fibroblasts (Guidry and Grinnell 1985).
Hence, it is appropriate to use (33) and assume a linear rela-
tionship between stress and strain, rather than the nonlinear
model (35).Moreover, (33) has an interesting advantage over
(34) and (35), namely that the evolution of Eulerian strain in
response to growth can neatly be expressed as an advection
equation with a source term that is independent of eE .

In order to see this, we substitute (29) into (32) to obtain

F
D

Dt
α−1 + α−1 DF

Dt
= F g(x, t). (36)

Since F−1 DF/Dt = ∂v/∂x where v is the velocity and
where ∂v/∂x is the velocity gradient, it follows that α−1

satisfies the equation

∂

∂t
α−1 + ∂

∂x

(
v α−1

)
= g(x, t),

and using eE ≡ 1−α−1 we thus obtain themechanicalmodel
for a morphoelastic solid with small effective strain

∂eE

∂t
+ ∂

∂x

(
eE v

)
= ∂v

∂x
− g(x, t), (37)

Note that thus far we have made the assumption that the
relation between stress and strain is purely elastic

σ = E eE .

However, as discussed inSect. 3.1, this can easily be extended
to viscoelastic bodies through the use of a Kelvin–Voigt vis-
coelastic constitutive law. In Sect. 3 of the main text, we use
this formulation together with (37) to derive a set of gov-
erning equations for the contraction of a 1-D morphoelastic
body.
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Appendix 2: derivation of the spatial and temporal
transformations between coordinate systems

In one spatial dimension, we use X to represent the
Lagrangian coordinate and x to represent theEulerian coordi-
nate. At any given time t , there will be a one-to-one mapping
from the initial configuration to the current configuration.
Thus, we can always write X = X (x, t) and x = x(X, t);
moreover, the fact that particles are not permitted to move
through each other implies that ∂x/∂X > 0.

Now, the Eulerian displacement gradient is the spatial
derivative of u(x, t) = x − X (x, t), i.e.

w(x, t) = 1 − ∂X

∂x
. (38)

Similarly, the Lagrangian displacement gradient is

W (X, T ) = ∂

∂X
(x − X) = 1

1 − w
− 1.

We thus have the relation

1 + W = 1

1 − w
. (39)

Using the chain rule, the Eulerian spatial derivative is

∂

∂x
≡ ∂X

∂x

∂

∂X
+ ∂T

∂x

∂

∂T
.

The derivative ∂T/∂x is equal to zero, and using (38) we
obtain the expression

X = x −
∫ x

0
w(ξ, t)dξ. (40)

Furthermore, using (38) and (39), we obtain the following
transformation for the spatial derivative

∂

∂x
≡ 1

1 + W

∂

∂X
. (41)

We similarly use the chain rule to obtain the following expres-
sion for the Eulerian temporal derivative

∂

∂t
≡ ∂X

∂t

∂

∂X
+ ∂T

∂t

∂

∂T
.

The derivative ∂T/∂t is equal to one, and so using (40) we
have

∂

∂t
≡ ∂

∂t

(∫ x

0
1 − w(ξ, t) dξ

)
∂

∂X
+ ∂

∂T
.

Using (15), we have

∂

∂t
≡

∫ x

0

∂

∂ξ
(w(ξ, t) v(ξ, t) − v(ξ, t)) dξ

∂

∂X
+ ∂

∂T
,

which, on using (39) and the fact that v(0, t) = 0, yields

∂

∂t
≡ ∂

∂T
− v

1 + W

∂

∂X
.

Now, from (10), we have v (1 − w) = ∂u/∂t . Since u ≡ U ,
using the above expression in conjunction with (39), this
yields

v = (1 + W )

(
V − v

1 + W
W

)
,

where we have used the definitions of V andW . This implies
that v ≡ V , and so we obtain the following transformation
for the temporal derivative

∂

∂t
≡ ∂

∂T
− V

1 + W

∂

∂X
. (42)

Now, from (15) we have ∂w/∂t + ∂(w v)/∂x = ∂v/∂x .
Using (39), (41) and (42), this reduces to the following
relation between the Lagrangian displacement gradient and
velocity:

∂W

∂T
= ∂V

∂X
. (43)

We use this expression in Sect. 3.2 of the main text to derive
our morphoelastic model of FPCL contraction.
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